The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_subr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)vfs_subr.c  8.31 (Berkeley) 5/26/95
   35  */
   36 
   37 /*
   38  * External virtual filesystem routines
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD$");
   43 
   44 #include "opt_ddb.h"
   45 #include "opt_mac.h"
   46 
   47 #include <sys/param.h>
   48 #include <sys/systm.h>
   49 #include <sys/bio.h>
   50 #include <sys/buf.h>
   51 #include <sys/conf.h>
   52 #include <sys/dirent.h>
   53 #include <sys/event.h>
   54 #include <sys/eventhandler.h>
   55 #include <sys/extattr.h>
   56 #include <sys/file.h>
   57 #include <sys/fcntl.h>
   58 #include <sys/jail.h>
   59 #include <sys/kdb.h>
   60 #include <sys/kernel.h>
   61 #include <sys/kthread.h>
   62 #include <sys/lockf.h>
   63 #include <sys/malloc.h>
   64 #include <sys/mount.h>
   65 #include <sys/namei.h>
   66 #include <sys/priv.h>
   67 #include <sys/reboot.h>
   68 #include <sys/sleepqueue.h>
   69 #include <sys/stat.h>
   70 #include <sys/sysctl.h>
   71 #include <sys/syslog.h>
   72 #include <sys/vmmeter.h>
   73 #include <sys/vnode.h>
   74 
   75 #include <machine/stdarg.h>
   76 
   77 #include <security/mac/mac_framework.h>
   78 
   79 #include <vm/vm.h>
   80 #include <vm/vm_object.h>
   81 #include <vm/vm_extern.h>
   82 #include <vm/pmap.h>
   83 #include <vm/vm_map.h>
   84 #include <vm/vm_page.h>
   85 #include <vm/vm_kern.h>
   86 #include <vm/uma.h>
   87 
   88 #ifdef DDB
   89 #include <ddb/ddb.h>
   90 #endif
   91 
   92 static MALLOC_DEFINE(M_NETADDR, "subr_export_host", "Export host address structure");
   93 
   94 static void     delmntque(struct vnode *vp);
   95 static int      flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
   96                     int slpflag, int slptimeo);
   97 static void     syncer_shutdown(void *arg, int howto);
   98 static int      vtryrecycle(struct vnode *vp);
   99 static void     vbusy(struct vnode *vp);
  100 static void     vinactive(struct vnode *, struct thread *);
  101 static void     v_incr_usecount(struct vnode *);
  102 static void     v_decr_usecount(struct vnode *);
  103 static void     v_decr_useonly(struct vnode *);
  104 static void     v_upgrade_usecount(struct vnode *);
  105 static void     vfree(struct vnode *);
  106 static void     vnlru_free(int);
  107 static void     vdestroy(struct vnode *);
  108 static void     vgonel(struct vnode *);
  109 static void     vfs_knllock(void *arg);
  110 static void     vfs_knlunlock(void *arg);
  111 static int      vfs_knllocked(void *arg);
  112 static void     destroy_vpollinfo(struct vpollinfo *vi);
  113 
  114 /*
  115  * Enable Giant pushdown based on whether or not the vm is mpsafe in this
  116  * build.  Without mpsafevm the buffer cache can not run Giant free.
  117  */
  118 int mpsafe_vfs = 1;
  119 TUNABLE_INT("debug.mpsafevfs", &mpsafe_vfs);
  120 SYSCTL_INT(_debug, OID_AUTO, mpsafevfs, CTLFLAG_RD, &mpsafe_vfs, 0,
  121     "MPSAFE VFS");
  122 
  123 /*
  124  * Number of vnodes in existence.  Increased whenever getnewvnode()
  125  * allocates a new vnode, decreased on vdestroy() called on VI_DOOMed
  126  * vnode.
  127  */
  128 static unsigned long    numvnodes;
  129 
  130 SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
  131 
  132 /*
  133  * Conversion tables for conversion from vnode types to inode formats
  134  * and back.
  135  */
  136 enum vtype iftovt_tab[16] = {
  137         VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
  138         VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
  139 };
  140 int vttoif_tab[10] = {
  141         0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
  142         S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
  143 };
  144 
  145 /*
  146  * List of vnodes that are ready for recycling.
  147  */
  148 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
  149 
  150 /*
  151  * Free vnode target.  Free vnodes may simply be files which have been stat'd
  152  * but not read.  This is somewhat common, and a small cache of such files
  153  * should be kept to avoid recreation costs.
  154  */
  155 static u_long wantfreevnodes;
  156 SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
  157 /* Number of vnodes in the free list. */
  158 static u_long freevnodes;
  159 SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
  160 
  161 /*
  162  * Various variables used for debugging the new implementation of
  163  * reassignbuf().
  164  * XXX these are probably of (very) limited utility now.
  165  */
  166 static int reassignbufcalls;
  167 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
  168 
  169 /*
  170  * Cache for the mount type id assigned to NFS.  This is used for
  171  * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
  172  */
  173 int     nfs_mount_type = -1;
  174 
  175 /* To keep more than one thread at a time from running vfs_getnewfsid */
  176 static struct mtx mntid_mtx;
  177 
  178 /*
  179  * Lock for any access to the following:
  180  *      vnode_free_list
  181  *      numvnodes
  182  *      freevnodes
  183  */
  184 static struct mtx vnode_free_list_mtx;
  185 
  186 /* Publicly exported FS */
  187 struct nfs_public nfs_pub;
  188 
  189 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
  190 static uma_zone_t vnode_zone;
  191 static uma_zone_t vnodepoll_zone;
  192 
  193 /* Set to 1 to print out reclaim of active vnodes */
  194 int     prtactive;
  195 
  196 /*
  197  * The workitem queue.
  198  *
  199  * It is useful to delay writes of file data and filesystem metadata
  200  * for tens of seconds so that quickly created and deleted files need
  201  * not waste disk bandwidth being created and removed. To realize this,
  202  * we append vnodes to a "workitem" queue. When running with a soft
  203  * updates implementation, most pending metadata dependencies should
  204  * not wait for more than a few seconds. Thus, mounted on block devices
  205  * are delayed only about a half the time that file data is delayed.
  206  * Similarly, directory updates are more critical, so are only delayed
  207  * about a third the time that file data is delayed. Thus, there are
  208  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
  209  * one each second (driven off the filesystem syncer process). The
  210  * syncer_delayno variable indicates the next queue that is to be processed.
  211  * Items that need to be processed soon are placed in this queue:
  212  *
  213  *      syncer_workitem_pending[syncer_delayno]
  214  *
  215  * A delay of fifteen seconds is done by placing the request fifteen
  216  * entries later in the queue:
  217  *
  218  *      syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
  219  *
  220  */
  221 static int syncer_delayno;
  222 static long syncer_mask;
  223 LIST_HEAD(synclist, bufobj);
  224 static struct synclist *syncer_workitem_pending;
  225 /*
  226  * The sync_mtx protects:
  227  *      bo->bo_synclist
  228  *      sync_vnode_count
  229  *      syncer_delayno
  230  *      syncer_state
  231  *      syncer_workitem_pending
  232  *      syncer_worklist_len
  233  *      rushjob
  234  */
  235 static struct mtx sync_mtx;
  236 
  237 #define SYNCER_MAXDELAY         32
  238 static int syncer_maxdelay = SYNCER_MAXDELAY;   /* maximum delay time */
  239 static int syncdelay = 30;              /* max time to delay syncing data */
  240 static int filedelay = 30;              /* time to delay syncing files */
  241 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
  242 static int dirdelay = 29;               /* time to delay syncing directories */
  243 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
  244 static int metadelay = 28;              /* time to delay syncing metadata */
  245 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
  246 static int rushjob;             /* number of slots to run ASAP */
  247 static int stat_rush_requests;  /* number of times I/O speeded up */
  248 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
  249 
  250 /*
  251  * When shutting down the syncer, run it at four times normal speed.
  252  */
  253 #define SYNCER_SHUTDOWN_SPEEDUP         4
  254 static int sync_vnode_count;
  255 static int syncer_worklist_len;
  256 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
  257     syncer_state;
  258 
  259 /*
  260  * Number of vnodes we want to exist at any one time.  This is mostly used
  261  * to size hash tables in vnode-related code.  It is normally not used in
  262  * getnewvnode(), as wantfreevnodes is normally nonzero.)
  263  *
  264  * XXX desiredvnodes is historical cruft and should not exist.
  265  */
  266 int desiredvnodes;
  267 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
  268     &desiredvnodes, 0, "Maximum number of vnodes");
  269 SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
  270     &wantfreevnodes, 0, "Minimum number of vnodes (legacy)");
  271 static int vnlru_nowhere;
  272 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
  273     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
  274 
  275 /*
  276  * Macros to control when a vnode is freed and recycled.  All require
  277  * the vnode interlock.
  278  */
  279 #define VCANRECYCLE(vp) (((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
  280 #define VSHOULDFREE(vp) (!((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
  281 #define VSHOULDBUSY(vp) (((vp)->v_iflag & VI_FREE) && (vp)->v_holdcnt)
  282 
  283 
  284 /*
  285  * Initialize the vnode management data structures.
  286  */
  287 #ifndef MAXVNODES_MAX
  288 #define MAXVNODES_MAX   100000
  289 #endif
  290 static void
  291 vntblinit(void *dummy __unused)
  292 {
  293 
  294         /*
  295          * Desiredvnodes is a function of the physical memory size and
  296          * the kernel's heap size.  Specifically, desiredvnodes scales
  297          * in proportion to the physical memory size until two fifths
  298          * of the kernel's heap size is consumed by vnodes and vm
  299          * objects.
  300          */
  301         desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size /
  302             (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
  303         if (desiredvnodes > MAXVNODES_MAX) {
  304                 if (bootverbose)
  305                         printf("Reducing kern.maxvnodes %d -> %d\n",
  306                             desiredvnodes, MAXVNODES_MAX);
  307                 desiredvnodes = MAXVNODES_MAX;
  308         }
  309         wantfreevnodes = desiredvnodes / 4;
  310         mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
  311         TAILQ_INIT(&vnode_free_list);
  312         mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
  313         vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
  314             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  315         vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
  316             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  317         /*
  318          * Initialize the filesystem syncer.
  319          */
  320         syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
  321                 &syncer_mask);
  322         syncer_maxdelay = syncer_mask + 1;
  323         mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
  324 }
  325 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
  326 
  327 
  328 /*
  329  * Mark a mount point as busy. Used to synchronize access and to delay
  330  * unmounting. Interlock is not released on failure.
  331  */
  332 int
  333 vfs_busy(struct mount *mp, int flags, struct mtx *interlkp,
  334     struct thread *td)
  335 {
  336         int lkflags;
  337 
  338         MNT_ILOCK(mp);
  339         MNT_REF(mp);
  340         while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
  341                 if (flags & LK_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
  342                         MNT_REL(mp);
  343                         MNT_IUNLOCK(mp);
  344                         return (ENOENT);
  345                 }
  346                 if (interlkp)
  347                         mtx_unlock(interlkp);
  348                 mp->mnt_kern_flag |= MNTK_MWAIT;
  349                 /*
  350                  * Since all busy locks are shared except the exclusive
  351                  * lock granted when unmounting, the only place that a
  352                  * wakeup needs to be done is at the release of the
  353                  * exclusive lock at the end of dounmount.
  354                  */
  355                 msleep(mp, MNT_MTX(mp), PVFS, "vfs_busy", 0);
  356                 if (interlkp)
  357                         mtx_lock(interlkp);
  358         }
  359         if (interlkp)
  360                 mtx_unlock(interlkp);
  361         lkflags = LK_SHARED | LK_INTERLOCK | LK_NOWAIT;
  362         if (lockmgr(&mp->mnt_lock, lkflags, MNT_MTX(mp), td))
  363                 panic("vfs_busy: unexpected lock failure");
  364         return (0);
  365 }
  366 
  367 /*
  368  * Free a busy filesystem.
  369  */
  370 void
  371 vfs_unbusy(struct mount *mp, struct thread *td)
  372 {
  373 
  374         lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
  375         vfs_rel(mp);
  376 }
  377 
  378 /*
  379  * Lookup a mount point by filesystem identifier.
  380  */
  381 struct mount *
  382 vfs_getvfs(fsid_t *fsid)
  383 {
  384         struct mount *mp;
  385 
  386         mtx_lock(&mountlist_mtx);
  387         TAILQ_FOREACH(mp, &mountlist, mnt_list) {
  388                 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
  389                     mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
  390                         vfs_ref(mp);
  391                         mtx_unlock(&mountlist_mtx);
  392                         return (mp);
  393                 }
  394         }
  395         mtx_unlock(&mountlist_mtx);
  396         return ((struct mount *) 0);
  397 }
  398 
  399 /*
  400  * Check if a user can access privileged mount options.
  401  */
  402 int
  403 vfs_suser(struct mount *mp, struct thread *td)
  404 {
  405         int error;
  406 
  407         /*
  408          * If the thread is jailed, but this is not a jail-friendly file
  409          * system, deny immediately.
  410          */
  411         if (jailed(td->td_ucred) && !(mp->mnt_vfc->vfc_flags & VFCF_JAIL))
  412                 return (EPERM);
  413 
  414         /*
  415          * If the file system was mounted outside a jail and a jailed thread
  416          * tries to access it, deny immediately.
  417          */
  418         if (!jailed(mp->mnt_cred) && jailed(td->td_ucred))
  419                 return (EPERM);
  420 
  421         /*
  422          * If the file system was mounted inside different jail that the jail of
  423          * the calling thread, deny immediately.
  424          */
  425         if (jailed(mp->mnt_cred) && jailed(td->td_ucred) &&
  426             mp->mnt_cred->cr_prison != td->td_ucred->cr_prison) {
  427                 return (EPERM);
  428         }
  429 
  430         if ((mp->mnt_flag & MNT_USER) == 0 ||
  431             mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
  432                 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
  433                         return (error);
  434         }
  435         return (0);
  436 }
  437 
  438 /*
  439  * Get a new unique fsid.  Try to make its val[0] unique, since this value
  440  * will be used to create fake device numbers for stat().  Also try (but
  441  * not so hard) make its val[0] unique mod 2^16, since some emulators only
  442  * support 16-bit device numbers.  We end up with unique val[0]'s for the
  443  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
  444  *
  445  * Keep in mind that several mounts may be running in parallel.  Starting
  446  * the search one past where the previous search terminated is both a
  447  * micro-optimization and a defense against returning the same fsid to
  448  * different mounts.
  449  */
  450 void
  451 vfs_getnewfsid(struct mount *mp)
  452 {
  453         static u_int16_t mntid_base;
  454         struct mount *nmp;
  455         fsid_t tfsid;
  456         int mtype;
  457 
  458         mtx_lock(&mntid_mtx);
  459         mtype = mp->mnt_vfc->vfc_typenum;
  460         tfsid.val[1] = mtype;
  461         mtype = (mtype & 0xFF) << 24;
  462         for (;;) {
  463                 tfsid.val[0] = makedev(255,
  464                     mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
  465                 mntid_base++;
  466                 if ((nmp = vfs_getvfs(&tfsid)) == NULL)
  467                         break;
  468                 vfs_rel(nmp);
  469         }
  470         mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
  471         mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
  472         mtx_unlock(&mntid_mtx);
  473 }
  474 
  475 /*
  476  * Knob to control the precision of file timestamps:
  477  *
  478  *   0 = seconds only; nanoseconds zeroed.
  479  *   1 = seconds and nanoseconds, accurate within 1/HZ.
  480  *   2 = seconds and nanoseconds, truncated to microseconds.
  481  * >=3 = seconds and nanoseconds, maximum precision.
  482  */
  483 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
  484 
  485 static int timestamp_precision = TSP_SEC;
  486 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
  487     &timestamp_precision, 0, "");
  488 
  489 /*
  490  * Get a current timestamp.
  491  */
  492 void
  493 vfs_timestamp(struct timespec *tsp)
  494 {
  495         struct timeval tv;
  496 
  497         switch (timestamp_precision) {
  498         case TSP_SEC:
  499                 tsp->tv_sec = time_second;
  500                 tsp->tv_nsec = 0;
  501                 break;
  502         case TSP_HZ:
  503                 getnanotime(tsp);
  504                 break;
  505         case TSP_USEC:
  506                 microtime(&tv);
  507                 TIMEVAL_TO_TIMESPEC(&tv, tsp);
  508                 break;
  509         case TSP_NSEC:
  510         default:
  511                 nanotime(tsp);
  512                 break;
  513         }
  514 }
  515 
  516 /*
  517  * Set vnode attributes to VNOVAL
  518  */
  519 void
  520 vattr_null(struct vattr *vap)
  521 {
  522 
  523         vap->va_type = VNON;
  524         vap->va_size = VNOVAL;
  525         vap->va_bytes = VNOVAL;
  526         vap->va_mode = VNOVAL;
  527         vap->va_nlink = VNOVAL;
  528         vap->va_uid = VNOVAL;
  529         vap->va_gid = VNOVAL;
  530         vap->va_fsid = VNOVAL;
  531         vap->va_fileid = VNOVAL;
  532         vap->va_blocksize = VNOVAL;
  533         vap->va_rdev = VNOVAL;
  534         vap->va_atime.tv_sec = VNOVAL;
  535         vap->va_atime.tv_nsec = VNOVAL;
  536         vap->va_mtime.tv_sec = VNOVAL;
  537         vap->va_mtime.tv_nsec = VNOVAL;
  538         vap->va_ctime.tv_sec = VNOVAL;
  539         vap->va_ctime.tv_nsec = VNOVAL;
  540         vap->va_birthtime.tv_sec = VNOVAL;
  541         vap->va_birthtime.tv_nsec = VNOVAL;
  542         vap->va_flags = VNOVAL;
  543         vap->va_gen = VNOVAL;
  544         vap->va_vaflags = 0;
  545 }
  546 
  547 /*
  548  * This routine is called when we have too many vnodes.  It attempts
  549  * to free <count> vnodes and will potentially free vnodes that still
  550  * have VM backing store (VM backing store is typically the cause
  551  * of a vnode blowout so we want to do this).  Therefore, this operation
  552  * is not considered cheap.
  553  *
  554  * A number of conditions may prevent a vnode from being reclaimed.
  555  * the buffer cache may have references on the vnode, a directory
  556  * vnode may still have references due to the namei cache representing
  557  * underlying files, or the vnode may be in active use.   It is not
  558  * desireable to reuse such vnodes.  These conditions may cause the
  559  * number of vnodes to reach some minimum value regardless of what
  560  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
  561  */
  562 static int
  563 vlrureclaim(struct mount *mp)
  564 {
  565         struct thread *td;
  566         struct vnode *vp;
  567         int done;
  568         int trigger;
  569         int usevnodes;
  570         int count;
  571 
  572         /*
  573          * Calculate the trigger point, don't allow user
  574          * screwups to blow us up.   This prevents us from
  575          * recycling vnodes with lots of resident pages.  We
  576          * aren't trying to free memory, we are trying to
  577          * free vnodes.
  578          */
  579         usevnodes = desiredvnodes;
  580         if (usevnodes <= 0)
  581                 usevnodes = 1;
  582         trigger = cnt.v_page_count * 2 / usevnodes;
  583         done = 0;
  584         td = curthread;
  585         vn_start_write(NULL, &mp, V_WAIT);
  586         MNT_ILOCK(mp);
  587         count = mp->mnt_nvnodelistsize / 10 + 1;
  588         while (count != 0) {
  589                 vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
  590                 while (vp != NULL && vp->v_type == VMARKER)
  591                         vp = TAILQ_NEXT(vp, v_nmntvnodes);
  592                 if (vp == NULL)
  593                         break;
  594                 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
  595                 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
  596                 --count;
  597                 if (!VI_TRYLOCK(vp))
  598                         goto next_iter;
  599                 /*
  600                  * If it's been deconstructed already, it's still
  601                  * referenced, or it exceeds the trigger, skip it.
  602                  */
  603                 if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) ||
  604                     (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
  605                     vp->v_object->resident_page_count > trigger)) {
  606                         VI_UNLOCK(vp);
  607                         goto next_iter;
  608                 }
  609                 MNT_IUNLOCK(mp);
  610                 vholdl(vp);
  611                 if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT, td)) {
  612                         vdrop(vp);
  613                         goto next_iter_mntunlocked;
  614                 }
  615                 VI_LOCK(vp);
  616                 /*
  617                  * v_usecount may have been bumped after VOP_LOCK() dropped
  618                  * the vnode interlock and before it was locked again.
  619                  *
  620                  * It is not necessary to recheck VI_DOOMED because it can
  621                  * only be set by another thread that holds both the vnode
  622                  * lock and vnode interlock.  If another thread has the
  623                  * vnode lock before we get to VOP_LOCK() and obtains the
  624                  * vnode interlock after VOP_LOCK() drops the vnode
  625                  * interlock, the other thread will be unable to drop the
  626                  * vnode lock before our VOP_LOCK() call fails.
  627                  */
  628                 if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) ||
  629                     (vp->v_object != NULL &&
  630                     vp->v_object->resident_page_count > trigger)) {
  631                         VOP_UNLOCK(vp, LK_INTERLOCK, td);
  632                         goto next_iter_mntunlocked;
  633                 }
  634                 KASSERT((vp->v_iflag & VI_DOOMED) == 0,
  635                     ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
  636                 vgonel(vp);
  637                 VOP_UNLOCK(vp, 0, td);
  638                 vdropl(vp);
  639                 done++;
  640 next_iter_mntunlocked:
  641                 if ((count % 256) != 0)
  642                         goto relock_mnt;
  643                 goto yield;
  644 next_iter:
  645                 if ((count % 256) != 0)
  646                         continue;
  647                 MNT_IUNLOCK(mp);
  648 yield:
  649                 uio_yield();
  650 relock_mnt:
  651                 MNT_ILOCK(mp);
  652         }
  653         MNT_IUNLOCK(mp);
  654         vn_finished_write(mp);
  655         return done;
  656 }
  657 
  658 /*
  659  * Attempt to keep the free list at wantfreevnodes length.
  660  */
  661 static void
  662 vnlru_free(int count)
  663 {
  664         struct vnode *vp;
  665         int vfslocked;
  666 
  667         mtx_assert(&vnode_free_list_mtx, MA_OWNED);
  668         for (; count > 0; count--) {
  669                 vp = TAILQ_FIRST(&vnode_free_list);
  670                 /*
  671                  * The list can be modified while the free_list_mtx
  672                  * has been dropped and vp could be NULL here.
  673                  */
  674                 if (!vp)
  675                         break;
  676                 VNASSERT(vp->v_op != NULL, vp,
  677                     ("vnlru_free: vnode already reclaimed."));
  678                 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
  679                 /*
  680                  * Don't recycle if we can't get the interlock.
  681                  */
  682                 if (!VI_TRYLOCK(vp)) {
  683                         TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
  684                         continue;
  685                 }
  686                 VNASSERT(VCANRECYCLE(vp), vp,
  687                     ("vp inconsistent on freelist"));
  688                 freevnodes--;
  689                 vp->v_iflag &= ~VI_FREE;
  690                 vholdl(vp);
  691                 mtx_unlock(&vnode_free_list_mtx);
  692                 VI_UNLOCK(vp);
  693                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  694                 vtryrecycle(vp);
  695                 VFS_UNLOCK_GIANT(vfslocked);
  696                 /*
  697                  * If the recycled succeeded this vdrop will actually free
  698                  * the vnode.  If not it will simply place it back on
  699                  * the free list.
  700                  */
  701                 vdrop(vp);
  702                 mtx_lock(&vnode_free_list_mtx);
  703         }
  704 }
  705 /*
  706  * Attempt to recycle vnodes in a context that is always safe to block.
  707  * Calling vlrurecycle() from the bowels of filesystem code has some
  708  * interesting deadlock problems.
  709  */
  710 static struct proc *vnlruproc;
  711 static int vnlruproc_sig;
  712 
  713 static void
  714 vnlru_proc(void)
  715 {
  716         struct mount *mp, *nmp;
  717         int done, vfslocked;
  718         struct proc *p = vnlruproc;
  719         struct thread *td = curthread;
  720 
  721         EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
  722             SHUTDOWN_PRI_FIRST);
  723 
  724         for (;;) {
  725                 kthread_suspend_check(p);
  726                 mtx_lock(&vnode_free_list_mtx);
  727                 if (freevnodes > wantfreevnodes)
  728                         vnlru_free(freevnodes - wantfreevnodes);
  729                 if (numvnodes <= desiredvnodes * 9 / 10) {
  730                         vnlruproc_sig = 0;
  731                         wakeup(&vnlruproc_sig);
  732                         msleep(vnlruproc, &vnode_free_list_mtx,
  733                             PVFS|PDROP, "vlruwt", hz);
  734                         continue;
  735                 }
  736                 mtx_unlock(&vnode_free_list_mtx);
  737                 done = 0;
  738                 mtx_lock(&mountlist_mtx);
  739                 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
  740                         if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
  741                                 nmp = TAILQ_NEXT(mp, mnt_list);
  742                                 continue;
  743                         }
  744                         vfslocked = VFS_LOCK_GIANT(mp);
  745                         done += vlrureclaim(mp);
  746                         VFS_UNLOCK_GIANT(vfslocked);
  747                         mtx_lock(&mountlist_mtx);
  748                         nmp = TAILQ_NEXT(mp, mnt_list);
  749                         vfs_unbusy(mp, td);
  750                 }
  751                 mtx_unlock(&mountlist_mtx);
  752                 if (done == 0) {
  753                         EVENTHANDLER_INVOKE(vfs_lowvnodes, desiredvnodes / 10);
  754 #if 0
  755                         /* These messages are temporary debugging aids */
  756                         if (vnlru_nowhere < 5)
  757                                 printf("vnlru process getting nowhere..\n");
  758                         else if (vnlru_nowhere == 5)
  759                                 printf("vnlru process messages stopped.\n");
  760 #endif
  761                         vnlru_nowhere++;
  762                         tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
  763                 } else
  764                         uio_yield();
  765         }
  766 }
  767 
  768 static struct kproc_desc vnlru_kp = {
  769         "vnlru",
  770         vnlru_proc,
  771         &vnlruproc
  772 };
  773 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
  774     &vnlru_kp);
  775 
  776 /*
  777  * Routines having to do with the management of the vnode table.
  778  */
  779 
  780 static void
  781 vdestroy(struct vnode *vp)
  782 {
  783         struct bufobj *bo;
  784 
  785         CTR1(KTR_VFS, "vdestroy vp %p", vp);
  786         mtx_lock(&vnode_free_list_mtx);
  787         numvnodes--;
  788         mtx_unlock(&vnode_free_list_mtx);
  789         bo = &vp->v_bufobj;
  790         VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
  791             ("cleaned vnode still on the free list."));
  792         VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
  793         VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
  794         VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
  795         VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
  796         VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
  797         VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
  798         VNASSERT(bo->bo_clean.bv_root == NULL, vp, ("cleanblkroot not NULL"));
  799         VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
  800         VNASSERT(bo->bo_dirty.bv_root == NULL, vp, ("dirtyblkroot not NULL"));
  801         VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
  802         VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
  803         VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
  804         VI_UNLOCK(vp);
  805 #ifdef MAC
  806         mac_destroy_vnode(vp);
  807 #endif
  808         if (vp->v_pollinfo != NULL)
  809                 destroy_vpollinfo(vp->v_pollinfo);
  810 #ifdef INVARIANTS
  811         /* XXX Elsewhere we can detect an already freed vnode via NULL v_op. */
  812         vp->v_op = NULL;
  813 #endif
  814         lockdestroy(vp->v_vnlock);
  815         mtx_destroy(&vp->v_interlock);
  816         uma_zfree(vnode_zone, vp);
  817 }
  818 
  819 /*
  820  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
  821  * before we actually vgone().  This function must be called with the vnode
  822  * held to prevent the vnode from being returned to the free list midway
  823  * through vgone().
  824  */
  825 static int
  826 vtryrecycle(struct vnode *vp)
  827 {
  828         struct thread *td = curthread;
  829         struct mount *vnmp;
  830 
  831         CTR1(KTR_VFS, "vtryrecycle: trying vp %p", vp);
  832         VNASSERT(vp->v_holdcnt, vp,
  833             ("vtryrecycle: Recycling vp %p without a reference.", vp));
  834         /*
  835          * This vnode may found and locked via some other list, if so we
  836          * can't recycle it yet.
  837          */
  838         if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
  839                 return (EWOULDBLOCK);
  840         /*
  841          * Don't recycle if its filesystem is being suspended.
  842          */
  843         if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
  844                 VOP_UNLOCK(vp, 0, td);
  845                 return (EBUSY);
  846         }
  847         /*
  848          * If we got this far, we need to acquire the interlock and see if
  849          * anyone picked up this vnode from another list.  If not, we will
  850          * mark it with DOOMED via vgonel() so that anyone who does find it
  851          * will skip over it.
  852          */
  853         VI_LOCK(vp);
  854         if (vp->v_usecount) {
  855                 VOP_UNLOCK(vp, LK_INTERLOCK, td);
  856                 vn_finished_write(vnmp);
  857                 return (EBUSY);
  858         }
  859         if ((vp->v_iflag & VI_DOOMED) == 0)
  860                 vgonel(vp);
  861         VOP_UNLOCK(vp, LK_INTERLOCK, td);
  862         vn_finished_write(vnmp);
  863         CTR1(KTR_VFS, "vtryrecycle: recycled vp %p", vp);
  864         return (0);
  865 }
  866 
  867 /*
  868  * Return the next vnode from the free list.
  869  */
  870 int
  871 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
  872     struct vnode **vpp)
  873 {
  874         struct vnode *vp = NULL;
  875         struct bufobj *bo;
  876 
  877         mtx_lock(&vnode_free_list_mtx);
  878         /*
  879          * Lend our context to reclaim vnodes if they've exceeded the max.
  880          */
  881         if (freevnodes > wantfreevnodes)
  882                 vnlru_free(1);
  883         /*
  884          * Wait for available vnodes.
  885          */
  886         if (numvnodes > desiredvnodes) {
  887                 if (mp != NULL && (mp->mnt_kern_flag & MNTK_SUSPEND)) {
  888                         /*
  889                          * File system is beeing suspended, we cannot risk a
  890                          * deadlock here, so allocate new vnode anyway.
  891                          */
  892                         if (freevnodes > wantfreevnodes)
  893                                 vnlru_free(freevnodes - wantfreevnodes);
  894                         goto alloc;
  895                 }
  896                 if (vnlruproc_sig == 0) {
  897                         vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
  898                         wakeup(vnlruproc);
  899                 }
  900                 msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
  901                     "vlruwk", hz);
  902 #if 0   /* XXX Not all VFS_VGET/ffs_vget callers check returns. */
  903                 if (numvnodes > desiredvnodes) {
  904                         mtx_unlock(&vnode_free_list_mtx);
  905                         return (ENFILE);
  906                 }
  907 #endif
  908         }
  909 alloc:
  910         numvnodes++;
  911         mtx_unlock(&vnode_free_list_mtx);
  912         vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
  913         /*
  914          * Setup locks.
  915          */
  916         vp->v_vnlock = &vp->v_lock;
  917         mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
  918         /*
  919          * By default, don't allow shared locks unless filesystems
  920          * opt-in.
  921          */
  922         lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE);
  923         /*
  924          * Initialize bufobj.
  925          */
  926         bo = &vp->v_bufobj;
  927         bo->__bo_vnode = vp;
  928         bo->bo_mtx = &vp->v_interlock;
  929         bo->bo_ops = &buf_ops_bio;
  930         bo->bo_private = vp;
  931         TAILQ_INIT(&bo->bo_clean.bv_hd);
  932         TAILQ_INIT(&bo->bo_dirty.bv_hd);
  933         /*
  934          * Initialize namecache.
  935          */
  936         LIST_INIT(&vp->v_cache_src);
  937         TAILQ_INIT(&vp->v_cache_dst);
  938         /*
  939          * Finalize various vnode identity bits.
  940          */
  941         vp->v_type = VNON;
  942         vp->v_tag = tag;
  943         vp->v_op = vops;
  944         v_incr_usecount(vp);
  945         vp->v_data = 0;
  946 #ifdef MAC
  947         mac_init_vnode(vp);
  948         if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
  949                 mac_associate_vnode_singlelabel(mp, vp);
  950         else if (mp == NULL && vops != &dead_vnodeops)
  951                 printf("NULL mp in getnewvnode()\n");
  952 #endif
  953         if (mp != NULL) {
  954                 bo->bo_bsize = mp->mnt_stat.f_iosize;
  955                 if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
  956                         vp->v_vflag |= VV_NOKNOTE;
  957         }
  958 
  959         CTR2(KTR_VFS, "getnewvnode: mp %p vp %p", mp, vp);
  960         *vpp = vp;
  961         return (0);
  962 }
  963 
  964 /*
  965  * Delete from old mount point vnode list, if on one.
  966  */
  967 static void
  968 delmntque(struct vnode *vp)
  969 {
  970         struct mount *mp;
  971 
  972         mp = vp->v_mount;
  973         if (mp == NULL)
  974                 return;
  975         MNT_ILOCK(mp);
  976         vp->v_mount = NULL;
  977         VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
  978                 ("bad mount point vnode list size"));
  979         TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
  980         mp->mnt_nvnodelistsize--;
  981         MNT_REL(mp);
  982         MNT_IUNLOCK(mp);
  983 }
  984 
  985 static void
  986 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
  987 {
  988         struct thread *td;
  989 
  990         td = curthread; /* XXX ? */
  991         vp->v_data = NULL;
  992         vp->v_op = &dead_vnodeops;
  993         /* XXX non mp-safe fs may still call insmntque with vnode
  994            unlocked */
  995         if (!VOP_ISLOCKED(vp, td))
  996                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
  997         vgone(vp);
  998         vput(vp);
  999 }
 1000 
 1001 /*
 1002  * Insert into list of vnodes for the new mount point, if available.
 1003  */
 1004 int
 1005 insmntque1(struct vnode *vp, struct mount *mp,
 1006         void (*dtr)(struct vnode *, void *), void *dtr_arg)
 1007 {
 1008         int locked;
 1009 
 1010         KASSERT(vp->v_mount == NULL,
 1011                 ("insmntque: vnode already on per mount vnode list"));
 1012         VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
 1013 #if 0
 1014 #ifdef DEBUG_VFS_LOCKS
 1015         if (!VFS_NEEDSGIANT(mp))
 1016                 ASSERT_VOP_ELOCKED(vp,
 1017                     "insmntque: mp-safe fs and non-locked vp");
 1018 #endif
 1019 #endif
 1020         MNT_ILOCK(mp);
 1021         if ((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 &&
 1022             ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
 1023              mp->mnt_nvnodelistsize == 0)) {
 1024                 locked = VOP_ISLOCKED(vp, curthread);
 1025                 if (!locked || (locked == LK_EXCLUSIVE &&
 1026                      (vp->v_vflag & VV_FORCEINSMQ) == 0)) {
 1027                         MNT_IUNLOCK(mp);
 1028                         if (dtr != NULL)
 1029                                 dtr(vp, dtr_arg);
 1030                         return (EBUSY);
 1031                 }
 1032         }
 1033         vp->v_mount = mp;
 1034         MNT_REF(mp);
 1035         TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
 1036         VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
 1037                 ("neg mount point vnode list size"));
 1038         mp->mnt_nvnodelistsize++;
 1039         MNT_IUNLOCK(mp);
 1040         return (0);
 1041 }
 1042 
 1043 int
 1044 insmntque(struct vnode *vp, struct mount *mp)
 1045 {
 1046 
 1047         return (insmntque1(vp, mp, insmntque_stddtr, NULL));
 1048 }
 1049 
 1050 /*
 1051  * Flush out and invalidate all buffers associated with a bufobj
 1052  * Called with the underlying object locked.
 1053  */
 1054 int
 1055 bufobj_invalbuf(struct bufobj *bo, int flags, struct thread *td, int slpflag,
 1056     int slptimeo)
 1057 {
 1058         int error;
 1059 
 1060         BO_LOCK(bo);
 1061         if (flags & V_SAVE) {
 1062                 error = bufobj_wwait(bo, slpflag, slptimeo);
 1063                 if (error) {
 1064                         BO_UNLOCK(bo);
 1065                         return (error);
 1066                 }
 1067                 if (bo->bo_dirty.bv_cnt > 0) {
 1068                         BO_UNLOCK(bo);
 1069                         if ((error = BO_SYNC(bo, MNT_WAIT, td)) != 0)
 1070                                 return (error);
 1071                         /*
 1072                          * XXX We could save a lock/unlock if this was only
 1073                          * enabled under INVARIANTS
 1074                          */
 1075                         BO_LOCK(bo);
 1076                         if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
 1077                                 panic("vinvalbuf: dirty bufs");
 1078                 }
 1079         }
 1080         /*
 1081          * If you alter this loop please notice that interlock is dropped and
 1082          * reacquired in flushbuflist.  Special care is needed to ensure that
 1083          * no race conditions occur from this.
 1084          */
 1085         do {
 1086                 error = flushbuflist(&bo->bo_clean,
 1087                     flags, bo, slpflag, slptimeo);
 1088                 if (error == 0)
 1089                         error = flushbuflist(&bo->bo_dirty,
 1090                             flags, bo, slpflag, slptimeo);
 1091                 if (error != 0 && error != EAGAIN) {
 1092                         BO_UNLOCK(bo);
 1093                         return (error);
 1094                 }
 1095         } while (error != 0);
 1096 
 1097         /*
 1098          * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
 1099          * have write I/O in-progress but if there is a VM object then the
 1100          * VM object can also have read-I/O in-progress.
 1101          */
 1102         do {
 1103                 bufobj_wwait(bo, 0, 0);
 1104                 BO_UNLOCK(bo);
 1105                 if (bo->bo_object != NULL) {
 1106                         VM_OBJECT_LOCK(bo->bo_object);
 1107                         vm_object_pip_wait(bo->bo_object, "bovlbx");
 1108                         VM_OBJECT_UNLOCK(bo->bo_object);
 1109                 }
 1110                 BO_LOCK(bo);
 1111         } while (bo->bo_numoutput > 0);
 1112         BO_UNLOCK(bo);
 1113 
 1114         /*
 1115          * Destroy the copy in the VM cache, too.
 1116          */
 1117         if (bo->bo_object != NULL && (flags & (V_ALT | V_NORMAL)) == 0) {
 1118                 VM_OBJECT_LOCK(bo->bo_object);
 1119                 vm_object_page_remove(bo->bo_object, 0, 0,
 1120                         (flags & V_SAVE) ? TRUE : FALSE);
 1121                 VM_OBJECT_UNLOCK(bo->bo_object);
 1122         }
 1123 
 1124 #ifdef INVARIANTS
 1125         BO_LOCK(bo);
 1126         if ((flags & (V_ALT | V_NORMAL)) == 0 &&
 1127             (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
 1128                 panic("vinvalbuf: flush failed");
 1129         BO_UNLOCK(bo);
 1130 #endif
 1131         return (0);
 1132 }
 1133 
 1134 /*
 1135  * Flush out and invalidate all buffers associated with a vnode.
 1136  * Called with the underlying object locked.
 1137  */
 1138 int
 1139 vinvalbuf(struct vnode *vp, int flags, struct thread *td, int slpflag,
 1140     int slptimeo)
 1141 {
 1142 
 1143         CTR2(KTR_VFS, "vinvalbuf vp %p flags %d", vp, flags);
 1144         ASSERT_VOP_LOCKED(vp, "vinvalbuf");
 1145         return (bufobj_invalbuf(&vp->v_bufobj, flags, td, slpflag, slptimeo));
 1146 }
 1147 
 1148 /*
 1149  * Flush out buffers on the specified list.
 1150  *
 1151  */
 1152 static int
 1153 flushbuflist( struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
 1154     int slptimeo)
 1155 {
 1156         struct buf *bp, *nbp;
 1157         int retval, error;
 1158         daddr_t lblkno;
 1159         b_xflags_t xflags;
 1160 
 1161         ASSERT_BO_LOCKED(bo);
 1162 
 1163         retval = 0;
 1164         TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
 1165                 if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
 1166                     ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
 1167                         continue;
 1168                 }
 1169                 lblkno = 0;
 1170                 xflags = 0;
 1171                 if (nbp != NULL) {
 1172                         lblkno = nbp->b_lblkno;
 1173                         xflags = nbp->b_xflags &
 1174                                 (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN);
 1175                 }
 1176                 retval = EAGAIN;
 1177                 error = BUF_TIMELOCK(bp,
 1178                     LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_MTX(bo),
 1179                     "flushbuf", slpflag, slptimeo);
 1180                 if (error) {
 1181                         BO_LOCK(bo);
 1182                         return (error != ENOLCK ? error : EAGAIN);
 1183                 }
 1184                 KASSERT(bp->b_bufobj == bo,
 1185                     ("bp %p wrong b_bufobj %p should be %p",
 1186                     bp, bp->b_bufobj, bo));
 1187                 if (bp->b_bufobj != bo) {       /* XXX: necessary ? */
 1188                         BUF_UNLOCK(bp);
 1189                         BO_LOCK(bo);
 1190                         return (EAGAIN);
 1191                 }
 1192                 /*
 1193                  * XXX Since there are no node locks for NFS, I
 1194                  * believe there is a slight chance that a delayed
 1195                  * write will occur while sleeping just above, so
 1196                  * check for it.
 1197                  */
 1198                 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
 1199                     (flags & V_SAVE)) {
 1200                         bremfree(bp);
 1201                         bp->b_flags |= B_ASYNC;
 1202                         bwrite(bp);
 1203                         BO_LOCK(bo);
 1204                         return (EAGAIN);        /* XXX: why not loop ? */
 1205                 }
 1206                 bremfree(bp);
 1207                 bp->b_flags |= (B_INVAL | B_RELBUF);
 1208                 bp->b_flags &= ~B_ASYNC;
 1209                 brelse(bp);
 1210                 BO_LOCK(bo);
 1211                 if (nbp != NULL &&
 1212                     (nbp->b_bufobj != bo ||
 1213                      nbp->b_lblkno != lblkno ||
 1214                      (nbp->b_xflags &
 1215                       (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN)) != xflags))
 1216                         break;                  /* nbp invalid */
 1217         }
 1218         return (retval);
 1219 }
 1220 
 1221 /*
 1222  * Truncate a file's buffer and pages to a specified length.  This
 1223  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
 1224  * sync activity.
 1225  */
 1226 int
 1227 vtruncbuf(struct vnode *vp, struct ucred *cred, struct thread *td,
 1228     off_t length, int blksize)
 1229 {
 1230         struct buf *bp, *nbp;
 1231         int anyfreed;
 1232         int trunclbn;
 1233         struct bufobj *bo;
 1234 
 1235         CTR2(KTR_VFS, "vtruncbuf vp %p length %jd", vp, length);
 1236         /*
 1237          * Round up to the *next* lbn.
 1238          */
 1239         trunclbn = (length + blksize - 1) / blksize;
 1240 
 1241         ASSERT_VOP_LOCKED(vp, "vtruncbuf");
 1242 restart:
 1243         VI_LOCK(vp);
 1244         bo = &vp->v_bufobj;
 1245         anyfreed = 1;
 1246         for (;anyfreed;) {
 1247                 anyfreed = 0;
 1248                 TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
 1249                         if (bp->b_lblkno < trunclbn)
 1250                                 continue;
 1251                         if (BUF_LOCK(bp,
 1252                             LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
 1253                             VI_MTX(vp)) == ENOLCK)
 1254                                 goto restart;
 1255 
 1256                         bremfree(bp);
 1257                         bp->b_flags |= (B_INVAL | B_RELBUF);
 1258                         bp->b_flags &= ~B_ASYNC;
 1259                         brelse(bp);
 1260                         anyfreed = 1;
 1261 
 1262                         if (nbp != NULL &&
 1263                             (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
 1264                             (nbp->b_vp != vp) ||
 1265                             (nbp->b_flags & B_DELWRI))) {
 1266                                 goto restart;
 1267                         }
 1268                         VI_LOCK(vp);
 1269                 }
 1270 
 1271                 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
 1272                         if (bp->b_lblkno < trunclbn)
 1273                                 continue;
 1274                         if (BUF_LOCK(bp,
 1275                             LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
 1276                             VI_MTX(vp)) == ENOLCK)
 1277                                 goto restart;
 1278                         bremfree(bp);
 1279                         bp->b_flags |= (B_INVAL | B_RELBUF);
 1280                         bp->b_flags &= ~B_ASYNC;
 1281                         brelse(bp);
 1282                         anyfreed = 1;
 1283                         if (nbp != NULL &&
 1284                             (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
 1285                             (nbp->b_vp != vp) ||
 1286                             (nbp->b_flags & B_DELWRI) == 0)) {
 1287                                 goto restart;
 1288                         }
 1289                         VI_LOCK(vp);
 1290                 }
 1291         }
 1292 
 1293         if (length > 0) {
 1294 restartsync:
 1295                 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
 1296                         if (bp->b_lblkno > 0)
 1297                                 continue;
 1298                         /*
 1299                          * Since we hold the vnode lock this should only
 1300                          * fail if we're racing with the buf daemon.
 1301                          */
 1302                         if (BUF_LOCK(bp,
 1303                             LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
 1304                             VI_MTX(vp)) == ENOLCK) {
 1305                                 goto restart;
 1306                         }
 1307                         VNASSERT((bp->b_flags & B_DELWRI), vp,
 1308                             ("buf(%p) on dirty queue without DELWRI", bp));
 1309 
 1310                         bremfree(bp);
 1311                         bawrite(bp);
 1312                         VI_LOCK(vp);
 1313                         goto restartsync;
 1314                 }
 1315         }
 1316 
 1317         bufobj_wwait(bo, 0, 0);
 1318         VI_UNLOCK(vp);
 1319         vnode_pager_setsize(vp, length);
 1320 
 1321         return (0);
 1322 }
 1323 
 1324 /*
 1325  * buf_splay() - splay tree core for the clean/dirty list of buffers in
 1326  *               a vnode.
 1327  *
 1328  *      NOTE: We have to deal with the special case of a background bitmap
 1329  *      buffer, a situation where two buffers will have the same logical
 1330  *      block offset.  We want (1) only the foreground buffer to be accessed
 1331  *      in a lookup and (2) must differentiate between the foreground and
 1332  *      background buffer in the splay tree algorithm because the splay
 1333  *      tree cannot normally handle multiple entities with the same 'index'.
 1334  *      We accomplish this by adding differentiating flags to the splay tree's
 1335  *      numerical domain.
 1336  */
 1337 static
 1338 struct buf *
 1339 buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
 1340 {
 1341         struct buf dummy;
 1342         struct buf *lefttreemax, *righttreemin, *y;
 1343 
 1344         if (root == NULL)
 1345                 return (NULL);
 1346         lefttreemax = righttreemin = &dummy;
 1347         for (;;) {
 1348                 if (lblkno < root->b_lblkno ||
 1349                     (lblkno == root->b_lblkno &&
 1350                     (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
 1351                         if ((y = root->b_left) == NULL)
 1352                                 break;
 1353                         if (lblkno < y->b_lblkno) {
 1354                                 /* Rotate right. */
 1355                                 root->b_left = y->b_right;
 1356                                 y->b_right = root;
 1357                                 root = y;
 1358                                 if ((y = root->b_left) == NULL)
 1359                                         break;
 1360                         }
 1361                         /* Link into the new root's right tree. */
 1362                         righttreemin->b_left = root;
 1363                         righttreemin = root;
 1364                 } else if (lblkno > root->b_lblkno ||
 1365                     (lblkno == root->b_lblkno &&
 1366                     (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
 1367                         if ((y = root->b_right) == NULL)
 1368                                 break;
 1369                         if (lblkno > y->b_lblkno) {
 1370                                 /* Rotate left. */
 1371                                 root->b_right = y->b_left;
 1372                                 y->b_left = root;
 1373                                 root = y;
 1374                                 if ((y = root->b_right) == NULL)
 1375                                         break;
 1376                         }
 1377                         /* Link into the new root's left tree. */
 1378                         lefttreemax->b_right = root;
 1379                         lefttreemax = root;
 1380                 } else {
 1381                         break;
 1382                 }
 1383                 root = y;
 1384         }
 1385         /* Assemble the new root. */
 1386         lefttreemax->b_right = root->b_left;
 1387         righttreemin->b_left = root->b_right;
 1388         root->b_left = dummy.b_right;
 1389         root->b_right = dummy.b_left;
 1390         return (root);
 1391 }
 1392 
 1393 static void
 1394 buf_vlist_remove(struct buf *bp)
 1395 {
 1396         struct buf *root;
 1397         struct bufv *bv;
 1398 
 1399         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1400         ASSERT_BO_LOCKED(bp->b_bufobj);
 1401         KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
 1402             (BX_VNDIRTY|BX_VNCLEAN),
 1403             ("buf_vlist_remove: Buf %p is on two lists", bp));
 1404         if (bp->b_xflags & BX_VNDIRTY)
 1405                 bv = &bp->b_bufobj->bo_dirty;
 1406         else
 1407                 bv = &bp->b_bufobj->bo_clean;
 1408         if (bp != bv->bv_root) {
 1409                 root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
 1410                 KASSERT(root == bp, ("splay lookup failed in remove"));
 1411         }
 1412         if (bp->b_left == NULL) {
 1413                 root = bp->b_right;
 1414         } else {
 1415                 root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
 1416                 root->b_right = bp->b_right;
 1417         }
 1418         bv->bv_root = root;
 1419         TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
 1420         bv->bv_cnt--;
 1421         bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
 1422 }
 1423 
 1424 /*
 1425  * Add the buffer to the sorted clean or dirty block list using a
 1426  * splay tree algorithm.
 1427  *
 1428  * NOTE: xflags is passed as a constant, optimizing this inline function!
 1429  */
 1430 static void
 1431 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
 1432 {
 1433         struct buf *root;
 1434         struct bufv *bv;
 1435 
 1436         ASSERT_BO_LOCKED(bo);
 1437         KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
 1438             ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
 1439         bp->b_xflags |= xflags;
 1440         if (xflags & BX_VNDIRTY)
 1441                 bv = &bo->bo_dirty;
 1442         else
 1443                 bv = &bo->bo_clean;
 1444 
 1445         root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
 1446         if (root == NULL) {
 1447                 bp->b_left = NULL;
 1448                 bp->b_right = NULL;
 1449                 TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
 1450         } else if (bp->b_lblkno < root->b_lblkno ||
 1451             (bp->b_lblkno == root->b_lblkno &&
 1452             (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
 1453                 bp->b_left = root->b_left;
 1454                 bp->b_right = root;
 1455                 root->b_left = NULL;
 1456                 TAILQ_INSERT_BEFORE(root, bp, b_bobufs);
 1457         } else {
 1458                 bp->b_right = root->b_right;
 1459                 bp->b_left = root;
 1460                 root->b_right = NULL;
 1461                 TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs);
 1462         }
 1463         bv->bv_cnt++;
 1464         bv->bv_root = bp;
 1465 }
 1466 
 1467 /*
 1468  * Lookup a buffer using the splay tree.  Note that we specifically avoid
 1469  * shadow buffers used in background bitmap writes.
 1470  *
 1471  * This code isn't quite efficient as it could be because we are maintaining
 1472  * two sorted lists and do not know which list the block resides in.
 1473  *
 1474  * During a "make buildworld" the desired buffer is found at one of
 1475  * the roots more than 60% of the time.  Thus, checking both roots
 1476  * before performing either splay eliminates unnecessary splays on the
 1477  * first tree splayed.
 1478  */
 1479 struct buf *
 1480 gbincore(struct bufobj *bo, daddr_t lblkno)
 1481 {
 1482         struct buf *bp;
 1483 
 1484         ASSERT_BO_LOCKED(bo);
 1485         if ((bp = bo->bo_clean.bv_root) != NULL &&
 1486             bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
 1487                 return (bp);
 1488         if ((bp = bo->bo_dirty.bv_root) != NULL &&
 1489             bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
 1490                 return (bp);
 1491         if ((bp = bo->bo_clean.bv_root) != NULL) {
 1492                 bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp);
 1493                 if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
 1494                         return (bp);
 1495         }
 1496         if ((bp = bo->bo_dirty.bv_root) != NULL) {
 1497                 bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp);
 1498                 if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
 1499                         return (bp);
 1500         }
 1501         return (NULL);
 1502 }
 1503 
 1504 /*
 1505  * Associate a buffer with a vnode.
 1506  */
 1507 void
 1508 bgetvp(struct vnode *vp, struct buf *bp)
 1509 {
 1510 
 1511         VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
 1512 
 1513         CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
 1514         VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
 1515             ("bgetvp: bp already attached! %p", bp));
 1516 
 1517         ASSERT_VI_LOCKED(vp, "bgetvp");
 1518         vholdl(vp);
 1519         if (VFS_NEEDSGIANT(vp->v_mount) ||
 1520             vp->v_bufobj.bo_flag & BO_NEEDSGIANT)
 1521                 bp->b_flags |= B_NEEDSGIANT;
 1522         bp->b_vp = vp;
 1523         bp->b_bufobj = &vp->v_bufobj;
 1524         /*
 1525          * Insert onto list for new vnode.
 1526          */
 1527         buf_vlist_add(bp, &vp->v_bufobj, BX_VNCLEAN);
 1528 }
 1529 
 1530 /*
 1531  * Disassociate a buffer from a vnode.
 1532  */
 1533 void
 1534 brelvp(struct buf *bp)
 1535 {
 1536         struct bufobj *bo;
 1537         struct vnode *vp;
 1538 
 1539         CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1540         KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
 1541 
 1542         /*
 1543          * Delete from old vnode list, if on one.
 1544          */
 1545         vp = bp->b_vp;          /* XXX */
 1546         bo = bp->b_bufobj;
 1547         BO_LOCK(bo);
 1548         if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
 1549                 buf_vlist_remove(bp);
 1550         else
 1551                 panic("brelvp: Buffer %p not on queue.", bp);
 1552         if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
 1553                 bo->bo_flag &= ~BO_ONWORKLST;
 1554                 mtx_lock(&sync_mtx);
 1555                 LIST_REMOVE(bo, bo_synclist);
 1556                 syncer_worklist_len--;
 1557                 mtx_unlock(&sync_mtx);
 1558         }
 1559         bp->b_flags &= ~B_NEEDSGIANT;
 1560         bp->b_vp = NULL;
 1561         bp->b_bufobj = NULL;
 1562         vdropl(vp);
 1563 }
 1564 
 1565 /*
 1566  * Add an item to the syncer work queue.
 1567  */
 1568 static void
 1569 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
 1570 {
 1571         int slot;
 1572 
 1573         ASSERT_BO_LOCKED(bo);
 1574 
 1575         mtx_lock(&sync_mtx);
 1576         if (bo->bo_flag & BO_ONWORKLST)
 1577                 LIST_REMOVE(bo, bo_synclist);
 1578         else {
 1579                 bo->bo_flag |= BO_ONWORKLST;
 1580                 syncer_worklist_len++;
 1581         }
 1582 
 1583         if (delay > syncer_maxdelay - 2)
 1584                 delay = syncer_maxdelay - 2;
 1585         slot = (syncer_delayno + delay) & syncer_mask;
 1586 
 1587         LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
 1588         mtx_unlock(&sync_mtx);
 1589 }
 1590 
 1591 static int
 1592 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
 1593 {
 1594         int error, len;
 1595 
 1596         mtx_lock(&sync_mtx);
 1597         len = syncer_worklist_len - sync_vnode_count;
 1598         mtx_unlock(&sync_mtx);
 1599         error = SYSCTL_OUT(req, &len, sizeof(len));
 1600         return (error);
 1601 }
 1602 
 1603 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
 1604     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
 1605 
 1606 static struct proc *updateproc;
 1607 static void sched_sync(void);
 1608 static struct kproc_desc up_kp = {
 1609         "syncer",
 1610         sched_sync,
 1611         &updateproc
 1612 };
 1613 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
 1614 
 1615 static int
 1616 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
 1617 {
 1618         struct vnode *vp;
 1619         struct mount *mp;
 1620         int vfslocked;
 1621 
 1622         vfslocked = 0;
 1623 restart:
 1624         *bo = LIST_FIRST(slp);
 1625         if (*bo == NULL) {
 1626                 VFS_UNLOCK_GIANT(vfslocked);
 1627                 return (0);
 1628         }
 1629         vp = (*bo)->__bo_vnode; /* XXX */
 1630         if (VFS_NEEDSGIANT(vp->v_mount)) {
 1631                 if (!vfslocked) {
 1632                         vfslocked = 1;
 1633                         if (mtx_trylock(&Giant) == 0) {
 1634                                 mtx_unlock(&sync_mtx);
 1635                                 mtx_lock(&Giant);
 1636                                 mtx_lock(&sync_mtx);
 1637                                 goto restart;
 1638                         }
 1639                 }
 1640         } else {
 1641                 VFS_UNLOCK_GIANT(vfslocked);
 1642                 vfslocked = 0;
 1643         }
 1644         if (VOP_ISLOCKED(vp, NULL) != 0) {
 1645                 VFS_UNLOCK_GIANT(vfslocked);
 1646                 return (1);
 1647         }
 1648         if (VI_TRYLOCK(vp) == 0) {
 1649                 VFS_UNLOCK_GIANT(vfslocked);
 1650                 return (1);
 1651         }
 1652         /*
 1653          * We use vhold in case the vnode does not
 1654          * successfully sync.  vhold prevents the vnode from
 1655          * going away when we unlock the sync_mtx so that
 1656          * we can acquire the vnode interlock.
 1657          */
 1658         vholdl(vp);
 1659         mtx_unlock(&sync_mtx);
 1660         VI_UNLOCK(vp);
 1661         if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 1662                 vdrop(vp);
 1663                 VFS_UNLOCK_GIANT(vfslocked);
 1664                 mtx_lock(&sync_mtx);
 1665                 return (*bo == LIST_FIRST(slp));
 1666         }
 1667         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
 1668         (void) VOP_FSYNC(vp, MNT_LAZY, td);
 1669         VOP_UNLOCK(vp, 0, td);
 1670         vn_finished_write(mp);
 1671         VI_LOCK(vp);
 1672         if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
 1673                 /*
 1674                  * Put us back on the worklist.  The worklist
 1675                  * routine will remove us from our current
 1676                  * position and then add us back in at a later
 1677                  * position.
 1678                  */
 1679                 vn_syncer_add_to_worklist(*bo, syncdelay);
 1680         }
 1681         vdropl(vp);
 1682         VFS_UNLOCK_GIANT(vfslocked);
 1683         mtx_lock(&sync_mtx);
 1684         return (0);
 1685 }
 1686 
 1687 /*
 1688  * System filesystem synchronizer daemon.
 1689  */
 1690 static void
 1691 sched_sync(void)
 1692 {
 1693         struct synclist *next;
 1694         struct synclist *slp;
 1695         struct bufobj *bo;
 1696         long starttime;
 1697         struct thread *td = curthread;
 1698         static int dummychan;
 1699         int last_work_seen;
 1700         int net_worklist_len;
 1701         int syncer_final_iter;
 1702         int first_printf;
 1703         int error;
 1704 
 1705         last_work_seen = 0;
 1706         syncer_final_iter = 0;
 1707         first_printf = 1;
 1708         syncer_state = SYNCER_RUNNING;
 1709         starttime = time_uptime;
 1710         td->td_pflags |= TDP_NORUNNINGBUF;
 1711 
 1712         EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
 1713             SHUTDOWN_PRI_LAST);
 1714 
 1715         mtx_lock(&sync_mtx);
 1716         for (;;) {
 1717                 if (syncer_state == SYNCER_FINAL_DELAY &&
 1718                     syncer_final_iter == 0) {
 1719                         mtx_unlock(&sync_mtx);
 1720                         kthread_suspend_check(td->td_proc);
 1721                         mtx_lock(&sync_mtx);
 1722                 }
 1723                 net_worklist_len = syncer_worklist_len - sync_vnode_count;
 1724                 if (syncer_state != SYNCER_RUNNING &&
 1725                     starttime != time_uptime) {
 1726                         if (first_printf) {
 1727                                 printf("\nSyncing disks, vnodes remaining...");
 1728                                 first_printf = 0;
 1729                         }
 1730                         printf("%d ", net_worklist_len);
 1731                 }
 1732                 starttime = time_uptime;
 1733 
 1734                 /*
 1735                  * Push files whose dirty time has expired.  Be careful
 1736                  * of interrupt race on slp queue.
 1737                  *
 1738                  * Skip over empty worklist slots when shutting down.
 1739                  */
 1740                 do {
 1741                         slp = &syncer_workitem_pending[syncer_delayno];
 1742                         syncer_delayno += 1;
 1743                         if (syncer_delayno == syncer_maxdelay)
 1744                                 syncer_delayno = 0;
 1745                         next = &syncer_workitem_pending[syncer_delayno];
 1746                         /*
 1747                          * If the worklist has wrapped since the
 1748                          * it was emptied of all but syncer vnodes,
 1749                          * switch to the FINAL_DELAY state and run
 1750                          * for one more second.
 1751                          */
 1752                         if (syncer_state == SYNCER_SHUTTING_DOWN &&
 1753                             net_worklist_len == 0 &&
 1754                             last_work_seen == syncer_delayno) {
 1755                                 syncer_state = SYNCER_FINAL_DELAY;
 1756                                 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
 1757                         }
 1758                 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
 1759                     syncer_worklist_len > 0);
 1760 
 1761                 /*
 1762                  * Keep track of the last time there was anything
 1763                  * on the worklist other than syncer vnodes.
 1764                  * Return to the SHUTTING_DOWN state if any
 1765                  * new work appears.
 1766                  */
 1767                 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
 1768                         last_work_seen = syncer_delayno;
 1769                 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
 1770                         syncer_state = SYNCER_SHUTTING_DOWN;
 1771                 while (!LIST_EMPTY(slp)) {
 1772                         error = sync_vnode(slp, &bo, td);
 1773                         if (error == 1) {
 1774                                 LIST_REMOVE(bo, bo_synclist);
 1775                                 LIST_INSERT_HEAD(next, bo, bo_synclist);
 1776                                 continue;
 1777                         }
 1778                 }
 1779                 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
 1780                         syncer_final_iter--;
 1781                 /*
 1782                  * The variable rushjob allows the kernel to speed up the
 1783                  * processing of the filesystem syncer process. A rushjob
 1784                  * value of N tells the filesystem syncer to process the next
 1785                  * N seconds worth of work on its queue ASAP. Currently rushjob
 1786                  * is used by the soft update code to speed up the filesystem
 1787                  * syncer process when the incore state is getting so far
 1788                  * ahead of the disk that the kernel memory pool is being
 1789                  * threatened with exhaustion.
 1790                  */
 1791                 if (rushjob > 0) {
 1792                         rushjob -= 1;
 1793                         continue;
 1794                 }
 1795                 /*
 1796                  * Just sleep for a short period of time between
 1797                  * iterations when shutting down to allow some I/O
 1798                  * to happen.
 1799                  *
 1800                  * If it has taken us less than a second to process the
 1801                  * current work, then wait. Otherwise start right over
 1802                  * again. We can still lose time if any single round
 1803                  * takes more than two seconds, but it does not really
 1804                  * matter as we are just trying to generally pace the
 1805                  * filesystem activity.
 1806                  */
 1807                 if (syncer_state != SYNCER_RUNNING)
 1808                         msleep(&dummychan, &sync_mtx, PPAUSE, "syncfnl",
 1809                             hz / SYNCER_SHUTDOWN_SPEEDUP);
 1810                 else if (time_uptime == starttime)
 1811                         msleep(&lbolt, &sync_mtx, PPAUSE, "syncer", 0);
 1812         }
 1813 }
 1814 
 1815 /*
 1816  * Request the syncer daemon to speed up its work.
 1817  * We never push it to speed up more than half of its
 1818  * normal turn time, otherwise it could take over the cpu.
 1819  */
 1820 int
 1821 speedup_syncer(void)
 1822 {
 1823         struct thread *td;
 1824         int ret = 0;
 1825 
 1826         td = FIRST_THREAD_IN_PROC(updateproc);
 1827         mtx_lock(&sync_mtx);
 1828         if (rushjob < syncdelay / 2) {
 1829                 rushjob += 1;
 1830                 stat_rush_requests += 1;
 1831                 ret = 1;
 1832         }
 1833         mtx_unlock(&sync_mtx);
 1834         sleepq_remove(td, &lbolt);
 1835         return (ret);
 1836 }
 1837 
 1838 /*
 1839  * Tell the syncer to speed up its work and run though its work
 1840  * list several times, then tell it to shut down.
 1841  */
 1842 static void
 1843 syncer_shutdown(void *arg, int howto)
 1844 {
 1845         struct thread *td;
 1846 
 1847         if (howto & RB_NOSYNC)
 1848                 return;
 1849         td = FIRST_THREAD_IN_PROC(updateproc);
 1850         mtx_lock(&sync_mtx);
 1851         syncer_state = SYNCER_SHUTTING_DOWN;
 1852         rushjob = 0;
 1853         mtx_unlock(&sync_mtx);
 1854         sleepq_remove(td, &lbolt);
 1855         kproc_shutdown(arg, howto);
 1856 }
 1857 
 1858 /*
 1859  * Reassign a buffer from one vnode to another.
 1860  * Used to assign file specific control information
 1861  * (indirect blocks) to the vnode to which they belong.
 1862  */
 1863 void
 1864 reassignbuf(struct buf *bp)
 1865 {
 1866         struct vnode *vp;
 1867         struct bufobj *bo;
 1868         int delay;
 1869 #ifdef INVARIANTS
 1870         struct bufv *bv;
 1871 #endif
 1872 
 1873         vp = bp->b_vp;
 1874         bo = bp->b_bufobj;
 1875         ++reassignbufcalls;
 1876 
 1877         CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
 1878             bp, bp->b_vp, bp->b_flags);
 1879         /*
 1880          * B_PAGING flagged buffers cannot be reassigned because their vp
 1881          * is not fully linked in.
 1882          */
 1883         if (bp->b_flags & B_PAGING)
 1884                 panic("cannot reassign paging buffer");
 1885 
 1886         /*
 1887          * Delete from old vnode list, if on one.
 1888          */
 1889         VI_LOCK(vp);
 1890         if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
 1891                 buf_vlist_remove(bp);
 1892         else
 1893                 panic("reassignbuf: Buffer %p not on queue.", bp);
 1894         /*
 1895          * If dirty, put on list of dirty buffers; otherwise insert onto list
 1896          * of clean buffers.
 1897          */
 1898         if (bp->b_flags & B_DELWRI) {
 1899                 if ((bo->bo_flag & BO_ONWORKLST) == 0) {
 1900                         switch (vp->v_type) {
 1901                         case VDIR:
 1902                                 delay = dirdelay;
 1903                                 break;
 1904                         case VCHR:
 1905                                 delay = metadelay;
 1906                                 break;
 1907                         default:
 1908                                 delay = filedelay;
 1909                         }
 1910                         vn_syncer_add_to_worklist(bo, delay);
 1911                 }
 1912                 buf_vlist_add(bp, bo, BX_VNDIRTY);
 1913         } else {
 1914                 buf_vlist_add(bp, bo, BX_VNCLEAN);
 1915 
 1916                 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
 1917                         mtx_lock(&sync_mtx);
 1918                         LIST_REMOVE(bo, bo_synclist);
 1919                         syncer_worklist_len--;
 1920                         mtx_unlock(&sync_mtx);
 1921                         bo->bo_flag &= ~BO_ONWORKLST;
 1922                 }
 1923         }
 1924 #ifdef INVARIANTS
 1925         bv = &bo->bo_clean;
 1926         bp = TAILQ_FIRST(&bv->bv_hd);
 1927         KASSERT(bp == NULL || bp->b_bufobj == bo,
 1928             ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 1929         bp = TAILQ_LAST(&bv->bv_hd, buflists);
 1930         KASSERT(bp == NULL || bp->b_bufobj == bo,
 1931             ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 1932         bv = &bo->bo_dirty;
 1933         bp = TAILQ_FIRST(&bv->bv_hd);
 1934         KASSERT(bp == NULL || bp->b_bufobj == bo,
 1935             ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 1936         bp = TAILQ_LAST(&bv->bv_hd, buflists);
 1937         KASSERT(bp == NULL || bp->b_bufobj == bo,
 1938             ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 1939 #endif
 1940         VI_UNLOCK(vp);
 1941 }
 1942 
 1943 /*
 1944  * Increment the use and hold counts on the vnode, taking care to reference
 1945  * the driver's usecount if this is a chardev.  The vholdl() will remove
 1946  * the vnode from the free list if it is presently free.  Requires the
 1947  * vnode interlock and returns with it held.
 1948  */
 1949 static void
 1950 v_incr_usecount(struct vnode *vp)
 1951 {
 1952 
 1953         CTR3(KTR_VFS, "v_incr_usecount: vp %p holdcnt %d usecount %d\n",
 1954             vp, vp->v_holdcnt, vp->v_usecount);
 1955         vp->v_usecount++;
 1956         if (vp->v_type == VCHR && vp->v_rdev != NULL) {
 1957                 dev_lock();
 1958                 vp->v_rdev->si_usecount++;
 1959                 dev_unlock();
 1960         }
 1961         vholdl(vp);
 1962 }
 1963 
 1964 /*
 1965  * Turn a holdcnt into a use+holdcnt such that only one call to
 1966  * v_decr_usecount is needed.
 1967  */
 1968 static void
 1969 v_upgrade_usecount(struct vnode *vp)
 1970 {
 1971 
 1972         CTR3(KTR_VFS, "v_upgrade_usecount: vp %p holdcnt %d usecount %d\n",
 1973             vp, vp->v_holdcnt, vp->v_usecount);
 1974         vp->v_usecount++;
 1975         if (vp->v_type == VCHR && vp->v_rdev != NULL) {
 1976                 dev_lock();
 1977                 vp->v_rdev->si_usecount++;
 1978                 dev_unlock();
 1979         }
 1980 }
 1981 
 1982 /*
 1983  * Decrement the vnode use and hold count along with the driver's usecount
 1984  * if this is a chardev.  The vdropl() below releases the vnode interlock
 1985  * as it may free the vnode.
 1986  */
 1987 static void
 1988 v_decr_usecount(struct vnode *vp)
 1989 {
 1990 
 1991         CTR3(KTR_VFS, "v_decr_usecount: vp %p holdcnt %d usecount %d\n",
 1992             vp, vp->v_holdcnt, vp->v_usecount);
 1993         ASSERT_VI_LOCKED(vp, __FUNCTION__);
 1994         VNASSERT(vp->v_usecount > 0, vp,
 1995             ("v_decr_usecount: negative usecount"));
 1996         vp->v_usecount--;
 1997         if (vp->v_type == VCHR && vp->v_rdev != NULL) {
 1998                 dev_lock();
 1999                 vp->v_rdev->si_usecount--;
 2000                 dev_unlock();
 2001         }
 2002         vdropl(vp);
 2003 }
 2004 
 2005 /*
 2006  * Decrement only the use count and driver use count.  This is intended to
 2007  * be paired with a follow on vdropl() to release the remaining hold count.
 2008  * In this way we may vgone() a vnode with a 0 usecount without risk of
 2009  * having it end up on a free list because the hold count is kept above 0.
 2010  */
 2011 static void
 2012 v_decr_useonly(struct vnode *vp)
 2013 {
 2014 
 2015         CTR3(KTR_VFS, "v_decr_useonly: vp %p holdcnt %d usecount %d\n",
 2016             vp, vp->v_holdcnt, vp->v_usecount);
 2017         ASSERT_VI_LOCKED(vp, __FUNCTION__);
 2018         VNASSERT(vp->v_usecount > 0, vp,
 2019             ("v_decr_useonly: negative usecount"));
 2020         vp->v_usecount--;
 2021         if (vp->v_type == VCHR && vp->v_rdev != NULL) {
 2022                 dev_lock();
 2023                 vp->v_rdev->si_usecount--;
 2024                 dev_unlock();
 2025         }
 2026 }
 2027 
 2028 /*
 2029  * Grab a particular vnode from the free list, increment its
 2030  * reference count and lock it. The vnode lock bit is set if the
 2031  * vnode is being eliminated in vgone. The process is awakened
 2032  * when the transition is completed, and an error returned to
 2033  * indicate that the vnode is no longer usable (possibly having
 2034  * been changed to a new filesystem type).
 2035  */
 2036 int
 2037 vget(struct vnode *vp, int flags, struct thread *td)
 2038 {
 2039         int oweinact;
 2040         int oldflags;
 2041         int error;
 2042 
 2043         error = 0;
 2044         oldflags = flags;
 2045         oweinact = 0;
 2046         VFS_ASSERT_GIANT(vp->v_mount);
 2047         if ((flags & LK_INTERLOCK) == 0)
 2048                 VI_LOCK(vp);
 2049         /*
 2050          * If the inactive call was deferred because vput() was called
 2051          * with a shared lock, we have to do it here before another thread
 2052          * gets a reference to data that should be dead.
 2053          */
 2054         if (vp->v_iflag & VI_OWEINACT) {
 2055                 if (flags & LK_NOWAIT) {
 2056                         VI_UNLOCK(vp);
 2057                         return (EBUSY);
 2058                 }
 2059                 flags &= ~LK_TYPE_MASK;
 2060                 flags |= LK_EXCLUSIVE;
 2061                 oweinact = 1;
 2062         }
 2063         vholdl(vp);
 2064         if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
 2065                 vdrop(vp);
 2066                 return (error);
 2067         }
 2068         VI_LOCK(vp);
 2069         /* Upgrade our holdcnt to a usecount. */
 2070         v_upgrade_usecount(vp);
 2071         if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
 2072                 panic("vget: vn_lock failed to return ENOENT\n");
 2073         if (oweinact) {
 2074                 if (vp->v_iflag & VI_OWEINACT)
 2075                         vinactive(vp, td);
 2076                 VI_UNLOCK(vp);
 2077                 if ((oldflags & LK_TYPE_MASK) == 0)
 2078                         VOP_UNLOCK(vp, 0, td);
 2079         } else
 2080                 VI_UNLOCK(vp);
 2081         return (0);
 2082 }
 2083 
 2084 /*
 2085  * Increase the reference count of a vnode.
 2086  */
 2087 void
 2088 vref(struct vnode *vp)
 2089 {
 2090 
 2091         VI_LOCK(vp);
 2092         v_incr_usecount(vp);
 2093         VI_UNLOCK(vp);
 2094 }
 2095 
 2096 /*
 2097  * Return reference count of a vnode.
 2098  *
 2099  * The results of this call are only guaranteed when some mechanism other
 2100  * than the VI lock is used to stop other processes from gaining references
 2101  * to the vnode.  This may be the case if the caller holds the only reference.
 2102  * This is also useful when stale data is acceptable as race conditions may
 2103  * be accounted for by some other means.
 2104  */
 2105 int
 2106 vrefcnt(struct vnode *vp)
 2107 {
 2108         int usecnt;
 2109 
 2110         VI_LOCK(vp);
 2111         usecnt = vp->v_usecount;
 2112         VI_UNLOCK(vp);
 2113 
 2114         return (usecnt);
 2115 }
 2116 
 2117 
 2118 /*
 2119  * Vnode put/release.
 2120  * If count drops to zero, call inactive routine and return to freelist.
 2121  */
 2122 void
 2123 vrele(struct vnode *vp)
 2124 {
 2125         struct thread *td = curthread;  /* XXX */
 2126 
 2127         KASSERT(vp != NULL, ("vrele: null vp"));
 2128         VFS_ASSERT_GIANT(vp->v_mount);
 2129 
 2130         VI_LOCK(vp);
 2131 
 2132         /* Skip this v_writecount check if we're going to panic below. */
 2133         VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
 2134             ("vrele: missed vn_close"));
 2135 
 2136         if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
 2137             vp->v_usecount == 1)) {
 2138                 v_decr_usecount(vp);
 2139                 return;
 2140         }
 2141         if (vp->v_usecount != 1) {
 2142 #ifdef DIAGNOSTIC
 2143                 vprint("vrele: negative ref count", vp);
 2144 #endif
 2145                 VI_UNLOCK(vp);
 2146                 panic("vrele: negative ref cnt");
 2147         }
 2148         /*
 2149          * We want to hold the vnode until the inactive finishes to
 2150          * prevent vgone() races.  We drop the use count here and the
 2151          * hold count below when we're done.
 2152          */
 2153         v_decr_useonly(vp);
 2154         /*
 2155          * We must call VOP_INACTIVE with the node locked. Mark
 2156          * as VI_DOINGINACT to avoid recursion.
 2157          */
 2158         vp->v_iflag |= VI_OWEINACT;
 2159         if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0) {
 2160                 VI_LOCK(vp);
 2161                 if (vp->v_usecount > 0)
 2162                         vp->v_iflag &= ~VI_OWEINACT;
 2163                 if (vp->v_iflag & VI_OWEINACT)
 2164                         vinactive(vp, td);
 2165                 VOP_UNLOCK(vp, 0, td);
 2166         } else {
 2167                 VI_LOCK(vp);
 2168                 if (vp->v_usecount > 0)
 2169                         vp->v_iflag &= ~VI_OWEINACT;
 2170         }
 2171         vdropl(vp);
 2172 }
 2173 
 2174 /*
 2175  * Release an already locked vnode.  This give the same effects as
 2176  * unlock+vrele(), but takes less time and avoids releasing and
 2177  * re-aquiring the lock (as vrele() acquires the lock internally.)
 2178  */
 2179 void
 2180 vput(struct vnode *vp)
 2181 {
 2182         struct thread *td = curthread;  /* XXX */
 2183         int error;
 2184 
 2185         KASSERT(vp != NULL, ("vput: null vp"));
 2186         ASSERT_VOP_LOCKED(vp, "vput");
 2187         VFS_ASSERT_GIANT(vp->v_mount);
 2188         VI_LOCK(vp);
 2189         /* Skip this v_writecount check if we're going to panic below. */
 2190         VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
 2191             ("vput: missed vn_close"));
 2192         error = 0;
 2193 
 2194         if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
 2195             vp->v_usecount == 1)) {
 2196                 VOP_UNLOCK(vp, 0, td);
 2197                 v_decr_usecount(vp);
 2198                 return;
 2199         }
 2200 
 2201         if (vp->v_usecount != 1) {
 2202 #ifdef DIAGNOSTIC
 2203                 vprint("vput: negative ref count", vp);
 2204 #endif
 2205                 panic("vput: negative ref cnt");
 2206         }
 2207         /*
 2208          * We want to hold the vnode until the inactive finishes to
 2209          * prevent vgone() races.  We drop the use count here and the
 2210          * hold count below when we're done.
 2211          */
 2212         v_decr_useonly(vp);
 2213         vp->v_iflag |= VI_OWEINACT;
 2214         if (VOP_ISLOCKED(vp, NULL) != LK_EXCLUSIVE) {
 2215                 error = VOP_LOCK(vp, LK_UPGRADE|LK_INTERLOCK|LK_NOWAIT, td);
 2216                 VI_LOCK(vp);
 2217                 if (error) {
 2218                         if (vp->v_usecount > 0)
 2219                                 vp->v_iflag &= ~VI_OWEINACT;
 2220                         goto done;
 2221                 }
 2222         }
 2223         if (vp->v_usecount > 0)
 2224                 vp->v_iflag &= ~VI_OWEINACT;
 2225         if (vp->v_iflag & VI_OWEINACT)
 2226                 vinactive(vp, td);
 2227         VOP_UNLOCK(vp, 0, td);
 2228 done:
 2229         vdropl(vp);
 2230 }
 2231 
 2232 /*
 2233  * Somebody doesn't want the vnode recycled.
 2234  */
 2235 void
 2236 vhold(struct vnode *vp)
 2237 {
 2238 
 2239         VI_LOCK(vp);
 2240         vholdl(vp);
 2241         VI_UNLOCK(vp);
 2242 }
 2243 
 2244 void
 2245 vholdl(struct vnode *vp)
 2246 {
 2247 
 2248         vp->v_holdcnt++;
 2249         if (VSHOULDBUSY(vp))
 2250                 vbusy(vp);
 2251 }
 2252 
 2253 /*
 2254  * Note that there is one less who cares about this vnode.  vdrop() is the
 2255  * opposite of vhold().
 2256  */
 2257 void
 2258 vdrop(struct vnode *vp)
 2259 {
 2260 
 2261         VI_LOCK(vp);
 2262         vdropl(vp);
 2263 }
 2264 
 2265 /*
 2266  * Drop the hold count of the vnode.  If this is the last reference to
 2267  * the vnode we will free it if it has been vgone'd otherwise it is
 2268  * placed on the free list.
 2269  */
 2270 void
 2271 vdropl(struct vnode *vp)
 2272 {
 2273 
 2274         ASSERT_VI_LOCKED(vp, "vdropl");
 2275         if (vp->v_holdcnt <= 0)
 2276                 panic("vdrop: holdcnt %d", vp->v_holdcnt);
 2277         vp->v_holdcnt--;
 2278         if (vp->v_holdcnt == 0) {
 2279                 if (vp->v_iflag & VI_DOOMED) {
 2280                         vdestroy(vp);
 2281                         return;
 2282                 } else
 2283                         vfree(vp);
 2284         }
 2285         VI_UNLOCK(vp);
 2286 }
 2287 
 2288 /*
 2289  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
 2290  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
 2291  * OWEINACT tracks whether a vnode missed a call to inactive due to a
 2292  * failed lock upgrade.
 2293  */
 2294 static void
 2295 vinactive(struct vnode *vp, struct thread *td)
 2296 {
 2297 
 2298         ASSERT_VOP_LOCKED(vp, "vinactive");
 2299         ASSERT_VI_LOCKED(vp, "vinactive");
 2300         VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
 2301             ("vinactive: recursed on VI_DOINGINACT"));
 2302         vp->v_iflag |= VI_DOINGINACT;
 2303         vp->v_iflag &= ~VI_OWEINACT;
 2304         VI_UNLOCK(vp);
 2305         VOP_INACTIVE(vp, td);
 2306         VI_LOCK(vp);
 2307         VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
 2308             ("vinactive: lost VI_DOINGINACT"));
 2309         vp->v_iflag &= ~VI_DOINGINACT;
 2310 }
 2311 
 2312 /*
 2313  * Remove any vnodes in the vnode table belonging to mount point mp.
 2314  *
 2315  * If FORCECLOSE is not specified, there should not be any active ones,
 2316  * return error if any are found (nb: this is a user error, not a
 2317  * system error). If FORCECLOSE is specified, detach any active vnodes
 2318  * that are found.
 2319  *
 2320  * If WRITECLOSE is set, only flush out regular file vnodes open for
 2321  * writing.
 2322  *
 2323  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
 2324  *
 2325  * `rootrefs' specifies the base reference count for the root vnode
 2326  * of this filesystem. The root vnode is considered busy if its
 2327  * v_usecount exceeds this value. On a successful return, vflush(, td)
 2328  * will call vrele() on the root vnode exactly rootrefs times.
 2329  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
 2330  * be zero.
 2331  */
 2332 #ifdef DIAGNOSTIC
 2333 static int busyprt = 0;         /* print out busy vnodes */
 2334 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
 2335 #endif
 2336 
 2337 int
 2338 vflush( struct mount *mp, int rootrefs, int flags, struct thread *td)
 2339 {
 2340         struct vnode *vp, *mvp, *rootvp = NULL;
 2341         struct vattr vattr;
 2342         int busy = 0, error;
 2343 
 2344         CTR1(KTR_VFS, "vflush: mp %p", mp);
 2345         if (rootrefs > 0) {
 2346                 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
 2347                     ("vflush: bad args"));
 2348                 /*
 2349                  * Get the filesystem root vnode. We can vput() it
 2350                  * immediately, since with rootrefs > 0, it won't go away.
 2351                  */
 2352                 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp, td)) != 0)
 2353                         return (error);
 2354                 vput(rootvp);
 2355 
 2356         }
 2357         MNT_ILOCK(mp);
 2358 loop:
 2359         MNT_VNODE_FOREACH(vp, mp, mvp) {
 2360 
 2361                 VI_LOCK(vp);
 2362                 vholdl(vp);
 2363                 MNT_IUNLOCK(mp);
 2364                 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE, td);
 2365                 if (error) {
 2366                         vdrop(vp);
 2367                         MNT_ILOCK(mp);
 2368                         MNT_VNODE_FOREACH_ABORT_ILOCKED(mp, mvp);
 2369                         goto loop;
 2370                 }
 2371                 /*
 2372                  * Skip over a vnodes marked VV_SYSTEM.
 2373                  */
 2374                 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
 2375                         VOP_UNLOCK(vp, 0, td);
 2376                         vdrop(vp);
 2377                         MNT_ILOCK(mp);
 2378                         continue;
 2379                 }
 2380                 /*
 2381                  * If WRITECLOSE is set, flush out unlinked but still open
 2382                  * files (even if open only for reading) and regular file
 2383                  * vnodes open for writing.
 2384                  */
 2385                 if (flags & WRITECLOSE) {
 2386                         error = VOP_GETATTR(vp, &vattr, td->td_ucred, td);
 2387                         VI_LOCK(vp);
 2388 
 2389                         if ((vp->v_type == VNON ||
 2390                             (error == 0 && vattr.va_nlink > 0)) &&
 2391                             (vp->v_writecount == 0 || vp->v_type != VREG)) {
 2392                                 VOP_UNLOCK(vp, 0, td);
 2393                                 vdropl(vp);
 2394                                 MNT_ILOCK(mp);
 2395                                 continue;
 2396                         }
 2397                 } else
 2398                         VI_LOCK(vp);
 2399                 /*
 2400                  * With v_usecount == 0, all we need to do is clear out the
 2401                  * vnode data structures and we are done.
 2402                  *
 2403                  * If FORCECLOSE is set, forcibly close the vnode.
 2404                  */
 2405                 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
 2406                         VNASSERT(vp->v_usecount == 0 ||
 2407                             (vp->v_type != VCHR && vp->v_type != VBLK), vp,
 2408                             ("device VNODE %p is FORCECLOSED", vp));
 2409                         vgonel(vp);
 2410                 } else {
 2411                         busy++;
 2412 #ifdef DIAGNOSTIC
 2413                         if (busyprt)
 2414                                 vprint("vflush: busy vnode", vp);
 2415 #endif
 2416                 }
 2417                 VOP_UNLOCK(vp, 0, td);
 2418                 vdropl(vp);
 2419                 MNT_ILOCK(mp);
 2420         }
 2421         MNT_IUNLOCK(mp);
 2422         if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
 2423                 /*
 2424                  * If just the root vnode is busy, and if its refcount
 2425                  * is equal to `rootrefs', then go ahead and kill it.
 2426                  */
 2427                 VI_LOCK(rootvp);
 2428                 KASSERT(busy > 0, ("vflush: not busy"));
 2429                 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
 2430                     ("vflush: usecount %d < rootrefs %d",
 2431                      rootvp->v_usecount, rootrefs));
 2432                 if (busy == 1 && rootvp->v_usecount == rootrefs) {
 2433                         VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK, td);
 2434                         vgone(rootvp);
 2435                         VOP_UNLOCK(rootvp, 0, td);
 2436                         busy = 0;
 2437                 } else
 2438                         VI_UNLOCK(rootvp);
 2439         }
 2440         if (busy)
 2441                 return (EBUSY);
 2442         for (; rootrefs > 0; rootrefs--)
 2443                 vrele(rootvp);
 2444         return (0);
 2445 }
 2446 
 2447 /*
 2448  * Recycle an unused vnode to the front of the free list.
 2449  */
 2450 int
 2451 vrecycle(struct vnode *vp, struct thread *td)
 2452 {
 2453         int recycled;
 2454 
 2455         ASSERT_VOP_LOCKED(vp, "vrecycle");
 2456         recycled = 0;
 2457         VI_LOCK(vp);
 2458         if (vp->v_usecount == 0) {
 2459                 recycled = 1;
 2460                 vgonel(vp);
 2461         }
 2462         VI_UNLOCK(vp);
 2463         return (recycled);
 2464 }
 2465 
 2466 /*
 2467  * Eliminate all activity associated with a vnode
 2468  * in preparation for reuse.
 2469  */
 2470 void
 2471 vgone(struct vnode *vp)
 2472 {
 2473         VI_LOCK(vp);
 2474         vgonel(vp);
 2475         VI_UNLOCK(vp);
 2476 }
 2477 
 2478 /*
 2479  * vgone, with the vp interlock held.
 2480  */
 2481 void
 2482 vgonel(struct vnode *vp)
 2483 {
 2484         struct thread *td;
 2485         int oweinact;
 2486         int active;
 2487         struct mount *mp;
 2488 
 2489         CTR1(KTR_VFS, "vgonel: vp %p", vp);
 2490         ASSERT_VOP_LOCKED(vp, "vgonel");
 2491         ASSERT_VI_LOCKED(vp, "vgonel");
 2492         VNASSERT(vp->v_holdcnt, vp,
 2493             ("vgonel: vp %p has no reference.", vp));
 2494         td = curthread;
 2495 
 2496         /*
 2497          * Don't vgonel if we're already doomed.
 2498          */
 2499         if (vp->v_iflag & VI_DOOMED)
 2500                 return;
 2501         vp->v_iflag |= VI_DOOMED;
 2502         /*
 2503          * Check to see if the vnode is in use.  If so, we have to call
 2504          * VOP_CLOSE() and VOP_INACTIVE().
 2505          */
 2506         active = vp->v_usecount;
 2507         oweinact = (vp->v_iflag & VI_OWEINACT);
 2508         VI_UNLOCK(vp);
 2509         /*
 2510          * Clean out any buffers associated with the vnode.
 2511          * If the flush fails, just toss the buffers.
 2512          */
 2513         mp = NULL;
 2514         if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
 2515                 (void) vn_start_secondary_write(vp, &mp, V_WAIT);
 2516         if (vinvalbuf(vp, V_SAVE, td, 0, 0) != 0)
 2517                 vinvalbuf(vp, 0, td, 0, 0);
 2518 
 2519         /*
 2520          * If purging an active vnode, it must be closed and
 2521          * deactivated before being reclaimed.
 2522          */
 2523         if (active)
 2524                 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
 2525         if (oweinact || active) {
 2526                 VI_LOCK(vp);
 2527                 if ((vp->v_iflag & VI_DOINGINACT) == 0)
 2528                         vinactive(vp, td);
 2529                 VI_UNLOCK(vp);
 2530         }
 2531         /*
 2532          * Reclaim the vnode.
 2533          */
 2534         if (VOP_RECLAIM(vp, td))
 2535                 panic("vgone: cannot reclaim");
 2536         if (mp != NULL)
 2537                 vn_finished_secondary_write(mp);
 2538         VNASSERT(vp->v_object == NULL, vp,
 2539             ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
 2540         /*
 2541          * Clear the advisory locks and wake up waiting threads.
 2542          */
 2543         lf_purgelocks(vp, &(vp->v_lockf));
 2544         /*
 2545          * Delete from old mount point vnode list.
 2546          */
 2547         delmntque(vp);
 2548         cache_purge(vp);
 2549         /*
 2550          * Done with purge, reset to the standard lock and invalidate
 2551          * the vnode.
 2552          */
 2553         VI_LOCK(vp);
 2554         vp->v_vnlock = &vp->v_lock;
 2555         vp->v_op = &dead_vnodeops;
 2556         vp->v_tag = "none";
 2557         vp->v_type = VBAD;
 2558 }
 2559 
 2560 /*
 2561  * Calculate the total number of references to a special device.
 2562  */
 2563 int
 2564 vcount(struct vnode *vp)
 2565 {
 2566         int count;
 2567 
 2568         dev_lock();
 2569         count = vp->v_rdev->si_usecount;
 2570         dev_unlock();
 2571         return (count);
 2572 }
 2573 
 2574 /*
 2575  * Same as above, but using the struct cdev *as argument
 2576  */
 2577 int
 2578 count_dev(struct cdev *dev)
 2579 {
 2580         int count;
 2581 
 2582         dev_lock();
 2583         count = dev->si_usecount;
 2584         dev_unlock();
 2585         return(count);
 2586 }
 2587 
 2588 /*
 2589  * Print out a description of a vnode.
 2590  */
 2591 static char *typename[] =
 2592 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
 2593  "VMARKER"};
 2594 
 2595 void
 2596 vn_printf(struct vnode *vp, const char *fmt, ...)
 2597 {
 2598         va_list ap;
 2599         char buf[256], buf2[16];
 2600         u_long flags;
 2601 
 2602         va_start(ap, fmt);
 2603         vprintf(fmt, ap);
 2604         va_end(ap);
 2605         printf("%p: ", (void *)vp);
 2606         printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
 2607         printf("    usecount %d, writecount %d, refcount %d mountedhere %p\n",
 2608             vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere);
 2609         buf[0] = '\0';
 2610         buf[1] = '\0';
 2611         if (vp->v_vflag & VV_ROOT)
 2612                 strlcat(buf, "|VV_ROOT", sizeof(buf));
 2613         if (vp->v_vflag & VV_ISTTY)
 2614                 strlcat(buf, "|VV_ISTTY", sizeof(buf));
 2615         if (vp->v_vflag & VV_NOSYNC)
 2616                 strlcat(buf, "|VV_NOSYNC", sizeof(buf));
 2617         if (vp->v_vflag & VV_CACHEDLABEL)
 2618                 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
 2619         if (vp->v_vflag & VV_TEXT)
 2620                 strlcat(buf, "|VV_TEXT", sizeof(buf));
 2621         if (vp->v_vflag & VV_COPYONWRITE)
 2622                 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
 2623         if (vp->v_vflag & VV_SYSTEM)
 2624                 strlcat(buf, "|VV_SYSTEM", sizeof(buf));
 2625         if (vp->v_vflag & VV_PROCDEP)
 2626                 strlcat(buf, "|VV_PROCDEP", sizeof(buf));
 2627         if (vp->v_vflag & VV_NOKNOTE)
 2628                 strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
 2629         if (vp->v_vflag & VV_DELETED)
 2630                 strlcat(buf, "|VV_DELETED", sizeof(buf));
 2631         if (vp->v_vflag & VV_MD)
 2632                 strlcat(buf, "|VV_MD", sizeof(buf));
 2633         flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC |
 2634             VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
 2635             VV_NOKNOTE | VV_DELETED | VV_MD);
 2636         if (flags != 0) {
 2637                 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
 2638                 strlcat(buf, buf2, sizeof(buf));
 2639         }
 2640         if (vp->v_iflag & VI_MOUNT)
 2641                 strlcat(buf, "|VI_MOUNT", sizeof(buf));
 2642         if (vp->v_iflag & VI_AGE)
 2643                 strlcat(buf, "|VI_AGE", sizeof(buf));
 2644         if (vp->v_iflag & VI_DOOMED)
 2645                 strlcat(buf, "|VI_DOOMED", sizeof(buf));
 2646         if (vp->v_iflag & VI_FREE)
 2647                 strlcat(buf, "|VI_FREE", sizeof(buf));
 2648         if (vp->v_iflag & VI_OBJDIRTY)
 2649                 strlcat(buf, "|VI_OBJDIRTY", sizeof(buf));
 2650         if (vp->v_iflag & VI_DOINGINACT)
 2651                 strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
 2652         if (vp->v_iflag & VI_OWEINACT)
 2653                 strlcat(buf, "|VI_OWEINACT", sizeof(buf));
 2654         flags = vp->v_iflag & ~(VI_MOUNT | VI_AGE | VI_DOOMED | VI_FREE |
 2655             VI_OBJDIRTY | VI_DOINGINACT | VI_OWEINACT);
 2656         if (flags != 0) {
 2657                 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
 2658                 strlcat(buf, buf2, sizeof(buf));
 2659         }
 2660         printf("    flags (%s)\n", buf + 1);
 2661         if (mtx_owned(VI_MTX(vp)))
 2662                 printf(" VI_LOCKed");
 2663         if (vp->v_object != NULL)
 2664                 printf("    v_object %p ref %d pages %d\n",
 2665                     vp->v_object, vp->v_object->ref_count,
 2666                     vp->v_object->resident_page_count);
 2667         printf("    ");
 2668         lockmgr_printinfo(vp->v_vnlock);
 2669         printf("\n");
 2670         if (vp->v_data != NULL)
 2671                 VOP_PRINT(vp);
 2672 }
 2673 
 2674 #ifdef DDB
 2675 /*
 2676  * List all of the locked vnodes in the system.
 2677  * Called when debugging the kernel.
 2678  */
 2679 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
 2680 {
 2681         struct mount *mp, *nmp;
 2682         struct vnode *vp;
 2683 
 2684         /*
 2685          * Note: because this is DDB, we can't obey the locking semantics
 2686          * for these structures, which means we could catch an inconsistent
 2687          * state and dereference a nasty pointer.  Not much to be done
 2688          * about that.
 2689          */
 2690         db_printf("Locked vnodes\n");
 2691         for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
 2692                 nmp = TAILQ_NEXT(mp, mnt_list);
 2693                 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
 2694                         if (vp->v_type != VMARKER && VOP_ISLOCKED(vp, NULL))
 2695                                 vprint("", vp);
 2696                 }
 2697                 nmp = TAILQ_NEXT(mp, mnt_list);
 2698         }
 2699 }
 2700 
 2701 /*
 2702  * Show details about the given vnode.
 2703  */
 2704 DB_SHOW_COMMAND(vnode, db_show_vnode)
 2705 {
 2706         struct vnode *vp;
 2707 
 2708         if (!have_addr)
 2709                 return;
 2710         vp = (struct vnode *)addr;
 2711         vn_printf(vp, "vnode ");
 2712 }
 2713 
 2714 /*
 2715  * Show details about the given mount point.
 2716  */
 2717 DB_SHOW_COMMAND(mount, db_show_mount)
 2718 {
 2719         struct mount *mp;
 2720         struct statfs *sp;
 2721         struct vnode *vp;
 2722         char buf[512];
 2723         u_int flags;
 2724 
 2725         if (!have_addr) {
 2726                 /* No address given, print short info about all mount points. */
 2727                 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
 2728                         db_printf("%p %s on %s (%s)\n", mp,
 2729                             mp->mnt_stat.f_mntfromname,
 2730                             mp->mnt_stat.f_mntonname,
 2731                             mp->mnt_stat.f_fstypename);
 2732                         if (db_pager_quit)
 2733                                 break;
 2734                 }
 2735                 db_printf("\nMore info: show mount <addr>\n");
 2736                 return;
 2737         }
 2738 
 2739         mp = (struct mount *)addr;
 2740         db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
 2741             mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
 2742 
 2743         buf[0] = '\0';
 2744         flags = mp->mnt_flag;
 2745 #define MNT_FLAG(flag)  do {                                            \
 2746         if (flags & (flag)) {                                           \
 2747                 if (buf[0] != '\0')                                     \
 2748                         strlcat(buf, ", ", sizeof(buf));                \
 2749                 strlcat(buf, (#flag) + 4, sizeof(buf));                 \
 2750                 flags &= ~(flag);                                       \
 2751         }                                                               \
 2752 } while (0)
 2753         MNT_FLAG(MNT_RDONLY);
 2754         MNT_FLAG(MNT_SYNCHRONOUS);
 2755         MNT_FLAG(MNT_NOEXEC);
 2756         MNT_FLAG(MNT_NOSUID);
 2757         MNT_FLAG(MNT_UNION);
 2758         MNT_FLAG(MNT_ASYNC);
 2759         MNT_FLAG(MNT_SUIDDIR);
 2760         MNT_FLAG(MNT_SOFTDEP);
 2761         MNT_FLAG(MNT_NOSYMFOLLOW);
 2762         MNT_FLAG(MNT_GJOURNAL);
 2763         MNT_FLAG(MNT_MULTILABEL);
 2764         MNT_FLAG(MNT_ACLS);
 2765         MNT_FLAG(MNT_NOATIME);
 2766         MNT_FLAG(MNT_NOCLUSTERR);
 2767         MNT_FLAG(MNT_NOCLUSTERW);
 2768         MNT_FLAG(MNT_EXRDONLY);
 2769         MNT_FLAG(MNT_EXPORTED);
 2770         MNT_FLAG(MNT_DEFEXPORTED);
 2771         MNT_FLAG(MNT_EXPORTANON);
 2772         MNT_FLAG(MNT_EXKERB);
 2773         MNT_FLAG(MNT_EXPUBLIC);
 2774         MNT_FLAG(MNT_LOCAL);
 2775         MNT_FLAG(MNT_QUOTA);
 2776         MNT_FLAG(MNT_ROOTFS);
 2777         MNT_FLAG(MNT_USER);
 2778         MNT_FLAG(MNT_IGNORE);
 2779         MNT_FLAG(MNT_UPDATE);
 2780         MNT_FLAG(MNT_DELEXPORT);
 2781         MNT_FLAG(MNT_RELOAD);
 2782         MNT_FLAG(MNT_FORCE);
 2783         MNT_FLAG(MNT_SNAPSHOT);
 2784         MNT_FLAG(MNT_BYFSID);
 2785 #undef MNT_FLAG
 2786         if (flags != 0) {
 2787                 if (buf[0] != '\0')
 2788                         strlcat(buf, ", ", sizeof(buf));
 2789                 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
 2790                     "0x%08x", flags);
 2791         }
 2792         db_printf("    mnt_flag = %s\n", buf);
 2793 
 2794         buf[0] = '\0';
 2795         flags = mp->mnt_kern_flag;
 2796 #define MNT_KERN_FLAG(flag)     do {                                    \
 2797         if (flags & (flag)) {                                           \
 2798                 if (buf[0] != '\0')                                     \
 2799                         strlcat(buf, ", ", sizeof(buf));                \
 2800                 strlcat(buf, (#flag) + 5, sizeof(buf));                 \
 2801                 flags &= ~(flag);                                       \
 2802         }                                                               \
 2803 } while (0)
 2804         MNT_KERN_FLAG(MNTK_UNMOUNTF);
 2805         MNT_KERN_FLAG(MNTK_ASYNC);
 2806         MNT_KERN_FLAG(MNTK_SOFTDEP);
 2807         MNT_KERN_FLAG(MNTK_NOINSMNTQ);
 2808         MNT_KERN_FLAG(MNTK_UNMOUNT);
 2809         MNT_KERN_FLAG(MNTK_MWAIT);
 2810         MNT_KERN_FLAG(MNTK_SUSPEND);
 2811         MNT_KERN_FLAG(MNTK_SUSPEND2);
 2812         MNT_KERN_FLAG(MNTK_SUSPENDED);
 2813         MNT_KERN_FLAG(MNTK_MPSAFE);
 2814         MNT_KERN_FLAG(MNTK_NOKNOTE);
 2815         MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
 2816 #undef MNT_KERN_FLAG
 2817         if (flags != 0) {
 2818                 if (buf[0] != '\0')
 2819                         strlcat(buf, ", ", sizeof(buf));
 2820                 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
 2821                     "0x%08x", flags);
 2822         }
 2823         db_printf("    mnt_kern_flag = %s\n", buf);
 2824 
 2825         sp = &mp->mnt_stat;
 2826         db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
 2827             "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
 2828             "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
 2829             "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
 2830             (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
 2831             (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
 2832             (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
 2833             (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
 2834             (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
 2835             (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
 2836             (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
 2837             (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
 2838 
 2839         db_printf("    mnt_cred = { uid=%u ruid=%u",
 2840             (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
 2841         if (mp->mnt_cred->cr_prison != NULL)
 2842                 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
 2843         db_printf(" }\n");
 2844         db_printf("    mnt_ref = %d\n", mp->mnt_ref);
 2845         db_printf("    mnt_gen = %d\n", mp->mnt_gen);
 2846         db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
 2847         db_printf("    mnt_writeopcount = %d\n", mp->mnt_writeopcount);
 2848         db_printf("    mnt_noasync = %u\n", mp->mnt_noasync);
 2849         db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
 2850         db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
 2851         db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
 2852         db_printf("    mnt_markercnt = %d\n", mp->mnt_markercnt);
 2853         db_printf("    mnt_holdcnt = %d\n", mp->mnt_holdcnt);
 2854         db_printf("    mnt_holdcntwaiters = %d\n", mp->mnt_holdcntwaiters);
 2855         db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
 2856         db_printf("    mnt_secondary_accwrites = %d\n",
 2857             mp->mnt_secondary_accwrites);
 2858         db_printf("    mnt_gjprovider = %s\n",
 2859             mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
 2860         db_printf("\n");
 2861 
 2862         TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
 2863                 if (vp->v_type != VMARKER) {
 2864                         vn_printf(vp, "vnode ");
 2865                         if (db_pager_quit)
 2866                                 break;
 2867                 }
 2868         }
 2869 }
 2870 #endif  /* DDB */
 2871 
 2872 /*
 2873  * Fill in a struct xvfsconf based on a struct vfsconf.
 2874  */
 2875 static void
 2876 vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
 2877 {
 2878 
 2879         strcpy(xvfsp->vfc_name, vfsp->vfc_name);
 2880         xvfsp->vfc_typenum = vfsp->vfc_typenum;
 2881         xvfsp->vfc_refcount = vfsp->vfc_refcount;
 2882         xvfsp->vfc_flags = vfsp->vfc_flags;
 2883         /*
 2884          * These are unused in userland, we keep them
 2885          * to not break binary compatibility.
 2886          */
 2887         xvfsp->vfc_vfsops = NULL;
 2888         xvfsp->vfc_next = NULL;
 2889 }
 2890 
 2891 /*
 2892  * Top level filesystem related information gathering.
 2893  */
 2894 static int
 2895 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
 2896 {
 2897         struct vfsconf *vfsp;
 2898         struct xvfsconf xvfsp;
 2899         int error;
 2900 
 2901         error = 0;
 2902         TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
 2903                 bzero(&xvfsp, sizeof(xvfsp));
 2904                 vfsconf2x(vfsp, &xvfsp);
 2905                 error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp);
 2906                 if (error)
 2907                         break;
 2908         }
 2909         return (error);
 2910 }
 2911 
 2912 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
 2913     "S,xvfsconf", "List of all configured filesystems");
 2914 
 2915 #ifndef BURN_BRIDGES
 2916 static int      sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
 2917 
 2918 static int
 2919 vfs_sysctl(SYSCTL_HANDLER_ARGS)
 2920 {
 2921         int *name = (int *)arg1 - 1;    /* XXX */
 2922         u_int namelen = arg2 + 1;       /* XXX */
 2923         struct vfsconf *vfsp;
 2924         struct xvfsconf xvfsp;
 2925 
 2926         printf("WARNING: userland calling deprecated sysctl, "
 2927             "please rebuild world\n");
 2928 
 2929 #if 1 || defined(COMPAT_PRELITE2)
 2930         /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
 2931         if (namelen == 1)
 2932                 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
 2933 #endif
 2934 
 2935         switch (name[1]) {
 2936         case VFS_MAXTYPENUM:
 2937                 if (namelen != 2)
 2938                         return (ENOTDIR);
 2939                 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
 2940         case VFS_CONF:
 2941                 if (namelen != 3)
 2942                         return (ENOTDIR);       /* overloaded */
 2943                 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
 2944                         if (vfsp->vfc_typenum == name[2])
 2945                                 break;
 2946                 if (vfsp == NULL)
 2947                         return (EOPNOTSUPP);
 2948                 bzero(&xvfsp, sizeof(xvfsp));
 2949                 vfsconf2x(vfsp, &xvfsp);
 2950                 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
 2951         }
 2952         return (EOPNOTSUPP);
 2953 }
 2954 
 2955 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP,
 2956         vfs_sysctl, "Generic filesystem");
 2957 
 2958 #if 1 || defined(COMPAT_PRELITE2)
 2959 
 2960 static int
 2961 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
 2962 {
 2963         int error;
 2964         struct vfsconf *vfsp;
 2965         struct ovfsconf ovfs;
 2966 
 2967         TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
 2968                 bzero(&ovfs, sizeof(ovfs));
 2969                 ovfs.vfc_vfsops = vfsp->vfc_vfsops;     /* XXX used as flag */
 2970                 strcpy(ovfs.vfc_name, vfsp->vfc_name);
 2971                 ovfs.vfc_index = vfsp->vfc_typenum;
 2972                 ovfs.vfc_refcount = vfsp->vfc_refcount;
 2973                 ovfs.vfc_flags = vfsp->vfc_flags;
 2974                 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
 2975                 if (error)
 2976                         return error;
 2977         }
 2978         return 0;
 2979 }
 2980 
 2981 #endif /* 1 || COMPAT_PRELITE2 */
 2982 #endif /* !BURN_BRIDGES */
 2983 
 2984 #define KINFO_VNODESLOP         10
 2985 #ifdef notyet
 2986 /*
 2987  * Dump vnode list (via sysctl).
 2988  */
 2989 /* ARGSUSED */
 2990 static int
 2991 sysctl_vnode(SYSCTL_HANDLER_ARGS)
 2992 {
 2993         struct xvnode *xvn;
 2994         struct thread *td = req->td;
 2995         struct mount *mp;
 2996         struct vnode *vp;
 2997         int error, len, n;
 2998 
 2999         /*
 3000          * Stale numvnodes access is not fatal here.
 3001          */
 3002         req->lock = 0;
 3003         len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
 3004         if (!req->oldptr)
 3005                 /* Make an estimate */
 3006                 return (SYSCTL_OUT(req, 0, len));
 3007 
 3008         error = sysctl_wire_old_buffer(req, 0);
 3009         if (error != 0)
 3010                 return (error);
 3011         xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
 3012         n = 0;
 3013         mtx_lock(&mountlist_mtx);
 3014         TAILQ_FOREACH(mp, &mountlist, mnt_list) {
 3015                 if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
 3016                         continue;
 3017                 MNT_ILOCK(mp);
 3018                 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
 3019                         if (n == len)
 3020                                 break;
 3021                         vref(vp);
 3022                         xvn[n].xv_size = sizeof *xvn;
 3023                         xvn[n].xv_vnode = vp;
 3024                         xvn[n].xv_id = 0;       /* XXX compat */
 3025 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
 3026                         XV_COPY(usecount);
 3027                         XV_COPY(writecount);
 3028                         XV_COPY(holdcnt);
 3029                         XV_COPY(mount);
 3030                         XV_COPY(numoutput);
 3031                         XV_COPY(type);
 3032 #undef XV_COPY
 3033                         xvn[n].xv_flag = vp->v_vflag;
 3034 
 3035                         switch (vp->v_type) {
 3036                         case VREG:
 3037                         case VDIR:
 3038                         case VLNK:
 3039                                 break;
 3040                         case VBLK:
 3041                         case VCHR:
 3042                                 if (vp->v_rdev == NULL) {
 3043                                         vrele(vp);
 3044                                         continue;
 3045                                 }
 3046                                 xvn[n].xv_dev = dev2udev(vp->v_rdev);
 3047                                 break;
 3048                         case VSOCK:
 3049                                 xvn[n].xv_socket = vp->v_socket;
 3050                                 break;
 3051                         case VFIFO:
 3052                                 xvn[n].xv_fifo = vp->v_fifoinfo;
 3053                                 break;
 3054                         case VNON:
 3055                         case VBAD:
 3056                         default:
 3057                                 /* shouldn't happen? */
 3058                                 vrele(vp);
 3059                                 continue;
 3060                         }
 3061                         vrele(vp);
 3062                         ++n;
 3063                 }
 3064                 MNT_IUNLOCK(mp);
 3065                 mtx_lock(&mountlist_mtx);
 3066                 vfs_unbusy(mp, td);
 3067                 if (n == len)
 3068                         break;
 3069         }
 3070         mtx_unlock(&mountlist_mtx);
 3071 
 3072         error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
 3073         free(xvn, M_TEMP);
 3074         return (error);
 3075 }
 3076 
 3077 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
 3078         0, 0, sysctl_vnode, "S,xvnode", "");
 3079 #endif
 3080 
 3081 /*
 3082  * Unmount all filesystems. The list is traversed in reverse order
 3083  * of mounting to avoid dependencies.
 3084  */
 3085 void
 3086 vfs_unmountall(void)
 3087 {
 3088         struct mount *mp;
 3089         struct thread *td;
 3090         int error;
 3091 
 3092         KASSERT(curthread != NULL, ("vfs_unmountall: NULL curthread"));
 3093         td = curthread;
 3094         /*
 3095          * Since this only runs when rebooting, it is not interlocked.
 3096          */
 3097         while(!TAILQ_EMPTY(&mountlist)) {
 3098                 mp = TAILQ_LAST(&mountlist, mntlist);
 3099                 error = dounmount(mp, MNT_FORCE, td);
 3100                 if (error) {
 3101                         TAILQ_REMOVE(&mountlist, mp, mnt_list);
 3102                         /*
 3103                          * XXX: Due to the way in which we mount the root
 3104                          * file system off of devfs, devfs will generate a
 3105                          * "busy" warning when we try to unmount it before
 3106                          * the root.  Don't print a warning as a result in
 3107                          * order to avoid false positive errors that may
 3108                          * cause needless upset.
 3109                          */
 3110                         if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) {
 3111                                 printf("unmount of %s failed (",
 3112                                     mp->mnt_stat.f_mntonname);
 3113                                 if (error == EBUSY)
 3114                                         printf("BUSY)\n");
 3115                                 else
 3116                                         printf("%d)\n", error);
 3117                         }
 3118                 } else {
 3119                         /* The unmount has removed mp from the mountlist */
 3120                 }
 3121         }
 3122 }
 3123 
 3124 /*
 3125  * perform msync on all vnodes under a mount point
 3126  * the mount point must be locked.
 3127  */
 3128 void
 3129 vfs_msync(struct mount *mp, int flags)
 3130 {
 3131         struct vnode *vp, *mvp;
 3132         struct vm_object *obj;
 3133 
 3134         MNT_ILOCK(mp);
 3135         MNT_VNODE_FOREACH(vp, mp, mvp) {
 3136                 VI_LOCK(vp);
 3137                 if ((vp->v_iflag & VI_OBJDIRTY) &&
 3138                     (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
 3139                         MNT_IUNLOCK(mp);
 3140                         if (!vget(vp,
 3141                             LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
 3142                             curthread)) {
 3143                                 if (vp->v_vflag & VV_NOSYNC) {  /* unlinked */
 3144                                         vput(vp);
 3145                                         MNT_ILOCK(mp);
 3146                                         continue;
 3147                                 }
 3148 
 3149                                 obj = vp->v_object;
 3150                                 if (obj != NULL) {
 3151                                         VM_OBJECT_LOCK(obj);
 3152                                         vm_object_page_clean(obj, 0, 0,
 3153                                             flags == MNT_WAIT ?
 3154                                             OBJPC_SYNC : OBJPC_NOSYNC);
 3155                                         VM_OBJECT_UNLOCK(obj);
 3156                                 }
 3157                                 vput(vp);
 3158                         }
 3159                         MNT_ILOCK(mp);
 3160                 } else
 3161                         VI_UNLOCK(vp);
 3162         }
 3163         MNT_IUNLOCK(mp);
 3164 }
 3165 
 3166 /*
 3167  * Mark a vnode as free, putting it up for recycling.
 3168  */
 3169 static void
 3170 vfree(struct vnode *vp)
 3171 {
 3172 
 3173         CTR1(KTR_VFS, "vfree vp %p", vp);
 3174         ASSERT_VI_LOCKED(vp, "vfree");
 3175         mtx_lock(&vnode_free_list_mtx);
 3176         VNASSERT(vp->v_op != NULL, vp, ("vfree: vnode already reclaimed."));
 3177         VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, ("vnode already free"));
 3178         VNASSERT(VSHOULDFREE(vp), vp, ("vfree: freeing when we shouldn't"));
 3179         VNASSERT((vp->v_iflag & VI_DOOMED) == 0, vp,
 3180             ("vfree: Freeing doomed vnode"));
 3181         if (vp->v_iflag & VI_AGE) {
 3182                 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
 3183         } else {
 3184                 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
 3185         }
 3186         freevnodes++;
 3187         vp->v_iflag &= ~VI_AGE;
 3188         vp->v_iflag |= VI_FREE;
 3189         mtx_unlock(&vnode_free_list_mtx);
 3190 }
 3191 
 3192 /*
 3193  * Opposite of vfree() - mark a vnode as in use.
 3194  */
 3195 static void
 3196 vbusy(struct vnode *vp)
 3197 {
 3198         CTR1(KTR_VFS, "vbusy vp %p", vp);
 3199         ASSERT_VI_LOCKED(vp, "vbusy");
 3200         VNASSERT((vp->v_iflag & VI_FREE) != 0, vp, ("vnode not free"));
 3201         VNASSERT(vp->v_op != NULL, vp, ("vbusy: vnode already reclaimed."));
 3202 
 3203         mtx_lock(&vnode_free_list_mtx);
 3204         TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
 3205         freevnodes--;
 3206         vp->v_iflag &= ~(VI_FREE|VI_AGE);
 3207         mtx_unlock(&vnode_free_list_mtx);
 3208 }
 3209 
 3210 static void
 3211 destroy_vpollinfo(struct vpollinfo *vi)
 3212 {
 3213         knlist_destroy(&vi->vpi_selinfo.si_note);
 3214         mtx_destroy(&vi->vpi_lock);
 3215         uma_zfree(vnodepoll_zone, vi);
 3216 }
 3217 
 3218 /*
 3219  * Initalize per-vnode helper structure to hold poll-related state.
 3220  */
 3221 void
 3222 v_addpollinfo(struct vnode *vp)
 3223 {
 3224         struct vpollinfo *vi;
 3225 
 3226         if (vp->v_pollinfo != NULL)
 3227                 return;
 3228         vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
 3229         mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
 3230         knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
 3231             vfs_knlunlock, vfs_knllocked);
 3232         VI_LOCK(vp);
 3233         if (vp->v_pollinfo != NULL) {
 3234                 VI_UNLOCK(vp);
 3235                 destroy_vpollinfo(vi);
 3236                 return;
 3237         }
 3238         vp->v_pollinfo = vi;
 3239         VI_UNLOCK(vp);
 3240 }
 3241 
 3242 /*
 3243  * Record a process's interest in events which might happen to
 3244  * a vnode.  Because poll uses the historic select-style interface
 3245  * internally, this routine serves as both the ``check for any
 3246  * pending events'' and the ``record my interest in future events''
 3247  * functions.  (These are done together, while the lock is held,
 3248  * to avoid race conditions.)
 3249  */
 3250 int
 3251 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
 3252 {
 3253 
 3254         v_addpollinfo(vp);
 3255         mtx_lock(&vp->v_pollinfo->vpi_lock);
 3256         if (vp->v_pollinfo->vpi_revents & events) {
 3257                 /*
 3258                  * This leaves events we are not interested
 3259                  * in available for the other process which
 3260                  * which presumably had requested them
 3261                  * (otherwise they would never have been
 3262                  * recorded).
 3263                  */
 3264                 events &= vp->v_pollinfo->vpi_revents;
 3265                 vp->v_pollinfo->vpi_revents &= ~events;
 3266 
 3267                 mtx_unlock(&vp->v_pollinfo->vpi_lock);
 3268                 return events;
 3269         }
 3270         vp->v_pollinfo->vpi_events |= events;
 3271         selrecord(td, &vp->v_pollinfo->vpi_selinfo);
 3272         mtx_unlock(&vp->v_pollinfo->vpi_lock);
 3273         return 0;
 3274 }
 3275 
 3276 /*
 3277  * Routine to create and manage a filesystem syncer vnode.
 3278  */
 3279 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
 3280 static int      sync_fsync(struct  vop_fsync_args *);
 3281 static int      sync_inactive(struct  vop_inactive_args *);
 3282 static int      sync_reclaim(struct  vop_reclaim_args *);
 3283 
 3284 static struct vop_vector sync_vnodeops = {
 3285         .vop_bypass =   VOP_EOPNOTSUPP,
 3286         .vop_close =    sync_close,             /* close */
 3287         .vop_fsync =    sync_fsync,             /* fsync */
 3288         .vop_inactive = sync_inactive,  /* inactive */
 3289         .vop_reclaim =  sync_reclaim,   /* reclaim */
 3290         .vop_lock1 =    vop_stdlock,    /* lock */
 3291         .vop_unlock =   vop_stdunlock,  /* unlock */
 3292         .vop_islocked = vop_stdislocked,        /* islocked */
 3293 };
 3294 
 3295 /*
 3296  * Create a new filesystem syncer vnode for the specified mount point.
 3297  */
 3298 int
 3299 vfs_allocate_syncvnode(struct mount *mp)
 3300 {
 3301         struct vnode *vp;
 3302         static long start, incr, next;
 3303         int error;
 3304 
 3305         /* Allocate a new vnode */
 3306         if ((error = getnewvnode("syncer", mp, &sync_vnodeops, &vp)) != 0) {
 3307                 mp->mnt_syncer = NULL;
 3308                 return (error);
 3309         }
 3310         vp->v_type = VNON;
 3311         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
 3312         vp->v_vflag |= VV_FORCEINSMQ;
 3313         error = insmntque(vp, mp);
 3314         if (error != 0)
 3315                 panic("vfs_allocate_syncvnode: insmntque failed");
 3316         vp->v_vflag &= ~VV_FORCEINSMQ;
 3317         VOP_UNLOCK(vp, 0, curthread);
 3318         /*
 3319          * Place the vnode onto the syncer worklist. We attempt to
 3320          * scatter them about on the list so that they will go off
 3321          * at evenly distributed times even if all the filesystems
 3322          * are mounted at once.
 3323          */
 3324         next += incr;
 3325         if (next == 0 || next > syncer_maxdelay) {
 3326                 start /= 2;
 3327                 incr /= 2;
 3328                 if (start == 0) {
 3329                         start = syncer_maxdelay / 2;
 3330                         incr = syncer_maxdelay;
 3331                 }
 3332                 next = start;
 3333         }
 3334         VI_LOCK(vp);
 3335         vn_syncer_add_to_worklist(&vp->v_bufobj,
 3336             syncdelay > 0 ? next % syncdelay : 0);
 3337         /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
 3338         mtx_lock(&sync_mtx);
 3339         sync_vnode_count++;
 3340         mtx_unlock(&sync_mtx);
 3341         VI_UNLOCK(vp);
 3342         mp->mnt_syncer = vp;
 3343         return (0);
 3344 }
 3345 
 3346 /*
 3347  * Do a lazy sync of the filesystem.
 3348  */
 3349 static int
 3350 sync_fsync(struct vop_fsync_args *ap)
 3351 {
 3352         struct vnode *syncvp = ap->a_vp;
 3353         struct mount *mp = syncvp->v_mount;
 3354         struct thread *td = ap->a_td;
 3355         int error;
 3356         struct bufobj *bo;
 3357 
 3358         /*
 3359          * We only need to do something if this is a lazy evaluation.
 3360          */
 3361         if (ap->a_waitfor != MNT_LAZY)
 3362                 return (0);
 3363 
 3364         /*
 3365          * Move ourselves to the back of the sync list.
 3366          */
 3367         bo = &syncvp->v_bufobj;
 3368         BO_LOCK(bo);
 3369         vn_syncer_add_to_worklist(bo, syncdelay);
 3370         BO_UNLOCK(bo);
 3371 
 3372         /*
 3373          * Walk the list of vnodes pushing all that are dirty and
 3374          * not already on the sync list.
 3375          */
 3376         mtx_lock(&mountlist_mtx);
 3377         if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
 3378                 mtx_unlock(&mountlist_mtx);
 3379                 return (0);
 3380         }
 3381         if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
 3382                 vfs_unbusy(mp, td);
 3383                 return (0);
 3384         }
 3385         MNT_ILOCK(mp);
 3386         mp->mnt_noasync++;
 3387         mp->mnt_kern_flag &= ~MNTK_ASYNC;
 3388         MNT_IUNLOCK(mp);
 3389         vfs_msync(mp, MNT_NOWAIT);
 3390         error = VFS_SYNC(mp, MNT_LAZY, td);
 3391         MNT_ILOCK(mp);
 3392         mp->mnt_noasync--;
 3393         if ((mp->mnt_flag & MNT_ASYNC) != 0 && mp->mnt_noasync == 0)
 3394                 mp->mnt_kern_flag |= MNTK_ASYNC;
 3395         MNT_IUNLOCK(mp);
 3396         vn_finished_write(mp);
 3397         vfs_unbusy(mp, td);
 3398         return (error);
 3399 }
 3400 
 3401 /*
 3402  * The syncer vnode is no referenced.
 3403  */
 3404 static int
 3405 sync_inactive(struct vop_inactive_args *ap)
 3406 {
 3407 
 3408         vgone(ap->a_vp);
 3409         return (0);
 3410 }
 3411 
 3412 /*
 3413  * The syncer vnode is no longer needed and is being decommissioned.
 3414  *
 3415  * Modifications to the worklist must be protected by sync_mtx.
 3416  */
 3417 static int
 3418 sync_reclaim(struct vop_reclaim_args *ap)
 3419 {
 3420         struct vnode *vp = ap->a_vp;
 3421         struct bufobj *bo;
 3422 
 3423         VI_LOCK(vp);
 3424         bo = &vp->v_bufobj;
 3425         vp->v_mount->mnt_syncer = NULL;
 3426         if (bo->bo_flag & BO_ONWORKLST) {
 3427                 mtx_lock(&sync_mtx);
 3428                 LIST_REMOVE(bo, bo_synclist);
 3429                 syncer_worklist_len--;
 3430                 sync_vnode_count--;
 3431                 mtx_unlock(&sync_mtx);
 3432                 bo->bo_flag &= ~BO_ONWORKLST;
 3433         }
 3434         VI_UNLOCK(vp);
 3435 
 3436         return (0);
 3437 }
 3438 
 3439 /*
 3440  * Check if vnode represents a disk device
 3441  */
 3442 int
 3443 vn_isdisk(struct vnode *vp, int *errp)
 3444 {
 3445         int error;
 3446 
 3447         error = 0;
 3448         dev_lock();
 3449         if (vp->v_type != VCHR)
 3450                 error = ENOTBLK;
 3451         else if (vp->v_rdev == NULL)
 3452                 error = ENXIO;
 3453         else if (vp->v_rdev->si_devsw == NULL)
 3454                 error = ENXIO;
 3455         else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
 3456                 error = ENOTBLK;
 3457         dev_unlock();
 3458         if (errp != NULL)
 3459                 *errp = error;
 3460         return (error == 0);
 3461 }
 3462 
 3463 /*
 3464  * Common filesystem object access control check routine.  Accepts a
 3465  * vnode's type, "mode", uid and gid, requested access mode, credentials,
 3466  * and optional call-by-reference privused argument allowing vaccess()
 3467  * to indicate to the caller whether privilege was used to satisfy the
 3468  * request (obsoleted).  Returns 0 on success, or an errno on failure.
 3469  *
 3470  * The ifdef'd CAPABILITIES version is here for reference, but is not
 3471  * actually used.
 3472  */
 3473 int
 3474 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
 3475     mode_t acc_mode, struct ucred *cred, int *privused)
 3476 {
 3477         mode_t dac_granted;
 3478         mode_t priv_granted;
 3479 
 3480         /*
 3481          * Look for a normal, non-privileged way to access the file/directory
 3482          * as requested.  If it exists, go with that.
 3483          */
 3484 
 3485         if (privused != NULL)
 3486                 *privused = 0;
 3487 
 3488         dac_granted = 0;
 3489 
 3490         /* Check the owner. */
 3491         if (cred->cr_uid == file_uid) {
 3492                 dac_granted |= VADMIN;
 3493                 if (file_mode & S_IXUSR)
 3494                         dac_granted |= VEXEC;
 3495                 if (file_mode & S_IRUSR)
 3496                         dac_granted |= VREAD;
 3497                 if (file_mode & S_IWUSR)
 3498                         dac_granted |= (VWRITE | VAPPEND);
 3499 
 3500                 if ((acc_mode & dac_granted) == acc_mode)
 3501                         return (0);
 3502 
 3503                 goto privcheck;
 3504         }
 3505 
 3506         /* Otherwise, check the groups (first match) */
 3507         if (groupmember(file_gid, cred)) {
 3508                 if (file_mode & S_IXGRP)
 3509                         dac_granted |= VEXEC;
 3510                 if (file_mode & S_IRGRP)
 3511                         dac_granted |= VREAD;
 3512                 if (file_mode & S_IWGRP)
 3513                         dac_granted |= (VWRITE | VAPPEND);
 3514 
 3515                 if ((acc_mode & dac_granted) == acc_mode)
 3516                         return (0);
 3517 
 3518                 goto privcheck;
 3519         }
 3520 
 3521         /* Otherwise, check everyone else. */
 3522         if (file_mode & S_IXOTH)
 3523                 dac_granted |= VEXEC;
 3524         if (file_mode & S_IROTH)
 3525                 dac_granted |= VREAD;
 3526         if (file_mode & S_IWOTH)
 3527                 dac_granted |= (VWRITE | VAPPEND);
 3528         if ((acc_mode & dac_granted) == acc_mode)
 3529                 return (0);
 3530 
 3531 privcheck:
 3532         /*
 3533          * Build a privilege mask to determine if the set of privileges
 3534          * satisfies the requirements when combined with the granted mask
 3535          * from above.  For each privilege, if the privilege is required,
 3536          * bitwise or the request type onto the priv_granted mask.
 3537          */
 3538         priv_granted = 0;
 3539 
 3540         if (type == VDIR) {
 3541                 /*
 3542                  * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
 3543                  * requests, instead of PRIV_VFS_EXEC.
 3544                  */
 3545                 if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
 3546                     !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0))
 3547                         priv_granted |= VEXEC;
 3548         } else {
 3549                 if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
 3550                     !priv_check_cred(cred, PRIV_VFS_EXEC, 0))
 3551                         priv_granted |= VEXEC;
 3552         }
 3553 
 3554         if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
 3555             !priv_check_cred(cred, PRIV_VFS_READ, 0))
 3556                 priv_granted |= VREAD;
 3557 
 3558         if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
 3559             !priv_check_cred(cred, PRIV_VFS_WRITE, 0))
 3560                 priv_granted |= (VWRITE | VAPPEND);
 3561 
 3562         if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
 3563             !priv_check_cred(cred, PRIV_VFS_ADMIN, 0))
 3564                 priv_granted |= VADMIN;
 3565 
 3566         if ((acc_mode & (priv_granted | dac_granted)) == acc_mode) {
 3567                 /* XXX audit: privilege used */
 3568                 if (privused != NULL)
 3569                         *privused = 1;
 3570                 return (0);
 3571         }
 3572 
 3573         return ((acc_mode & VADMIN) ? EPERM : EACCES);
 3574 }
 3575 
 3576 /*
 3577  * Credential check based on process requesting service, and per-attribute
 3578  * permissions.
 3579  */
 3580 int
 3581 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
 3582     struct thread *td, int access)
 3583 {
 3584 
 3585         /*
 3586          * Kernel-invoked always succeeds.
 3587          */
 3588         if (cred == NOCRED)
 3589                 return (0);
 3590 
 3591         /*
 3592          * Do not allow privileged processes in jail to directly manipulate
 3593          * system attributes.
 3594          */
 3595         switch (attrnamespace) {
 3596         case EXTATTR_NAMESPACE_SYSTEM:
 3597                 /* Potentially should be: return (EPERM); */
 3598                 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0));
 3599         case EXTATTR_NAMESPACE_USER:
 3600                 return (VOP_ACCESS(vp, access, cred, td));
 3601         default:
 3602                 return (EPERM);
 3603         }
 3604 }
 3605 
 3606 #ifdef DEBUG_VFS_LOCKS
 3607 /*
 3608  * This only exists to supress warnings from unlocked specfs accesses.  It is
 3609  * no longer ok to have an unlocked VFS.
 3610  */
 3611 #define IGNORE_LOCK(vp) ((vp)->v_type == VCHR || (vp)->v_type == VBAD)
 3612 
 3613 int vfs_badlock_ddb = 1;        /* Drop into debugger on violation. */
 3614 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, "");
 3615 
 3616 int vfs_badlock_mutex = 1;      /* Check for interlock across VOPs. */
 3617 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, "");
 3618 
 3619 int vfs_badlock_print = 1;      /* Print lock violations. */
 3620 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, "");
 3621 
 3622 #ifdef KDB
 3623 int vfs_badlock_backtrace = 1;  /* Print backtrace at lock violations. */
 3624 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, "");
 3625 #endif
 3626 
 3627 static void
 3628 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
 3629 {
 3630 
 3631 #ifdef KDB
 3632         if (vfs_badlock_backtrace)
 3633                 kdb_backtrace();
 3634 #endif
 3635         if (vfs_badlock_print)
 3636                 printf("%s: %p %s\n", str, (void *)vp, msg);
 3637         if (vfs_badlock_ddb)
 3638                 kdb_enter_why(KDB_WHY_VFSLOCK, "lock violation");
 3639 }
 3640 
 3641 void
 3642 assert_vi_locked(struct vnode *vp, const char *str)
 3643 {
 3644 
 3645         if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
 3646                 vfs_badlock("interlock is not locked but should be", str, vp);
 3647 }
 3648 
 3649 void
 3650 assert_vi_unlocked(struct vnode *vp, const char *str)
 3651 {
 3652 
 3653         if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
 3654                 vfs_badlock("interlock is locked but should not be", str, vp);
 3655 }
 3656 
 3657 void
 3658 assert_vop_locked(struct vnode *vp, const char *str)
 3659 {
 3660 
 3661         if (vp && !IGNORE_LOCK(vp) && VOP_ISLOCKED(vp, NULL) == 0)
 3662                 vfs_badlock("is not locked but should be", str, vp);
 3663 }
 3664 
 3665 void
 3666 assert_vop_unlocked(struct vnode *vp, const char *str)
 3667 {
 3668 
 3669         if (vp && !IGNORE_LOCK(vp) &&
 3670             VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE)
 3671                 vfs_badlock("is locked but should not be", str, vp);
 3672 }
 3673 
 3674 void
 3675 assert_vop_elocked(struct vnode *vp, const char *str)
 3676 {
 3677 
 3678         if (vp && !IGNORE_LOCK(vp) &&
 3679             VOP_ISLOCKED(vp, curthread) != LK_EXCLUSIVE)
 3680                 vfs_badlock("is not exclusive locked but should be", str, vp);
 3681 }
 3682 
 3683 #if 0
 3684 void
 3685 assert_vop_elocked_other(struct vnode *vp, const char *str)
 3686 {
 3687 
 3688         if (vp && !IGNORE_LOCK(vp) &&
 3689             VOP_ISLOCKED(vp, curthread) != LK_EXCLOTHER)
 3690                 vfs_badlock("is not exclusive locked by another thread",
 3691                     str, vp);
 3692 }
 3693 
 3694 void
 3695 assert_vop_slocked(struct vnode *vp, const char *str)
 3696 {
 3697 
 3698         if (vp && !IGNORE_LOCK(vp) &&
 3699             VOP_ISLOCKED(vp, curthread) != LK_SHARED)
 3700                 vfs_badlock("is not locked shared but should be", str, vp);
 3701 }
 3702 #endif /* 0 */
 3703 #endif /* DEBUG_VFS_LOCKS */
 3704 
 3705 void
 3706 vop_rename_pre(void *ap)
 3707 {
 3708         struct vop_rename_args *a = ap;
 3709 
 3710 #ifdef DEBUG_VFS_LOCKS
 3711         if (a->a_tvp)
 3712                 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
 3713         ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
 3714         ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
 3715         ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
 3716 
 3717         /* Check the source (from). */
 3718         if (a->a_tdvp != a->a_fdvp && a->a_tvp != a->a_fdvp)
 3719                 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
 3720         if (a->a_tvp != a->a_fvp)
 3721                 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
 3722 
 3723         /* Check the target. */
 3724         if (a->a_tvp)
 3725                 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
 3726         ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
 3727 #endif
 3728         if (a->a_tdvp != a->a_fdvp)
 3729                 vhold(a->a_fdvp);
 3730         if (a->a_tvp != a->a_fvp)
 3731                 vhold(a->a_fvp);
 3732         vhold(a->a_tdvp);
 3733         if (a->a_tvp)
 3734                 vhold(a->a_tvp);
 3735 }
 3736 
 3737 void
 3738 vop_strategy_pre(void *ap)
 3739 {
 3740 #ifdef DEBUG_VFS_LOCKS
 3741         struct vop_strategy_args *a;
 3742         struct buf *bp;
 3743 
 3744         a = ap;
 3745         bp = a->a_bp;
 3746 
 3747         /*
 3748          * Cluster ops lock their component buffers but not the IO container.
 3749          */
 3750         if ((bp->b_flags & B_CLUSTER) != 0)
 3751                 return;
 3752 
 3753         if (BUF_REFCNT(bp) < 1) {
 3754                 if (vfs_badlock_print)
 3755                         printf(
 3756                             "VOP_STRATEGY: bp is not locked but should be\n");
 3757                 if (vfs_badlock_ddb)
 3758                         kdb_enter_why(KDB_WHY_VFSLOCK, "lock violation");
 3759         }
 3760 #endif
 3761 }
 3762 
 3763 void
 3764 vop_lookup_pre(void *ap)
 3765 {
 3766 #ifdef DEBUG_VFS_LOCKS
 3767         struct vop_lookup_args *a;
 3768         struct vnode *dvp;
 3769 
 3770         a = ap;
 3771         dvp = a->a_dvp;
 3772         ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
 3773         ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
 3774 #endif
 3775 }
 3776 
 3777 void
 3778 vop_lookup_post(void *ap, int rc)
 3779 {
 3780 #ifdef DEBUG_VFS_LOCKS
 3781         struct vop_lookup_args *a;
 3782         struct vnode *dvp;
 3783         struct vnode *vp;
 3784 
 3785         a = ap;
 3786         dvp = a->a_dvp;
 3787         vp = *(a->a_vpp);
 3788 
 3789         ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
 3790         ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
 3791 
 3792         if (!rc)
 3793                 ASSERT_VOP_LOCKED(vp, "VOP_LOOKUP (child)");
 3794 #endif
 3795 }
 3796 
 3797 void
 3798 vop_lock_pre(void *ap)
 3799 {
 3800 #ifdef DEBUG_VFS_LOCKS
 3801         struct vop_lock1_args *a = ap;
 3802 
 3803         if ((a->a_flags & LK_INTERLOCK) == 0)
 3804                 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
 3805         else
 3806                 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
 3807 #endif
 3808 }
 3809 
 3810 void
 3811 vop_lock_post(void *ap, int rc)
 3812 {
 3813 #ifdef DEBUG_VFS_LOCKS
 3814         struct vop_lock1_args *a = ap;
 3815 
 3816         ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
 3817         if (rc == 0)
 3818                 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
 3819 #endif
 3820 }
 3821 
 3822 void
 3823 vop_unlock_pre(void *ap)
 3824 {
 3825 #ifdef DEBUG_VFS_LOCKS
 3826         struct vop_unlock_args *a = ap;
 3827 
 3828         if (a->a_flags & LK_INTERLOCK)
 3829                 ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
 3830         ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
 3831 #endif
 3832 }
 3833 
 3834 void
 3835 vop_unlock_post(void *ap, int rc)
 3836 {
 3837 #ifdef DEBUG_VFS_LOCKS
 3838         struct vop_unlock_args *a = ap;
 3839 
 3840         if (a->a_flags & LK_INTERLOCK)
 3841                 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
 3842 #endif
 3843 }
 3844 
 3845 void
 3846 vop_create_post(void *ap, int rc)
 3847 {
 3848         struct vop_create_args *a = ap;
 3849 
 3850         if (!rc)
 3851                 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
 3852 }
 3853 
 3854 void
 3855 vop_link_post(void *ap, int rc)
 3856 {
 3857         struct vop_link_args *a = ap;
 3858 
 3859         if (!rc) {
 3860                 VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
 3861                 VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
 3862         }
 3863 }
 3864 
 3865 void
 3866 vop_mkdir_post(void *ap, int rc)
 3867 {
 3868         struct vop_mkdir_args *a = ap;
 3869 
 3870         if (!rc)
 3871                 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
 3872 }
 3873 
 3874 void
 3875 vop_mknod_post(void *ap, int rc)
 3876 {
 3877         struct vop_mknod_args *a = ap;
 3878 
 3879         if (!rc)
 3880                 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
 3881 }
 3882 
 3883 void
 3884 vop_remove_post(void *ap, int rc)
 3885 {
 3886         struct vop_remove_args *a = ap;
 3887 
 3888         if (!rc) {
 3889                 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
 3890                 VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
 3891         }
 3892 }
 3893 
 3894 void
 3895 vop_rename_post(void *ap, int rc)
 3896 {
 3897         struct vop_rename_args *a = ap;
 3898 
 3899         if (!rc) {
 3900                 VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE);
 3901                 VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE);
 3902                 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
 3903                 if (a->a_tvp)
 3904                         VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
 3905         }
 3906         if (a->a_tdvp != a->a_fdvp)
 3907                 vdrop(a->a_fdvp);
 3908         if (a->a_tvp != a->a_fvp)
 3909                 vdrop(a->a_fvp);
 3910         vdrop(a->a_tdvp);
 3911         if (a->a_tvp)
 3912                 vdrop(a->a_tvp);
 3913 }
 3914 
 3915 void
 3916 vop_rmdir_post(void *ap, int rc)
 3917 {
 3918         struct vop_rmdir_args *a = ap;
 3919 
 3920         if (!rc) {
 3921                 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
 3922                 VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
 3923         }
 3924 }
 3925 
 3926 void
 3927 vop_setattr_post(void *ap, int rc)
 3928 {
 3929         struct vop_setattr_args *a = ap;
 3930 
 3931         if (!rc)
 3932                 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
 3933 }
 3934 
 3935 void
 3936 vop_symlink_post(void *ap, int rc)
 3937 {
 3938         struct vop_symlink_args *a = ap;
 3939 
 3940         if (!rc)
 3941                 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
 3942 }
 3943 
 3944 static struct knlist fs_knlist;
 3945 
 3946 static void
 3947 vfs_event_init(void *arg)
 3948 {
 3949         knlist_init(&fs_knlist, NULL, NULL, NULL, NULL);
 3950 }
 3951 /* XXX - correct order? */
 3952 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
 3953 
 3954 void
 3955 vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data __unused)
 3956 {
 3957 
 3958         KNOTE_UNLOCKED(&fs_knlist, event);
 3959 }
 3960 
 3961 static int      filt_fsattach(struct knote *kn);
 3962 static void     filt_fsdetach(struct knote *kn);
 3963 static int      filt_fsevent(struct knote *kn, long hint);
 3964 
 3965 struct filterops fs_filtops =
 3966         { 0, filt_fsattach, filt_fsdetach, filt_fsevent };
 3967 
 3968 static int
 3969 filt_fsattach(struct knote *kn)
 3970 {
 3971 
 3972         kn->kn_flags |= EV_CLEAR;
 3973         knlist_add(&fs_knlist, kn, 0);
 3974         return (0);
 3975 }
 3976 
 3977 static void
 3978 filt_fsdetach(struct knote *kn)
 3979 {
 3980 
 3981         knlist_remove(&fs_knlist, kn, 0);
 3982 }
 3983 
 3984 static int
 3985 filt_fsevent(struct knote *kn, long hint)
 3986 {
 3987 
 3988         kn->kn_fflags |= hint;
 3989         return (kn->kn_fflags != 0);
 3990 }
 3991 
 3992 static int
 3993 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
 3994 {
 3995         struct vfsidctl vc;
 3996         int error;
 3997         struct mount *mp;
 3998 
 3999         error = SYSCTL_IN(req, &vc, sizeof(vc));
 4000         if (error)
 4001                 return (error);
 4002         if (vc.vc_vers != VFS_CTL_VERS1)
 4003                 return (EINVAL);
 4004         mp = vfs_getvfs(&vc.vc_fsid);
 4005         if (mp == NULL)
 4006                 return (ENOENT);
 4007         /* ensure that a specific sysctl goes to the right filesystem. */
 4008         if (strcmp(vc.vc_fstypename, "*") != 0 &&
 4009             strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
 4010                 vfs_rel(mp);
 4011                 return (EINVAL);
 4012         }
 4013         VCTLTOREQ(&vc, req);
 4014         error = VFS_SYSCTL(mp, vc.vc_op, req);
 4015         vfs_rel(mp);
 4016         return (error);
 4017 }
 4018 
 4019 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLFLAG_WR, NULL, 0, sysctl_vfs_ctl, "",
 4020     "Sysctl by fsid");
 4021 
 4022 /*
 4023  * Function to initialize a va_filerev field sensibly.
 4024  * XXX: Wouldn't a random number make a lot more sense ??
 4025  */
 4026 u_quad_t
 4027 init_va_filerev(void)
 4028 {
 4029         struct bintime bt;
 4030 
 4031         getbinuptime(&bt);
 4032         return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
 4033 }
 4034 
 4035 static int      filt_vfsread(struct knote *kn, long hint);
 4036 static int      filt_vfswrite(struct knote *kn, long hint);
 4037 static int      filt_vfsvnode(struct knote *kn, long hint);
 4038 static void     filt_vfsdetach(struct knote *kn);
 4039 static struct filterops vfsread_filtops =
 4040         { 1, NULL, filt_vfsdetach, filt_vfsread };
 4041 static struct filterops vfswrite_filtops =
 4042         { 1, NULL, filt_vfsdetach, filt_vfswrite };
 4043 static struct filterops vfsvnode_filtops =
 4044         { 1, NULL, filt_vfsdetach, filt_vfsvnode };
 4045 
 4046 static void
 4047 vfs_knllock(void *arg)
 4048 {
 4049         struct vnode *vp = arg;
 4050 
 4051         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
 4052 }
 4053 
 4054 static void
 4055 vfs_knlunlock(void *arg)
 4056 {
 4057         struct vnode *vp = arg;
 4058 
 4059         VOP_UNLOCK(vp, 0, curthread);
 4060 }
 4061 
 4062 static int
 4063 vfs_knllocked(void *arg)
 4064 {
 4065         struct vnode *vp = arg;
 4066 
 4067         return (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE);
 4068 }
 4069 
 4070 int
 4071 vfs_kqfilter(struct vop_kqfilter_args *ap)
 4072 {
 4073         struct vnode *vp = ap->a_vp;
 4074         struct knote *kn = ap->a_kn;
 4075         struct knlist *knl;
 4076 
 4077         switch (kn->kn_filter) {
 4078         case EVFILT_READ:
 4079                 kn->kn_fop = &vfsread_filtops;
 4080                 break;
 4081         case EVFILT_WRITE:
 4082                 kn->kn_fop = &vfswrite_filtops;
 4083                 break;
 4084         case EVFILT_VNODE:
 4085                 kn->kn_fop = &vfsvnode_filtops;
 4086                 break;
 4087         default:
 4088                 return (EINVAL);
 4089         }
 4090 
 4091         kn->kn_hook = (caddr_t)vp;
 4092 
 4093         v_addpollinfo(vp);
 4094         if (vp->v_pollinfo == NULL)
 4095                 return (ENOMEM);
 4096         knl = &vp->v_pollinfo->vpi_selinfo.si_note;
 4097         knlist_add(knl, kn, 0);
 4098 
 4099         return (0);
 4100 }
 4101 
 4102 /*
 4103  * Detach knote from vnode
 4104  */
 4105 static void
 4106 filt_vfsdetach(struct knote *kn)
 4107 {
 4108         struct vnode *vp = (struct vnode *)kn->kn_hook;
 4109 
 4110         KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
 4111         knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
 4112 }
 4113 
 4114 /*ARGSUSED*/
 4115 static int
 4116 filt_vfsread(struct knote *kn, long hint)
 4117 {
 4118         struct vnode *vp = (struct vnode *)kn->kn_hook;
 4119         struct vattr va;
 4120 
 4121         /*
 4122          * filesystem is gone, so set the EOF flag and schedule
 4123          * the knote for deletion.
 4124          */
 4125         if (hint == NOTE_REVOKE) {
 4126                 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
 4127                 return (1);
 4128         }
 4129 
 4130         if (VOP_GETATTR(vp, &va, curthread->td_ucred, curthread))
 4131                 return (0);
 4132 
 4133         kn->kn_data = va.va_size - kn->kn_fp->f_offset;
 4134         return (kn->kn_data != 0);
 4135 }
 4136 
 4137 /*ARGSUSED*/
 4138 static int
 4139 filt_vfswrite(struct knote *kn, long hint)
 4140 {
 4141         /*
 4142          * filesystem is gone, so set the EOF flag and schedule
 4143          * the knote for deletion.
 4144          */
 4145         if (hint == NOTE_REVOKE)
 4146                 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
 4147 
 4148         kn->kn_data = 0;
 4149         return (1);
 4150 }
 4151 
 4152 static int
 4153 filt_vfsvnode(struct knote *kn, long hint)
 4154 {
 4155         if (kn->kn_sfflags & hint)
 4156                 kn->kn_fflags |= hint;
 4157         if (hint == NOTE_REVOKE) {
 4158                 kn->kn_flags |= EV_EOF;
 4159                 return (1);
 4160         }
 4161         return (kn->kn_fflags != 0);
 4162 }
 4163 
 4164 int
 4165 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
 4166 {
 4167         int error;
 4168 
 4169         if (dp->d_reclen > ap->a_uio->uio_resid)
 4170                 return (ENAMETOOLONG);
 4171         error = uiomove(dp, dp->d_reclen, ap->a_uio);
 4172         if (error) {
 4173                 if (ap->a_ncookies != NULL) {
 4174                         if (ap->a_cookies != NULL)
 4175                                 free(ap->a_cookies, M_TEMP);
 4176                         ap->a_cookies = NULL;
 4177                         *ap->a_ncookies = 0;
 4178                 }
 4179                 return (error);
 4180         }
 4181         if (ap->a_ncookies == NULL)
 4182                 return (0);
 4183 
 4184         KASSERT(ap->a_cookies,
 4185             ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
 4186 
 4187         *ap->a_cookies = realloc(*ap->a_cookies,
 4188             (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
 4189         (*ap->a_cookies)[*ap->a_ncookies] = off;
 4190         return (0);
 4191 }
 4192 
 4193 /*
 4194  * Mark for update the access time of the file if the filesystem
 4195  * supports VA_MARK_ATIME.  This functionality is used by execve
 4196  * and mmap, so we want to avoid the synchronous I/O implied by
 4197  * directly setting va_atime for the sake of efficiency.
 4198  */
 4199 void
 4200 vfs_mark_atime(struct vnode *vp, struct thread *td)
 4201 {
 4202         struct vattr atimeattr;
 4203 
 4204         if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
 4205                 VATTR_NULL(&atimeattr);
 4206                 atimeattr.va_vaflags |= VA_MARK_ATIME;
 4207                 (void)VOP_SETATTR(vp, &atimeattr, td->td_ucred, td);
 4208         }
 4209 }

Cache object: 7cab0ed60382bf20d361d23b5448a79a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.