FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_mount.c
1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1999-2004 Poul-Henning Kamp
5 * Copyright (c) 1999 Michael Smith
6 * Copyright (c) 1989, 1993
7 * The Regents of the University of California. All rights reserved.
8 * (c) UNIX System Laboratories, Inc.
9 * All or some portions of this file are derived from material licensed
10 * to the University of California by American Telephone and Telegraph
11 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12 * the permission of UNIX System Laboratories, Inc.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include <sys/param.h>
43 #include <sys/conf.h>
44 #include <sys/smp.h>
45 #include <sys/devctl.h>
46 #include <sys/eventhandler.h>
47 #include <sys/fcntl.h>
48 #include <sys/jail.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/libkern.h>
52 #include <sys/malloc.h>
53 #include <sys/mount.h>
54 #include <sys/mutex.h>
55 #include <sys/namei.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/filedesc.h>
59 #include <sys/reboot.h>
60 #include <sys/sbuf.h>
61 #include <sys/syscallsubr.h>
62 #include <sys/sysproto.h>
63 #include <sys/sx.h>
64 #include <sys/sysctl.h>
65 #include <sys/sysent.h>
66 #include <sys/systm.h>
67 #include <sys/vnode.h>
68 #include <vm/uma.h>
69
70 #include <geom/geom.h>
71
72 #include <machine/stdarg.h>
73
74 #include <security/audit/audit.h>
75 #include <security/mac/mac_framework.h>
76
77 #define VFS_MOUNTARG_SIZE_MAX (1024 * 64)
78
79 static int vfs_domount(struct thread *td, const char *fstype, char *fspath,
80 uint64_t fsflags, struct vfsoptlist **optlist);
81 static void free_mntarg(struct mntarg *ma);
82
83 static int usermount = 0;
84 SYSCTL_INT(_vfs, OID_AUTO, usermount, CTLFLAG_RW, &usermount, 0,
85 "Unprivileged users may mount and unmount file systems");
86
87 static bool default_autoro = false;
88 SYSCTL_BOOL(_vfs, OID_AUTO, default_autoro, CTLFLAG_RW, &default_autoro, 0,
89 "Retry failed r/w mount as r/o if no explicit ro/rw option is specified");
90
91 MALLOC_DEFINE(M_MOUNT, "mount", "vfs mount structure");
92 MALLOC_DEFINE(M_STATFS, "statfs", "statfs structure");
93 static uma_zone_t mount_zone;
94
95 /* List of mounted filesystems. */
96 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
97
98 /* For any iteration/modification of mountlist */
99 struct mtx_padalign __exclusive_cache_line mountlist_mtx;
100 MTX_SYSINIT(mountlist, &mountlist_mtx, "mountlist", MTX_DEF);
101
102 EVENTHANDLER_LIST_DEFINE(vfs_mounted);
103 EVENTHANDLER_LIST_DEFINE(vfs_unmounted);
104
105 static void mount_devctl_event(const char *type, struct mount *mp, bool donew);
106
107 /*
108 * Global opts, taken by all filesystems
109 */
110 static const char *global_opts[] = {
111 "errmsg",
112 "fstype",
113 "fspath",
114 "ro",
115 "rw",
116 "nosuid",
117 "noexec",
118 NULL
119 };
120
121 static int
122 mount_init(void *mem, int size, int flags)
123 {
124 struct mount *mp;
125
126 mp = (struct mount *)mem;
127 mtx_init(&mp->mnt_mtx, "struct mount mtx", NULL, MTX_DEF);
128 mtx_init(&mp->mnt_listmtx, "struct mount vlist mtx", NULL, MTX_DEF);
129 lockinit(&mp->mnt_explock, PVFS, "explock", 0, 0);
130 mp->mnt_pcpu = uma_zalloc_pcpu(pcpu_zone_16, M_WAITOK | M_ZERO);
131 mp->mnt_ref = 0;
132 mp->mnt_vfs_ops = 1;
133 mp->mnt_rootvnode = NULL;
134 return (0);
135 }
136
137 static void
138 mount_fini(void *mem, int size)
139 {
140 struct mount *mp;
141
142 mp = (struct mount *)mem;
143 uma_zfree_pcpu(pcpu_zone_16, mp->mnt_pcpu);
144 lockdestroy(&mp->mnt_explock);
145 mtx_destroy(&mp->mnt_listmtx);
146 mtx_destroy(&mp->mnt_mtx);
147 }
148
149 static void
150 vfs_mount_init(void *dummy __unused)
151 {
152
153 mount_zone = uma_zcreate("Mountpoints", sizeof(struct mount), NULL,
154 NULL, mount_init, mount_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
155 }
156 SYSINIT(vfs_mount, SI_SUB_VFS, SI_ORDER_ANY, vfs_mount_init, NULL);
157
158 /*
159 * ---------------------------------------------------------------------
160 * Functions for building and sanitizing the mount options
161 */
162
163 /* Remove one mount option. */
164 static void
165 vfs_freeopt(struct vfsoptlist *opts, struct vfsopt *opt)
166 {
167
168 TAILQ_REMOVE(opts, opt, link);
169 free(opt->name, M_MOUNT);
170 if (opt->value != NULL)
171 free(opt->value, M_MOUNT);
172 free(opt, M_MOUNT);
173 }
174
175 /* Release all resources related to the mount options. */
176 void
177 vfs_freeopts(struct vfsoptlist *opts)
178 {
179 struct vfsopt *opt;
180
181 while (!TAILQ_EMPTY(opts)) {
182 opt = TAILQ_FIRST(opts);
183 vfs_freeopt(opts, opt);
184 }
185 free(opts, M_MOUNT);
186 }
187
188 void
189 vfs_deleteopt(struct vfsoptlist *opts, const char *name)
190 {
191 struct vfsopt *opt, *temp;
192
193 if (opts == NULL)
194 return;
195 TAILQ_FOREACH_SAFE(opt, opts, link, temp) {
196 if (strcmp(opt->name, name) == 0)
197 vfs_freeopt(opts, opt);
198 }
199 }
200
201 static int
202 vfs_isopt_ro(const char *opt)
203 {
204
205 if (strcmp(opt, "ro") == 0 || strcmp(opt, "rdonly") == 0 ||
206 strcmp(opt, "norw") == 0)
207 return (1);
208 return (0);
209 }
210
211 static int
212 vfs_isopt_rw(const char *opt)
213 {
214
215 if (strcmp(opt, "rw") == 0 || strcmp(opt, "noro") == 0)
216 return (1);
217 return (0);
218 }
219
220 /*
221 * Check if options are equal (with or without the "no" prefix).
222 */
223 static int
224 vfs_equalopts(const char *opt1, const char *opt2)
225 {
226 char *p;
227
228 /* "opt" vs. "opt" or "noopt" vs. "noopt" */
229 if (strcmp(opt1, opt2) == 0)
230 return (1);
231 /* "noopt" vs. "opt" */
232 if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
233 return (1);
234 /* "opt" vs. "noopt" */
235 if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
236 return (1);
237 while ((p = strchr(opt1, '.')) != NULL &&
238 !strncmp(opt1, opt2, ++p - opt1)) {
239 opt2 += p - opt1;
240 opt1 = p;
241 /* "foo.noopt" vs. "foo.opt" */
242 if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
243 return (1);
244 /* "foo.opt" vs. "foo.noopt" */
245 if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
246 return (1);
247 }
248 /* "ro" / "rdonly" / "norw" / "rw" / "noro" */
249 if ((vfs_isopt_ro(opt1) || vfs_isopt_rw(opt1)) &&
250 (vfs_isopt_ro(opt2) || vfs_isopt_rw(opt2)))
251 return (1);
252 return (0);
253 }
254
255 /*
256 * If a mount option is specified several times,
257 * (with or without the "no" prefix) only keep
258 * the last occurrence of it.
259 */
260 static void
261 vfs_sanitizeopts(struct vfsoptlist *opts)
262 {
263 struct vfsopt *opt, *opt2, *tmp;
264
265 TAILQ_FOREACH_REVERSE(opt, opts, vfsoptlist, link) {
266 opt2 = TAILQ_PREV(opt, vfsoptlist, link);
267 while (opt2 != NULL) {
268 if (vfs_equalopts(opt->name, opt2->name)) {
269 tmp = TAILQ_PREV(opt2, vfsoptlist, link);
270 vfs_freeopt(opts, opt2);
271 opt2 = tmp;
272 } else {
273 opt2 = TAILQ_PREV(opt2, vfsoptlist, link);
274 }
275 }
276 }
277 }
278
279 /*
280 * Build a linked list of mount options from a struct uio.
281 */
282 int
283 vfs_buildopts(struct uio *auio, struct vfsoptlist **options)
284 {
285 struct vfsoptlist *opts;
286 struct vfsopt *opt;
287 size_t memused, namelen, optlen;
288 unsigned int i, iovcnt;
289 int error;
290
291 opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK);
292 TAILQ_INIT(opts);
293 memused = 0;
294 iovcnt = auio->uio_iovcnt;
295 for (i = 0; i < iovcnt; i += 2) {
296 namelen = auio->uio_iov[i].iov_len;
297 optlen = auio->uio_iov[i + 1].iov_len;
298 memused += sizeof(struct vfsopt) + optlen + namelen;
299 /*
300 * Avoid consuming too much memory, and attempts to overflow
301 * memused.
302 */
303 if (memused > VFS_MOUNTARG_SIZE_MAX ||
304 optlen > VFS_MOUNTARG_SIZE_MAX ||
305 namelen > VFS_MOUNTARG_SIZE_MAX) {
306 error = EINVAL;
307 goto bad;
308 }
309
310 opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
311 opt->name = malloc(namelen, M_MOUNT, M_WAITOK);
312 opt->value = NULL;
313 opt->len = 0;
314 opt->pos = i / 2;
315 opt->seen = 0;
316
317 /*
318 * Do this early, so jumps to "bad" will free the current
319 * option.
320 */
321 TAILQ_INSERT_TAIL(opts, opt, link);
322
323 if (auio->uio_segflg == UIO_SYSSPACE) {
324 bcopy(auio->uio_iov[i].iov_base, opt->name, namelen);
325 } else {
326 error = copyin(auio->uio_iov[i].iov_base, opt->name,
327 namelen);
328 if (error)
329 goto bad;
330 }
331 /* Ensure names are null-terminated strings. */
332 if (namelen == 0 || opt->name[namelen - 1] != '\0') {
333 error = EINVAL;
334 goto bad;
335 }
336 if (optlen != 0) {
337 opt->len = optlen;
338 opt->value = malloc(optlen, M_MOUNT, M_WAITOK);
339 if (auio->uio_segflg == UIO_SYSSPACE) {
340 bcopy(auio->uio_iov[i + 1].iov_base, opt->value,
341 optlen);
342 } else {
343 error = copyin(auio->uio_iov[i + 1].iov_base,
344 opt->value, optlen);
345 if (error)
346 goto bad;
347 }
348 }
349 }
350 vfs_sanitizeopts(opts);
351 *options = opts;
352 return (0);
353 bad:
354 vfs_freeopts(opts);
355 return (error);
356 }
357
358 /*
359 * Merge the old mount options with the new ones passed
360 * in the MNT_UPDATE case.
361 *
362 * XXX: This function will keep a "nofoo" option in the new
363 * options. E.g, if the option's canonical name is "foo",
364 * "nofoo" ends up in the mount point's active options.
365 */
366 static void
367 vfs_mergeopts(struct vfsoptlist *toopts, struct vfsoptlist *oldopts)
368 {
369 struct vfsopt *opt, *new;
370
371 TAILQ_FOREACH(opt, oldopts, link) {
372 new = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
373 new->name = strdup(opt->name, M_MOUNT);
374 if (opt->len != 0) {
375 new->value = malloc(opt->len, M_MOUNT, M_WAITOK);
376 bcopy(opt->value, new->value, opt->len);
377 } else
378 new->value = NULL;
379 new->len = opt->len;
380 new->seen = opt->seen;
381 TAILQ_INSERT_HEAD(toopts, new, link);
382 }
383 vfs_sanitizeopts(toopts);
384 }
385
386 /*
387 * Mount a filesystem.
388 */
389 #ifndef _SYS_SYSPROTO_H_
390 struct nmount_args {
391 struct iovec *iovp;
392 unsigned int iovcnt;
393 int flags;
394 };
395 #endif
396 int
397 sys_nmount(struct thread *td, struct nmount_args *uap)
398 {
399 struct uio *auio;
400 int error;
401 u_int iovcnt;
402 uint64_t flags;
403
404 /*
405 * Mount flags are now 64-bits. On 32-bit archtectures only
406 * 32-bits are passed in, but from here on everything handles
407 * 64-bit flags correctly.
408 */
409 flags = uap->flags;
410
411 AUDIT_ARG_FFLAGS(flags);
412 CTR4(KTR_VFS, "%s: iovp %p with iovcnt %d and flags %d", __func__,
413 uap->iovp, uap->iovcnt, flags);
414
415 /*
416 * Filter out MNT_ROOTFS. We do not want clients of nmount() in
417 * userspace to set this flag, but we must filter it out if we want
418 * MNT_UPDATE on the root file system to work.
419 * MNT_ROOTFS should only be set by the kernel when mounting its
420 * root file system.
421 */
422 flags &= ~MNT_ROOTFS;
423
424 iovcnt = uap->iovcnt;
425 /*
426 * Check that we have an even number of iovec's
427 * and that we have at least two options.
428 */
429 if ((iovcnt & 1) || (iovcnt < 4)) {
430 CTR2(KTR_VFS, "%s: failed for invalid iovcnt %d", __func__,
431 uap->iovcnt);
432 return (EINVAL);
433 }
434
435 error = copyinuio(uap->iovp, iovcnt, &auio);
436 if (error) {
437 CTR2(KTR_VFS, "%s: failed for invalid uio op with %d errno",
438 __func__, error);
439 return (error);
440 }
441 error = vfs_donmount(td, flags, auio);
442
443 free(auio, M_IOV);
444 return (error);
445 }
446
447 /*
448 * ---------------------------------------------------------------------
449 * Various utility functions
450 */
451
452 void
453 vfs_ref(struct mount *mp)
454 {
455 struct mount_pcpu *mpcpu;
456
457 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
458 if (vfs_op_thread_enter(mp, mpcpu)) {
459 vfs_mp_count_add_pcpu(mpcpu, ref, 1);
460 vfs_op_thread_exit(mp, mpcpu);
461 return;
462 }
463
464 MNT_ILOCK(mp);
465 MNT_REF(mp);
466 MNT_IUNLOCK(mp);
467 }
468
469 void
470 vfs_rel(struct mount *mp)
471 {
472 struct mount_pcpu *mpcpu;
473
474 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
475 if (vfs_op_thread_enter(mp, mpcpu)) {
476 vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
477 vfs_op_thread_exit(mp, mpcpu);
478 return;
479 }
480
481 MNT_ILOCK(mp);
482 MNT_REL(mp);
483 MNT_IUNLOCK(mp);
484 }
485
486 /*
487 * Allocate and initialize the mount point struct.
488 */
489 struct mount *
490 vfs_mount_alloc(struct vnode *vp, struct vfsconf *vfsp, const char *fspath,
491 struct ucred *cred)
492 {
493 struct mount *mp;
494
495 mp = uma_zalloc(mount_zone, M_WAITOK);
496 bzero(&mp->mnt_startzero,
497 __rangeof(struct mount, mnt_startzero, mnt_endzero));
498 mp->mnt_kern_flag = 0;
499 mp->mnt_flag = 0;
500 mp->mnt_rootvnode = NULL;
501 mp->mnt_vnodecovered = NULL;
502 mp->mnt_op = NULL;
503 mp->mnt_vfc = NULL;
504 TAILQ_INIT(&mp->mnt_nvnodelist);
505 mp->mnt_nvnodelistsize = 0;
506 TAILQ_INIT(&mp->mnt_lazyvnodelist);
507 mp->mnt_lazyvnodelistsize = 0;
508 if (mp->mnt_ref != 0 || mp->mnt_lockref != 0 ||
509 mp->mnt_writeopcount != 0)
510 panic("%s: non-zero counters on new mp %p\n", __func__, mp);
511 if (mp->mnt_vfs_ops != 1)
512 panic("%s: vfs_ops should be 1 but %d found\n", __func__,
513 mp->mnt_vfs_ops);
514 (void) vfs_busy(mp, MBF_NOWAIT);
515 atomic_add_acq_int(&vfsp->vfc_refcount, 1);
516 mp->mnt_op = vfsp->vfc_vfsops;
517 mp->mnt_vfc = vfsp;
518 mp->mnt_stat.f_type = vfsp->vfc_typenum;
519 mp->mnt_gen++;
520 strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
521 mp->mnt_vnodecovered = vp;
522 mp->mnt_cred = crdup(cred);
523 mp->mnt_stat.f_owner = cred->cr_uid;
524 strlcpy(mp->mnt_stat.f_mntonname, fspath, MNAMELEN);
525 mp->mnt_iosize_max = DFLTPHYS;
526 #ifdef MAC
527 mac_mount_init(mp);
528 mac_mount_create(cred, mp);
529 #endif
530 arc4rand(&mp->mnt_hashseed, sizeof mp->mnt_hashseed, 0);
531 TAILQ_INIT(&mp->mnt_uppers);
532 return (mp);
533 }
534
535 /*
536 * Destroy the mount struct previously allocated by vfs_mount_alloc().
537 */
538 void
539 vfs_mount_destroy(struct mount *mp)
540 {
541
542 if (mp->mnt_vfs_ops == 0)
543 panic("%s: entered with zero vfs_ops\n", __func__);
544
545 vfs_assert_mount_counters(mp);
546
547 MNT_ILOCK(mp);
548 mp->mnt_kern_flag |= MNTK_REFEXPIRE;
549 if (mp->mnt_kern_flag & MNTK_MWAIT) {
550 mp->mnt_kern_flag &= ~MNTK_MWAIT;
551 wakeup(mp);
552 }
553 while (mp->mnt_ref)
554 msleep(mp, MNT_MTX(mp), PVFS, "mntref", 0);
555 KASSERT(mp->mnt_ref == 0,
556 ("%s: invalid refcount in the drain path @ %s:%d", __func__,
557 __FILE__, __LINE__));
558 if (mp->mnt_writeopcount != 0)
559 panic("vfs_mount_destroy: nonzero writeopcount");
560 if (mp->mnt_secondary_writes != 0)
561 panic("vfs_mount_destroy: nonzero secondary_writes");
562 atomic_subtract_rel_int(&mp->mnt_vfc->vfc_refcount, 1);
563 if (!TAILQ_EMPTY(&mp->mnt_nvnodelist)) {
564 struct vnode *vp;
565
566 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes)
567 vn_printf(vp, "dangling vnode ");
568 panic("unmount: dangling vnode");
569 }
570 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers"));
571 if (mp->mnt_nvnodelistsize != 0)
572 panic("vfs_mount_destroy: nonzero nvnodelistsize");
573 if (mp->mnt_lazyvnodelistsize != 0)
574 panic("vfs_mount_destroy: nonzero lazyvnodelistsize");
575 if (mp->mnt_lockref != 0)
576 panic("vfs_mount_destroy: nonzero lock refcount");
577 MNT_IUNLOCK(mp);
578
579 if (mp->mnt_vfs_ops != 1)
580 panic("%s: vfs_ops should be 1 but %d found\n", __func__,
581 mp->mnt_vfs_ops);
582
583 if (mp->mnt_rootvnode != NULL)
584 panic("%s: mount point still has a root vnode %p\n", __func__,
585 mp->mnt_rootvnode);
586
587 if (mp->mnt_vnodecovered != NULL)
588 vrele(mp->mnt_vnodecovered);
589 #ifdef MAC
590 mac_mount_destroy(mp);
591 #endif
592 if (mp->mnt_opt != NULL)
593 vfs_freeopts(mp->mnt_opt);
594 crfree(mp->mnt_cred);
595 uma_zfree(mount_zone, mp);
596 }
597
598 static bool
599 vfs_should_downgrade_to_ro_mount(uint64_t fsflags, int error)
600 {
601 /* This is an upgrade of an exisiting mount. */
602 if ((fsflags & MNT_UPDATE) != 0)
603 return (false);
604 /* This is already an R/O mount. */
605 if ((fsflags & MNT_RDONLY) != 0)
606 return (false);
607
608 switch (error) {
609 case ENODEV: /* generic, geom, ... */
610 case EACCES: /* cam/scsi, ... */
611 case EROFS: /* md, mmcsd, ... */
612 /*
613 * These errors can be returned by the storage layer to signal
614 * that the media is read-only. No harm in the R/O mount
615 * attempt if the error was returned for some other reason.
616 */
617 return (true);
618 default:
619 return (false);
620 }
621 }
622
623 int
624 vfs_donmount(struct thread *td, uint64_t fsflags, struct uio *fsoptions)
625 {
626 struct vfsoptlist *optlist;
627 struct vfsopt *opt, *tmp_opt;
628 char *fstype, *fspath, *errmsg;
629 int error, fstypelen, fspathlen, errmsg_len, errmsg_pos;
630 bool autoro;
631
632 errmsg = fspath = NULL;
633 errmsg_len = fspathlen = 0;
634 errmsg_pos = -1;
635 autoro = default_autoro;
636
637 error = vfs_buildopts(fsoptions, &optlist);
638 if (error)
639 return (error);
640
641 if (vfs_getopt(optlist, "errmsg", (void **)&errmsg, &errmsg_len) == 0)
642 errmsg_pos = vfs_getopt_pos(optlist, "errmsg");
643
644 /*
645 * We need these two options before the others,
646 * and they are mandatory for any filesystem.
647 * Ensure they are NUL terminated as well.
648 */
649 fstypelen = 0;
650 error = vfs_getopt(optlist, "fstype", (void **)&fstype, &fstypelen);
651 if (error || fstypelen <= 0 || fstype[fstypelen - 1] != '\0') {
652 error = EINVAL;
653 if (errmsg != NULL)
654 strncpy(errmsg, "Invalid fstype", errmsg_len);
655 goto bail;
656 }
657 fspathlen = 0;
658 error = vfs_getopt(optlist, "fspath", (void **)&fspath, &fspathlen);
659 if (error || fspathlen <= 0 || fspath[fspathlen - 1] != '\0') {
660 error = EINVAL;
661 if (errmsg != NULL)
662 strncpy(errmsg, "Invalid fspath", errmsg_len);
663 goto bail;
664 }
665
666 /*
667 * We need to see if we have the "update" option
668 * before we call vfs_domount(), since vfs_domount() has special
669 * logic based on MNT_UPDATE. This is very important
670 * when we want to update the root filesystem.
671 */
672 TAILQ_FOREACH_SAFE(opt, optlist, link, tmp_opt) {
673 int do_freeopt = 0;
674
675 if (strcmp(opt->name, "update") == 0) {
676 fsflags |= MNT_UPDATE;
677 do_freeopt = 1;
678 }
679 else if (strcmp(opt->name, "async") == 0)
680 fsflags |= MNT_ASYNC;
681 else if (strcmp(opt->name, "force") == 0) {
682 fsflags |= MNT_FORCE;
683 do_freeopt = 1;
684 }
685 else if (strcmp(opt->name, "reload") == 0) {
686 fsflags |= MNT_RELOAD;
687 do_freeopt = 1;
688 }
689 else if (strcmp(opt->name, "multilabel") == 0)
690 fsflags |= MNT_MULTILABEL;
691 else if (strcmp(opt->name, "noasync") == 0)
692 fsflags &= ~MNT_ASYNC;
693 else if (strcmp(opt->name, "noatime") == 0)
694 fsflags |= MNT_NOATIME;
695 else if (strcmp(opt->name, "atime") == 0) {
696 free(opt->name, M_MOUNT);
697 opt->name = strdup("nonoatime", M_MOUNT);
698 }
699 else if (strcmp(opt->name, "noclusterr") == 0)
700 fsflags |= MNT_NOCLUSTERR;
701 else if (strcmp(opt->name, "clusterr") == 0) {
702 free(opt->name, M_MOUNT);
703 opt->name = strdup("nonoclusterr", M_MOUNT);
704 }
705 else if (strcmp(opt->name, "noclusterw") == 0)
706 fsflags |= MNT_NOCLUSTERW;
707 else if (strcmp(opt->name, "clusterw") == 0) {
708 free(opt->name, M_MOUNT);
709 opt->name = strdup("nonoclusterw", M_MOUNT);
710 }
711 else if (strcmp(opt->name, "noexec") == 0)
712 fsflags |= MNT_NOEXEC;
713 else if (strcmp(opt->name, "exec") == 0) {
714 free(opt->name, M_MOUNT);
715 opt->name = strdup("nonoexec", M_MOUNT);
716 }
717 else if (strcmp(opt->name, "nosuid") == 0)
718 fsflags |= MNT_NOSUID;
719 else if (strcmp(opt->name, "suid") == 0) {
720 free(opt->name, M_MOUNT);
721 opt->name = strdup("nonosuid", M_MOUNT);
722 }
723 else if (strcmp(opt->name, "nosymfollow") == 0)
724 fsflags |= MNT_NOSYMFOLLOW;
725 else if (strcmp(opt->name, "symfollow") == 0) {
726 free(opt->name, M_MOUNT);
727 opt->name = strdup("nonosymfollow", M_MOUNT);
728 }
729 else if (strcmp(opt->name, "noro") == 0) {
730 fsflags &= ~MNT_RDONLY;
731 autoro = false;
732 }
733 else if (strcmp(opt->name, "rw") == 0) {
734 fsflags &= ~MNT_RDONLY;
735 autoro = false;
736 }
737 else if (strcmp(opt->name, "ro") == 0) {
738 fsflags |= MNT_RDONLY;
739 autoro = false;
740 }
741 else if (strcmp(opt->name, "rdonly") == 0) {
742 free(opt->name, M_MOUNT);
743 opt->name = strdup("ro", M_MOUNT);
744 fsflags |= MNT_RDONLY;
745 autoro = false;
746 }
747 else if (strcmp(opt->name, "autoro") == 0) {
748 do_freeopt = 1;
749 autoro = true;
750 }
751 else if (strcmp(opt->name, "suiddir") == 0)
752 fsflags |= MNT_SUIDDIR;
753 else if (strcmp(opt->name, "sync") == 0)
754 fsflags |= MNT_SYNCHRONOUS;
755 else if (strcmp(opt->name, "union") == 0)
756 fsflags |= MNT_UNION;
757 else if (strcmp(opt->name, "automounted") == 0) {
758 fsflags |= MNT_AUTOMOUNTED;
759 do_freeopt = 1;
760 } else if (strcmp(opt->name, "nocover") == 0) {
761 fsflags |= MNT_NOCOVER;
762 do_freeopt = 1;
763 } else if (strcmp(opt->name, "cover") == 0) {
764 fsflags &= ~MNT_NOCOVER;
765 do_freeopt = 1;
766 } else if (strcmp(opt->name, "emptydir") == 0) {
767 fsflags |= MNT_EMPTYDIR;
768 do_freeopt = 1;
769 } else if (strcmp(opt->name, "noemptydir") == 0) {
770 fsflags &= ~MNT_EMPTYDIR;
771 do_freeopt = 1;
772 }
773 if (do_freeopt)
774 vfs_freeopt(optlist, opt);
775 }
776
777 /*
778 * Be ultra-paranoid about making sure the type and fspath
779 * variables will fit in our mp buffers, including the
780 * terminating NUL.
781 */
782 if (fstypelen > MFSNAMELEN || fspathlen > MNAMELEN) {
783 error = ENAMETOOLONG;
784 goto bail;
785 }
786
787 error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
788
789 /*
790 * See if we can mount in the read-only mode if the error code suggests
791 * that it could be possible and the mount options allow for that.
792 * Never try it if "[no]{ro|rw}" has been explicitly requested and not
793 * overridden by "autoro".
794 */
795 if (autoro && vfs_should_downgrade_to_ro_mount(fsflags, error)) {
796 printf("%s: R/W mount failed, possibly R/O media,"
797 " trying R/O mount\n", __func__);
798 fsflags |= MNT_RDONLY;
799 error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
800 }
801 bail:
802 /* copyout the errmsg */
803 if (errmsg_pos != -1 && ((2 * errmsg_pos + 1) < fsoptions->uio_iovcnt)
804 && errmsg_len > 0 && errmsg != NULL) {
805 if (fsoptions->uio_segflg == UIO_SYSSPACE) {
806 bcopy(errmsg,
807 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
808 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
809 } else {
810 copyout(errmsg,
811 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
812 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
813 }
814 }
815
816 if (optlist != NULL)
817 vfs_freeopts(optlist);
818 return (error);
819 }
820
821 /*
822 * Old mount API.
823 */
824 #ifndef _SYS_SYSPROTO_H_
825 struct mount_args {
826 char *type;
827 char *path;
828 int flags;
829 caddr_t data;
830 };
831 #endif
832 /* ARGSUSED */
833 int
834 sys_mount(struct thread *td, struct mount_args *uap)
835 {
836 char *fstype;
837 struct vfsconf *vfsp = NULL;
838 struct mntarg *ma = NULL;
839 uint64_t flags;
840 int error;
841
842 /*
843 * Mount flags are now 64-bits. On 32-bit architectures only
844 * 32-bits are passed in, but from here on everything handles
845 * 64-bit flags correctly.
846 */
847 flags = uap->flags;
848
849 AUDIT_ARG_FFLAGS(flags);
850
851 /*
852 * Filter out MNT_ROOTFS. We do not want clients of mount() in
853 * userspace to set this flag, but we must filter it out if we want
854 * MNT_UPDATE on the root file system to work.
855 * MNT_ROOTFS should only be set by the kernel when mounting its
856 * root file system.
857 */
858 flags &= ~MNT_ROOTFS;
859
860 fstype = malloc(MFSNAMELEN, M_TEMP, M_WAITOK);
861 error = copyinstr(uap->type, fstype, MFSNAMELEN, NULL);
862 if (error) {
863 free(fstype, M_TEMP);
864 return (error);
865 }
866
867 AUDIT_ARG_TEXT(fstype);
868 vfsp = vfs_byname_kld(fstype, td, &error);
869 free(fstype, M_TEMP);
870 if (vfsp == NULL)
871 return (ENOENT);
872 if (((vfsp->vfc_flags & VFCF_SBDRY) != 0 &&
873 vfsp->vfc_vfsops_sd->vfs_cmount == NULL) ||
874 ((vfsp->vfc_flags & VFCF_SBDRY) == 0 &&
875 vfsp->vfc_vfsops->vfs_cmount == NULL))
876 return (EOPNOTSUPP);
877
878 ma = mount_argsu(ma, "fstype", uap->type, MFSNAMELEN);
879 ma = mount_argsu(ma, "fspath", uap->path, MNAMELEN);
880 ma = mount_argb(ma, flags & MNT_RDONLY, "noro");
881 ma = mount_argb(ma, !(flags & MNT_NOSUID), "nosuid");
882 ma = mount_argb(ma, !(flags & MNT_NOEXEC), "noexec");
883
884 if ((vfsp->vfc_flags & VFCF_SBDRY) != 0)
885 return (vfsp->vfc_vfsops_sd->vfs_cmount(ma, uap->data, flags));
886 return (vfsp->vfc_vfsops->vfs_cmount(ma, uap->data, flags));
887 }
888
889 /*
890 * vfs_domount_first(): first file system mount (not update)
891 */
892 static int
893 vfs_domount_first(
894 struct thread *td, /* Calling thread. */
895 struct vfsconf *vfsp, /* File system type. */
896 char *fspath, /* Mount path. */
897 struct vnode *vp, /* Vnode to be covered. */
898 uint64_t fsflags, /* Flags common to all filesystems. */
899 struct vfsoptlist **optlist /* Options local to the filesystem. */
900 )
901 {
902 struct vattr va;
903 struct mount *mp;
904 struct vnode *newdp, *rootvp;
905 int error, error1;
906 bool unmounted;
907
908 ASSERT_VOP_ELOCKED(vp, __func__);
909 KASSERT((fsflags & MNT_UPDATE) == 0, ("MNT_UPDATE shouldn't be here"));
910
911 if ((fsflags & MNT_EMPTYDIR) != 0) {
912 error = vfs_emptydir(vp);
913 if (error != 0) {
914 vput(vp);
915 return (error);
916 }
917 }
918
919 /*
920 * If the jail of the calling thread lacks permission for this type of
921 * file system, or is trying to cover its own root, deny immediately.
922 */
923 if (jailed(td->td_ucred) && (!prison_allow(td->td_ucred,
924 vfsp->vfc_prison_flag) || vp == td->td_ucred->cr_prison->pr_root)) {
925 vput(vp);
926 return (EPERM);
927 }
928
929 /*
930 * If the user is not root, ensure that they own the directory
931 * onto which we are attempting to mount.
932 */
933 error = VOP_GETATTR(vp, &va, td->td_ucred);
934 if (error == 0 && va.va_uid != td->td_ucred->cr_uid)
935 error = priv_check_cred(td->td_ucred, PRIV_VFS_ADMIN);
936 if (error == 0)
937 error = vinvalbuf(vp, V_SAVE, 0, 0);
938 if (error == 0 && vp->v_type != VDIR)
939 error = ENOTDIR;
940 if (error == 0) {
941 VI_LOCK(vp);
942 if ((vp->v_iflag & VI_MOUNT) == 0 && vp->v_mountedhere == NULL)
943 vp->v_iflag |= VI_MOUNT;
944 else
945 error = EBUSY;
946 VI_UNLOCK(vp);
947 }
948 if (error != 0) {
949 vput(vp);
950 return (error);
951 }
952 vn_seqc_write_begin(vp);
953 VOP_UNLOCK(vp);
954
955 /* Allocate and initialize the filesystem. */
956 mp = vfs_mount_alloc(vp, vfsp, fspath, td->td_ucred);
957 /* XXXMAC: pass to vfs_mount_alloc? */
958 mp->mnt_optnew = *optlist;
959 /* Set the mount level flags. */
960 mp->mnt_flag = (fsflags & (MNT_UPDATEMASK | MNT_ROOTFS | MNT_RDONLY));
961
962 /*
963 * Mount the filesystem.
964 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
965 * get. No freeing of cn_pnbuf.
966 */
967 error1 = 0;
968 unmounted = true;
969 if ((error = VFS_MOUNT(mp)) != 0 ||
970 (error1 = VFS_STATFS(mp, &mp->mnt_stat)) != 0 ||
971 (error1 = VFS_ROOT(mp, LK_EXCLUSIVE, &newdp)) != 0) {
972 rootvp = NULL;
973 if (error1 != 0) {
974 MPASS(error == 0);
975 rootvp = vfs_cache_root_clear(mp);
976 if (rootvp != NULL) {
977 vhold(rootvp);
978 vrele(rootvp);
979 }
980 (void)vn_start_write(NULL, &mp, V_WAIT);
981 MNT_ILOCK(mp);
982 mp->mnt_kern_flag |= MNTK_UNMOUNT | MNTK_UNMOUNTF;
983 MNT_IUNLOCK(mp);
984 VFS_PURGE(mp);
985 error = VFS_UNMOUNT(mp, 0);
986 vn_finished_write(mp);
987 if (error != 0) {
988 printf(
989 "failed post-mount (%d): rollback unmount returned %d\n",
990 error1, error);
991 unmounted = false;
992 }
993 error = error1;
994 }
995 vfs_unbusy(mp);
996 mp->mnt_vnodecovered = NULL;
997 if (unmounted) {
998 /* XXXKIB wait for mnt_lockref drain? */
999 vfs_mount_destroy(mp);
1000 }
1001 VI_LOCK(vp);
1002 vp->v_iflag &= ~VI_MOUNT;
1003 VI_UNLOCK(vp);
1004 if (rootvp != NULL) {
1005 vn_seqc_write_end(rootvp);
1006 vdrop(rootvp);
1007 }
1008 vn_seqc_write_end(vp);
1009 vrele(vp);
1010 return (error);
1011 }
1012 vn_seqc_write_begin(newdp);
1013 VOP_UNLOCK(newdp);
1014
1015 if (mp->mnt_opt != NULL)
1016 vfs_freeopts(mp->mnt_opt);
1017 mp->mnt_opt = mp->mnt_optnew;
1018 *optlist = NULL;
1019
1020 /*
1021 * Prevent external consumers of mount options from reading mnt_optnew.
1022 */
1023 mp->mnt_optnew = NULL;
1024
1025 MNT_ILOCK(mp);
1026 if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1027 (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1028 mp->mnt_kern_flag |= MNTK_ASYNC;
1029 else
1030 mp->mnt_kern_flag &= ~MNTK_ASYNC;
1031 MNT_IUNLOCK(mp);
1032
1033 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1034 cache_purge(vp);
1035 VI_LOCK(vp);
1036 vp->v_iflag &= ~VI_MOUNT;
1037 vn_irflag_set_locked(vp, VIRF_MOUNTPOINT);
1038 vp->v_mountedhere = mp;
1039 VI_UNLOCK(vp);
1040 /* Place the new filesystem at the end of the mount list. */
1041 mtx_lock(&mountlist_mtx);
1042 TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
1043 mtx_unlock(&mountlist_mtx);
1044 vfs_event_signal(NULL, VQ_MOUNT, 0);
1045 vn_lock(newdp, LK_EXCLUSIVE | LK_RETRY);
1046 VOP_UNLOCK(vp);
1047 EVENTHANDLER_DIRECT_INVOKE(vfs_mounted, mp, newdp, td);
1048 VOP_UNLOCK(newdp);
1049 mount_devctl_event("MOUNT", mp, false);
1050 mountcheckdirs(vp, newdp);
1051 vn_seqc_write_end(vp);
1052 vn_seqc_write_end(newdp);
1053 vrele(newdp);
1054 if ((mp->mnt_flag & MNT_RDONLY) == 0)
1055 vfs_allocate_syncvnode(mp);
1056 vfs_op_exit(mp);
1057 vfs_unbusy(mp);
1058 return (0);
1059 }
1060
1061 /*
1062 * vfs_domount_update(): update of mounted file system
1063 */
1064 static int
1065 vfs_domount_update(
1066 struct thread *td, /* Calling thread. */
1067 struct vnode *vp, /* Mount point vnode. */
1068 uint64_t fsflags, /* Flags common to all filesystems. */
1069 struct vfsoptlist **optlist /* Options local to the filesystem. */
1070 )
1071 {
1072 struct export_args export;
1073 struct o2export_args o2export;
1074 struct vnode *rootvp;
1075 void *bufp;
1076 struct mount *mp;
1077 int error, export_error, i, len;
1078 uint64_t flag;
1079 gid_t *grps;
1080
1081 ASSERT_VOP_ELOCKED(vp, __func__);
1082 KASSERT((fsflags & MNT_UPDATE) != 0, ("MNT_UPDATE should be here"));
1083 mp = vp->v_mount;
1084
1085 if ((vp->v_vflag & VV_ROOT) == 0) {
1086 if (vfs_copyopt(*optlist, "export", &export, sizeof(export))
1087 == 0)
1088 error = EXDEV;
1089 else
1090 error = EINVAL;
1091 vput(vp);
1092 return (error);
1093 }
1094
1095 /*
1096 * We only allow the filesystem to be reloaded if it
1097 * is currently mounted read-only.
1098 */
1099 flag = mp->mnt_flag;
1100 if ((fsflags & MNT_RELOAD) != 0 && (flag & MNT_RDONLY) == 0) {
1101 vput(vp);
1102 return (EOPNOTSUPP); /* Needs translation */
1103 }
1104 /*
1105 * Only privileged root, or (if MNT_USER is set) the user that
1106 * did the original mount is permitted to update it.
1107 */
1108 error = vfs_suser(mp, td);
1109 if (error != 0) {
1110 vput(vp);
1111 return (error);
1112 }
1113 if (vfs_busy(mp, MBF_NOWAIT)) {
1114 vput(vp);
1115 return (EBUSY);
1116 }
1117 VI_LOCK(vp);
1118 if ((vp->v_iflag & VI_MOUNT) != 0 || vp->v_mountedhere != NULL) {
1119 VI_UNLOCK(vp);
1120 vfs_unbusy(mp);
1121 vput(vp);
1122 return (EBUSY);
1123 }
1124 vp->v_iflag |= VI_MOUNT;
1125 VI_UNLOCK(vp);
1126 VOP_UNLOCK(vp);
1127
1128 vfs_op_enter(mp);
1129 vn_seqc_write_begin(vp);
1130
1131 rootvp = NULL;
1132 MNT_ILOCK(mp);
1133 if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1134 MNT_IUNLOCK(mp);
1135 error = EBUSY;
1136 goto end;
1137 }
1138 mp->mnt_flag &= ~MNT_UPDATEMASK;
1139 mp->mnt_flag |= fsflags & (MNT_RELOAD | MNT_FORCE | MNT_UPDATE |
1140 MNT_SNAPSHOT | MNT_ROOTFS | MNT_UPDATEMASK | MNT_RDONLY);
1141 if ((mp->mnt_flag & MNT_ASYNC) == 0)
1142 mp->mnt_kern_flag &= ~MNTK_ASYNC;
1143 rootvp = vfs_cache_root_clear(mp);
1144 MNT_IUNLOCK(mp);
1145 mp->mnt_optnew = *optlist;
1146 vfs_mergeopts(mp->mnt_optnew, mp->mnt_opt);
1147
1148 /*
1149 * Mount the filesystem.
1150 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1151 * get. No freeing of cn_pnbuf.
1152 */
1153 error = VFS_MOUNT(mp);
1154
1155 export_error = 0;
1156 /* Process the export option. */
1157 if (error == 0 && vfs_getopt(mp->mnt_optnew, "export", &bufp,
1158 &len) == 0) {
1159 /* Assume that there is only 1 ABI for each length. */
1160 switch (len) {
1161 case (sizeof(struct oexport_args)):
1162 bzero(&o2export, sizeof(o2export));
1163 /* FALLTHROUGH */
1164 case (sizeof(o2export)):
1165 bcopy(bufp, &o2export, len);
1166 export.ex_flags = (uint64_t)o2export.ex_flags;
1167 export.ex_root = o2export.ex_root;
1168 export.ex_uid = o2export.ex_anon.cr_uid;
1169 export.ex_groups = NULL;
1170 export.ex_ngroups = o2export.ex_anon.cr_ngroups;
1171 if (export.ex_ngroups > 0) {
1172 if (export.ex_ngroups <= XU_NGROUPS) {
1173 export.ex_groups = malloc(
1174 export.ex_ngroups * sizeof(gid_t),
1175 M_TEMP, M_WAITOK);
1176 for (i = 0; i < export.ex_ngroups; i++)
1177 export.ex_groups[i] =
1178 o2export.ex_anon.cr_groups[i];
1179 } else
1180 export_error = EINVAL;
1181 } else if (export.ex_ngroups < 0)
1182 export_error = EINVAL;
1183 export.ex_addr = o2export.ex_addr;
1184 export.ex_addrlen = o2export.ex_addrlen;
1185 export.ex_mask = o2export.ex_mask;
1186 export.ex_masklen = o2export.ex_masklen;
1187 export.ex_indexfile = o2export.ex_indexfile;
1188 export.ex_numsecflavors = o2export.ex_numsecflavors;
1189 if (export.ex_numsecflavors < MAXSECFLAVORS) {
1190 for (i = 0; i < export.ex_numsecflavors; i++)
1191 export.ex_secflavors[i] =
1192 o2export.ex_secflavors[i];
1193 } else
1194 export_error = EINVAL;
1195 if (export_error == 0)
1196 export_error = vfs_export(mp, &export);
1197 free(export.ex_groups, M_TEMP);
1198 break;
1199 case (sizeof(export)):
1200 bcopy(bufp, &export, len);
1201 grps = NULL;
1202 if (export.ex_ngroups > 0) {
1203 if (export.ex_ngroups <= NGROUPS_MAX) {
1204 grps = malloc(export.ex_ngroups *
1205 sizeof(gid_t), M_TEMP, M_WAITOK);
1206 export_error = copyin(export.ex_groups,
1207 grps, export.ex_ngroups *
1208 sizeof(gid_t));
1209 if (export_error == 0)
1210 export.ex_groups = grps;
1211 } else
1212 export_error = EINVAL;
1213 } else if (export.ex_ngroups == 0)
1214 export.ex_groups = NULL;
1215 else
1216 export_error = EINVAL;
1217 if (export_error == 0)
1218 export_error = vfs_export(mp, &export);
1219 free(grps, M_TEMP);
1220 break;
1221 default:
1222 export_error = EINVAL;
1223 break;
1224 }
1225 }
1226
1227 MNT_ILOCK(mp);
1228 if (error == 0) {
1229 mp->mnt_flag &= ~(MNT_UPDATE | MNT_RELOAD | MNT_FORCE |
1230 MNT_SNAPSHOT);
1231 } else {
1232 /*
1233 * If we fail, restore old mount flags. MNT_QUOTA is special,
1234 * because it is not part of MNT_UPDATEMASK, but it could have
1235 * changed in the meantime if quotactl(2) was called.
1236 * All in all we want current value of MNT_QUOTA, not the old
1237 * one.
1238 */
1239 mp->mnt_flag = (mp->mnt_flag & MNT_QUOTA) | (flag & ~MNT_QUOTA);
1240 }
1241 if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1242 (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1243 mp->mnt_kern_flag |= MNTK_ASYNC;
1244 else
1245 mp->mnt_kern_flag &= ~MNTK_ASYNC;
1246 MNT_IUNLOCK(mp);
1247
1248 if (error != 0)
1249 goto end;
1250
1251 mount_devctl_event("REMOUNT", mp, true);
1252 if (mp->mnt_opt != NULL)
1253 vfs_freeopts(mp->mnt_opt);
1254 mp->mnt_opt = mp->mnt_optnew;
1255 *optlist = NULL;
1256 (void)VFS_STATFS(mp, &mp->mnt_stat);
1257 /*
1258 * Prevent external consumers of mount options from reading
1259 * mnt_optnew.
1260 */
1261 mp->mnt_optnew = NULL;
1262
1263 if ((mp->mnt_flag & MNT_RDONLY) == 0)
1264 vfs_allocate_syncvnode(mp);
1265 else
1266 vfs_deallocate_syncvnode(mp);
1267 end:
1268 vfs_op_exit(mp);
1269 if (rootvp != NULL) {
1270 vn_seqc_write_end(rootvp);
1271 vrele(rootvp);
1272 }
1273 vn_seqc_write_end(vp);
1274 vfs_unbusy(mp);
1275 VI_LOCK(vp);
1276 vp->v_iflag &= ~VI_MOUNT;
1277 VI_UNLOCK(vp);
1278 vrele(vp);
1279 return (error != 0 ? error : export_error);
1280 }
1281
1282 /*
1283 * vfs_domount(): actually attempt a filesystem mount.
1284 */
1285 static int
1286 vfs_domount(
1287 struct thread *td, /* Calling thread. */
1288 const char *fstype, /* Filesystem type. */
1289 char *fspath, /* Mount path. */
1290 uint64_t fsflags, /* Flags common to all filesystems. */
1291 struct vfsoptlist **optlist /* Options local to the filesystem. */
1292 )
1293 {
1294 struct vfsconf *vfsp;
1295 struct nameidata nd;
1296 struct vnode *vp;
1297 char *pathbuf;
1298 int error;
1299
1300 /*
1301 * Be ultra-paranoid about making sure the type and fspath
1302 * variables will fit in our mp buffers, including the
1303 * terminating NUL.
1304 */
1305 if (strlen(fstype) >= MFSNAMELEN || strlen(fspath) >= MNAMELEN)
1306 return (ENAMETOOLONG);
1307
1308 if (jailed(td->td_ucred) || usermount == 0) {
1309 if ((error = priv_check(td, PRIV_VFS_MOUNT)) != 0)
1310 return (error);
1311 }
1312
1313 /*
1314 * Do not allow NFS export or MNT_SUIDDIR by unprivileged users.
1315 */
1316 if (fsflags & MNT_EXPORTED) {
1317 error = priv_check(td, PRIV_VFS_MOUNT_EXPORTED);
1318 if (error)
1319 return (error);
1320 }
1321 if (fsflags & MNT_SUIDDIR) {
1322 error = priv_check(td, PRIV_VFS_MOUNT_SUIDDIR);
1323 if (error)
1324 return (error);
1325 }
1326 /*
1327 * Silently enforce MNT_NOSUID and MNT_USER for unprivileged users.
1328 */
1329 if ((fsflags & (MNT_NOSUID | MNT_USER)) != (MNT_NOSUID | MNT_USER)) {
1330 if (priv_check(td, PRIV_VFS_MOUNT_NONUSER) != 0)
1331 fsflags |= MNT_NOSUID | MNT_USER;
1332 }
1333
1334 /* Load KLDs before we lock the covered vnode to avoid reversals. */
1335 vfsp = NULL;
1336 if ((fsflags & MNT_UPDATE) == 0) {
1337 /* Don't try to load KLDs if we're mounting the root. */
1338 if (fsflags & MNT_ROOTFS)
1339 vfsp = vfs_byname(fstype);
1340 else
1341 vfsp = vfs_byname_kld(fstype, td, &error);
1342 if (vfsp == NULL)
1343 return (ENODEV);
1344 }
1345
1346 /*
1347 * Get vnode to be covered or mount point's vnode in case of MNT_UPDATE.
1348 */
1349 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
1350 UIO_SYSSPACE, fspath, td);
1351 error = namei(&nd);
1352 if (error != 0)
1353 return (error);
1354 NDFREE(&nd, NDF_ONLY_PNBUF);
1355 vp = nd.ni_vp;
1356 if ((fsflags & MNT_UPDATE) == 0) {
1357 if ((vp->v_vflag & VV_ROOT) != 0 &&
1358 (fsflags & MNT_NOCOVER) != 0) {
1359 vput(vp);
1360 return (EBUSY);
1361 }
1362 pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1363 strcpy(pathbuf, fspath);
1364 error = vn_path_to_global_path(td, vp, pathbuf, MNAMELEN);
1365 if (error == 0) {
1366 error = vfs_domount_first(td, vfsp, pathbuf, vp,
1367 fsflags, optlist);
1368 }
1369 free(pathbuf, M_TEMP);
1370 } else
1371 error = vfs_domount_update(td, vp, fsflags, optlist);
1372
1373 return (error);
1374 }
1375
1376 /*
1377 * Unmount a filesystem.
1378 *
1379 * Note: unmount takes a path to the vnode mounted on as argument, not
1380 * special file (as before).
1381 */
1382 #ifndef _SYS_SYSPROTO_H_
1383 struct unmount_args {
1384 char *path;
1385 int flags;
1386 };
1387 #endif
1388 /* ARGSUSED */
1389 int
1390 sys_unmount(struct thread *td, struct unmount_args *uap)
1391 {
1392
1393 return (kern_unmount(td, uap->path, uap->flags));
1394 }
1395
1396 int
1397 kern_unmount(struct thread *td, const char *path, int flags)
1398 {
1399 struct nameidata nd;
1400 struct mount *mp;
1401 char *pathbuf;
1402 int error, id0, id1;
1403
1404 AUDIT_ARG_VALUE(flags);
1405 if (jailed(td->td_ucred) || usermount == 0) {
1406 error = priv_check(td, PRIV_VFS_UNMOUNT);
1407 if (error)
1408 return (error);
1409 }
1410
1411 pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1412 error = copyinstr(path, pathbuf, MNAMELEN, NULL);
1413 if (error) {
1414 free(pathbuf, M_TEMP);
1415 return (error);
1416 }
1417 if (flags & MNT_BYFSID) {
1418 AUDIT_ARG_TEXT(pathbuf);
1419 /* Decode the filesystem ID. */
1420 if (sscanf(pathbuf, "FSID:%d:%d", &id0, &id1) != 2) {
1421 free(pathbuf, M_TEMP);
1422 return (EINVAL);
1423 }
1424
1425 mtx_lock(&mountlist_mtx);
1426 TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
1427 if (mp->mnt_stat.f_fsid.val[0] == id0 &&
1428 mp->mnt_stat.f_fsid.val[1] == id1) {
1429 vfs_ref(mp);
1430 break;
1431 }
1432 }
1433 mtx_unlock(&mountlist_mtx);
1434 } else {
1435 /*
1436 * Try to find global path for path argument.
1437 */
1438 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
1439 UIO_SYSSPACE, pathbuf, td);
1440 if (namei(&nd) == 0) {
1441 NDFREE(&nd, NDF_ONLY_PNBUF);
1442 error = vn_path_to_global_path(td, nd.ni_vp, pathbuf,
1443 MNAMELEN);
1444 if (error == 0)
1445 vput(nd.ni_vp);
1446 }
1447 mtx_lock(&mountlist_mtx);
1448 TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
1449 if (strcmp(mp->mnt_stat.f_mntonname, pathbuf) == 0) {
1450 vfs_ref(mp);
1451 break;
1452 }
1453 }
1454 mtx_unlock(&mountlist_mtx);
1455 }
1456 free(pathbuf, M_TEMP);
1457 if (mp == NULL) {
1458 /*
1459 * Previously we returned ENOENT for a nonexistent path and
1460 * EINVAL for a non-mountpoint. We cannot tell these apart
1461 * now, so in the !MNT_BYFSID case return the more likely
1462 * EINVAL for compatibility.
1463 */
1464 return ((flags & MNT_BYFSID) ? ENOENT : EINVAL);
1465 }
1466
1467 /*
1468 * Don't allow unmounting the root filesystem.
1469 */
1470 if (mp->mnt_flag & MNT_ROOTFS) {
1471 vfs_rel(mp);
1472 return (EINVAL);
1473 }
1474 error = dounmount(mp, flags, td);
1475 return (error);
1476 }
1477
1478 /*
1479 * Return error if any of the vnodes, ignoring the root vnode
1480 * and the syncer vnode, have non-zero usecount.
1481 *
1482 * This function is purely advisory - it can return false positives
1483 * and negatives.
1484 */
1485 static int
1486 vfs_check_usecounts(struct mount *mp)
1487 {
1488 struct vnode *vp, *mvp;
1489
1490 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
1491 if ((vp->v_vflag & VV_ROOT) == 0 && vp->v_type != VNON &&
1492 vp->v_usecount != 0) {
1493 VI_UNLOCK(vp);
1494 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
1495 return (EBUSY);
1496 }
1497 VI_UNLOCK(vp);
1498 }
1499
1500 return (0);
1501 }
1502
1503 static void
1504 dounmount_cleanup(struct mount *mp, struct vnode *coveredvp, int mntkflags)
1505 {
1506
1507 mtx_assert(MNT_MTX(mp), MA_OWNED);
1508 mp->mnt_kern_flag &= ~mntkflags;
1509 if ((mp->mnt_kern_flag & MNTK_MWAIT) != 0) {
1510 mp->mnt_kern_flag &= ~MNTK_MWAIT;
1511 wakeup(mp);
1512 }
1513 vfs_op_exit_locked(mp);
1514 MNT_IUNLOCK(mp);
1515 if (coveredvp != NULL) {
1516 VOP_UNLOCK(coveredvp);
1517 vdrop(coveredvp);
1518 }
1519 vn_finished_write(mp);
1520 }
1521
1522 /*
1523 * There are various reference counters associated with the mount point.
1524 * Normally it is permitted to modify them without taking the mnt ilock,
1525 * but this behavior can be temporarily disabled if stable value is needed
1526 * or callers are expected to block (e.g. to not allow new users during
1527 * forced unmount).
1528 */
1529 void
1530 vfs_op_enter(struct mount *mp)
1531 {
1532 struct mount_pcpu *mpcpu;
1533 int cpu;
1534
1535 MNT_ILOCK(mp);
1536 mp->mnt_vfs_ops++;
1537 if (mp->mnt_vfs_ops > 1) {
1538 MNT_IUNLOCK(mp);
1539 return;
1540 }
1541 vfs_op_barrier_wait(mp);
1542 CPU_FOREACH(cpu) {
1543 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1544
1545 mp->mnt_ref += mpcpu->mntp_ref;
1546 mpcpu->mntp_ref = 0;
1547
1548 mp->mnt_lockref += mpcpu->mntp_lockref;
1549 mpcpu->mntp_lockref = 0;
1550
1551 mp->mnt_writeopcount += mpcpu->mntp_writeopcount;
1552 mpcpu->mntp_writeopcount = 0;
1553 }
1554 if (mp->mnt_ref <= 0 || mp->mnt_lockref < 0 || mp->mnt_writeopcount < 0)
1555 panic("%s: invalid count(s) on mp %p: ref %d lockref %d writeopcount %d\n",
1556 __func__, mp, mp->mnt_ref, mp->mnt_lockref, mp->mnt_writeopcount);
1557 MNT_IUNLOCK(mp);
1558 vfs_assert_mount_counters(mp);
1559 }
1560
1561 void
1562 vfs_op_exit_locked(struct mount *mp)
1563 {
1564
1565 mtx_assert(MNT_MTX(mp), MA_OWNED);
1566
1567 if (mp->mnt_vfs_ops <= 0)
1568 panic("%s: invalid vfs_ops count %d for mp %p\n",
1569 __func__, mp->mnt_vfs_ops, mp);
1570 mp->mnt_vfs_ops--;
1571 }
1572
1573 void
1574 vfs_op_exit(struct mount *mp)
1575 {
1576
1577 MNT_ILOCK(mp);
1578 vfs_op_exit_locked(mp);
1579 MNT_IUNLOCK(mp);
1580 }
1581
1582 struct vfs_op_barrier_ipi {
1583 struct mount *mp;
1584 struct smp_rendezvous_cpus_retry_arg srcra;
1585 };
1586
1587 static void
1588 vfs_op_action_func(void *arg)
1589 {
1590 struct vfs_op_barrier_ipi *vfsopipi;
1591 struct mount *mp;
1592
1593 vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1594 mp = vfsopipi->mp;
1595
1596 if (!vfs_op_thread_entered(mp))
1597 smp_rendezvous_cpus_done(arg);
1598 }
1599
1600 static void
1601 vfs_op_wait_func(void *arg, int cpu)
1602 {
1603 struct vfs_op_barrier_ipi *vfsopipi;
1604 struct mount *mp;
1605 struct mount_pcpu *mpcpu;
1606
1607 vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1608 mp = vfsopipi->mp;
1609
1610 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1611 while (atomic_load_int(&mpcpu->mntp_thread_in_ops))
1612 cpu_spinwait();
1613 }
1614
1615 void
1616 vfs_op_barrier_wait(struct mount *mp)
1617 {
1618 struct vfs_op_barrier_ipi vfsopipi;
1619
1620 vfsopipi.mp = mp;
1621
1622 smp_rendezvous_cpus_retry(all_cpus,
1623 smp_no_rendezvous_barrier,
1624 vfs_op_action_func,
1625 smp_no_rendezvous_barrier,
1626 vfs_op_wait_func,
1627 &vfsopipi.srcra);
1628 }
1629
1630 #ifdef DIAGNOSTIC
1631 void
1632 vfs_assert_mount_counters(struct mount *mp)
1633 {
1634 struct mount_pcpu *mpcpu;
1635 int cpu;
1636
1637 if (mp->mnt_vfs_ops == 0)
1638 return;
1639
1640 CPU_FOREACH(cpu) {
1641 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1642 if (mpcpu->mntp_ref != 0 ||
1643 mpcpu->mntp_lockref != 0 ||
1644 mpcpu->mntp_writeopcount != 0)
1645 vfs_dump_mount_counters(mp);
1646 }
1647 }
1648
1649 void
1650 vfs_dump_mount_counters(struct mount *mp)
1651 {
1652 struct mount_pcpu *mpcpu;
1653 int ref, lockref, writeopcount;
1654 int cpu;
1655
1656 printf("%s: mp %p vfs_ops %d\n", __func__, mp, mp->mnt_vfs_ops);
1657
1658 printf(" ref : ");
1659 ref = mp->mnt_ref;
1660 CPU_FOREACH(cpu) {
1661 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1662 printf("%d ", mpcpu->mntp_ref);
1663 ref += mpcpu->mntp_ref;
1664 }
1665 printf("\n");
1666 printf(" lockref : ");
1667 lockref = mp->mnt_lockref;
1668 CPU_FOREACH(cpu) {
1669 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1670 printf("%d ", mpcpu->mntp_lockref);
1671 lockref += mpcpu->mntp_lockref;
1672 }
1673 printf("\n");
1674 printf("writeopcount: ");
1675 writeopcount = mp->mnt_writeopcount;
1676 CPU_FOREACH(cpu) {
1677 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1678 printf("%d ", mpcpu->mntp_writeopcount);
1679 writeopcount += mpcpu->mntp_writeopcount;
1680 }
1681 printf("\n");
1682
1683 printf("counter struct total\n");
1684 printf("ref %-5d %-5d\n", mp->mnt_ref, ref);
1685 printf("lockref %-5d %-5d\n", mp->mnt_lockref, lockref);
1686 printf("writeopcount %-5d %-5d\n", mp->mnt_writeopcount, writeopcount);
1687
1688 panic("invalid counts on struct mount");
1689 }
1690 #endif
1691
1692 int
1693 vfs_mount_fetch_counter(struct mount *mp, enum mount_counter which)
1694 {
1695 struct mount_pcpu *mpcpu;
1696 int cpu, sum;
1697
1698 switch (which) {
1699 case MNT_COUNT_REF:
1700 sum = mp->mnt_ref;
1701 break;
1702 case MNT_COUNT_LOCKREF:
1703 sum = mp->mnt_lockref;
1704 break;
1705 case MNT_COUNT_WRITEOPCOUNT:
1706 sum = mp->mnt_writeopcount;
1707 break;
1708 }
1709
1710 CPU_FOREACH(cpu) {
1711 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1712 switch (which) {
1713 case MNT_COUNT_REF:
1714 sum += mpcpu->mntp_ref;
1715 break;
1716 case MNT_COUNT_LOCKREF:
1717 sum += mpcpu->mntp_lockref;
1718 break;
1719 case MNT_COUNT_WRITEOPCOUNT:
1720 sum += mpcpu->mntp_writeopcount;
1721 break;
1722 }
1723 }
1724 return (sum);
1725 }
1726
1727 /*
1728 * Do the actual filesystem unmount.
1729 */
1730 int
1731 dounmount(struct mount *mp, int flags, struct thread *td)
1732 {
1733 struct vnode *coveredvp, *rootvp;
1734 int error;
1735 uint64_t async_flag;
1736 int mnt_gen_r;
1737
1738 if ((coveredvp = mp->mnt_vnodecovered) != NULL) {
1739 mnt_gen_r = mp->mnt_gen;
1740 VI_LOCK(coveredvp);
1741 vholdl(coveredvp);
1742 vn_lock(coveredvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
1743 /*
1744 * Check for mp being unmounted while waiting for the
1745 * covered vnode lock.
1746 */
1747 if (coveredvp->v_mountedhere != mp ||
1748 coveredvp->v_mountedhere->mnt_gen != mnt_gen_r) {
1749 VOP_UNLOCK(coveredvp);
1750 vdrop(coveredvp);
1751 vfs_rel(mp);
1752 return (EBUSY);
1753 }
1754 }
1755
1756 /*
1757 * Only privileged root, or (if MNT_USER is set) the user that did the
1758 * original mount is permitted to unmount this filesystem.
1759 */
1760 error = vfs_suser(mp, td);
1761 if (error != 0) {
1762 if (coveredvp != NULL) {
1763 VOP_UNLOCK(coveredvp);
1764 vdrop(coveredvp);
1765 }
1766 vfs_rel(mp);
1767 return (error);
1768 }
1769
1770 vfs_op_enter(mp);
1771
1772 vn_start_write(NULL, &mp, V_WAIT | V_MNTREF);
1773 MNT_ILOCK(mp);
1774 if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 ||
1775 (mp->mnt_flag & MNT_UPDATE) != 0 ||
1776 !TAILQ_EMPTY(&mp->mnt_uppers)) {
1777 dounmount_cleanup(mp, coveredvp, 0);
1778 return (EBUSY);
1779 }
1780 mp->mnt_kern_flag |= MNTK_UNMOUNT;
1781 rootvp = vfs_cache_root_clear(mp);
1782 if (coveredvp != NULL)
1783 vn_seqc_write_begin(coveredvp);
1784 if (flags & MNT_NONBUSY) {
1785 MNT_IUNLOCK(mp);
1786 error = vfs_check_usecounts(mp);
1787 MNT_ILOCK(mp);
1788 if (error != 0) {
1789 vn_seqc_write_end(coveredvp);
1790 dounmount_cleanup(mp, coveredvp, MNTK_UNMOUNT);
1791 if (rootvp != NULL) {
1792 vn_seqc_write_end(rootvp);
1793 vrele(rootvp);
1794 }
1795 return (error);
1796 }
1797 }
1798 /* Allow filesystems to detect that a forced unmount is in progress. */
1799 if (flags & MNT_FORCE) {
1800 mp->mnt_kern_flag |= MNTK_UNMOUNTF;
1801 MNT_IUNLOCK(mp);
1802 /*
1803 * Must be done after setting MNTK_UNMOUNTF and before
1804 * waiting for mnt_lockref to become 0.
1805 */
1806 VFS_PURGE(mp);
1807 MNT_ILOCK(mp);
1808 }
1809 error = 0;
1810 if (mp->mnt_lockref) {
1811 mp->mnt_kern_flag |= MNTK_DRAINING;
1812 error = msleep(&mp->mnt_lockref, MNT_MTX(mp), PVFS,
1813 "mount drain", 0);
1814 }
1815 MNT_IUNLOCK(mp);
1816 KASSERT(mp->mnt_lockref == 0,
1817 ("%s: invalid lock refcount in the drain path @ %s:%d",
1818 __func__, __FILE__, __LINE__));
1819 KASSERT(error == 0,
1820 ("%s: invalid return value for msleep in the drain path @ %s:%d",
1821 __func__, __FILE__, __LINE__));
1822
1823 /*
1824 * We want to keep the vnode around so that we can vn_seqc_write_end
1825 * after we are done with unmount. Downgrade our reference to a mere
1826 * hold count so that we don't interefere with anything.
1827 */
1828 if (rootvp != NULL) {
1829 vhold(rootvp);
1830 vrele(rootvp);
1831 }
1832
1833 if (mp->mnt_flag & MNT_EXPUBLIC)
1834 vfs_setpublicfs(NULL, NULL, NULL);
1835
1836 vfs_periodic(mp, MNT_WAIT);
1837 MNT_ILOCK(mp);
1838 async_flag = mp->mnt_flag & MNT_ASYNC;
1839 mp->mnt_flag &= ~MNT_ASYNC;
1840 mp->mnt_kern_flag &= ~MNTK_ASYNC;
1841 MNT_IUNLOCK(mp);
1842 vfs_deallocate_syncvnode(mp);
1843 error = VFS_UNMOUNT(mp, flags);
1844 vn_finished_write(mp);
1845 /*
1846 * If we failed to flush the dirty blocks for this mount point,
1847 * undo all the cdir/rdir and rootvnode changes we made above.
1848 * Unless we failed to do so because the device is reporting that
1849 * it doesn't exist anymore.
1850 */
1851 if (error && error != ENXIO) {
1852 MNT_ILOCK(mp);
1853 if ((mp->mnt_flag & MNT_RDONLY) == 0) {
1854 MNT_IUNLOCK(mp);
1855 vfs_allocate_syncvnode(mp);
1856 MNT_ILOCK(mp);
1857 }
1858 mp->mnt_kern_flag &= ~(MNTK_UNMOUNT | MNTK_UNMOUNTF);
1859 mp->mnt_flag |= async_flag;
1860 if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1861 (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1862 mp->mnt_kern_flag |= MNTK_ASYNC;
1863 if (mp->mnt_kern_flag & MNTK_MWAIT) {
1864 mp->mnt_kern_flag &= ~MNTK_MWAIT;
1865 wakeup(mp);
1866 }
1867 vfs_op_exit_locked(mp);
1868 MNT_IUNLOCK(mp);
1869 if (coveredvp) {
1870 vn_seqc_write_end(coveredvp);
1871 VOP_UNLOCK(coveredvp);
1872 vdrop(coveredvp);
1873 }
1874 if (rootvp != NULL) {
1875 vn_seqc_write_end(rootvp);
1876 vdrop(rootvp);
1877 }
1878 return (error);
1879 }
1880 mtx_lock(&mountlist_mtx);
1881 TAILQ_REMOVE(&mountlist, mp, mnt_list);
1882 mtx_unlock(&mountlist_mtx);
1883 EVENTHANDLER_DIRECT_INVOKE(vfs_unmounted, mp, td);
1884 if (coveredvp != NULL) {
1885 VI_LOCK(coveredvp);
1886 vn_irflag_unset_locked(coveredvp, VIRF_MOUNTPOINT);
1887 coveredvp->v_mountedhere = NULL;
1888 vn_seqc_write_end_locked(coveredvp);
1889 VI_UNLOCK(coveredvp);
1890 VOP_UNLOCK(coveredvp);
1891 vdrop(coveredvp);
1892 }
1893 mount_devctl_event("UNMOUNT", mp, false);
1894 if (rootvp != NULL) {
1895 vn_seqc_write_end(rootvp);
1896 vdrop(rootvp);
1897 }
1898 vfs_event_signal(NULL, VQ_UNMOUNT, 0);
1899 if (rootvnode != NULL && mp == rootvnode->v_mount) {
1900 vrele(rootvnode);
1901 rootvnode = NULL;
1902 }
1903 if (mp == rootdevmp)
1904 rootdevmp = NULL;
1905 vfs_mount_destroy(mp);
1906 return (0);
1907 }
1908
1909 /*
1910 * Report errors during filesystem mounting.
1911 */
1912 void
1913 vfs_mount_error(struct mount *mp, const char *fmt, ...)
1914 {
1915 struct vfsoptlist *moptlist = mp->mnt_optnew;
1916 va_list ap;
1917 int error, len;
1918 char *errmsg;
1919
1920 error = vfs_getopt(moptlist, "errmsg", (void **)&errmsg, &len);
1921 if (error || errmsg == NULL || len <= 0)
1922 return;
1923
1924 va_start(ap, fmt);
1925 vsnprintf(errmsg, (size_t)len, fmt, ap);
1926 va_end(ap);
1927 }
1928
1929 void
1930 vfs_opterror(struct vfsoptlist *opts, const char *fmt, ...)
1931 {
1932 va_list ap;
1933 int error, len;
1934 char *errmsg;
1935
1936 error = vfs_getopt(opts, "errmsg", (void **)&errmsg, &len);
1937 if (error || errmsg == NULL || len <= 0)
1938 return;
1939
1940 va_start(ap, fmt);
1941 vsnprintf(errmsg, (size_t)len, fmt, ap);
1942 va_end(ap);
1943 }
1944
1945 /*
1946 * ---------------------------------------------------------------------
1947 * Functions for querying mount options/arguments from filesystems.
1948 */
1949
1950 /*
1951 * Check that no unknown options are given
1952 */
1953 int
1954 vfs_filteropt(struct vfsoptlist *opts, const char **legal)
1955 {
1956 struct vfsopt *opt;
1957 char errmsg[255];
1958 const char **t, *p, *q;
1959 int ret = 0;
1960
1961 TAILQ_FOREACH(opt, opts, link) {
1962 p = opt->name;
1963 q = NULL;
1964 if (p[0] == 'n' && p[1] == 'o')
1965 q = p + 2;
1966 for(t = global_opts; *t != NULL; t++) {
1967 if (strcmp(*t, p) == 0)
1968 break;
1969 if (q != NULL) {
1970 if (strcmp(*t, q) == 0)
1971 break;
1972 }
1973 }
1974 if (*t != NULL)
1975 continue;
1976 for(t = legal; *t != NULL; t++) {
1977 if (strcmp(*t, p) == 0)
1978 break;
1979 if (q != NULL) {
1980 if (strcmp(*t, q) == 0)
1981 break;
1982 }
1983 }
1984 if (*t != NULL)
1985 continue;
1986 snprintf(errmsg, sizeof(errmsg),
1987 "mount option <%s> is unknown", p);
1988 ret = EINVAL;
1989 }
1990 if (ret != 0) {
1991 TAILQ_FOREACH(opt, opts, link) {
1992 if (strcmp(opt->name, "errmsg") == 0) {
1993 strncpy((char *)opt->value, errmsg, opt->len);
1994 break;
1995 }
1996 }
1997 if (opt == NULL)
1998 printf("%s\n", errmsg);
1999 }
2000 return (ret);
2001 }
2002
2003 /*
2004 * Get a mount option by its name.
2005 *
2006 * Return 0 if the option was found, ENOENT otherwise.
2007 * If len is non-NULL it will be filled with the length
2008 * of the option. If buf is non-NULL, it will be filled
2009 * with the address of the option.
2010 */
2011 int
2012 vfs_getopt(struct vfsoptlist *opts, const char *name, void **buf, int *len)
2013 {
2014 struct vfsopt *opt;
2015
2016 KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2017
2018 TAILQ_FOREACH(opt, opts, link) {
2019 if (strcmp(name, opt->name) == 0) {
2020 opt->seen = 1;
2021 if (len != NULL)
2022 *len = opt->len;
2023 if (buf != NULL)
2024 *buf = opt->value;
2025 return (0);
2026 }
2027 }
2028 return (ENOENT);
2029 }
2030
2031 int
2032 vfs_getopt_pos(struct vfsoptlist *opts, const char *name)
2033 {
2034 struct vfsopt *opt;
2035
2036 if (opts == NULL)
2037 return (-1);
2038
2039 TAILQ_FOREACH(opt, opts, link) {
2040 if (strcmp(name, opt->name) == 0) {
2041 opt->seen = 1;
2042 return (opt->pos);
2043 }
2044 }
2045 return (-1);
2046 }
2047
2048 int
2049 vfs_getopt_size(struct vfsoptlist *opts, const char *name, off_t *value)
2050 {
2051 char *opt_value, *vtp;
2052 quad_t iv;
2053 int error, opt_len;
2054
2055 error = vfs_getopt(opts, name, (void **)&opt_value, &opt_len);
2056 if (error != 0)
2057 return (error);
2058 if (opt_len == 0 || opt_value == NULL)
2059 return (EINVAL);
2060 if (opt_value[0] == '\0' || opt_value[opt_len - 1] != '\0')
2061 return (EINVAL);
2062 iv = strtoq(opt_value, &vtp, 0);
2063 if (vtp == opt_value || (vtp[0] != '\0' && vtp[1] != '\0'))
2064 return (EINVAL);
2065 if (iv < 0)
2066 return (EINVAL);
2067 switch (vtp[0]) {
2068 case 't': case 'T':
2069 iv *= 1024;
2070 /* FALLTHROUGH */
2071 case 'g': case 'G':
2072 iv *= 1024;
2073 /* FALLTHROUGH */
2074 case 'm': case 'M':
2075 iv *= 1024;
2076 /* FALLTHROUGH */
2077 case 'k': case 'K':
2078 iv *= 1024;
2079 case '\0':
2080 break;
2081 default:
2082 return (EINVAL);
2083 }
2084 *value = iv;
2085
2086 return (0);
2087 }
2088
2089 char *
2090 vfs_getopts(struct vfsoptlist *opts, const char *name, int *error)
2091 {
2092 struct vfsopt *opt;
2093
2094 *error = 0;
2095 TAILQ_FOREACH(opt, opts, link) {
2096 if (strcmp(name, opt->name) != 0)
2097 continue;
2098 opt->seen = 1;
2099 if (opt->len == 0 ||
2100 ((char *)opt->value)[opt->len - 1] != '\0') {
2101 *error = EINVAL;
2102 return (NULL);
2103 }
2104 return (opt->value);
2105 }
2106 *error = ENOENT;
2107 return (NULL);
2108 }
2109
2110 int
2111 vfs_flagopt(struct vfsoptlist *opts, const char *name, uint64_t *w,
2112 uint64_t val)
2113 {
2114 struct vfsopt *opt;
2115
2116 TAILQ_FOREACH(opt, opts, link) {
2117 if (strcmp(name, opt->name) == 0) {
2118 opt->seen = 1;
2119 if (w != NULL)
2120 *w |= val;
2121 return (1);
2122 }
2123 }
2124 if (w != NULL)
2125 *w &= ~val;
2126 return (0);
2127 }
2128
2129 int
2130 vfs_scanopt(struct vfsoptlist *opts, const char *name, const char *fmt, ...)
2131 {
2132 va_list ap;
2133 struct vfsopt *opt;
2134 int ret;
2135
2136 KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2137
2138 TAILQ_FOREACH(opt, opts, link) {
2139 if (strcmp(name, opt->name) != 0)
2140 continue;
2141 opt->seen = 1;
2142 if (opt->len == 0 || opt->value == NULL)
2143 return (0);
2144 if (((char *)opt->value)[opt->len - 1] != '\0')
2145 return (0);
2146 va_start(ap, fmt);
2147 ret = vsscanf(opt->value, fmt, ap);
2148 va_end(ap);
2149 return (ret);
2150 }
2151 return (0);
2152 }
2153
2154 int
2155 vfs_setopt(struct vfsoptlist *opts, const char *name, void *value, int len)
2156 {
2157 struct vfsopt *opt;
2158
2159 TAILQ_FOREACH(opt, opts, link) {
2160 if (strcmp(name, opt->name) != 0)
2161 continue;
2162 opt->seen = 1;
2163 if (opt->value == NULL)
2164 opt->len = len;
2165 else {
2166 if (opt->len != len)
2167 return (EINVAL);
2168 bcopy(value, opt->value, len);
2169 }
2170 return (0);
2171 }
2172 return (ENOENT);
2173 }
2174
2175 int
2176 vfs_setopt_part(struct vfsoptlist *opts, const char *name, void *value, int len)
2177 {
2178 struct vfsopt *opt;
2179
2180 TAILQ_FOREACH(opt, opts, link) {
2181 if (strcmp(name, opt->name) != 0)
2182 continue;
2183 opt->seen = 1;
2184 if (opt->value == NULL)
2185 opt->len = len;
2186 else {
2187 if (opt->len < len)
2188 return (EINVAL);
2189 opt->len = len;
2190 bcopy(value, opt->value, len);
2191 }
2192 return (0);
2193 }
2194 return (ENOENT);
2195 }
2196
2197 int
2198 vfs_setopts(struct vfsoptlist *opts, const char *name, const char *value)
2199 {
2200 struct vfsopt *opt;
2201
2202 TAILQ_FOREACH(opt, opts, link) {
2203 if (strcmp(name, opt->name) != 0)
2204 continue;
2205 opt->seen = 1;
2206 if (opt->value == NULL)
2207 opt->len = strlen(value) + 1;
2208 else if (strlcpy(opt->value, value, opt->len) >= opt->len)
2209 return (EINVAL);
2210 return (0);
2211 }
2212 return (ENOENT);
2213 }
2214
2215 /*
2216 * Find and copy a mount option.
2217 *
2218 * The size of the buffer has to be specified
2219 * in len, if it is not the same length as the
2220 * mount option, EINVAL is returned.
2221 * Returns ENOENT if the option is not found.
2222 */
2223 int
2224 vfs_copyopt(struct vfsoptlist *opts, const char *name, void *dest, int len)
2225 {
2226 struct vfsopt *opt;
2227
2228 KASSERT(opts != NULL, ("vfs_copyopt: caller passed 'opts' as NULL"));
2229
2230 TAILQ_FOREACH(opt, opts, link) {
2231 if (strcmp(name, opt->name) == 0) {
2232 opt->seen = 1;
2233 if (len != opt->len)
2234 return (EINVAL);
2235 bcopy(opt->value, dest, opt->len);
2236 return (0);
2237 }
2238 }
2239 return (ENOENT);
2240 }
2241
2242 int
2243 __vfs_statfs(struct mount *mp, struct statfs *sbp)
2244 {
2245
2246 /*
2247 * Filesystems only fill in part of the structure for updates, we
2248 * have to read the entirety first to get all content.
2249 */
2250 if (sbp != &mp->mnt_stat)
2251 memcpy(sbp, &mp->mnt_stat, sizeof(*sbp));
2252
2253 /*
2254 * Set these in case the underlying filesystem fails to do so.
2255 */
2256 sbp->f_version = STATFS_VERSION;
2257 sbp->f_namemax = NAME_MAX;
2258 sbp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
2259
2260 return (mp->mnt_op->vfs_statfs(mp, sbp));
2261 }
2262
2263 void
2264 vfs_mountedfrom(struct mount *mp, const char *from)
2265 {
2266
2267 bzero(mp->mnt_stat.f_mntfromname, sizeof mp->mnt_stat.f_mntfromname);
2268 strlcpy(mp->mnt_stat.f_mntfromname, from,
2269 sizeof mp->mnt_stat.f_mntfromname);
2270 }
2271
2272 /*
2273 * ---------------------------------------------------------------------
2274 * This is the api for building mount args and mounting filesystems from
2275 * inside the kernel.
2276 *
2277 * The API works by accumulation of individual args. First error is
2278 * latched.
2279 *
2280 * XXX: should be documented in new manpage kernel_mount(9)
2281 */
2282
2283 /* A memory allocation which must be freed when we are done */
2284 struct mntaarg {
2285 SLIST_ENTRY(mntaarg) next;
2286 };
2287
2288 /* The header for the mount arguments */
2289 struct mntarg {
2290 struct iovec *v;
2291 int len;
2292 int error;
2293 SLIST_HEAD(, mntaarg) list;
2294 };
2295
2296 /*
2297 * Add a boolean argument.
2298 *
2299 * flag is the boolean value.
2300 * name must start with "no".
2301 */
2302 struct mntarg *
2303 mount_argb(struct mntarg *ma, int flag, const char *name)
2304 {
2305
2306 KASSERT(name[0] == 'n' && name[1] == 'o',
2307 ("mount_argb(...,%s): name must start with 'no'", name));
2308
2309 return (mount_arg(ma, name + (flag ? 2 : 0), NULL, 0));
2310 }
2311
2312 /*
2313 * Add an argument printf style
2314 */
2315 struct mntarg *
2316 mount_argf(struct mntarg *ma, const char *name, const char *fmt, ...)
2317 {
2318 va_list ap;
2319 struct mntaarg *maa;
2320 struct sbuf *sb;
2321 int len;
2322
2323 if (ma == NULL) {
2324 ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2325 SLIST_INIT(&ma->list);
2326 }
2327 if (ma->error)
2328 return (ma);
2329
2330 ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2331 M_MOUNT, M_WAITOK);
2332 ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2333 ma->v[ma->len].iov_len = strlen(name) + 1;
2334 ma->len++;
2335
2336 sb = sbuf_new_auto();
2337 va_start(ap, fmt);
2338 sbuf_vprintf(sb, fmt, ap);
2339 va_end(ap);
2340 sbuf_finish(sb);
2341 len = sbuf_len(sb) + 1;
2342 maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2343 SLIST_INSERT_HEAD(&ma->list, maa, next);
2344 bcopy(sbuf_data(sb), maa + 1, len);
2345 sbuf_delete(sb);
2346
2347 ma->v[ma->len].iov_base = maa + 1;
2348 ma->v[ma->len].iov_len = len;
2349 ma->len++;
2350
2351 return (ma);
2352 }
2353
2354 /*
2355 * Add an argument which is a userland string.
2356 */
2357 struct mntarg *
2358 mount_argsu(struct mntarg *ma, const char *name, const void *val, int len)
2359 {
2360 struct mntaarg *maa;
2361 char *tbuf;
2362
2363 if (val == NULL)
2364 return (ma);
2365 if (ma == NULL) {
2366 ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2367 SLIST_INIT(&ma->list);
2368 }
2369 if (ma->error)
2370 return (ma);
2371 maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2372 SLIST_INSERT_HEAD(&ma->list, maa, next);
2373 tbuf = (void *)(maa + 1);
2374 ma->error = copyinstr(val, tbuf, len, NULL);
2375 return (mount_arg(ma, name, tbuf, -1));
2376 }
2377
2378 /*
2379 * Plain argument.
2380 *
2381 * If length is -1, treat value as a C string.
2382 */
2383 struct mntarg *
2384 mount_arg(struct mntarg *ma, const char *name, const void *val, int len)
2385 {
2386
2387 if (ma == NULL) {
2388 ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2389 SLIST_INIT(&ma->list);
2390 }
2391 if (ma->error)
2392 return (ma);
2393
2394 ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2395 M_MOUNT, M_WAITOK);
2396 ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2397 ma->v[ma->len].iov_len = strlen(name) + 1;
2398 ma->len++;
2399
2400 ma->v[ma->len].iov_base = (void *)(uintptr_t)val;
2401 if (len < 0)
2402 ma->v[ma->len].iov_len = strlen(val) + 1;
2403 else
2404 ma->v[ma->len].iov_len = len;
2405 ma->len++;
2406 return (ma);
2407 }
2408
2409 /*
2410 * Free a mntarg structure
2411 */
2412 static void
2413 free_mntarg(struct mntarg *ma)
2414 {
2415 struct mntaarg *maa;
2416
2417 while (!SLIST_EMPTY(&ma->list)) {
2418 maa = SLIST_FIRST(&ma->list);
2419 SLIST_REMOVE_HEAD(&ma->list, next);
2420 free(maa, M_MOUNT);
2421 }
2422 free(ma->v, M_MOUNT);
2423 free(ma, M_MOUNT);
2424 }
2425
2426 /*
2427 * Mount a filesystem
2428 */
2429 int
2430 kernel_mount(struct mntarg *ma, uint64_t flags)
2431 {
2432 struct uio auio;
2433 int error;
2434
2435 KASSERT(ma != NULL, ("kernel_mount NULL ma"));
2436 KASSERT(ma->v != NULL, ("kernel_mount NULL ma->v"));
2437 KASSERT(!(ma->len & 1), ("kernel_mount odd ma->len (%d)", ma->len));
2438
2439 auio.uio_iov = ma->v;
2440 auio.uio_iovcnt = ma->len;
2441 auio.uio_segflg = UIO_SYSSPACE;
2442
2443 error = ma->error;
2444 if (!error)
2445 error = vfs_donmount(curthread, flags, &auio);
2446 free_mntarg(ma);
2447 return (error);
2448 }
2449
2450 /*
2451 * A printflike function to mount a filesystem.
2452 */
2453 int
2454 kernel_vmount(int flags, ...)
2455 {
2456 struct mntarg *ma = NULL;
2457 va_list ap;
2458 const char *cp;
2459 const void *vp;
2460 int error;
2461
2462 va_start(ap, flags);
2463 for (;;) {
2464 cp = va_arg(ap, const char *);
2465 if (cp == NULL)
2466 break;
2467 vp = va_arg(ap, const void *);
2468 ma = mount_arg(ma, cp, vp, (vp != NULL ? -1 : 0));
2469 }
2470 va_end(ap);
2471
2472 error = kernel_mount(ma, flags);
2473 return (error);
2474 }
2475
2476 /* Map from mount options to printable formats. */
2477 static struct mntoptnames optnames[] = {
2478 MNTOPT_NAMES
2479 };
2480
2481 static void
2482 mount_devctl_event_mntopt(struct sbuf *sb, const char *what, struct vfsoptlist *opts)
2483 {
2484 struct vfsopt *opt;
2485
2486 if (opts == NULL || TAILQ_EMPTY(opts))
2487 return;
2488 sbuf_printf(sb, " %s=\"", what);
2489 TAILQ_FOREACH(opt, opts, link) {
2490 if (opt->name[0] == '\0' || (opt->len > 0 && *(char *)opt->value == '\0'))
2491 continue;
2492 devctl_safe_quote_sb(sb, opt->name);
2493 if (opt->len > 0) {
2494 sbuf_putc(sb, '=');
2495 devctl_safe_quote_sb(sb, opt->value);
2496 }
2497 sbuf_putc(sb, ';');
2498 }
2499 sbuf_putc(sb, '"');
2500 }
2501
2502 #define DEVCTL_LEN 1024
2503 static void
2504 mount_devctl_event(const char *type, struct mount *mp, bool donew)
2505 {
2506 const uint8_t *cp;
2507 struct mntoptnames *fp;
2508 struct sbuf sb;
2509 struct statfs *sfp = &mp->mnt_stat;
2510 char *buf;
2511
2512 buf = malloc(DEVCTL_LEN, M_MOUNT, M_NOWAIT);
2513 if (buf == NULL)
2514 return;
2515 sbuf_new(&sb, buf, DEVCTL_LEN, SBUF_FIXEDLEN);
2516 sbuf_cpy(&sb, "mount-point=\"");
2517 devctl_safe_quote_sb(&sb, sfp->f_mntonname);
2518 sbuf_cat(&sb, "\" mount-dev=\"");
2519 devctl_safe_quote_sb(&sb, sfp->f_mntfromname);
2520 sbuf_cat(&sb, "\" mount-type=\"");
2521 devctl_safe_quote_sb(&sb, sfp->f_fstypename);
2522 sbuf_cat(&sb, "\" fsid=0x");
2523 cp = (const uint8_t *)&sfp->f_fsid.val[0];
2524 for (int i = 0; i < sizeof(sfp->f_fsid); i++)
2525 sbuf_printf(&sb, "%02x", cp[i]);
2526 sbuf_printf(&sb, " owner=%u flags=\"", sfp->f_owner);
2527 for (fp = optnames; fp->o_opt != 0; fp++) {
2528 if ((mp->mnt_flag & fp->o_opt) != 0) {
2529 sbuf_cat(&sb, fp->o_name);
2530 sbuf_putc(&sb, ';');
2531 }
2532 }
2533 sbuf_putc(&sb, '"');
2534 mount_devctl_event_mntopt(&sb, "opt", mp->mnt_opt);
2535 if (donew)
2536 mount_devctl_event_mntopt(&sb, "optnew", mp->mnt_optnew);
2537 sbuf_finish(&sb);
2538
2539 if (sbuf_error(&sb) == 0)
2540 devctl_notify("VFS", "FS", type, sbuf_data(&sb));
2541 sbuf_delete(&sb);
2542 free(buf, M_MOUNT);
2543 }
2544
2545 /*
2546 * Suspend write operations on all local writeable filesystems. Does
2547 * full sync of them in the process.
2548 *
2549 * Iterate over the mount points in reverse order, suspending most
2550 * recently mounted filesystems first. It handles a case where a
2551 * filesystem mounted from a md(4) vnode-backed device should be
2552 * suspended before the filesystem that owns the vnode.
2553 */
2554 void
2555 suspend_all_fs(void)
2556 {
2557 struct mount *mp;
2558 int error;
2559
2560 mtx_lock(&mountlist_mtx);
2561 TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
2562 error = vfs_busy(mp, MBF_MNTLSTLOCK | MBF_NOWAIT);
2563 if (error != 0)
2564 continue;
2565 if ((mp->mnt_flag & (MNT_RDONLY | MNT_LOCAL)) != MNT_LOCAL ||
2566 (mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2567 mtx_lock(&mountlist_mtx);
2568 vfs_unbusy(mp);
2569 continue;
2570 }
2571 error = vfs_write_suspend(mp, 0);
2572 if (error == 0) {
2573 MNT_ILOCK(mp);
2574 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0);
2575 mp->mnt_kern_flag |= MNTK_SUSPEND_ALL;
2576 MNT_IUNLOCK(mp);
2577 mtx_lock(&mountlist_mtx);
2578 } else {
2579 printf("suspend of %s failed, error %d\n",
2580 mp->mnt_stat.f_mntonname, error);
2581 mtx_lock(&mountlist_mtx);
2582 vfs_unbusy(mp);
2583 }
2584 }
2585 mtx_unlock(&mountlist_mtx);
2586 }
2587
2588 void
2589 resume_all_fs(void)
2590 {
2591 struct mount *mp;
2592
2593 mtx_lock(&mountlist_mtx);
2594 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2595 if ((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0)
2596 continue;
2597 mtx_unlock(&mountlist_mtx);
2598 MNT_ILOCK(mp);
2599 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) != 0);
2600 mp->mnt_kern_flag &= ~MNTK_SUSPEND_ALL;
2601 MNT_IUNLOCK(mp);
2602 vfs_write_resume(mp, 0);
2603 mtx_lock(&mountlist_mtx);
2604 vfs_unbusy(mp);
2605 }
2606 mtx_unlock(&mountlist_mtx);
2607 }
Cache object: 172d89a6b2d3558b282b41423bcb4fa1
|