FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_mount.c
1 /*-
2 * Copyright (c) 1999-2004 Poul-Henning Kamp
3 * Copyright (c) 1999 Michael Smith
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39
40 #include <sys/param.h>
41 #include <sys/conf.h>
42 #include <sys/fcntl.h>
43 #include <sys/jail.h>
44 #include <sys/kernel.h>
45 #include <sys/libkern.h>
46 #include <sys/malloc.h>
47 #include <sys/mount.h>
48 #include <sys/mutex.h>
49 #include <sys/namei.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/filedesc.h>
53 #include <sys/reboot.h>
54 #include <sys/sbuf.h>
55 #include <sys/syscallsubr.h>
56 #include <sys/sysproto.h>
57 #include <sys/sx.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysent.h>
60 #include <sys/systm.h>
61 #include <sys/vnode.h>
62 #include <vm/uma.h>
63
64 #include <geom/geom.h>
65
66 #include <machine/stdarg.h>
67
68 #include <security/audit/audit.h>
69 #include <security/mac/mac_framework.h>
70
71 #define VFS_MOUNTARG_SIZE_MAX (1024 * 64)
72
73 static int vfs_domount(struct thread *td, const char *fstype, char *fspath,
74 uint64_t fsflags, struct vfsoptlist **optlist);
75 static void free_mntarg(struct mntarg *ma);
76
77 static int usermount = 0;
78 SYSCTL_INT(_vfs, OID_AUTO, usermount, CTLFLAG_RW, &usermount, 0,
79 "Unprivileged users may mount and unmount file systems");
80
81 static bool default_autoro = false;
82 SYSCTL_BOOL(_vfs, OID_AUTO, default_autoro, CTLFLAG_RW, &default_autoro, 0,
83 "Retry failed r/w mount as r/o if no explicit ro/rw option is specified");
84
85 MALLOC_DEFINE(M_MOUNT, "mount", "vfs mount structure");
86 MALLOC_DEFINE(M_STATFS, "statfs", "statfs structure");
87 static uma_zone_t mount_zone;
88
89 /* List of mounted filesystems. */
90 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
91
92 /* For any iteration/modification of mountlist */
93 struct mtx mountlist_mtx;
94 MTX_SYSINIT(mountlist, &mountlist_mtx, "mountlist", MTX_DEF);
95
96 /*
97 * Global opts, taken by all filesystems
98 */
99 static const char *global_opts[] = {
100 "errmsg",
101 "fstype",
102 "fspath",
103 "ro",
104 "rw",
105 "nosuid",
106 "noexec",
107 NULL
108 };
109
110 static int
111 mount_init(void *mem, int size, int flags)
112 {
113 struct mount *mp;
114
115 mp = (struct mount *)mem;
116 mtx_init(&mp->mnt_mtx, "struct mount mtx", NULL, MTX_DEF);
117 lockinit(&mp->mnt_explock, PVFS, "explock", 0, 0);
118 return (0);
119 }
120
121 static void
122 mount_fini(void *mem, int size)
123 {
124 struct mount *mp;
125
126 mp = (struct mount *)mem;
127 lockdestroy(&mp->mnt_explock);
128 mtx_destroy(&mp->mnt_mtx);
129 }
130
131 static void
132 vfs_mount_init(void *dummy __unused)
133 {
134
135 mount_zone = uma_zcreate("Mountpoints", sizeof(struct mount), NULL,
136 NULL, mount_init, mount_fini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
137 }
138 SYSINIT(vfs_mount, SI_SUB_VFS, SI_ORDER_ANY, vfs_mount_init, NULL);
139
140 /*
141 * ---------------------------------------------------------------------
142 * Functions for building and sanitizing the mount options
143 */
144
145 /* Remove one mount option. */
146 static void
147 vfs_freeopt(struct vfsoptlist *opts, struct vfsopt *opt)
148 {
149
150 TAILQ_REMOVE(opts, opt, link);
151 free(opt->name, M_MOUNT);
152 if (opt->value != NULL)
153 free(opt->value, M_MOUNT);
154 free(opt, M_MOUNT);
155 }
156
157 /* Release all resources related to the mount options. */
158 void
159 vfs_freeopts(struct vfsoptlist *opts)
160 {
161 struct vfsopt *opt;
162
163 while (!TAILQ_EMPTY(opts)) {
164 opt = TAILQ_FIRST(opts);
165 vfs_freeopt(opts, opt);
166 }
167 free(opts, M_MOUNT);
168 }
169
170 void
171 vfs_deleteopt(struct vfsoptlist *opts, const char *name)
172 {
173 struct vfsopt *opt, *temp;
174
175 if (opts == NULL)
176 return;
177 TAILQ_FOREACH_SAFE(opt, opts, link, temp) {
178 if (strcmp(opt->name, name) == 0)
179 vfs_freeopt(opts, opt);
180 }
181 }
182
183 static int
184 vfs_isopt_ro(const char *opt)
185 {
186
187 if (strcmp(opt, "ro") == 0 || strcmp(opt, "rdonly") == 0 ||
188 strcmp(opt, "norw") == 0)
189 return (1);
190 return (0);
191 }
192
193 static int
194 vfs_isopt_rw(const char *opt)
195 {
196
197 if (strcmp(opt, "rw") == 0 || strcmp(opt, "noro") == 0)
198 return (1);
199 return (0);
200 }
201
202 /*
203 * Check if options are equal (with or without the "no" prefix).
204 */
205 static int
206 vfs_equalopts(const char *opt1, const char *opt2)
207 {
208 char *p;
209
210 /* "opt" vs. "opt" or "noopt" vs. "noopt" */
211 if (strcmp(opt1, opt2) == 0)
212 return (1);
213 /* "noopt" vs. "opt" */
214 if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
215 return (1);
216 /* "opt" vs. "noopt" */
217 if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
218 return (1);
219 while ((p = strchr(opt1, '.')) != NULL &&
220 !strncmp(opt1, opt2, ++p - opt1)) {
221 opt2 += p - opt1;
222 opt1 = p;
223 /* "foo.noopt" vs. "foo.opt" */
224 if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
225 return (1);
226 /* "foo.opt" vs. "foo.noopt" */
227 if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
228 return (1);
229 }
230 /* "ro" / "rdonly" / "norw" / "rw" / "noro" */
231 if ((vfs_isopt_ro(opt1) || vfs_isopt_rw(opt1)) &&
232 (vfs_isopt_ro(opt2) || vfs_isopt_rw(opt2)))
233 return (1);
234 return (0);
235 }
236
237 /*
238 * If a mount option is specified several times,
239 * (with or without the "no" prefix) only keep
240 * the last occurrence of it.
241 */
242 static void
243 vfs_sanitizeopts(struct vfsoptlist *opts)
244 {
245 struct vfsopt *opt, *opt2, *tmp;
246
247 TAILQ_FOREACH_REVERSE(opt, opts, vfsoptlist, link) {
248 opt2 = TAILQ_PREV(opt, vfsoptlist, link);
249 while (opt2 != NULL) {
250 if (vfs_equalopts(opt->name, opt2->name)) {
251 tmp = TAILQ_PREV(opt2, vfsoptlist, link);
252 vfs_freeopt(opts, opt2);
253 opt2 = tmp;
254 } else {
255 opt2 = TAILQ_PREV(opt2, vfsoptlist, link);
256 }
257 }
258 }
259 }
260
261 /*
262 * Build a linked list of mount options from a struct uio.
263 */
264 int
265 vfs_buildopts(struct uio *auio, struct vfsoptlist **options)
266 {
267 struct vfsoptlist *opts;
268 struct vfsopt *opt;
269 size_t memused, namelen, optlen;
270 unsigned int i, iovcnt;
271 int error;
272
273 opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK);
274 TAILQ_INIT(opts);
275 memused = 0;
276 iovcnt = auio->uio_iovcnt;
277 for (i = 0; i < iovcnt; i += 2) {
278 namelen = auio->uio_iov[i].iov_len;
279 optlen = auio->uio_iov[i + 1].iov_len;
280 memused += sizeof(struct vfsopt) + optlen + namelen;
281 /*
282 * Avoid consuming too much memory, and attempts to overflow
283 * memused.
284 */
285 if (memused > VFS_MOUNTARG_SIZE_MAX ||
286 optlen > VFS_MOUNTARG_SIZE_MAX ||
287 namelen > VFS_MOUNTARG_SIZE_MAX) {
288 error = EINVAL;
289 goto bad;
290 }
291
292 opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
293 opt->name = malloc(namelen, M_MOUNT, M_WAITOK);
294 opt->value = NULL;
295 opt->len = 0;
296 opt->pos = i / 2;
297 opt->seen = 0;
298
299 /*
300 * Do this early, so jumps to "bad" will free the current
301 * option.
302 */
303 TAILQ_INSERT_TAIL(opts, opt, link);
304
305 if (auio->uio_segflg == UIO_SYSSPACE) {
306 bcopy(auio->uio_iov[i].iov_base, opt->name, namelen);
307 } else {
308 error = copyin(auio->uio_iov[i].iov_base, opt->name,
309 namelen);
310 if (error)
311 goto bad;
312 }
313 /* Ensure names are null-terminated strings. */
314 if (namelen == 0 || opt->name[namelen - 1] != '\0') {
315 error = EINVAL;
316 goto bad;
317 }
318 if (optlen != 0) {
319 opt->len = optlen;
320 opt->value = malloc(optlen, M_MOUNT, M_WAITOK);
321 if (auio->uio_segflg == UIO_SYSSPACE) {
322 bcopy(auio->uio_iov[i + 1].iov_base, opt->value,
323 optlen);
324 } else {
325 error = copyin(auio->uio_iov[i + 1].iov_base,
326 opt->value, optlen);
327 if (error)
328 goto bad;
329 }
330 }
331 }
332 vfs_sanitizeopts(opts);
333 *options = opts;
334 return (0);
335 bad:
336 vfs_freeopts(opts);
337 return (error);
338 }
339
340 /*
341 * Merge the old mount options with the new ones passed
342 * in the MNT_UPDATE case.
343 *
344 * XXX: This function will keep a "nofoo" option in the new
345 * options. E.g, if the option's canonical name is "foo",
346 * "nofoo" ends up in the mount point's active options.
347 */
348 static void
349 vfs_mergeopts(struct vfsoptlist *toopts, struct vfsoptlist *oldopts)
350 {
351 struct vfsopt *opt, *new;
352
353 TAILQ_FOREACH(opt, oldopts, link) {
354 new = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
355 new->name = strdup(opt->name, M_MOUNT);
356 if (opt->len != 0) {
357 new->value = malloc(opt->len, M_MOUNT, M_WAITOK);
358 bcopy(opt->value, new->value, opt->len);
359 } else
360 new->value = NULL;
361 new->len = opt->len;
362 new->seen = opt->seen;
363 TAILQ_INSERT_HEAD(toopts, new, link);
364 }
365 vfs_sanitizeopts(toopts);
366 }
367
368 /*
369 * Mount a filesystem.
370 */
371 #ifndef _SYS_SYSPROTO_H_
372 struct nmount_args {
373 struct iovec *iovp;
374 unsigned int iovcnt;
375 int flags;
376 };
377 #endif
378 int
379 sys_nmount(struct thread *td, struct nmount_args *uap)
380 {
381 struct uio *auio;
382 int error;
383 u_int iovcnt;
384 uint64_t flags;
385
386 /*
387 * Mount flags are now 64-bits. On 32-bit archtectures only
388 * 32-bits are passed in, but from here on everything handles
389 * 64-bit flags correctly.
390 */
391 flags = uap->flags;
392
393 AUDIT_ARG_FFLAGS(flags);
394 CTR4(KTR_VFS, "%s: iovp %p with iovcnt %d and flags %d", __func__,
395 uap->iovp, uap->iovcnt, flags);
396
397 /*
398 * Filter out MNT_ROOTFS. We do not want clients of nmount() in
399 * userspace to set this flag, but we must filter it out if we want
400 * MNT_UPDATE on the root file system to work.
401 * MNT_ROOTFS should only be set by the kernel when mounting its
402 * root file system.
403 */
404 flags &= ~MNT_ROOTFS;
405
406 iovcnt = uap->iovcnt;
407 /*
408 * Check that we have an even number of iovec's
409 * and that we have at least two options.
410 */
411 if ((iovcnt & 1) || (iovcnt < 4)) {
412 CTR2(KTR_VFS, "%s: failed for invalid iovcnt %d", __func__,
413 uap->iovcnt);
414 return (EINVAL);
415 }
416
417 error = copyinuio(uap->iovp, iovcnt, &auio);
418 if (error) {
419 CTR2(KTR_VFS, "%s: failed for invalid uio op with %d errno",
420 __func__, error);
421 return (error);
422 }
423 error = vfs_donmount(td, flags, auio);
424
425 free(auio, M_IOV);
426 return (error);
427 }
428
429 /*
430 * ---------------------------------------------------------------------
431 * Various utility functions
432 */
433
434 void
435 vfs_ref(struct mount *mp)
436 {
437
438 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
439 MNT_ILOCK(mp);
440 MNT_REF(mp);
441 MNT_IUNLOCK(mp);
442 }
443
444 void
445 vfs_rel(struct mount *mp)
446 {
447
448 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
449 MNT_ILOCK(mp);
450 MNT_REL(mp);
451 MNT_IUNLOCK(mp);
452 }
453
454 /*
455 * Allocate and initialize the mount point struct.
456 */
457 struct mount *
458 vfs_mount_alloc(struct vnode *vp, struct vfsconf *vfsp, const char *fspath,
459 struct ucred *cred)
460 {
461 struct mount *mp;
462
463 mp = uma_zalloc(mount_zone, M_WAITOK);
464 bzero(&mp->mnt_startzero,
465 __rangeof(struct mount, mnt_startzero, mnt_endzero));
466 TAILQ_INIT(&mp->mnt_nvnodelist);
467 mp->mnt_nvnodelistsize = 0;
468 TAILQ_INIT(&mp->mnt_activevnodelist);
469 mp->mnt_activevnodelistsize = 0;
470 mp->mnt_ref = 0;
471 (void) vfs_busy(mp, MBF_NOWAIT);
472 atomic_add_acq_int(&vfsp->vfc_refcount, 1);
473 mp->mnt_op = vfsp->vfc_vfsops;
474 mp->mnt_vfc = vfsp;
475 mp->mnt_stat.f_type = vfsp->vfc_typenum;
476 mp->mnt_gen++;
477 strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
478 mp->mnt_vnodecovered = vp;
479 mp->mnt_cred = crdup(cred);
480 mp->mnt_stat.f_owner = cred->cr_uid;
481 strlcpy(mp->mnt_stat.f_mntonname, fspath, MNAMELEN);
482 mp->mnt_iosize_max = DFLTPHYS;
483 #ifdef MAC
484 mac_mount_init(mp);
485 mac_mount_create(cred, mp);
486 #endif
487 arc4rand(&mp->mnt_hashseed, sizeof mp->mnt_hashseed, 0);
488 TAILQ_INIT(&mp->mnt_uppers);
489 return (mp);
490 }
491
492 /*
493 * Destroy the mount struct previously allocated by vfs_mount_alloc().
494 */
495 void
496 vfs_mount_destroy(struct mount *mp)
497 {
498
499 MNT_ILOCK(mp);
500 mp->mnt_kern_flag |= MNTK_REFEXPIRE;
501 if (mp->mnt_kern_flag & MNTK_MWAIT) {
502 mp->mnt_kern_flag &= ~MNTK_MWAIT;
503 wakeup(mp);
504 }
505 while (mp->mnt_ref)
506 msleep(mp, MNT_MTX(mp), PVFS, "mntref", 0);
507 KASSERT(mp->mnt_ref == 0,
508 ("%s: invalid refcount in the drain path @ %s:%d", __func__,
509 __FILE__, __LINE__));
510 if (mp->mnt_writeopcount != 0)
511 panic("vfs_mount_destroy: nonzero writeopcount");
512 if (mp->mnt_secondary_writes != 0)
513 panic("vfs_mount_destroy: nonzero secondary_writes");
514 atomic_subtract_rel_int(&mp->mnt_vfc->vfc_refcount, 1);
515 if (!TAILQ_EMPTY(&mp->mnt_nvnodelist)) {
516 struct vnode *vp;
517
518 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes)
519 vn_printf(vp, "dangling vnode ");
520 panic("unmount: dangling vnode");
521 }
522 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers"));
523 if (mp->mnt_nvnodelistsize != 0)
524 panic("vfs_mount_destroy: nonzero nvnodelistsize");
525 if (mp->mnt_activevnodelistsize != 0)
526 panic("vfs_mount_destroy: nonzero activevnodelistsize");
527 if (mp->mnt_lockref != 0)
528 panic("vfs_mount_destroy: nonzero lock refcount");
529 MNT_IUNLOCK(mp);
530 if (mp->mnt_vnodecovered != NULL)
531 vrele(mp->mnt_vnodecovered);
532 #ifdef MAC
533 mac_mount_destroy(mp);
534 #endif
535 if (mp->mnt_opt != NULL)
536 vfs_freeopts(mp->mnt_opt);
537 crfree(mp->mnt_cred);
538 uma_zfree(mount_zone, mp);
539 }
540
541 static bool
542 vfs_should_downgrade_to_ro_mount(uint64_t fsflags, int error)
543 {
544 /* This is an upgrade of an exisiting mount. */
545 if ((fsflags & MNT_UPDATE) != 0)
546 return (false);
547 /* This is already an R/O mount. */
548 if ((fsflags & MNT_RDONLY) != 0)
549 return (false);
550
551 switch (error) {
552 case ENODEV: /* generic, geom, ... */
553 case EACCES: /* cam/scsi, ... */
554 case EROFS: /* md, mmcsd, ... */
555 /*
556 * These errors can be returned by the storage layer to signal
557 * that the media is read-only. No harm in the R/O mount
558 * attempt if the error was returned for some other reason.
559 */
560 return (true);
561 default:
562 return (false);
563 }
564 }
565
566 int
567 vfs_donmount(struct thread *td, uint64_t fsflags, struct uio *fsoptions)
568 {
569 struct vfsoptlist *optlist;
570 struct vfsopt *opt, *tmp_opt;
571 char *fstype, *fspath, *errmsg;
572 int error, fstypelen, fspathlen, errmsg_len, errmsg_pos;
573 bool autoro;
574
575 errmsg = fspath = NULL;
576 errmsg_len = fspathlen = 0;
577 errmsg_pos = -1;
578 autoro = default_autoro;
579
580 error = vfs_buildopts(fsoptions, &optlist);
581 if (error)
582 return (error);
583
584 if (vfs_getopt(optlist, "errmsg", (void **)&errmsg, &errmsg_len) == 0)
585 errmsg_pos = vfs_getopt_pos(optlist, "errmsg");
586
587 /*
588 * We need these two options before the others,
589 * and they are mandatory for any filesystem.
590 * Ensure they are NUL terminated as well.
591 */
592 fstypelen = 0;
593 error = vfs_getopt(optlist, "fstype", (void **)&fstype, &fstypelen);
594 if (error || fstypelen <= 0 || fstype[fstypelen - 1] != '\0') {
595 error = EINVAL;
596 if (errmsg != NULL)
597 strncpy(errmsg, "Invalid fstype", errmsg_len);
598 goto bail;
599 }
600 fspathlen = 0;
601 error = vfs_getopt(optlist, "fspath", (void **)&fspath, &fspathlen);
602 if (error || fspathlen <= 0 || fspath[fspathlen - 1] != '\0') {
603 error = EINVAL;
604 if (errmsg != NULL)
605 strncpy(errmsg, "Invalid fspath", errmsg_len);
606 goto bail;
607 }
608
609 /*
610 * We need to see if we have the "update" option
611 * before we call vfs_domount(), since vfs_domount() has special
612 * logic based on MNT_UPDATE. This is very important
613 * when we want to update the root filesystem.
614 */
615 TAILQ_FOREACH_SAFE(opt, optlist, link, tmp_opt) {
616 if (strcmp(opt->name, "update") == 0) {
617 fsflags |= MNT_UPDATE;
618 vfs_freeopt(optlist, opt);
619 }
620 else if (strcmp(opt->name, "async") == 0)
621 fsflags |= MNT_ASYNC;
622 else if (strcmp(opt->name, "force") == 0) {
623 fsflags |= MNT_FORCE;
624 vfs_freeopt(optlist, opt);
625 }
626 else if (strcmp(opt->name, "reload") == 0) {
627 fsflags |= MNT_RELOAD;
628 vfs_freeopt(optlist, opt);
629 }
630 else if (strcmp(opt->name, "multilabel") == 0)
631 fsflags |= MNT_MULTILABEL;
632 else if (strcmp(opt->name, "noasync") == 0)
633 fsflags &= ~MNT_ASYNC;
634 else if (strcmp(opt->name, "noatime") == 0)
635 fsflags |= MNT_NOATIME;
636 else if (strcmp(opt->name, "atime") == 0) {
637 free(opt->name, M_MOUNT);
638 opt->name = strdup("nonoatime", M_MOUNT);
639 }
640 else if (strcmp(opt->name, "noclusterr") == 0)
641 fsflags |= MNT_NOCLUSTERR;
642 else if (strcmp(opt->name, "clusterr") == 0) {
643 free(opt->name, M_MOUNT);
644 opt->name = strdup("nonoclusterr", M_MOUNT);
645 }
646 else if (strcmp(opt->name, "noclusterw") == 0)
647 fsflags |= MNT_NOCLUSTERW;
648 else if (strcmp(opt->name, "clusterw") == 0) {
649 free(opt->name, M_MOUNT);
650 opt->name = strdup("nonoclusterw", M_MOUNT);
651 }
652 else if (strcmp(opt->name, "noexec") == 0)
653 fsflags |= MNT_NOEXEC;
654 else if (strcmp(opt->name, "exec") == 0) {
655 free(opt->name, M_MOUNT);
656 opt->name = strdup("nonoexec", M_MOUNT);
657 }
658 else if (strcmp(opt->name, "nosuid") == 0)
659 fsflags |= MNT_NOSUID;
660 else if (strcmp(opt->name, "suid") == 0) {
661 free(opt->name, M_MOUNT);
662 opt->name = strdup("nonosuid", M_MOUNT);
663 }
664 else if (strcmp(opt->name, "nosymfollow") == 0)
665 fsflags |= MNT_NOSYMFOLLOW;
666 else if (strcmp(opt->name, "symfollow") == 0) {
667 free(opt->name, M_MOUNT);
668 opt->name = strdup("nonosymfollow", M_MOUNT);
669 }
670 else if (strcmp(opt->name, "noro") == 0) {
671 fsflags &= ~MNT_RDONLY;
672 autoro = false;
673 }
674 else if (strcmp(opt->name, "rw") == 0) {
675 fsflags &= ~MNT_RDONLY;
676 autoro = false;
677 }
678 else if (strcmp(opt->name, "ro") == 0) {
679 fsflags |= MNT_RDONLY;
680 autoro = false;
681 }
682 else if (strcmp(opt->name, "rdonly") == 0) {
683 free(opt->name, M_MOUNT);
684 opt->name = strdup("ro", M_MOUNT);
685 fsflags |= MNT_RDONLY;
686 autoro = false;
687 }
688 else if (strcmp(opt->name, "autoro") == 0) {
689 vfs_freeopt(optlist, opt);
690 autoro = true;
691 }
692 else if (strcmp(opt->name, "suiddir") == 0)
693 fsflags |= MNT_SUIDDIR;
694 else if (strcmp(opt->name, "sync") == 0)
695 fsflags |= MNT_SYNCHRONOUS;
696 else if (strcmp(opt->name, "union") == 0)
697 fsflags |= MNT_UNION;
698 else if (strcmp(opt->name, "automounted") == 0) {
699 fsflags |= MNT_AUTOMOUNTED;
700 vfs_freeopt(optlist, opt);
701 }
702 }
703
704 /*
705 * Be ultra-paranoid about making sure the type and fspath
706 * variables will fit in our mp buffers, including the
707 * terminating NUL.
708 */
709 if (fstypelen > MFSNAMELEN || fspathlen > MNAMELEN) {
710 error = ENAMETOOLONG;
711 goto bail;
712 }
713
714 error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
715
716 /*
717 * See if we can mount in the read-only mode if the error code suggests
718 * that it could be possible and the mount options allow for that.
719 * Never try it if "[no]{ro|rw}" has been explicitly requested and not
720 * overridden by "autoro".
721 */
722 if (autoro && vfs_should_downgrade_to_ro_mount(fsflags, error)) {
723 printf("%s: R/W mount failed, possibly R/O media,"
724 " trying R/O mount\n", __func__);
725 fsflags |= MNT_RDONLY;
726 error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
727 }
728 bail:
729 /* copyout the errmsg */
730 if (errmsg_pos != -1 && ((2 * errmsg_pos + 1) < fsoptions->uio_iovcnt)
731 && errmsg_len > 0 && errmsg != NULL) {
732 if (fsoptions->uio_segflg == UIO_SYSSPACE) {
733 bcopy(errmsg,
734 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
735 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
736 } else {
737 copyout(errmsg,
738 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
739 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
740 }
741 }
742
743 if (optlist != NULL)
744 vfs_freeopts(optlist);
745 return (error);
746 }
747
748 /*
749 * Old mount API.
750 */
751 #ifndef _SYS_SYSPROTO_H_
752 struct mount_args {
753 char *type;
754 char *path;
755 int flags;
756 caddr_t data;
757 };
758 #endif
759 /* ARGSUSED */
760 int
761 sys_mount(struct thread *td, struct mount_args *uap)
762 {
763 char *fstype;
764 struct vfsconf *vfsp = NULL;
765 struct mntarg *ma = NULL;
766 uint64_t flags;
767 int error;
768
769 /*
770 * Mount flags are now 64-bits. On 32-bit architectures only
771 * 32-bits are passed in, but from here on everything handles
772 * 64-bit flags correctly.
773 */
774 flags = uap->flags;
775
776 AUDIT_ARG_FFLAGS(flags);
777
778 /*
779 * Filter out MNT_ROOTFS. We do not want clients of mount() in
780 * userspace to set this flag, but we must filter it out if we want
781 * MNT_UPDATE on the root file system to work.
782 * MNT_ROOTFS should only be set by the kernel when mounting its
783 * root file system.
784 */
785 flags &= ~MNT_ROOTFS;
786
787 fstype = malloc(MFSNAMELEN, M_TEMP, M_WAITOK);
788 error = copyinstr(uap->type, fstype, MFSNAMELEN, NULL);
789 if (error) {
790 free(fstype, M_TEMP);
791 return (error);
792 }
793
794 AUDIT_ARG_TEXT(fstype);
795 vfsp = vfs_byname_kld(fstype, td, &error);
796 free(fstype, M_TEMP);
797 if (vfsp == NULL)
798 return (ENOENT);
799 if (vfsp->vfc_vfsops->vfs_cmount == NULL)
800 return (EOPNOTSUPP);
801
802 ma = mount_argsu(ma, "fstype", uap->type, MFSNAMELEN);
803 ma = mount_argsu(ma, "fspath", uap->path, MNAMELEN);
804 ma = mount_argb(ma, flags & MNT_RDONLY, "noro");
805 ma = mount_argb(ma, !(flags & MNT_NOSUID), "nosuid");
806 ma = mount_argb(ma, !(flags & MNT_NOEXEC), "noexec");
807
808 error = vfsp->vfc_vfsops->vfs_cmount(ma, uap->data, flags);
809 return (error);
810 }
811
812 /*
813 * vfs_domount_first(): first file system mount (not update)
814 */
815 static int
816 vfs_domount_first(
817 struct thread *td, /* Calling thread. */
818 struct vfsconf *vfsp, /* File system type. */
819 char *fspath, /* Mount path. */
820 struct vnode *vp, /* Vnode to be covered. */
821 uint64_t fsflags, /* Flags common to all filesystems. */
822 struct vfsoptlist **optlist /* Options local to the filesystem. */
823 )
824 {
825 struct vattr va;
826 struct mount *mp;
827 struct vnode *newdp;
828 int error, error1;
829
830 ASSERT_VOP_ELOCKED(vp, __func__);
831 KASSERT((fsflags & MNT_UPDATE) == 0, ("MNT_UPDATE shouldn't be here"));
832
833 if (vp == td->td_ucred->cr_prison->pr_root) {
834 vput(vp);
835 return (EPERM);
836 }
837
838 /*
839 * If the user is not root, ensure that they own the directory
840 * onto which we are attempting to mount.
841 */
842 error = VOP_GETATTR(vp, &va, td->td_ucred);
843 if (error == 0 && va.va_uid != td->td_ucred->cr_uid)
844 error = priv_check_cred(td->td_ucred, PRIV_VFS_ADMIN, 0);
845 if (error == 0)
846 error = vinvalbuf(vp, V_SAVE, 0, 0);
847 if (error == 0 && vp->v_type != VDIR)
848 error = ENOTDIR;
849 if (error == 0) {
850 VI_LOCK(vp);
851 if ((vp->v_iflag & VI_MOUNT) == 0 && vp->v_mountedhere == NULL)
852 vp->v_iflag |= VI_MOUNT;
853 else
854 error = EBUSY;
855 VI_UNLOCK(vp);
856 }
857 if (error != 0) {
858 vput(vp);
859 return (error);
860 }
861 VOP_UNLOCK(vp, 0);
862
863 /* Allocate and initialize the filesystem. */
864 mp = vfs_mount_alloc(vp, vfsp, fspath, td->td_ucred);
865 /* XXXMAC: pass to vfs_mount_alloc? */
866 mp->mnt_optnew = *optlist;
867 /* Set the mount level flags. */
868 mp->mnt_flag = (fsflags & (MNT_UPDATEMASK | MNT_ROOTFS | MNT_RDONLY));
869
870 /*
871 * Mount the filesystem.
872 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
873 * get. No freeing of cn_pnbuf.
874 */
875 error1 = 0;
876 if ((error = VFS_MOUNT(mp)) != 0 ||
877 (error1 = VFS_STATFS(mp, &mp->mnt_stat)) != 0 ||
878 (error1 = VFS_ROOT(mp, LK_EXCLUSIVE, &newdp)) != 0) {
879 if (error1 != 0) {
880 error = error1;
881 if ((error1 = VFS_UNMOUNT(mp, 0)) != 0)
882 printf("VFS_UNMOUNT returned %d\n", error1);
883 }
884 vfs_unbusy(mp);
885 mp->mnt_vnodecovered = NULL;
886 vfs_mount_destroy(mp);
887 VI_LOCK(vp);
888 vp->v_iflag &= ~VI_MOUNT;
889 VI_UNLOCK(vp);
890 vrele(vp);
891 return (error);
892 }
893 VOP_UNLOCK(newdp, 0);
894
895 if (mp->mnt_opt != NULL)
896 vfs_freeopts(mp->mnt_opt);
897 mp->mnt_opt = mp->mnt_optnew;
898 *optlist = NULL;
899
900 /*
901 * Prevent external consumers of mount options from reading mnt_optnew.
902 */
903 mp->mnt_optnew = NULL;
904
905 MNT_ILOCK(mp);
906 if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
907 (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
908 mp->mnt_kern_flag |= MNTK_ASYNC;
909 else
910 mp->mnt_kern_flag &= ~MNTK_ASYNC;
911 MNT_IUNLOCK(mp);
912
913 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
914 cache_purge(vp);
915 VI_LOCK(vp);
916 vp->v_iflag &= ~VI_MOUNT;
917 VI_UNLOCK(vp);
918 vp->v_mountedhere = mp;
919 /* Place the new filesystem at the end of the mount list. */
920 mtx_lock(&mountlist_mtx);
921 TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
922 mtx_unlock(&mountlist_mtx);
923 vfs_event_signal(NULL, VQ_MOUNT, 0);
924 vn_lock(newdp, LK_EXCLUSIVE | LK_RETRY);
925 VOP_UNLOCK(vp, 0);
926 EVENTHANDLER_INVOKE(vfs_mounted, mp, newdp, td);
927 VOP_UNLOCK(newdp, 0);
928 mountcheckdirs(vp, newdp);
929 vrele(newdp);
930 if ((mp->mnt_flag & MNT_RDONLY) == 0)
931 vfs_allocate_syncvnode(mp);
932 vfs_unbusy(mp);
933 return (0);
934 }
935
936 /*
937 * vfs_domount_update(): update of mounted file system
938 */
939 static int
940 vfs_domount_update(
941 struct thread *td, /* Calling thread. */
942 struct vnode *vp, /* Mount point vnode. */
943 uint64_t fsflags, /* Flags common to all filesystems. */
944 struct vfsoptlist **optlist /* Options local to the filesystem. */
945 )
946 {
947 struct export_args export;
948 void *bufp;
949 struct mount *mp;
950 int error, export_error, len;
951 uint64_t flag;
952
953 ASSERT_VOP_ELOCKED(vp, __func__);
954 KASSERT((fsflags & MNT_UPDATE) != 0, ("MNT_UPDATE should be here"));
955 mp = vp->v_mount;
956
957 if ((vp->v_vflag & VV_ROOT) == 0) {
958 if (vfs_copyopt(*optlist, "export", &export, sizeof(export))
959 == 0)
960 error = EXDEV;
961 else
962 error = EINVAL;
963 vput(vp);
964 return (error);
965 }
966
967 /*
968 * We only allow the filesystem to be reloaded if it
969 * is currently mounted read-only.
970 */
971 flag = mp->mnt_flag;
972 if ((fsflags & MNT_RELOAD) != 0 && (flag & MNT_RDONLY) == 0) {
973 vput(vp);
974 return (EOPNOTSUPP); /* Needs translation */
975 }
976 /*
977 * Only privileged root, or (if MNT_USER is set) the user that
978 * did the original mount is permitted to update it.
979 */
980 error = vfs_suser(mp, td);
981 if (error != 0) {
982 vput(vp);
983 return (error);
984 }
985 if (vfs_busy(mp, MBF_NOWAIT)) {
986 vput(vp);
987 return (EBUSY);
988 }
989 VI_LOCK(vp);
990 if ((vp->v_iflag & VI_MOUNT) != 0 || vp->v_mountedhere != NULL) {
991 VI_UNLOCK(vp);
992 vfs_unbusy(mp);
993 vput(vp);
994 return (EBUSY);
995 }
996 vp->v_iflag |= VI_MOUNT;
997 VI_UNLOCK(vp);
998 VOP_UNLOCK(vp, 0);
999
1000 MNT_ILOCK(mp);
1001 if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1002 MNT_IUNLOCK(mp);
1003 error = EBUSY;
1004 goto end;
1005 }
1006 mp->mnt_flag &= ~MNT_UPDATEMASK;
1007 mp->mnt_flag |= fsflags & (MNT_RELOAD | MNT_FORCE | MNT_UPDATE |
1008 MNT_SNAPSHOT | MNT_ROOTFS | MNT_UPDATEMASK | MNT_RDONLY);
1009 if ((mp->mnt_flag & MNT_ASYNC) == 0)
1010 mp->mnt_kern_flag &= ~MNTK_ASYNC;
1011 MNT_IUNLOCK(mp);
1012 mp->mnt_optnew = *optlist;
1013 vfs_mergeopts(mp->mnt_optnew, mp->mnt_opt);
1014
1015 /*
1016 * Mount the filesystem.
1017 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1018 * get. No freeing of cn_pnbuf.
1019 */
1020 error = VFS_MOUNT(mp);
1021
1022 export_error = 0;
1023 /* Process the export option. */
1024 if (error == 0 && vfs_getopt(mp->mnt_optnew, "export", &bufp,
1025 &len) == 0) {
1026 /* Assume that there is only 1 ABI for each length. */
1027 switch (len) {
1028 case (sizeof(struct oexport_args)):
1029 bzero(&export, sizeof(export));
1030 /* FALLTHROUGH */
1031 case (sizeof(export)):
1032 bcopy(bufp, &export, len);
1033 export_error = vfs_export(mp, &export);
1034 break;
1035 default:
1036 export_error = EINVAL;
1037 break;
1038 }
1039 }
1040
1041 MNT_ILOCK(mp);
1042 if (error == 0) {
1043 mp->mnt_flag &= ~(MNT_UPDATE | MNT_RELOAD | MNT_FORCE |
1044 MNT_SNAPSHOT);
1045 } else {
1046 /*
1047 * If we fail, restore old mount flags. MNT_QUOTA is special,
1048 * because it is not part of MNT_UPDATEMASK, but it could have
1049 * changed in the meantime if quotactl(2) was called.
1050 * All in all we want current value of MNT_QUOTA, not the old
1051 * one.
1052 */
1053 mp->mnt_flag = (mp->mnt_flag & MNT_QUOTA) | (flag & ~MNT_QUOTA);
1054 }
1055 if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1056 (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1057 mp->mnt_kern_flag |= MNTK_ASYNC;
1058 else
1059 mp->mnt_kern_flag &= ~MNTK_ASYNC;
1060 MNT_IUNLOCK(mp);
1061
1062 if (error != 0)
1063 goto end;
1064
1065 if (mp->mnt_opt != NULL)
1066 vfs_freeopts(mp->mnt_opt);
1067 mp->mnt_opt = mp->mnt_optnew;
1068 *optlist = NULL;
1069 (void)VFS_STATFS(mp, &mp->mnt_stat);
1070 /*
1071 * Prevent external consumers of mount options from reading
1072 * mnt_optnew.
1073 */
1074 mp->mnt_optnew = NULL;
1075
1076 if ((mp->mnt_flag & MNT_RDONLY) == 0)
1077 vfs_allocate_syncvnode(mp);
1078 else
1079 vfs_deallocate_syncvnode(mp);
1080 end:
1081 vfs_unbusy(mp);
1082 VI_LOCK(vp);
1083 vp->v_iflag &= ~VI_MOUNT;
1084 VI_UNLOCK(vp);
1085 vrele(vp);
1086 return (error != 0 ? error : export_error);
1087 }
1088
1089 /*
1090 * vfs_domount(): actually attempt a filesystem mount.
1091 */
1092 static int
1093 vfs_domount(
1094 struct thread *td, /* Calling thread. */
1095 const char *fstype, /* Filesystem type. */
1096 char *fspath, /* Mount path. */
1097 uint64_t fsflags, /* Flags common to all filesystems. */
1098 struct vfsoptlist **optlist /* Options local to the filesystem. */
1099 )
1100 {
1101 struct vfsconf *vfsp;
1102 struct nameidata nd;
1103 struct vnode *vp;
1104 char *pathbuf;
1105 int error;
1106
1107 /*
1108 * Be ultra-paranoid about making sure the type and fspath
1109 * variables will fit in our mp buffers, including the
1110 * terminating NUL.
1111 */
1112 if (strlen(fstype) >= MFSNAMELEN || strlen(fspath) >= MNAMELEN)
1113 return (ENAMETOOLONG);
1114
1115 if (jailed(td->td_ucred) || usermount == 0) {
1116 if ((error = priv_check(td, PRIV_VFS_MOUNT)) != 0)
1117 return (error);
1118 }
1119
1120 /*
1121 * Do not allow NFS export or MNT_SUIDDIR by unprivileged users.
1122 */
1123 if (fsflags & MNT_EXPORTED) {
1124 error = priv_check(td, PRIV_VFS_MOUNT_EXPORTED);
1125 if (error)
1126 return (error);
1127 }
1128 if (fsflags & MNT_SUIDDIR) {
1129 error = priv_check(td, PRIV_VFS_MOUNT_SUIDDIR);
1130 if (error)
1131 return (error);
1132 }
1133 /*
1134 * Silently enforce MNT_NOSUID and MNT_USER for unprivileged users.
1135 */
1136 if ((fsflags & (MNT_NOSUID | MNT_USER)) != (MNT_NOSUID | MNT_USER)) {
1137 if (priv_check(td, PRIV_VFS_MOUNT_NONUSER) != 0)
1138 fsflags |= MNT_NOSUID | MNT_USER;
1139 }
1140
1141 /* Load KLDs before we lock the covered vnode to avoid reversals. */
1142 vfsp = NULL;
1143 if ((fsflags & MNT_UPDATE) == 0) {
1144 /* Don't try to load KLDs if we're mounting the root. */
1145 if (fsflags & MNT_ROOTFS)
1146 vfsp = vfs_byname(fstype);
1147 else
1148 vfsp = vfs_byname_kld(fstype, td, &error);
1149 if (vfsp == NULL)
1150 return (ENODEV);
1151 if (jailed(td->td_ucred) && !(vfsp->vfc_flags & VFCF_JAIL))
1152 return (EPERM);
1153 }
1154
1155 /*
1156 * Get vnode to be covered or mount point's vnode in case of MNT_UPDATE.
1157 */
1158 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
1159 UIO_SYSSPACE, fspath, td);
1160 error = namei(&nd);
1161 if (error != 0)
1162 return (error);
1163 NDFREE(&nd, NDF_ONLY_PNBUF);
1164 vp = nd.ni_vp;
1165 if ((fsflags & MNT_UPDATE) == 0) {
1166 pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1167 strcpy(pathbuf, fspath);
1168 error = vn_path_to_global_path(td, vp, pathbuf, MNAMELEN);
1169 /* debug.disablefullpath == 1 results in ENODEV */
1170 if (error == 0 || error == ENODEV) {
1171 error = vfs_domount_first(td, vfsp, pathbuf, vp,
1172 fsflags, optlist);
1173 }
1174 free(pathbuf, M_TEMP);
1175 } else
1176 error = vfs_domount_update(td, vp, fsflags, optlist);
1177
1178 return (error);
1179 }
1180
1181 /*
1182 * Unmount a filesystem.
1183 *
1184 * Note: unmount takes a path to the vnode mounted on as argument, not
1185 * special file (as before).
1186 */
1187 #ifndef _SYS_SYSPROTO_H_
1188 struct unmount_args {
1189 char *path;
1190 int flags;
1191 };
1192 #endif
1193 /* ARGSUSED */
1194 int
1195 sys_unmount(struct thread *td, struct unmount_args *uap)
1196 {
1197 struct nameidata nd;
1198 struct mount *mp;
1199 char *pathbuf;
1200 int error, id0, id1;
1201
1202 AUDIT_ARG_VALUE(uap->flags);
1203 if (jailed(td->td_ucred) || usermount == 0) {
1204 error = priv_check(td, PRIV_VFS_UNMOUNT);
1205 if (error)
1206 return (error);
1207 }
1208
1209 pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1210 error = copyinstr(uap->path, pathbuf, MNAMELEN, NULL);
1211 if (error) {
1212 free(pathbuf, M_TEMP);
1213 return (error);
1214 }
1215 if (uap->flags & MNT_BYFSID) {
1216 AUDIT_ARG_TEXT(pathbuf);
1217 /* Decode the filesystem ID. */
1218 if (sscanf(pathbuf, "FSID:%d:%d", &id0, &id1) != 2) {
1219 free(pathbuf, M_TEMP);
1220 return (EINVAL);
1221 }
1222
1223 mtx_lock(&mountlist_mtx);
1224 TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
1225 if (mp->mnt_stat.f_fsid.val[0] == id0 &&
1226 mp->mnt_stat.f_fsid.val[1] == id1) {
1227 vfs_ref(mp);
1228 break;
1229 }
1230 }
1231 mtx_unlock(&mountlist_mtx);
1232 } else {
1233 /*
1234 * Try to find global path for path argument.
1235 */
1236 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
1237 UIO_SYSSPACE, pathbuf, td);
1238 if (namei(&nd) == 0) {
1239 NDFREE(&nd, NDF_ONLY_PNBUF);
1240 error = vn_path_to_global_path(td, nd.ni_vp, pathbuf,
1241 MNAMELEN);
1242 if (error == 0 || error == ENODEV)
1243 vput(nd.ni_vp);
1244 }
1245 mtx_lock(&mountlist_mtx);
1246 TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
1247 if (strcmp(mp->mnt_stat.f_mntonname, pathbuf) == 0) {
1248 vfs_ref(mp);
1249 break;
1250 }
1251 }
1252 mtx_unlock(&mountlist_mtx);
1253 }
1254 free(pathbuf, M_TEMP);
1255 if (mp == NULL) {
1256 /*
1257 * Previously we returned ENOENT for a nonexistent path and
1258 * EINVAL for a non-mountpoint. We cannot tell these apart
1259 * now, so in the !MNT_BYFSID case return the more likely
1260 * EINVAL for compatibility.
1261 */
1262 return ((uap->flags & MNT_BYFSID) ? ENOENT : EINVAL);
1263 }
1264
1265 /*
1266 * Don't allow unmounting the root filesystem.
1267 */
1268 if (mp->mnt_flag & MNT_ROOTFS) {
1269 vfs_rel(mp);
1270 return (EINVAL);
1271 }
1272 error = dounmount(mp, uap->flags, td);
1273 return (error);
1274 }
1275
1276 /*
1277 * Return error if any of the vnodes, ignoring the root vnode
1278 * and the syncer vnode, have non-zero usecount.
1279 *
1280 * This function is purely advisory - it can return false positives
1281 * and negatives.
1282 */
1283 static int
1284 vfs_check_usecounts(struct mount *mp)
1285 {
1286 struct vnode *vp, *mvp;
1287
1288 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
1289 if ((vp->v_vflag & VV_ROOT) == 0 && vp->v_type != VNON &&
1290 vp->v_usecount != 0) {
1291 VI_UNLOCK(vp);
1292 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
1293 return (EBUSY);
1294 }
1295 VI_UNLOCK(vp);
1296 }
1297
1298 return (0);
1299 }
1300
1301 static void
1302 dounmount_cleanup(struct mount *mp, struct vnode *coveredvp, int mntkflags)
1303 {
1304
1305 mtx_assert(MNT_MTX(mp), MA_OWNED);
1306 mp->mnt_kern_flag &= ~mntkflags;
1307 if ((mp->mnt_kern_flag & MNTK_MWAIT) != 0) {
1308 mp->mnt_kern_flag &= ~MNTK_MWAIT;
1309 wakeup(mp);
1310 }
1311 MNT_IUNLOCK(mp);
1312 if (coveredvp != NULL) {
1313 VOP_UNLOCK(coveredvp, 0);
1314 vdrop(coveredvp);
1315 }
1316 vn_finished_write(mp);
1317 }
1318
1319 /*
1320 * Do the actual filesystem unmount.
1321 */
1322 int
1323 dounmount(struct mount *mp, int flags, struct thread *td)
1324 {
1325 struct vnode *coveredvp, *fsrootvp;
1326 int error;
1327 uint64_t async_flag;
1328 int mnt_gen_r;
1329
1330 if ((coveredvp = mp->mnt_vnodecovered) != NULL) {
1331 mnt_gen_r = mp->mnt_gen;
1332 VI_LOCK(coveredvp);
1333 vholdl(coveredvp);
1334 vn_lock(coveredvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
1335 /*
1336 * Check for mp being unmounted while waiting for the
1337 * covered vnode lock.
1338 */
1339 if (coveredvp->v_mountedhere != mp ||
1340 coveredvp->v_mountedhere->mnt_gen != mnt_gen_r) {
1341 VOP_UNLOCK(coveredvp, 0);
1342 vdrop(coveredvp);
1343 vfs_rel(mp);
1344 return (EBUSY);
1345 }
1346 }
1347
1348 /*
1349 * Only privileged root, or (if MNT_USER is set) the user that did the
1350 * original mount is permitted to unmount this filesystem.
1351 */
1352 error = vfs_suser(mp, td);
1353 if (error != 0) {
1354 if (coveredvp != NULL) {
1355 VOP_UNLOCK(coveredvp, 0);
1356 vdrop(coveredvp);
1357 }
1358 vfs_rel(mp);
1359 return (error);
1360 }
1361
1362 vn_start_write(NULL, &mp, V_WAIT | V_MNTREF);
1363 MNT_ILOCK(mp);
1364 if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 ||
1365 (mp->mnt_flag & MNT_UPDATE) != 0 ||
1366 !TAILQ_EMPTY(&mp->mnt_uppers)) {
1367 dounmount_cleanup(mp, coveredvp, 0);
1368 return (EBUSY);
1369 }
1370 mp->mnt_kern_flag |= MNTK_UNMOUNT | MNTK_NOINSMNTQ;
1371 if (flags & MNT_NONBUSY) {
1372 MNT_IUNLOCK(mp);
1373 error = vfs_check_usecounts(mp);
1374 MNT_ILOCK(mp);
1375 if (error != 0) {
1376 dounmount_cleanup(mp, coveredvp, MNTK_UNMOUNT |
1377 MNTK_NOINSMNTQ);
1378 return (error);
1379 }
1380 }
1381 /* Allow filesystems to detect that a forced unmount is in progress. */
1382 if (flags & MNT_FORCE) {
1383 mp->mnt_kern_flag |= MNTK_UNMOUNTF;
1384 MNT_IUNLOCK(mp);
1385 /*
1386 * Must be done after setting MNTK_UNMOUNTF and before
1387 * waiting for mnt_lockref to become 0.
1388 */
1389 VFS_PURGE(mp);
1390 MNT_ILOCK(mp);
1391 }
1392 error = 0;
1393 if (mp->mnt_lockref) {
1394 mp->mnt_kern_flag |= MNTK_DRAINING;
1395 error = msleep(&mp->mnt_lockref, MNT_MTX(mp), PVFS,
1396 "mount drain", 0);
1397 }
1398 MNT_IUNLOCK(mp);
1399 KASSERT(mp->mnt_lockref == 0,
1400 ("%s: invalid lock refcount in the drain path @ %s:%d",
1401 __func__, __FILE__, __LINE__));
1402 KASSERT(error == 0,
1403 ("%s: invalid return value for msleep in the drain path @ %s:%d",
1404 __func__, __FILE__, __LINE__));
1405
1406 if (mp->mnt_flag & MNT_EXPUBLIC)
1407 vfs_setpublicfs(NULL, NULL, NULL);
1408
1409 /*
1410 * From now, we can claim that the use reference on the
1411 * coveredvp is ours, and the ref can be released only by
1412 * successfull unmount by us, or left for later unmount
1413 * attempt. The previously acquired hold reference is no
1414 * longer needed to protect the vnode from reuse.
1415 */
1416 if (coveredvp != NULL)
1417 vdrop(coveredvp);
1418
1419 vfs_msync(mp, MNT_WAIT);
1420 MNT_ILOCK(mp);
1421 async_flag = mp->mnt_flag & MNT_ASYNC;
1422 mp->mnt_flag &= ~MNT_ASYNC;
1423 mp->mnt_kern_flag &= ~MNTK_ASYNC;
1424 MNT_IUNLOCK(mp);
1425 cache_purgevfs(mp, false); /* remove cache entries for this file sys */
1426 vfs_deallocate_syncvnode(mp);
1427 /*
1428 * For forced unmounts, move process cdir/rdir refs on the fs root
1429 * vnode to the covered vnode. For non-forced unmounts we want
1430 * such references to cause an EBUSY error.
1431 */
1432 if ((flags & MNT_FORCE) &&
1433 VFS_ROOT(mp, LK_EXCLUSIVE, &fsrootvp) == 0) {
1434 if (mp->mnt_vnodecovered != NULL &&
1435 (mp->mnt_flag & MNT_IGNORE) == 0)
1436 mountcheckdirs(fsrootvp, mp->mnt_vnodecovered);
1437 if (fsrootvp == rootvnode) {
1438 vrele(rootvnode);
1439 rootvnode = NULL;
1440 }
1441 vput(fsrootvp);
1442 }
1443 error = VFS_UNMOUNT(mp, flags);
1444 vn_finished_write(mp);
1445 /*
1446 * If we failed to flush the dirty blocks for this mount point,
1447 * undo all the cdir/rdir and rootvnode changes we made above.
1448 * Unless we failed to do so because the device is reporting that
1449 * it doesn't exist anymore.
1450 */
1451 if (error && error != ENXIO) {
1452 if ((flags & MNT_FORCE) &&
1453 VFS_ROOT(mp, LK_EXCLUSIVE, &fsrootvp) == 0) {
1454 if (mp->mnt_vnodecovered != NULL &&
1455 (mp->mnt_flag & MNT_IGNORE) == 0)
1456 mountcheckdirs(mp->mnt_vnodecovered, fsrootvp);
1457 if (rootvnode == NULL) {
1458 rootvnode = fsrootvp;
1459 vref(rootvnode);
1460 }
1461 vput(fsrootvp);
1462 }
1463 MNT_ILOCK(mp);
1464 mp->mnt_kern_flag &= ~MNTK_NOINSMNTQ;
1465 if ((mp->mnt_flag & MNT_RDONLY) == 0) {
1466 MNT_IUNLOCK(mp);
1467 vfs_allocate_syncvnode(mp);
1468 MNT_ILOCK(mp);
1469 }
1470 mp->mnt_kern_flag &= ~(MNTK_UNMOUNT | MNTK_UNMOUNTF);
1471 mp->mnt_flag |= async_flag;
1472 if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1473 (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1474 mp->mnt_kern_flag |= MNTK_ASYNC;
1475 if (mp->mnt_kern_flag & MNTK_MWAIT) {
1476 mp->mnt_kern_flag &= ~MNTK_MWAIT;
1477 wakeup(mp);
1478 }
1479 MNT_IUNLOCK(mp);
1480 if (coveredvp)
1481 VOP_UNLOCK(coveredvp, 0);
1482 return (error);
1483 }
1484 mtx_lock(&mountlist_mtx);
1485 TAILQ_REMOVE(&mountlist, mp, mnt_list);
1486 mtx_unlock(&mountlist_mtx);
1487 EVENTHANDLER_INVOKE(vfs_unmounted, mp, td);
1488 if (coveredvp != NULL) {
1489 coveredvp->v_mountedhere = NULL;
1490 VOP_UNLOCK(coveredvp, 0);
1491 }
1492 vfs_event_signal(NULL, VQ_UNMOUNT, 0);
1493 if (mp == rootdevmp)
1494 rootdevmp = NULL;
1495 vfs_mount_destroy(mp);
1496 return (0);
1497 }
1498
1499 /*
1500 * Report errors during filesystem mounting.
1501 */
1502 void
1503 vfs_mount_error(struct mount *mp, const char *fmt, ...)
1504 {
1505 struct vfsoptlist *moptlist = mp->mnt_optnew;
1506 va_list ap;
1507 int error, len;
1508 char *errmsg;
1509
1510 error = vfs_getopt(moptlist, "errmsg", (void **)&errmsg, &len);
1511 if (error || errmsg == NULL || len <= 0)
1512 return;
1513
1514 va_start(ap, fmt);
1515 vsnprintf(errmsg, (size_t)len, fmt, ap);
1516 va_end(ap);
1517 }
1518
1519 void
1520 vfs_opterror(struct vfsoptlist *opts, const char *fmt, ...)
1521 {
1522 va_list ap;
1523 int error, len;
1524 char *errmsg;
1525
1526 error = vfs_getopt(opts, "errmsg", (void **)&errmsg, &len);
1527 if (error || errmsg == NULL || len <= 0)
1528 return;
1529
1530 va_start(ap, fmt);
1531 vsnprintf(errmsg, (size_t)len, fmt, ap);
1532 va_end(ap);
1533 }
1534
1535 /*
1536 * ---------------------------------------------------------------------
1537 * Functions for querying mount options/arguments from filesystems.
1538 */
1539
1540 /*
1541 * Check that no unknown options are given
1542 */
1543 int
1544 vfs_filteropt(struct vfsoptlist *opts, const char **legal)
1545 {
1546 struct vfsopt *opt;
1547 char errmsg[255];
1548 const char **t, *p, *q;
1549 int ret = 0;
1550
1551 TAILQ_FOREACH(opt, opts, link) {
1552 p = opt->name;
1553 q = NULL;
1554 if (p[0] == 'n' && p[1] == 'o')
1555 q = p + 2;
1556 for(t = global_opts; *t != NULL; t++) {
1557 if (strcmp(*t, p) == 0)
1558 break;
1559 if (q != NULL) {
1560 if (strcmp(*t, q) == 0)
1561 break;
1562 }
1563 }
1564 if (*t != NULL)
1565 continue;
1566 for(t = legal; *t != NULL; t++) {
1567 if (strcmp(*t, p) == 0)
1568 break;
1569 if (q != NULL) {
1570 if (strcmp(*t, q) == 0)
1571 break;
1572 }
1573 }
1574 if (*t != NULL)
1575 continue;
1576 snprintf(errmsg, sizeof(errmsg),
1577 "mount option <%s> is unknown", p);
1578 ret = EINVAL;
1579 }
1580 if (ret != 0) {
1581 TAILQ_FOREACH(opt, opts, link) {
1582 if (strcmp(opt->name, "errmsg") == 0) {
1583 strncpy((char *)opt->value, errmsg, opt->len);
1584 break;
1585 }
1586 }
1587 if (opt == NULL)
1588 printf("%s\n", errmsg);
1589 }
1590 return (ret);
1591 }
1592
1593 /*
1594 * Get a mount option by its name.
1595 *
1596 * Return 0 if the option was found, ENOENT otherwise.
1597 * If len is non-NULL it will be filled with the length
1598 * of the option. If buf is non-NULL, it will be filled
1599 * with the address of the option.
1600 */
1601 int
1602 vfs_getopt(struct vfsoptlist *opts, const char *name, void **buf, int *len)
1603 {
1604 struct vfsopt *opt;
1605
1606 KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
1607
1608 TAILQ_FOREACH(opt, opts, link) {
1609 if (strcmp(name, opt->name) == 0) {
1610 opt->seen = 1;
1611 if (len != NULL)
1612 *len = opt->len;
1613 if (buf != NULL)
1614 *buf = opt->value;
1615 return (0);
1616 }
1617 }
1618 return (ENOENT);
1619 }
1620
1621 int
1622 vfs_getopt_pos(struct vfsoptlist *opts, const char *name)
1623 {
1624 struct vfsopt *opt;
1625
1626 if (opts == NULL)
1627 return (-1);
1628
1629 TAILQ_FOREACH(opt, opts, link) {
1630 if (strcmp(name, opt->name) == 0) {
1631 opt->seen = 1;
1632 return (opt->pos);
1633 }
1634 }
1635 return (-1);
1636 }
1637
1638 int
1639 vfs_getopt_size(struct vfsoptlist *opts, const char *name, off_t *value)
1640 {
1641 char *opt_value, *vtp;
1642 quad_t iv;
1643 int error, opt_len;
1644
1645 error = vfs_getopt(opts, name, (void **)&opt_value, &opt_len);
1646 if (error != 0)
1647 return (error);
1648 if (opt_len == 0 || opt_value == NULL)
1649 return (EINVAL);
1650 if (opt_value[0] == '\0' || opt_value[opt_len - 1] != '\0')
1651 return (EINVAL);
1652 iv = strtoq(opt_value, &vtp, 0);
1653 if (vtp == opt_value || (vtp[0] != '\0' && vtp[1] != '\0'))
1654 return (EINVAL);
1655 if (iv < 0)
1656 return (EINVAL);
1657 switch (vtp[0]) {
1658 case 't':
1659 case 'T':
1660 iv *= 1024;
1661 case 'g':
1662 case 'G':
1663 iv *= 1024;
1664 case 'm':
1665 case 'M':
1666 iv *= 1024;
1667 case 'k':
1668 case 'K':
1669 iv *= 1024;
1670 case '\0':
1671 break;
1672 default:
1673 return (EINVAL);
1674 }
1675 *value = iv;
1676
1677 return (0);
1678 }
1679
1680 char *
1681 vfs_getopts(struct vfsoptlist *opts, const char *name, int *error)
1682 {
1683 struct vfsopt *opt;
1684
1685 *error = 0;
1686 TAILQ_FOREACH(opt, opts, link) {
1687 if (strcmp(name, opt->name) != 0)
1688 continue;
1689 opt->seen = 1;
1690 if (opt->len == 0 ||
1691 ((char *)opt->value)[opt->len - 1] != '\0') {
1692 *error = EINVAL;
1693 return (NULL);
1694 }
1695 return (opt->value);
1696 }
1697 *error = ENOENT;
1698 return (NULL);
1699 }
1700
1701 int
1702 vfs_flagopt(struct vfsoptlist *opts, const char *name, uint64_t *w,
1703 uint64_t val)
1704 {
1705 struct vfsopt *opt;
1706
1707 TAILQ_FOREACH(opt, opts, link) {
1708 if (strcmp(name, opt->name) == 0) {
1709 opt->seen = 1;
1710 if (w != NULL)
1711 *w |= val;
1712 return (1);
1713 }
1714 }
1715 if (w != NULL)
1716 *w &= ~val;
1717 return (0);
1718 }
1719
1720 int
1721 vfs_scanopt(struct vfsoptlist *opts, const char *name, const char *fmt, ...)
1722 {
1723 va_list ap;
1724 struct vfsopt *opt;
1725 int ret;
1726
1727 KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
1728
1729 TAILQ_FOREACH(opt, opts, link) {
1730 if (strcmp(name, opt->name) != 0)
1731 continue;
1732 opt->seen = 1;
1733 if (opt->len == 0 || opt->value == NULL)
1734 return (0);
1735 if (((char *)opt->value)[opt->len - 1] != '\0')
1736 return (0);
1737 va_start(ap, fmt);
1738 ret = vsscanf(opt->value, fmt, ap);
1739 va_end(ap);
1740 return (ret);
1741 }
1742 return (0);
1743 }
1744
1745 int
1746 vfs_setopt(struct vfsoptlist *opts, const char *name, void *value, int len)
1747 {
1748 struct vfsopt *opt;
1749
1750 TAILQ_FOREACH(opt, opts, link) {
1751 if (strcmp(name, opt->name) != 0)
1752 continue;
1753 opt->seen = 1;
1754 if (opt->value == NULL)
1755 opt->len = len;
1756 else {
1757 if (opt->len != len)
1758 return (EINVAL);
1759 bcopy(value, opt->value, len);
1760 }
1761 return (0);
1762 }
1763 return (ENOENT);
1764 }
1765
1766 int
1767 vfs_setopt_part(struct vfsoptlist *opts, const char *name, void *value, int len)
1768 {
1769 struct vfsopt *opt;
1770
1771 TAILQ_FOREACH(opt, opts, link) {
1772 if (strcmp(name, opt->name) != 0)
1773 continue;
1774 opt->seen = 1;
1775 if (opt->value == NULL)
1776 opt->len = len;
1777 else {
1778 if (opt->len < len)
1779 return (EINVAL);
1780 opt->len = len;
1781 bcopy(value, opt->value, len);
1782 }
1783 return (0);
1784 }
1785 return (ENOENT);
1786 }
1787
1788 int
1789 vfs_setopts(struct vfsoptlist *opts, const char *name, const char *value)
1790 {
1791 struct vfsopt *opt;
1792
1793 TAILQ_FOREACH(opt, opts, link) {
1794 if (strcmp(name, opt->name) != 0)
1795 continue;
1796 opt->seen = 1;
1797 if (opt->value == NULL)
1798 opt->len = strlen(value) + 1;
1799 else if (strlcpy(opt->value, value, opt->len) >= opt->len)
1800 return (EINVAL);
1801 return (0);
1802 }
1803 return (ENOENT);
1804 }
1805
1806 /*
1807 * Find and copy a mount option.
1808 *
1809 * The size of the buffer has to be specified
1810 * in len, if it is not the same length as the
1811 * mount option, EINVAL is returned.
1812 * Returns ENOENT if the option is not found.
1813 */
1814 int
1815 vfs_copyopt(struct vfsoptlist *opts, const char *name, void *dest, int len)
1816 {
1817 struct vfsopt *opt;
1818
1819 KASSERT(opts != NULL, ("vfs_copyopt: caller passed 'opts' as NULL"));
1820
1821 TAILQ_FOREACH(opt, opts, link) {
1822 if (strcmp(name, opt->name) == 0) {
1823 opt->seen = 1;
1824 if (len != opt->len)
1825 return (EINVAL);
1826 bcopy(opt->value, dest, opt->len);
1827 return (0);
1828 }
1829 }
1830 return (ENOENT);
1831 }
1832
1833 int
1834 __vfs_statfs(struct mount *mp, struct statfs *sbp)
1835 {
1836 int error;
1837
1838 error = mp->mnt_op->vfs_statfs(mp, &mp->mnt_stat);
1839 if (sbp != &mp->mnt_stat)
1840 *sbp = mp->mnt_stat;
1841 return (error);
1842 }
1843
1844 void
1845 vfs_mountedfrom(struct mount *mp, const char *from)
1846 {
1847
1848 bzero(mp->mnt_stat.f_mntfromname, sizeof mp->mnt_stat.f_mntfromname);
1849 strlcpy(mp->mnt_stat.f_mntfromname, from,
1850 sizeof mp->mnt_stat.f_mntfromname);
1851 }
1852
1853 /*
1854 * ---------------------------------------------------------------------
1855 * This is the api for building mount args and mounting filesystems from
1856 * inside the kernel.
1857 *
1858 * The API works by accumulation of individual args. First error is
1859 * latched.
1860 *
1861 * XXX: should be documented in new manpage kernel_mount(9)
1862 */
1863
1864 /* A memory allocation which must be freed when we are done */
1865 struct mntaarg {
1866 SLIST_ENTRY(mntaarg) next;
1867 };
1868
1869 /* The header for the mount arguments */
1870 struct mntarg {
1871 struct iovec *v;
1872 int len;
1873 int error;
1874 SLIST_HEAD(, mntaarg) list;
1875 };
1876
1877 /*
1878 * Add a boolean argument.
1879 *
1880 * flag is the boolean value.
1881 * name must start with "no".
1882 */
1883 struct mntarg *
1884 mount_argb(struct mntarg *ma, int flag, const char *name)
1885 {
1886
1887 KASSERT(name[0] == 'n' && name[1] == 'o',
1888 ("mount_argb(...,%s): name must start with 'no'", name));
1889
1890 return (mount_arg(ma, name + (flag ? 2 : 0), NULL, 0));
1891 }
1892
1893 /*
1894 * Add an argument printf style
1895 */
1896 struct mntarg *
1897 mount_argf(struct mntarg *ma, const char *name, const char *fmt, ...)
1898 {
1899 va_list ap;
1900 struct mntaarg *maa;
1901 struct sbuf *sb;
1902 int len;
1903
1904 if (ma == NULL) {
1905 ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
1906 SLIST_INIT(&ma->list);
1907 }
1908 if (ma->error)
1909 return (ma);
1910
1911 ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
1912 M_MOUNT, M_WAITOK);
1913 ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
1914 ma->v[ma->len].iov_len = strlen(name) + 1;
1915 ma->len++;
1916
1917 sb = sbuf_new_auto();
1918 va_start(ap, fmt);
1919 sbuf_vprintf(sb, fmt, ap);
1920 va_end(ap);
1921 sbuf_finish(sb);
1922 len = sbuf_len(sb) + 1;
1923 maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
1924 SLIST_INSERT_HEAD(&ma->list, maa, next);
1925 bcopy(sbuf_data(sb), maa + 1, len);
1926 sbuf_delete(sb);
1927
1928 ma->v[ma->len].iov_base = maa + 1;
1929 ma->v[ma->len].iov_len = len;
1930 ma->len++;
1931
1932 return (ma);
1933 }
1934
1935 /*
1936 * Add an argument which is a userland string.
1937 */
1938 struct mntarg *
1939 mount_argsu(struct mntarg *ma, const char *name, const void *val, int len)
1940 {
1941 struct mntaarg *maa;
1942 char *tbuf;
1943
1944 if (val == NULL)
1945 return (ma);
1946 if (ma == NULL) {
1947 ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
1948 SLIST_INIT(&ma->list);
1949 }
1950 if (ma->error)
1951 return (ma);
1952 maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
1953 SLIST_INSERT_HEAD(&ma->list, maa, next);
1954 tbuf = (void *)(maa + 1);
1955 ma->error = copyinstr(val, tbuf, len, NULL);
1956 return (mount_arg(ma, name, tbuf, -1));
1957 }
1958
1959 /*
1960 * Plain argument.
1961 *
1962 * If length is -1, treat value as a C string.
1963 */
1964 struct mntarg *
1965 mount_arg(struct mntarg *ma, const char *name, const void *val, int len)
1966 {
1967
1968 if (ma == NULL) {
1969 ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
1970 SLIST_INIT(&ma->list);
1971 }
1972 if (ma->error)
1973 return (ma);
1974
1975 ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
1976 M_MOUNT, M_WAITOK);
1977 ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
1978 ma->v[ma->len].iov_len = strlen(name) + 1;
1979 ma->len++;
1980
1981 ma->v[ma->len].iov_base = (void *)(uintptr_t)val;
1982 if (len < 0)
1983 ma->v[ma->len].iov_len = strlen(val) + 1;
1984 else
1985 ma->v[ma->len].iov_len = len;
1986 ma->len++;
1987 return (ma);
1988 }
1989
1990 /*
1991 * Free a mntarg structure
1992 */
1993 static void
1994 free_mntarg(struct mntarg *ma)
1995 {
1996 struct mntaarg *maa;
1997
1998 while (!SLIST_EMPTY(&ma->list)) {
1999 maa = SLIST_FIRST(&ma->list);
2000 SLIST_REMOVE_HEAD(&ma->list, next);
2001 free(maa, M_MOUNT);
2002 }
2003 free(ma->v, M_MOUNT);
2004 free(ma, M_MOUNT);
2005 }
2006
2007 /*
2008 * Mount a filesystem
2009 */
2010 int
2011 kernel_mount(struct mntarg *ma, uint64_t flags)
2012 {
2013 struct uio auio;
2014 int error;
2015
2016 KASSERT(ma != NULL, ("kernel_mount NULL ma"));
2017 KASSERT(ma->v != NULL, ("kernel_mount NULL ma->v"));
2018 KASSERT(!(ma->len & 1), ("kernel_mount odd ma->len (%d)", ma->len));
2019
2020 auio.uio_iov = ma->v;
2021 auio.uio_iovcnt = ma->len;
2022 auio.uio_segflg = UIO_SYSSPACE;
2023
2024 error = ma->error;
2025 if (!error)
2026 error = vfs_donmount(curthread, flags, &auio);
2027 free_mntarg(ma);
2028 return (error);
2029 }
2030
2031 /*
2032 * A printflike function to mount a filesystem.
2033 */
2034 int
2035 kernel_vmount(int flags, ...)
2036 {
2037 struct mntarg *ma = NULL;
2038 va_list ap;
2039 const char *cp;
2040 const void *vp;
2041 int error;
2042
2043 va_start(ap, flags);
2044 for (;;) {
2045 cp = va_arg(ap, const char *);
2046 if (cp == NULL)
2047 break;
2048 vp = va_arg(ap, const void *);
2049 ma = mount_arg(ma, cp, vp, (vp != NULL ? -1 : 0));
2050 }
2051 va_end(ap);
2052
2053 error = kernel_mount(ma, flags);
2054 return (error);
2055 }
2056
2057 /*
2058 * Convert the old export args format into new export args.
2059 *
2060 * The old export args struct does not have security flavors. Otherwise, the
2061 * structs are identical. The default security flavor 'sys' is applied by
2062 * vfs_export when .ex_numsecflavors is 0.
2063 */
2064 void
2065 vfs_oexport_conv(const struct oexport_args *oexp, struct export_args *exp)
2066 {
2067
2068 bcopy(oexp, exp, sizeof(*oexp));
2069 exp->ex_numsecflavors = 0;
2070 }
Cache object: d30c086d4a6a6c9bf254022f7def9b92
|