FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_subr.c
1 /*-
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
35 */
36
37 /*
38 * External virtual filesystem routines
39 */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD: releng/8.0/sys/kern/vfs_subr.c 197123 2009-09-12 18:02:57Z kib $");
43
44 #include "opt_ddb.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/bio.h>
49 #include <sys/buf.h>
50 #include <sys/condvar.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/event.h>
54 #include <sys/eventhandler.h>
55 #include <sys/extattr.h>
56 #include <sys/file.h>
57 #include <sys/fcntl.h>
58 #include <sys/jail.h>
59 #include <sys/kdb.h>
60 #include <sys/kernel.h>
61 #include <sys/kthread.h>
62 #include <sys/lockf.h>
63 #include <sys/malloc.h>
64 #include <sys/mount.h>
65 #include <sys/namei.h>
66 #include <sys/priv.h>
67 #include <sys/reboot.h>
68 #include <sys/sleepqueue.h>
69 #include <sys/stat.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/vmmeter.h>
73 #include <sys/vnode.h>
74
75 #include <machine/stdarg.h>
76
77 #include <security/mac/mac_framework.h>
78
79 #include <vm/vm.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_extern.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_kern.h>
86 #include <vm/uma.h>
87
88 #ifdef DDB
89 #include <ddb/ddb.h>
90 #endif
91
92 #define WI_MPSAFEQ 0
93 #define WI_GIANTQ 1
94
95 static MALLOC_DEFINE(M_NETADDR, "subr_export_host", "Export host address structure");
96
97 static void delmntque(struct vnode *vp);
98 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
99 int slpflag, int slptimeo);
100 static void syncer_shutdown(void *arg, int howto);
101 static int vtryrecycle(struct vnode *vp);
102 static void vbusy(struct vnode *vp);
103 static void vinactive(struct vnode *, struct thread *);
104 static void v_incr_usecount(struct vnode *);
105 static void v_decr_usecount(struct vnode *);
106 static void v_decr_useonly(struct vnode *);
107 static void v_upgrade_usecount(struct vnode *);
108 static void vfree(struct vnode *);
109 static void vnlru_free(int);
110 static void vgonel(struct vnode *);
111 static void vfs_knllock(void *arg);
112 static void vfs_knlunlock(void *arg);
113 static void vfs_knl_assert_locked(void *arg);
114 static void vfs_knl_assert_unlocked(void *arg);
115 static void destroy_vpollinfo(struct vpollinfo *vi);
116
117 /*
118 * Number of vnodes in existence. Increased whenever getnewvnode()
119 * allocates a new vnode, decreased on vdestroy() called on VI_DOOMed
120 * vnode.
121 */
122 static unsigned long numvnodes;
123
124 SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
125
126 /*
127 * Conversion tables for conversion from vnode types to inode formats
128 * and back.
129 */
130 enum vtype iftovt_tab[16] = {
131 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
132 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
133 };
134 int vttoif_tab[10] = {
135 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
136 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
137 };
138
139 /*
140 * List of vnodes that are ready for recycling.
141 */
142 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
143
144 /*
145 * Free vnode target. Free vnodes may simply be files which have been stat'd
146 * but not read. This is somewhat common, and a small cache of such files
147 * should be kept to avoid recreation costs.
148 */
149 static u_long wantfreevnodes;
150 SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
151 /* Number of vnodes in the free list. */
152 static u_long freevnodes;
153 SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
154
155 /*
156 * Various variables used for debugging the new implementation of
157 * reassignbuf().
158 * XXX these are probably of (very) limited utility now.
159 */
160 static int reassignbufcalls;
161 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
162
163 /*
164 * Cache for the mount type id assigned to NFS. This is used for
165 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
166 */
167 int nfs_mount_type = -1;
168
169 /* To keep more than one thread at a time from running vfs_getnewfsid */
170 static struct mtx mntid_mtx;
171
172 /*
173 * Lock for any access to the following:
174 * vnode_free_list
175 * numvnodes
176 * freevnodes
177 */
178 static struct mtx vnode_free_list_mtx;
179
180 /* Publicly exported FS */
181 struct nfs_public nfs_pub;
182
183 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
184 static uma_zone_t vnode_zone;
185 static uma_zone_t vnodepoll_zone;
186
187 /* Set to 1 to print out reclaim of active vnodes */
188 int prtactive;
189
190 /*
191 * The workitem queue.
192 *
193 * It is useful to delay writes of file data and filesystem metadata
194 * for tens of seconds so that quickly created and deleted files need
195 * not waste disk bandwidth being created and removed. To realize this,
196 * we append vnodes to a "workitem" queue. When running with a soft
197 * updates implementation, most pending metadata dependencies should
198 * not wait for more than a few seconds. Thus, mounted on block devices
199 * are delayed only about a half the time that file data is delayed.
200 * Similarly, directory updates are more critical, so are only delayed
201 * about a third the time that file data is delayed. Thus, there are
202 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
203 * one each second (driven off the filesystem syncer process). The
204 * syncer_delayno variable indicates the next queue that is to be processed.
205 * Items that need to be processed soon are placed in this queue:
206 *
207 * syncer_workitem_pending[syncer_delayno]
208 *
209 * A delay of fifteen seconds is done by placing the request fifteen
210 * entries later in the queue:
211 *
212 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
213 *
214 */
215 static int syncer_delayno;
216 static long syncer_mask;
217 LIST_HEAD(synclist, bufobj);
218 static struct synclist *syncer_workitem_pending[2];
219 /*
220 * The sync_mtx protects:
221 * bo->bo_synclist
222 * sync_vnode_count
223 * syncer_delayno
224 * syncer_state
225 * syncer_workitem_pending
226 * syncer_worklist_len
227 * rushjob
228 */
229 static struct mtx sync_mtx;
230 static struct cv sync_wakeup;
231
232 #define SYNCER_MAXDELAY 32
233 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */
234 static int syncdelay = 30; /* max time to delay syncing data */
235 static int filedelay = 30; /* time to delay syncing files */
236 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
237 static int dirdelay = 29; /* time to delay syncing directories */
238 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
239 static int metadelay = 28; /* time to delay syncing metadata */
240 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
241 static int rushjob; /* number of slots to run ASAP */
242 static int stat_rush_requests; /* number of times I/O speeded up */
243 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
244
245 /*
246 * When shutting down the syncer, run it at four times normal speed.
247 */
248 #define SYNCER_SHUTDOWN_SPEEDUP 4
249 static int sync_vnode_count;
250 static int syncer_worklist_len;
251 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
252 syncer_state;
253
254 /*
255 * Number of vnodes we want to exist at any one time. This is mostly used
256 * to size hash tables in vnode-related code. It is normally not used in
257 * getnewvnode(), as wantfreevnodes is normally nonzero.)
258 *
259 * XXX desiredvnodes is historical cruft and should not exist.
260 */
261 int desiredvnodes;
262 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
263 &desiredvnodes, 0, "Maximum number of vnodes");
264 SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
265 &wantfreevnodes, 0, "Minimum number of vnodes (legacy)");
266 static int vnlru_nowhere;
267 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
268 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
269
270 /*
271 * Macros to control when a vnode is freed and recycled. All require
272 * the vnode interlock.
273 */
274 #define VCANRECYCLE(vp) (((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
275 #define VSHOULDFREE(vp) (!((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
276 #define VSHOULDBUSY(vp) (((vp)->v_iflag & VI_FREE) && (vp)->v_holdcnt)
277
278
279 /*
280 * Initialize the vnode management data structures.
281 */
282 #ifndef MAXVNODES_MAX
283 #define MAXVNODES_MAX 100000
284 #endif
285 static void
286 vntblinit(void *dummy __unused)
287 {
288
289 /*
290 * Desiredvnodes is a function of the physical memory size and
291 * the kernel's heap size. Specifically, desiredvnodes scales
292 * in proportion to the physical memory size until two fifths
293 * of the kernel's heap size is consumed by vnodes and vm
294 * objects.
295 */
296 desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size /
297 (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
298 if (desiredvnodes > MAXVNODES_MAX) {
299 if (bootverbose)
300 printf("Reducing kern.maxvnodes %d -> %d\n",
301 desiredvnodes, MAXVNODES_MAX);
302 desiredvnodes = MAXVNODES_MAX;
303 }
304 wantfreevnodes = desiredvnodes / 4;
305 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
306 TAILQ_INIT(&vnode_free_list);
307 mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
308 vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
309 NULL, NULL, UMA_ALIGN_PTR, 0);
310 vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
311 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
312 /*
313 * Initialize the filesystem syncer.
314 */
315 syncer_workitem_pending[WI_MPSAFEQ] = hashinit(syncer_maxdelay, M_VNODE,
316 &syncer_mask);
317 syncer_workitem_pending[WI_GIANTQ] = hashinit(syncer_maxdelay, M_VNODE,
318 &syncer_mask);
319 syncer_maxdelay = syncer_mask + 1;
320 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
321 cv_init(&sync_wakeup, "syncer");
322 }
323 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
324
325
326 /*
327 * Mark a mount point as busy. Used to synchronize access and to delay
328 * unmounting. Eventually, mountlist_mtx is not released on failure.
329 */
330 int
331 vfs_busy(struct mount *mp, int flags)
332 {
333
334 MPASS((flags & ~MBF_MASK) == 0);
335 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
336
337 MNT_ILOCK(mp);
338 MNT_REF(mp);
339 /*
340 * If mount point is currenly being unmounted, sleep until the
341 * mount point fate is decided. If thread doing the unmounting fails,
342 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
343 * that this mount point has survived the unmount attempt and vfs_busy
344 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE
345 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
346 * about to be really destroyed. vfs_busy needs to release its
347 * reference on the mount point in this case and return with ENOENT,
348 * telling the caller that mount mount it tried to busy is no longer
349 * valid.
350 */
351 while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
352 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
353 MNT_REL(mp);
354 MNT_IUNLOCK(mp);
355 CTR1(KTR_VFS, "%s: failed busying before sleeping",
356 __func__);
357 return (ENOENT);
358 }
359 if (flags & MBF_MNTLSTLOCK)
360 mtx_unlock(&mountlist_mtx);
361 mp->mnt_kern_flag |= MNTK_MWAIT;
362 msleep(mp, MNT_MTX(mp), PVFS, "vfs_busy", 0);
363 if (flags & MBF_MNTLSTLOCK)
364 mtx_lock(&mountlist_mtx);
365 }
366 if (flags & MBF_MNTLSTLOCK)
367 mtx_unlock(&mountlist_mtx);
368 mp->mnt_lockref++;
369 MNT_IUNLOCK(mp);
370 return (0);
371 }
372
373 /*
374 * Free a busy filesystem.
375 */
376 void
377 vfs_unbusy(struct mount *mp)
378 {
379
380 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
381 MNT_ILOCK(mp);
382 MNT_REL(mp);
383 KASSERT(mp->mnt_lockref > 0, ("negative mnt_lockref"));
384 mp->mnt_lockref--;
385 if (mp->mnt_lockref == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
386 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
387 CTR1(KTR_VFS, "%s: waking up waiters", __func__);
388 mp->mnt_kern_flag &= ~MNTK_DRAINING;
389 wakeup(&mp->mnt_lockref);
390 }
391 MNT_IUNLOCK(mp);
392 }
393
394 /*
395 * Lookup a mount point by filesystem identifier.
396 */
397 struct mount *
398 vfs_getvfs(fsid_t *fsid)
399 {
400 struct mount *mp;
401
402 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
403 mtx_lock(&mountlist_mtx);
404 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
405 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
406 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
407 vfs_ref(mp);
408 mtx_unlock(&mountlist_mtx);
409 return (mp);
410 }
411 }
412 mtx_unlock(&mountlist_mtx);
413 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
414 return ((struct mount *) 0);
415 }
416
417 /*
418 * Lookup a mount point by filesystem identifier, busying it before
419 * returning.
420 */
421 struct mount *
422 vfs_busyfs(fsid_t *fsid)
423 {
424 struct mount *mp;
425 int error;
426
427 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
428 mtx_lock(&mountlist_mtx);
429 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
430 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
431 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
432 error = vfs_busy(mp, MBF_MNTLSTLOCK);
433 if (error) {
434 mtx_unlock(&mountlist_mtx);
435 return (NULL);
436 }
437 return (mp);
438 }
439 }
440 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
441 mtx_unlock(&mountlist_mtx);
442 return ((struct mount *) 0);
443 }
444
445 /*
446 * Check if a user can access privileged mount options.
447 */
448 int
449 vfs_suser(struct mount *mp, struct thread *td)
450 {
451 int error;
452
453 /*
454 * If the thread is jailed, but this is not a jail-friendly file
455 * system, deny immediately.
456 */
457 if (!(mp->mnt_vfc->vfc_flags & VFCF_JAIL) && jailed(td->td_ucred))
458 return (EPERM);
459
460 /*
461 * If the file system was mounted outside the jail of the calling
462 * thread, deny immediately.
463 */
464 if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
465 return (EPERM);
466
467 /*
468 * If file system supports delegated administration, we don't check
469 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
470 * by the file system itself.
471 * If this is not the user that did original mount, we check for
472 * the PRIV_VFS_MOUNT_OWNER privilege.
473 */
474 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
475 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
476 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
477 return (error);
478 }
479 return (0);
480 }
481
482 /*
483 * Get a new unique fsid. Try to make its val[0] unique, since this value
484 * will be used to create fake device numbers for stat(). Also try (but
485 * not so hard) make its val[0] unique mod 2^16, since some emulators only
486 * support 16-bit device numbers. We end up with unique val[0]'s for the
487 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
488 *
489 * Keep in mind that several mounts may be running in parallel. Starting
490 * the search one past where the previous search terminated is both a
491 * micro-optimization and a defense against returning the same fsid to
492 * different mounts.
493 */
494 void
495 vfs_getnewfsid(struct mount *mp)
496 {
497 static u_int16_t mntid_base;
498 struct mount *nmp;
499 fsid_t tfsid;
500 int mtype;
501
502 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
503 mtx_lock(&mntid_mtx);
504 mtype = mp->mnt_vfc->vfc_typenum;
505 tfsid.val[1] = mtype;
506 mtype = (mtype & 0xFF) << 24;
507 for (;;) {
508 tfsid.val[0] = makedev(255,
509 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
510 mntid_base++;
511 if ((nmp = vfs_getvfs(&tfsid)) == NULL)
512 break;
513 vfs_rel(nmp);
514 }
515 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
516 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
517 mtx_unlock(&mntid_mtx);
518 }
519
520 /*
521 * Knob to control the precision of file timestamps:
522 *
523 * 0 = seconds only; nanoseconds zeroed.
524 * 1 = seconds and nanoseconds, accurate within 1/HZ.
525 * 2 = seconds and nanoseconds, truncated to microseconds.
526 * >=3 = seconds and nanoseconds, maximum precision.
527 */
528 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
529
530 static int timestamp_precision = TSP_SEC;
531 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
532 ×tamp_precision, 0, "");
533
534 /*
535 * Get a current timestamp.
536 */
537 void
538 vfs_timestamp(struct timespec *tsp)
539 {
540 struct timeval tv;
541
542 switch (timestamp_precision) {
543 case TSP_SEC:
544 tsp->tv_sec = time_second;
545 tsp->tv_nsec = 0;
546 break;
547 case TSP_HZ:
548 getnanotime(tsp);
549 break;
550 case TSP_USEC:
551 microtime(&tv);
552 TIMEVAL_TO_TIMESPEC(&tv, tsp);
553 break;
554 case TSP_NSEC:
555 default:
556 nanotime(tsp);
557 break;
558 }
559 }
560
561 /*
562 * Set vnode attributes to VNOVAL
563 */
564 void
565 vattr_null(struct vattr *vap)
566 {
567
568 vap->va_type = VNON;
569 vap->va_size = VNOVAL;
570 vap->va_bytes = VNOVAL;
571 vap->va_mode = VNOVAL;
572 vap->va_nlink = VNOVAL;
573 vap->va_uid = VNOVAL;
574 vap->va_gid = VNOVAL;
575 vap->va_fsid = VNOVAL;
576 vap->va_fileid = VNOVAL;
577 vap->va_blocksize = VNOVAL;
578 vap->va_rdev = VNOVAL;
579 vap->va_atime.tv_sec = VNOVAL;
580 vap->va_atime.tv_nsec = VNOVAL;
581 vap->va_mtime.tv_sec = VNOVAL;
582 vap->va_mtime.tv_nsec = VNOVAL;
583 vap->va_ctime.tv_sec = VNOVAL;
584 vap->va_ctime.tv_nsec = VNOVAL;
585 vap->va_birthtime.tv_sec = VNOVAL;
586 vap->va_birthtime.tv_nsec = VNOVAL;
587 vap->va_flags = VNOVAL;
588 vap->va_gen = VNOVAL;
589 vap->va_vaflags = 0;
590 }
591
592 /*
593 * This routine is called when we have too many vnodes. It attempts
594 * to free <count> vnodes and will potentially free vnodes that still
595 * have VM backing store (VM backing store is typically the cause
596 * of a vnode blowout so we want to do this). Therefore, this operation
597 * is not considered cheap.
598 *
599 * A number of conditions may prevent a vnode from being reclaimed.
600 * the buffer cache may have references on the vnode, a directory
601 * vnode may still have references due to the namei cache representing
602 * underlying files, or the vnode may be in active use. It is not
603 * desireable to reuse such vnodes. These conditions may cause the
604 * number of vnodes to reach some minimum value regardless of what
605 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
606 */
607 static int
608 vlrureclaim(struct mount *mp)
609 {
610 struct vnode *vp;
611 int done;
612 int trigger;
613 int usevnodes;
614 int count;
615
616 /*
617 * Calculate the trigger point, don't allow user
618 * screwups to blow us up. This prevents us from
619 * recycling vnodes with lots of resident pages. We
620 * aren't trying to free memory, we are trying to
621 * free vnodes.
622 */
623 usevnodes = desiredvnodes;
624 if (usevnodes <= 0)
625 usevnodes = 1;
626 trigger = cnt.v_page_count * 2 / usevnodes;
627 done = 0;
628 vn_start_write(NULL, &mp, V_WAIT);
629 MNT_ILOCK(mp);
630 count = mp->mnt_nvnodelistsize / 10 + 1;
631 while (count != 0) {
632 vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
633 while (vp != NULL && vp->v_type == VMARKER)
634 vp = TAILQ_NEXT(vp, v_nmntvnodes);
635 if (vp == NULL)
636 break;
637 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
638 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
639 --count;
640 if (!VI_TRYLOCK(vp))
641 goto next_iter;
642 /*
643 * If it's been deconstructed already, it's still
644 * referenced, or it exceeds the trigger, skip it.
645 */
646 if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) ||
647 (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
648 vp->v_object->resident_page_count > trigger)) {
649 VI_UNLOCK(vp);
650 goto next_iter;
651 }
652 MNT_IUNLOCK(mp);
653 vholdl(vp);
654 if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
655 vdrop(vp);
656 goto next_iter_mntunlocked;
657 }
658 VI_LOCK(vp);
659 /*
660 * v_usecount may have been bumped after VOP_LOCK() dropped
661 * the vnode interlock and before it was locked again.
662 *
663 * It is not necessary to recheck VI_DOOMED because it can
664 * only be set by another thread that holds both the vnode
665 * lock and vnode interlock. If another thread has the
666 * vnode lock before we get to VOP_LOCK() and obtains the
667 * vnode interlock after VOP_LOCK() drops the vnode
668 * interlock, the other thread will be unable to drop the
669 * vnode lock before our VOP_LOCK() call fails.
670 */
671 if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) ||
672 (vp->v_object != NULL &&
673 vp->v_object->resident_page_count > trigger)) {
674 VOP_UNLOCK(vp, LK_INTERLOCK);
675 goto next_iter_mntunlocked;
676 }
677 KASSERT((vp->v_iflag & VI_DOOMED) == 0,
678 ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
679 vgonel(vp);
680 VOP_UNLOCK(vp, 0);
681 vdropl(vp);
682 done++;
683 next_iter_mntunlocked:
684 if ((count % 256) != 0)
685 goto relock_mnt;
686 goto yield;
687 next_iter:
688 if ((count % 256) != 0)
689 continue;
690 MNT_IUNLOCK(mp);
691 yield:
692 uio_yield();
693 relock_mnt:
694 MNT_ILOCK(mp);
695 }
696 MNT_IUNLOCK(mp);
697 vn_finished_write(mp);
698 return done;
699 }
700
701 /*
702 * Attempt to keep the free list at wantfreevnodes length.
703 */
704 static void
705 vnlru_free(int count)
706 {
707 struct vnode *vp;
708 int vfslocked;
709
710 mtx_assert(&vnode_free_list_mtx, MA_OWNED);
711 for (; count > 0; count--) {
712 vp = TAILQ_FIRST(&vnode_free_list);
713 /*
714 * The list can be modified while the free_list_mtx
715 * has been dropped and vp could be NULL here.
716 */
717 if (!vp)
718 break;
719 VNASSERT(vp->v_op != NULL, vp,
720 ("vnlru_free: vnode already reclaimed."));
721 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
722 /*
723 * Don't recycle if we can't get the interlock.
724 */
725 if (!VI_TRYLOCK(vp)) {
726 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
727 continue;
728 }
729 VNASSERT(VCANRECYCLE(vp), vp,
730 ("vp inconsistent on freelist"));
731 freevnodes--;
732 vp->v_iflag &= ~VI_FREE;
733 vholdl(vp);
734 mtx_unlock(&vnode_free_list_mtx);
735 VI_UNLOCK(vp);
736 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
737 vtryrecycle(vp);
738 VFS_UNLOCK_GIANT(vfslocked);
739 /*
740 * If the recycled succeeded this vdrop will actually free
741 * the vnode. If not it will simply place it back on
742 * the free list.
743 */
744 vdrop(vp);
745 mtx_lock(&vnode_free_list_mtx);
746 }
747 }
748 /*
749 * Attempt to recycle vnodes in a context that is always safe to block.
750 * Calling vlrurecycle() from the bowels of filesystem code has some
751 * interesting deadlock problems.
752 */
753 static struct proc *vnlruproc;
754 static int vnlruproc_sig;
755
756 static void
757 vnlru_proc(void)
758 {
759 struct mount *mp, *nmp;
760 int done, vfslocked;
761 struct proc *p = vnlruproc;
762
763 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
764 SHUTDOWN_PRI_FIRST);
765
766 for (;;) {
767 kproc_suspend_check(p);
768 mtx_lock(&vnode_free_list_mtx);
769 if (freevnodes > wantfreevnodes)
770 vnlru_free(freevnodes - wantfreevnodes);
771 if (numvnodes <= desiredvnodes * 9 / 10) {
772 vnlruproc_sig = 0;
773 wakeup(&vnlruproc_sig);
774 msleep(vnlruproc, &vnode_free_list_mtx,
775 PVFS|PDROP, "vlruwt", hz);
776 continue;
777 }
778 mtx_unlock(&vnode_free_list_mtx);
779 done = 0;
780 mtx_lock(&mountlist_mtx);
781 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
782 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) {
783 nmp = TAILQ_NEXT(mp, mnt_list);
784 continue;
785 }
786 vfslocked = VFS_LOCK_GIANT(mp);
787 done += vlrureclaim(mp);
788 VFS_UNLOCK_GIANT(vfslocked);
789 mtx_lock(&mountlist_mtx);
790 nmp = TAILQ_NEXT(mp, mnt_list);
791 vfs_unbusy(mp);
792 }
793 mtx_unlock(&mountlist_mtx);
794 if (done == 0) {
795 EVENTHANDLER_INVOKE(vfs_lowvnodes, desiredvnodes / 10);
796 #if 0
797 /* These messages are temporary debugging aids */
798 if (vnlru_nowhere < 5)
799 printf("vnlru process getting nowhere..\n");
800 else if (vnlru_nowhere == 5)
801 printf("vnlru process messages stopped.\n");
802 #endif
803 vnlru_nowhere++;
804 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
805 } else
806 uio_yield();
807 }
808 }
809
810 static struct kproc_desc vnlru_kp = {
811 "vnlru",
812 vnlru_proc,
813 &vnlruproc
814 };
815 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
816 &vnlru_kp);
817
818 /*
819 * Routines having to do with the management of the vnode table.
820 */
821
822 void
823 vdestroy(struct vnode *vp)
824 {
825 struct bufobj *bo;
826
827 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
828 mtx_lock(&vnode_free_list_mtx);
829 numvnodes--;
830 mtx_unlock(&vnode_free_list_mtx);
831 bo = &vp->v_bufobj;
832 VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
833 ("cleaned vnode still on the free list."));
834 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
835 VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
836 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
837 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
838 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
839 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
840 VNASSERT(bo->bo_clean.bv_root == NULL, vp, ("cleanblkroot not NULL"));
841 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
842 VNASSERT(bo->bo_dirty.bv_root == NULL, vp, ("dirtyblkroot not NULL"));
843 VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
844 VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
845 VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
846 VI_UNLOCK(vp);
847 #ifdef MAC
848 mac_vnode_destroy(vp);
849 #endif
850 if (vp->v_pollinfo != NULL)
851 destroy_vpollinfo(vp->v_pollinfo);
852 #ifdef INVARIANTS
853 /* XXX Elsewhere we can detect an already freed vnode via NULL v_op. */
854 vp->v_op = NULL;
855 #endif
856 lockdestroy(vp->v_vnlock);
857 mtx_destroy(&vp->v_interlock);
858 mtx_destroy(BO_MTX(bo));
859 uma_zfree(vnode_zone, vp);
860 }
861
862 /*
863 * Try to recycle a freed vnode. We abort if anyone picks up a reference
864 * before we actually vgone(). This function must be called with the vnode
865 * held to prevent the vnode from being returned to the free list midway
866 * through vgone().
867 */
868 static int
869 vtryrecycle(struct vnode *vp)
870 {
871 struct mount *vnmp;
872
873 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
874 VNASSERT(vp->v_holdcnt, vp,
875 ("vtryrecycle: Recycling vp %p without a reference.", vp));
876 /*
877 * This vnode may found and locked via some other list, if so we
878 * can't recycle it yet.
879 */
880 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
881 CTR2(KTR_VFS,
882 "%s: impossible to recycle, vp %p lock is already held",
883 __func__, vp);
884 return (EWOULDBLOCK);
885 }
886 /*
887 * Don't recycle if its filesystem is being suspended.
888 */
889 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
890 VOP_UNLOCK(vp, 0);
891 CTR2(KTR_VFS,
892 "%s: impossible to recycle, cannot start the write for %p",
893 __func__, vp);
894 return (EBUSY);
895 }
896 /*
897 * If we got this far, we need to acquire the interlock and see if
898 * anyone picked up this vnode from another list. If not, we will
899 * mark it with DOOMED via vgonel() so that anyone who does find it
900 * will skip over it.
901 */
902 VI_LOCK(vp);
903 if (vp->v_usecount) {
904 VOP_UNLOCK(vp, LK_INTERLOCK);
905 vn_finished_write(vnmp);
906 CTR2(KTR_VFS,
907 "%s: impossible to recycle, %p is already referenced",
908 __func__, vp);
909 return (EBUSY);
910 }
911 if ((vp->v_iflag & VI_DOOMED) == 0)
912 vgonel(vp);
913 VOP_UNLOCK(vp, LK_INTERLOCK);
914 vn_finished_write(vnmp);
915 return (0);
916 }
917
918 /*
919 * Return the next vnode from the free list.
920 */
921 int
922 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
923 struct vnode **vpp)
924 {
925 struct vnode *vp = NULL;
926 struct bufobj *bo;
927
928 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
929 mtx_lock(&vnode_free_list_mtx);
930 /*
931 * Lend our context to reclaim vnodes if they've exceeded the max.
932 */
933 if (freevnodes > wantfreevnodes)
934 vnlru_free(1);
935 /*
936 * Wait for available vnodes.
937 */
938 if (numvnodes > desiredvnodes) {
939 if (mp != NULL && (mp->mnt_kern_flag & MNTK_SUSPEND)) {
940 /*
941 * File system is beeing suspended, we cannot risk a
942 * deadlock here, so allocate new vnode anyway.
943 */
944 if (freevnodes > wantfreevnodes)
945 vnlru_free(freevnodes - wantfreevnodes);
946 goto alloc;
947 }
948 if (vnlruproc_sig == 0) {
949 vnlruproc_sig = 1; /* avoid unnecessary wakeups */
950 wakeup(vnlruproc);
951 }
952 msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
953 "vlruwk", hz);
954 #if 0 /* XXX Not all VFS_VGET/ffs_vget callers check returns. */
955 if (numvnodes > desiredvnodes) {
956 mtx_unlock(&vnode_free_list_mtx);
957 return (ENFILE);
958 }
959 #endif
960 }
961 alloc:
962 numvnodes++;
963 mtx_unlock(&vnode_free_list_mtx);
964 vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
965 /*
966 * Setup locks.
967 */
968 vp->v_vnlock = &vp->v_lock;
969 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
970 /*
971 * By default, don't allow shared locks unless filesystems
972 * opt-in.
973 */
974 lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE);
975 /*
976 * Initialize bufobj.
977 */
978 bo = &vp->v_bufobj;
979 bo->__bo_vnode = vp;
980 mtx_init(BO_MTX(bo), "bufobj interlock", NULL, MTX_DEF);
981 bo->bo_ops = &buf_ops_bio;
982 bo->bo_private = vp;
983 TAILQ_INIT(&bo->bo_clean.bv_hd);
984 TAILQ_INIT(&bo->bo_dirty.bv_hd);
985 /*
986 * Initialize namecache.
987 */
988 LIST_INIT(&vp->v_cache_src);
989 TAILQ_INIT(&vp->v_cache_dst);
990 /*
991 * Finalize various vnode identity bits.
992 */
993 vp->v_type = VNON;
994 vp->v_tag = tag;
995 vp->v_op = vops;
996 v_incr_usecount(vp);
997 vp->v_data = 0;
998 #ifdef MAC
999 mac_vnode_init(vp);
1000 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1001 mac_vnode_associate_singlelabel(mp, vp);
1002 else if (mp == NULL && vops != &dead_vnodeops)
1003 printf("NULL mp in getnewvnode()\n");
1004 #endif
1005 if (mp != NULL) {
1006 bo->bo_bsize = mp->mnt_stat.f_iosize;
1007 if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1008 vp->v_vflag |= VV_NOKNOTE;
1009 }
1010
1011 *vpp = vp;
1012 return (0);
1013 }
1014
1015 /*
1016 * Delete from old mount point vnode list, if on one.
1017 */
1018 static void
1019 delmntque(struct vnode *vp)
1020 {
1021 struct mount *mp;
1022
1023 mp = vp->v_mount;
1024 if (mp == NULL)
1025 return;
1026 MNT_ILOCK(mp);
1027 vp->v_mount = NULL;
1028 VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1029 ("bad mount point vnode list size"));
1030 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1031 mp->mnt_nvnodelistsize--;
1032 MNT_REL(mp);
1033 MNT_IUNLOCK(mp);
1034 }
1035
1036 static void
1037 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1038 {
1039
1040 vp->v_data = NULL;
1041 vp->v_op = &dead_vnodeops;
1042 /* XXX non mp-safe fs may still call insmntque with vnode
1043 unlocked */
1044 if (!VOP_ISLOCKED(vp))
1045 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1046 vgone(vp);
1047 vput(vp);
1048 }
1049
1050 /*
1051 * Insert into list of vnodes for the new mount point, if available.
1052 */
1053 int
1054 insmntque1(struct vnode *vp, struct mount *mp,
1055 void (*dtr)(struct vnode *, void *), void *dtr_arg)
1056 {
1057 int locked;
1058
1059 KASSERT(vp->v_mount == NULL,
1060 ("insmntque: vnode already on per mount vnode list"));
1061 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1062 #ifdef DEBUG_VFS_LOCKS
1063 if (!VFS_NEEDSGIANT(mp))
1064 ASSERT_VOP_ELOCKED(vp,
1065 "insmntque: mp-safe fs and non-locked vp");
1066 #endif
1067 MNT_ILOCK(mp);
1068 if ((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 &&
1069 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1070 mp->mnt_nvnodelistsize == 0)) {
1071 locked = VOP_ISLOCKED(vp);
1072 if (!locked || (locked == LK_EXCLUSIVE &&
1073 (vp->v_vflag & VV_FORCEINSMQ) == 0)) {
1074 MNT_IUNLOCK(mp);
1075 if (dtr != NULL)
1076 dtr(vp, dtr_arg);
1077 return (EBUSY);
1078 }
1079 }
1080 vp->v_mount = mp;
1081 MNT_REF(mp);
1082 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1083 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1084 ("neg mount point vnode list size"));
1085 mp->mnt_nvnodelistsize++;
1086 MNT_IUNLOCK(mp);
1087 return (0);
1088 }
1089
1090 int
1091 insmntque(struct vnode *vp, struct mount *mp)
1092 {
1093
1094 return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1095 }
1096
1097 /*
1098 * Flush out and invalidate all buffers associated with a bufobj
1099 * Called with the underlying object locked.
1100 */
1101 int
1102 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1103 {
1104 int error;
1105
1106 BO_LOCK(bo);
1107 if (flags & V_SAVE) {
1108 error = bufobj_wwait(bo, slpflag, slptimeo);
1109 if (error) {
1110 BO_UNLOCK(bo);
1111 return (error);
1112 }
1113 if (bo->bo_dirty.bv_cnt > 0) {
1114 BO_UNLOCK(bo);
1115 if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1116 return (error);
1117 /*
1118 * XXX We could save a lock/unlock if this was only
1119 * enabled under INVARIANTS
1120 */
1121 BO_LOCK(bo);
1122 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1123 panic("vinvalbuf: dirty bufs");
1124 }
1125 }
1126 /*
1127 * If you alter this loop please notice that interlock is dropped and
1128 * reacquired in flushbuflist. Special care is needed to ensure that
1129 * no race conditions occur from this.
1130 */
1131 do {
1132 error = flushbuflist(&bo->bo_clean,
1133 flags, bo, slpflag, slptimeo);
1134 if (error == 0)
1135 error = flushbuflist(&bo->bo_dirty,
1136 flags, bo, slpflag, slptimeo);
1137 if (error != 0 && error != EAGAIN) {
1138 BO_UNLOCK(bo);
1139 return (error);
1140 }
1141 } while (error != 0);
1142
1143 /*
1144 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
1145 * have write I/O in-progress but if there is a VM object then the
1146 * VM object can also have read-I/O in-progress.
1147 */
1148 do {
1149 bufobj_wwait(bo, 0, 0);
1150 BO_UNLOCK(bo);
1151 if (bo->bo_object != NULL) {
1152 VM_OBJECT_LOCK(bo->bo_object);
1153 vm_object_pip_wait(bo->bo_object, "bovlbx");
1154 VM_OBJECT_UNLOCK(bo->bo_object);
1155 }
1156 BO_LOCK(bo);
1157 } while (bo->bo_numoutput > 0);
1158 BO_UNLOCK(bo);
1159
1160 /*
1161 * Destroy the copy in the VM cache, too.
1162 */
1163 if (bo->bo_object != NULL && (flags & (V_ALT | V_NORMAL)) == 0) {
1164 VM_OBJECT_LOCK(bo->bo_object);
1165 vm_object_page_remove(bo->bo_object, 0, 0,
1166 (flags & V_SAVE) ? TRUE : FALSE);
1167 VM_OBJECT_UNLOCK(bo->bo_object);
1168 }
1169
1170 #ifdef INVARIANTS
1171 BO_LOCK(bo);
1172 if ((flags & (V_ALT | V_NORMAL)) == 0 &&
1173 (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
1174 panic("vinvalbuf: flush failed");
1175 BO_UNLOCK(bo);
1176 #endif
1177 return (0);
1178 }
1179
1180 /*
1181 * Flush out and invalidate all buffers associated with a vnode.
1182 * Called with the underlying object locked.
1183 */
1184 int
1185 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1186 {
1187
1188 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
1189 ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1190 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1191 }
1192
1193 /*
1194 * Flush out buffers on the specified list.
1195 *
1196 */
1197 static int
1198 flushbuflist( struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1199 int slptimeo)
1200 {
1201 struct buf *bp, *nbp;
1202 int retval, error;
1203 daddr_t lblkno;
1204 b_xflags_t xflags;
1205
1206 ASSERT_BO_LOCKED(bo);
1207
1208 retval = 0;
1209 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1210 if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1211 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1212 continue;
1213 }
1214 lblkno = 0;
1215 xflags = 0;
1216 if (nbp != NULL) {
1217 lblkno = nbp->b_lblkno;
1218 xflags = nbp->b_xflags &
1219 (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN);
1220 }
1221 retval = EAGAIN;
1222 error = BUF_TIMELOCK(bp,
1223 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_MTX(bo),
1224 "flushbuf", slpflag, slptimeo);
1225 if (error) {
1226 BO_LOCK(bo);
1227 return (error != ENOLCK ? error : EAGAIN);
1228 }
1229 KASSERT(bp->b_bufobj == bo,
1230 ("bp %p wrong b_bufobj %p should be %p",
1231 bp, bp->b_bufobj, bo));
1232 if (bp->b_bufobj != bo) { /* XXX: necessary ? */
1233 BUF_UNLOCK(bp);
1234 BO_LOCK(bo);
1235 return (EAGAIN);
1236 }
1237 /*
1238 * XXX Since there are no node locks for NFS, I
1239 * believe there is a slight chance that a delayed
1240 * write will occur while sleeping just above, so
1241 * check for it.
1242 */
1243 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1244 (flags & V_SAVE)) {
1245 bremfree(bp);
1246 bp->b_flags |= B_ASYNC;
1247 bwrite(bp);
1248 BO_LOCK(bo);
1249 return (EAGAIN); /* XXX: why not loop ? */
1250 }
1251 bremfree(bp);
1252 bp->b_flags |= (B_INVAL | B_RELBUF);
1253 bp->b_flags &= ~B_ASYNC;
1254 brelse(bp);
1255 BO_LOCK(bo);
1256 if (nbp != NULL &&
1257 (nbp->b_bufobj != bo ||
1258 nbp->b_lblkno != lblkno ||
1259 (nbp->b_xflags &
1260 (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN)) != xflags))
1261 break; /* nbp invalid */
1262 }
1263 return (retval);
1264 }
1265
1266 /*
1267 * Truncate a file's buffer and pages to a specified length. This
1268 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1269 * sync activity.
1270 */
1271 int
1272 vtruncbuf(struct vnode *vp, struct ucred *cred, struct thread *td,
1273 off_t length, int blksize)
1274 {
1275 struct buf *bp, *nbp;
1276 int anyfreed;
1277 int trunclbn;
1278 struct bufobj *bo;
1279
1280 CTR5(KTR_VFS, "%s: vp %p with cred %p and block %d:%ju", __func__,
1281 vp, cred, blksize, (uintmax_t)length);
1282
1283 /*
1284 * Round up to the *next* lbn.
1285 */
1286 trunclbn = (length + blksize - 1) / blksize;
1287
1288 ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1289 restart:
1290 bo = &vp->v_bufobj;
1291 BO_LOCK(bo);
1292 anyfreed = 1;
1293 for (;anyfreed;) {
1294 anyfreed = 0;
1295 TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1296 if (bp->b_lblkno < trunclbn)
1297 continue;
1298 if (BUF_LOCK(bp,
1299 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1300 BO_MTX(bo)) == ENOLCK)
1301 goto restart;
1302
1303 bremfree(bp);
1304 bp->b_flags |= (B_INVAL | B_RELBUF);
1305 bp->b_flags &= ~B_ASYNC;
1306 brelse(bp);
1307 anyfreed = 1;
1308
1309 if (nbp != NULL &&
1310 (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1311 (nbp->b_vp != vp) ||
1312 (nbp->b_flags & B_DELWRI))) {
1313 goto restart;
1314 }
1315 BO_LOCK(bo);
1316 }
1317
1318 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1319 if (bp->b_lblkno < trunclbn)
1320 continue;
1321 if (BUF_LOCK(bp,
1322 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1323 BO_MTX(bo)) == ENOLCK)
1324 goto restart;
1325 bremfree(bp);
1326 bp->b_flags |= (B_INVAL | B_RELBUF);
1327 bp->b_flags &= ~B_ASYNC;
1328 brelse(bp);
1329 anyfreed = 1;
1330 if (nbp != NULL &&
1331 (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1332 (nbp->b_vp != vp) ||
1333 (nbp->b_flags & B_DELWRI) == 0)) {
1334 goto restart;
1335 }
1336 BO_LOCK(bo);
1337 }
1338 }
1339
1340 if (length > 0) {
1341 restartsync:
1342 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1343 if (bp->b_lblkno > 0)
1344 continue;
1345 /*
1346 * Since we hold the vnode lock this should only
1347 * fail if we're racing with the buf daemon.
1348 */
1349 if (BUF_LOCK(bp,
1350 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1351 BO_MTX(bo)) == ENOLCK) {
1352 goto restart;
1353 }
1354 VNASSERT((bp->b_flags & B_DELWRI), vp,
1355 ("buf(%p) on dirty queue without DELWRI", bp));
1356
1357 bremfree(bp);
1358 bawrite(bp);
1359 BO_LOCK(bo);
1360 goto restartsync;
1361 }
1362 }
1363
1364 bufobj_wwait(bo, 0, 0);
1365 BO_UNLOCK(bo);
1366 vnode_pager_setsize(vp, length);
1367
1368 return (0);
1369 }
1370
1371 /*
1372 * buf_splay() - splay tree core for the clean/dirty list of buffers in
1373 * a vnode.
1374 *
1375 * NOTE: We have to deal with the special case of a background bitmap
1376 * buffer, a situation where two buffers will have the same logical
1377 * block offset. We want (1) only the foreground buffer to be accessed
1378 * in a lookup and (2) must differentiate between the foreground and
1379 * background buffer in the splay tree algorithm because the splay
1380 * tree cannot normally handle multiple entities with the same 'index'.
1381 * We accomplish this by adding differentiating flags to the splay tree's
1382 * numerical domain.
1383 */
1384 static
1385 struct buf *
1386 buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1387 {
1388 struct buf dummy;
1389 struct buf *lefttreemax, *righttreemin, *y;
1390
1391 if (root == NULL)
1392 return (NULL);
1393 lefttreemax = righttreemin = &dummy;
1394 for (;;) {
1395 if (lblkno < root->b_lblkno ||
1396 (lblkno == root->b_lblkno &&
1397 (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1398 if ((y = root->b_left) == NULL)
1399 break;
1400 if (lblkno < y->b_lblkno) {
1401 /* Rotate right. */
1402 root->b_left = y->b_right;
1403 y->b_right = root;
1404 root = y;
1405 if ((y = root->b_left) == NULL)
1406 break;
1407 }
1408 /* Link into the new root's right tree. */
1409 righttreemin->b_left = root;
1410 righttreemin = root;
1411 } else if (lblkno > root->b_lblkno ||
1412 (lblkno == root->b_lblkno &&
1413 (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1414 if ((y = root->b_right) == NULL)
1415 break;
1416 if (lblkno > y->b_lblkno) {
1417 /* Rotate left. */
1418 root->b_right = y->b_left;
1419 y->b_left = root;
1420 root = y;
1421 if ((y = root->b_right) == NULL)
1422 break;
1423 }
1424 /* Link into the new root's left tree. */
1425 lefttreemax->b_right = root;
1426 lefttreemax = root;
1427 } else {
1428 break;
1429 }
1430 root = y;
1431 }
1432 /* Assemble the new root. */
1433 lefttreemax->b_right = root->b_left;
1434 righttreemin->b_left = root->b_right;
1435 root->b_left = dummy.b_right;
1436 root->b_right = dummy.b_left;
1437 return (root);
1438 }
1439
1440 static void
1441 buf_vlist_remove(struct buf *bp)
1442 {
1443 struct buf *root;
1444 struct bufv *bv;
1445
1446 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1447 ASSERT_BO_LOCKED(bp->b_bufobj);
1448 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
1449 (BX_VNDIRTY|BX_VNCLEAN),
1450 ("buf_vlist_remove: Buf %p is on two lists", bp));
1451 if (bp->b_xflags & BX_VNDIRTY)
1452 bv = &bp->b_bufobj->bo_dirty;
1453 else
1454 bv = &bp->b_bufobj->bo_clean;
1455 if (bp != bv->bv_root) {
1456 root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1457 KASSERT(root == bp, ("splay lookup failed in remove"));
1458 }
1459 if (bp->b_left == NULL) {
1460 root = bp->b_right;
1461 } else {
1462 root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1463 root->b_right = bp->b_right;
1464 }
1465 bv->bv_root = root;
1466 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1467 bv->bv_cnt--;
1468 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1469 }
1470
1471 /*
1472 * Add the buffer to the sorted clean or dirty block list using a
1473 * splay tree algorithm.
1474 *
1475 * NOTE: xflags is passed as a constant, optimizing this inline function!
1476 */
1477 static void
1478 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1479 {
1480 struct buf *root;
1481 struct bufv *bv;
1482
1483 ASSERT_BO_LOCKED(bo);
1484 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1485 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
1486 bp->b_xflags |= xflags;
1487 if (xflags & BX_VNDIRTY)
1488 bv = &bo->bo_dirty;
1489 else
1490 bv = &bo->bo_clean;
1491
1492 root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1493 if (root == NULL) {
1494 bp->b_left = NULL;
1495 bp->b_right = NULL;
1496 TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1497 } else if (bp->b_lblkno < root->b_lblkno ||
1498 (bp->b_lblkno == root->b_lblkno &&
1499 (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1500 bp->b_left = root->b_left;
1501 bp->b_right = root;
1502 root->b_left = NULL;
1503 TAILQ_INSERT_BEFORE(root, bp, b_bobufs);
1504 } else {
1505 bp->b_right = root->b_right;
1506 bp->b_left = root;
1507 root->b_right = NULL;
1508 TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs);
1509 }
1510 bv->bv_cnt++;
1511 bv->bv_root = bp;
1512 }
1513
1514 /*
1515 * Lookup a buffer using the splay tree. Note that we specifically avoid
1516 * shadow buffers used in background bitmap writes.
1517 *
1518 * This code isn't quite efficient as it could be because we are maintaining
1519 * two sorted lists and do not know which list the block resides in.
1520 *
1521 * During a "make buildworld" the desired buffer is found at one of
1522 * the roots more than 60% of the time. Thus, checking both roots
1523 * before performing either splay eliminates unnecessary splays on the
1524 * first tree splayed.
1525 */
1526 struct buf *
1527 gbincore(struct bufobj *bo, daddr_t lblkno)
1528 {
1529 struct buf *bp;
1530
1531 ASSERT_BO_LOCKED(bo);
1532 if ((bp = bo->bo_clean.bv_root) != NULL &&
1533 bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1534 return (bp);
1535 if ((bp = bo->bo_dirty.bv_root) != NULL &&
1536 bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1537 return (bp);
1538 if ((bp = bo->bo_clean.bv_root) != NULL) {
1539 bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp);
1540 if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1541 return (bp);
1542 }
1543 if ((bp = bo->bo_dirty.bv_root) != NULL) {
1544 bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp);
1545 if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1546 return (bp);
1547 }
1548 return (NULL);
1549 }
1550
1551 /*
1552 * Associate a buffer with a vnode.
1553 */
1554 void
1555 bgetvp(struct vnode *vp, struct buf *bp)
1556 {
1557 struct bufobj *bo;
1558
1559 bo = &vp->v_bufobj;
1560 ASSERT_BO_LOCKED(bo);
1561 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
1562
1563 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
1564 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
1565 ("bgetvp: bp already attached! %p", bp));
1566
1567 vhold(vp);
1568 if (VFS_NEEDSGIANT(vp->v_mount) || bo->bo_flag & BO_NEEDSGIANT)
1569 bp->b_flags |= B_NEEDSGIANT;
1570 bp->b_vp = vp;
1571 bp->b_bufobj = bo;
1572 /*
1573 * Insert onto list for new vnode.
1574 */
1575 buf_vlist_add(bp, bo, BX_VNCLEAN);
1576 }
1577
1578 /*
1579 * Disassociate a buffer from a vnode.
1580 */
1581 void
1582 brelvp(struct buf *bp)
1583 {
1584 struct bufobj *bo;
1585 struct vnode *vp;
1586
1587 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1588 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1589
1590 /*
1591 * Delete from old vnode list, if on one.
1592 */
1593 vp = bp->b_vp; /* XXX */
1594 bo = bp->b_bufobj;
1595 BO_LOCK(bo);
1596 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1597 buf_vlist_remove(bp);
1598 else
1599 panic("brelvp: Buffer %p not on queue.", bp);
1600 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1601 bo->bo_flag &= ~BO_ONWORKLST;
1602 mtx_lock(&sync_mtx);
1603 LIST_REMOVE(bo, bo_synclist);
1604 syncer_worklist_len--;
1605 mtx_unlock(&sync_mtx);
1606 }
1607 bp->b_flags &= ~B_NEEDSGIANT;
1608 bp->b_vp = NULL;
1609 bp->b_bufobj = NULL;
1610 BO_UNLOCK(bo);
1611 vdrop(vp);
1612 }
1613
1614 /*
1615 * Add an item to the syncer work queue.
1616 */
1617 static void
1618 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1619 {
1620 int queue, slot;
1621
1622 ASSERT_BO_LOCKED(bo);
1623
1624 mtx_lock(&sync_mtx);
1625 if (bo->bo_flag & BO_ONWORKLST)
1626 LIST_REMOVE(bo, bo_synclist);
1627 else {
1628 bo->bo_flag |= BO_ONWORKLST;
1629 syncer_worklist_len++;
1630 }
1631
1632 if (delay > syncer_maxdelay - 2)
1633 delay = syncer_maxdelay - 2;
1634 slot = (syncer_delayno + delay) & syncer_mask;
1635
1636 queue = VFS_NEEDSGIANT(bo->__bo_vnode->v_mount) ? WI_GIANTQ :
1637 WI_MPSAFEQ;
1638 LIST_INSERT_HEAD(&syncer_workitem_pending[queue][slot], bo,
1639 bo_synclist);
1640 mtx_unlock(&sync_mtx);
1641 }
1642
1643 static int
1644 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1645 {
1646 int error, len;
1647
1648 mtx_lock(&sync_mtx);
1649 len = syncer_worklist_len - sync_vnode_count;
1650 mtx_unlock(&sync_mtx);
1651 error = SYSCTL_OUT(req, &len, sizeof(len));
1652 return (error);
1653 }
1654
1655 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1656 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1657
1658 static struct proc *updateproc;
1659 static void sched_sync(void);
1660 static struct kproc_desc up_kp = {
1661 "syncer",
1662 sched_sync,
1663 &updateproc
1664 };
1665 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
1666
1667 static int
1668 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
1669 {
1670 struct vnode *vp;
1671 struct mount *mp;
1672
1673 *bo = LIST_FIRST(slp);
1674 if (*bo == NULL)
1675 return (0);
1676 vp = (*bo)->__bo_vnode; /* XXX */
1677 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
1678 return (1);
1679 /*
1680 * We use vhold in case the vnode does not
1681 * successfully sync. vhold prevents the vnode from
1682 * going away when we unlock the sync_mtx so that
1683 * we can acquire the vnode interlock.
1684 */
1685 vholdl(vp);
1686 mtx_unlock(&sync_mtx);
1687 VI_UNLOCK(vp);
1688 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1689 vdrop(vp);
1690 mtx_lock(&sync_mtx);
1691 return (*bo == LIST_FIRST(slp));
1692 }
1693 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1694 (void) VOP_FSYNC(vp, MNT_LAZY, td);
1695 VOP_UNLOCK(vp, 0);
1696 vn_finished_write(mp);
1697 BO_LOCK(*bo);
1698 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
1699 /*
1700 * Put us back on the worklist. The worklist
1701 * routine will remove us from our current
1702 * position and then add us back in at a later
1703 * position.
1704 */
1705 vn_syncer_add_to_worklist(*bo, syncdelay);
1706 }
1707 BO_UNLOCK(*bo);
1708 vdrop(vp);
1709 mtx_lock(&sync_mtx);
1710 return (0);
1711 }
1712
1713 /*
1714 * System filesystem synchronizer daemon.
1715 */
1716 static void
1717 sched_sync(void)
1718 {
1719 struct synclist *gnext, *next;
1720 struct synclist *gslp, *slp;
1721 struct bufobj *bo;
1722 long starttime;
1723 struct thread *td = curthread;
1724 int last_work_seen;
1725 int net_worklist_len;
1726 int syncer_final_iter;
1727 int first_printf;
1728 int error;
1729
1730 last_work_seen = 0;
1731 syncer_final_iter = 0;
1732 first_printf = 1;
1733 syncer_state = SYNCER_RUNNING;
1734 starttime = time_uptime;
1735 td->td_pflags |= TDP_NORUNNINGBUF;
1736
1737 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1738 SHUTDOWN_PRI_LAST);
1739
1740 mtx_lock(&sync_mtx);
1741 for (;;) {
1742 if (syncer_state == SYNCER_FINAL_DELAY &&
1743 syncer_final_iter == 0) {
1744 mtx_unlock(&sync_mtx);
1745 kproc_suspend_check(td->td_proc);
1746 mtx_lock(&sync_mtx);
1747 }
1748 net_worklist_len = syncer_worklist_len - sync_vnode_count;
1749 if (syncer_state != SYNCER_RUNNING &&
1750 starttime != time_uptime) {
1751 if (first_printf) {
1752 printf("\nSyncing disks, vnodes remaining...");
1753 first_printf = 0;
1754 }
1755 printf("%d ", net_worklist_len);
1756 }
1757 starttime = time_uptime;
1758
1759 /*
1760 * Push files whose dirty time has expired. Be careful
1761 * of interrupt race on slp queue.
1762 *
1763 * Skip over empty worklist slots when shutting down.
1764 */
1765 do {
1766 slp = &syncer_workitem_pending[WI_MPSAFEQ][syncer_delayno];
1767 gslp = &syncer_workitem_pending[WI_GIANTQ][syncer_delayno];
1768 syncer_delayno += 1;
1769 if (syncer_delayno == syncer_maxdelay)
1770 syncer_delayno = 0;
1771 next = &syncer_workitem_pending[WI_MPSAFEQ][syncer_delayno];
1772 gnext = &syncer_workitem_pending[WI_GIANTQ][syncer_delayno];
1773 /*
1774 * If the worklist has wrapped since the
1775 * it was emptied of all but syncer vnodes,
1776 * switch to the FINAL_DELAY state and run
1777 * for one more second.
1778 */
1779 if (syncer_state == SYNCER_SHUTTING_DOWN &&
1780 net_worklist_len == 0 &&
1781 last_work_seen == syncer_delayno) {
1782 syncer_state = SYNCER_FINAL_DELAY;
1783 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1784 }
1785 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1786 LIST_EMPTY(gslp) && syncer_worklist_len > 0);
1787
1788 /*
1789 * Keep track of the last time there was anything
1790 * on the worklist other than syncer vnodes.
1791 * Return to the SHUTTING_DOWN state if any
1792 * new work appears.
1793 */
1794 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1795 last_work_seen = syncer_delayno;
1796 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1797 syncer_state = SYNCER_SHUTTING_DOWN;
1798 while (!LIST_EMPTY(slp)) {
1799 error = sync_vnode(slp, &bo, td);
1800 if (error == 1) {
1801 LIST_REMOVE(bo, bo_synclist);
1802 LIST_INSERT_HEAD(next, bo, bo_synclist);
1803 continue;
1804 }
1805 }
1806 if (!LIST_EMPTY(gslp)) {
1807 mtx_unlock(&sync_mtx);
1808 mtx_lock(&Giant);
1809 mtx_lock(&sync_mtx);
1810 while (!LIST_EMPTY(gslp)) {
1811 error = sync_vnode(gslp, &bo, td);
1812 if (error == 1) {
1813 LIST_REMOVE(bo, bo_synclist);
1814 LIST_INSERT_HEAD(gnext, bo,
1815 bo_synclist);
1816 continue;
1817 }
1818 }
1819 mtx_unlock(&Giant);
1820 }
1821 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1822 syncer_final_iter--;
1823 /*
1824 * The variable rushjob allows the kernel to speed up the
1825 * processing of the filesystem syncer process. A rushjob
1826 * value of N tells the filesystem syncer to process the next
1827 * N seconds worth of work on its queue ASAP. Currently rushjob
1828 * is used by the soft update code to speed up the filesystem
1829 * syncer process when the incore state is getting so far
1830 * ahead of the disk that the kernel memory pool is being
1831 * threatened with exhaustion.
1832 */
1833 if (rushjob > 0) {
1834 rushjob -= 1;
1835 continue;
1836 }
1837 /*
1838 * Just sleep for a short period of time between
1839 * iterations when shutting down to allow some I/O
1840 * to happen.
1841 *
1842 * If it has taken us less than a second to process the
1843 * current work, then wait. Otherwise start right over
1844 * again. We can still lose time if any single round
1845 * takes more than two seconds, but it does not really
1846 * matter as we are just trying to generally pace the
1847 * filesystem activity.
1848 */
1849 if (syncer_state != SYNCER_RUNNING)
1850 cv_timedwait(&sync_wakeup, &sync_mtx,
1851 hz / SYNCER_SHUTDOWN_SPEEDUP);
1852 else if (time_uptime == starttime)
1853 cv_timedwait(&sync_wakeup, &sync_mtx, hz);
1854 }
1855 }
1856
1857 /*
1858 * Request the syncer daemon to speed up its work.
1859 * We never push it to speed up more than half of its
1860 * normal turn time, otherwise it could take over the cpu.
1861 */
1862 int
1863 speedup_syncer(void)
1864 {
1865 int ret = 0;
1866
1867 mtx_lock(&sync_mtx);
1868 if (rushjob < syncdelay / 2) {
1869 rushjob += 1;
1870 stat_rush_requests += 1;
1871 ret = 1;
1872 }
1873 mtx_unlock(&sync_mtx);
1874 cv_broadcast(&sync_wakeup);
1875 return (ret);
1876 }
1877
1878 /*
1879 * Tell the syncer to speed up its work and run though its work
1880 * list several times, then tell it to shut down.
1881 */
1882 static void
1883 syncer_shutdown(void *arg, int howto)
1884 {
1885
1886 if (howto & RB_NOSYNC)
1887 return;
1888 mtx_lock(&sync_mtx);
1889 syncer_state = SYNCER_SHUTTING_DOWN;
1890 rushjob = 0;
1891 mtx_unlock(&sync_mtx);
1892 cv_broadcast(&sync_wakeup);
1893 kproc_shutdown(arg, howto);
1894 }
1895
1896 /*
1897 * Reassign a buffer from one vnode to another.
1898 * Used to assign file specific control information
1899 * (indirect blocks) to the vnode to which they belong.
1900 */
1901 void
1902 reassignbuf(struct buf *bp)
1903 {
1904 struct vnode *vp;
1905 struct bufobj *bo;
1906 int delay;
1907 #ifdef INVARIANTS
1908 struct bufv *bv;
1909 #endif
1910
1911 vp = bp->b_vp;
1912 bo = bp->b_bufobj;
1913 ++reassignbufcalls;
1914
1915 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
1916 bp, bp->b_vp, bp->b_flags);
1917 /*
1918 * B_PAGING flagged buffers cannot be reassigned because their vp
1919 * is not fully linked in.
1920 */
1921 if (bp->b_flags & B_PAGING)
1922 panic("cannot reassign paging buffer");
1923
1924 /*
1925 * Delete from old vnode list, if on one.
1926 */
1927 BO_LOCK(bo);
1928 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1929 buf_vlist_remove(bp);
1930 else
1931 panic("reassignbuf: Buffer %p not on queue.", bp);
1932 /*
1933 * If dirty, put on list of dirty buffers; otherwise insert onto list
1934 * of clean buffers.
1935 */
1936 if (bp->b_flags & B_DELWRI) {
1937 if ((bo->bo_flag & BO_ONWORKLST) == 0) {
1938 switch (vp->v_type) {
1939 case VDIR:
1940 delay = dirdelay;
1941 break;
1942 case VCHR:
1943 delay = metadelay;
1944 break;
1945 default:
1946 delay = filedelay;
1947 }
1948 vn_syncer_add_to_worklist(bo, delay);
1949 }
1950 buf_vlist_add(bp, bo, BX_VNDIRTY);
1951 } else {
1952 buf_vlist_add(bp, bo, BX_VNCLEAN);
1953
1954 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1955 mtx_lock(&sync_mtx);
1956 LIST_REMOVE(bo, bo_synclist);
1957 syncer_worklist_len--;
1958 mtx_unlock(&sync_mtx);
1959 bo->bo_flag &= ~BO_ONWORKLST;
1960 }
1961 }
1962 #ifdef INVARIANTS
1963 bv = &bo->bo_clean;
1964 bp = TAILQ_FIRST(&bv->bv_hd);
1965 KASSERT(bp == NULL || bp->b_bufobj == bo,
1966 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1967 bp = TAILQ_LAST(&bv->bv_hd, buflists);
1968 KASSERT(bp == NULL || bp->b_bufobj == bo,
1969 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1970 bv = &bo->bo_dirty;
1971 bp = TAILQ_FIRST(&bv->bv_hd);
1972 KASSERT(bp == NULL || bp->b_bufobj == bo,
1973 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1974 bp = TAILQ_LAST(&bv->bv_hd, buflists);
1975 KASSERT(bp == NULL || bp->b_bufobj == bo,
1976 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1977 #endif
1978 BO_UNLOCK(bo);
1979 }
1980
1981 /*
1982 * Increment the use and hold counts on the vnode, taking care to reference
1983 * the driver's usecount if this is a chardev. The vholdl() will remove
1984 * the vnode from the free list if it is presently free. Requires the
1985 * vnode interlock and returns with it held.
1986 */
1987 static void
1988 v_incr_usecount(struct vnode *vp)
1989 {
1990
1991 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1992 vp->v_usecount++;
1993 if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1994 dev_lock();
1995 vp->v_rdev->si_usecount++;
1996 dev_unlock();
1997 }
1998 vholdl(vp);
1999 }
2000
2001 /*
2002 * Turn a holdcnt into a use+holdcnt such that only one call to
2003 * v_decr_usecount is needed.
2004 */
2005 static void
2006 v_upgrade_usecount(struct vnode *vp)
2007 {
2008
2009 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2010 vp->v_usecount++;
2011 if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2012 dev_lock();
2013 vp->v_rdev->si_usecount++;
2014 dev_unlock();
2015 }
2016 }
2017
2018 /*
2019 * Decrement the vnode use and hold count along with the driver's usecount
2020 * if this is a chardev. The vdropl() below releases the vnode interlock
2021 * as it may free the vnode.
2022 */
2023 static void
2024 v_decr_usecount(struct vnode *vp)
2025 {
2026
2027 ASSERT_VI_LOCKED(vp, __FUNCTION__);
2028 VNASSERT(vp->v_usecount > 0, vp,
2029 ("v_decr_usecount: negative usecount"));
2030 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2031 vp->v_usecount--;
2032 if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2033 dev_lock();
2034 vp->v_rdev->si_usecount--;
2035 dev_unlock();
2036 }
2037 vdropl(vp);
2038 }
2039
2040 /*
2041 * Decrement only the use count and driver use count. This is intended to
2042 * be paired with a follow on vdropl() to release the remaining hold count.
2043 * In this way we may vgone() a vnode with a 0 usecount without risk of
2044 * having it end up on a free list because the hold count is kept above 0.
2045 */
2046 static void
2047 v_decr_useonly(struct vnode *vp)
2048 {
2049
2050 ASSERT_VI_LOCKED(vp, __FUNCTION__);
2051 VNASSERT(vp->v_usecount > 0, vp,
2052 ("v_decr_useonly: negative usecount"));
2053 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2054 vp->v_usecount--;
2055 if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2056 dev_lock();
2057 vp->v_rdev->si_usecount--;
2058 dev_unlock();
2059 }
2060 }
2061
2062 /*
2063 * Grab a particular vnode from the free list, increment its
2064 * reference count and lock it. VI_DOOMED is set if the vnode
2065 * is being destroyed. Only callers who specify LK_RETRY will
2066 * see doomed vnodes. If inactive processing was delayed in
2067 * vput try to do it here.
2068 */
2069 int
2070 vget(struct vnode *vp, int flags, struct thread *td)
2071 {
2072 int error;
2073
2074 error = 0;
2075 VFS_ASSERT_GIANT(vp->v_mount);
2076 VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
2077 ("vget: invalid lock operation"));
2078 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2079
2080 if ((flags & LK_INTERLOCK) == 0)
2081 VI_LOCK(vp);
2082 vholdl(vp);
2083 if ((error = vn_lock(vp, flags | LK_INTERLOCK)) != 0) {
2084 vdrop(vp);
2085 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2086 vp);
2087 return (error);
2088 }
2089 if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
2090 panic("vget: vn_lock failed to return ENOENT\n");
2091 VI_LOCK(vp);
2092 /* Upgrade our holdcnt to a usecount. */
2093 v_upgrade_usecount(vp);
2094 /*
2095 * We don't guarantee that any particular close will
2096 * trigger inactive processing so just make a best effort
2097 * here at preventing a reference to a removed file. If
2098 * we don't succeed no harm is done.
2099 */
2100 if (vp->v_iflag & VI_OWEINACT) {
2101 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2102 (flags & LK_NOWAIT) == 0)
2103 vinactive(vp, td);
2104 vp->v_iflag &= ~VI_OWEINACT;
2105 }
2106 VI_UNLOCK(vp);
2107 return (0);
2108 }
2109
2110 /*
2111 * Increase the reference count of a vnode.
2112 */
2113 void
2114 vref(struct vnode *vp)
2115 {
2116
2117 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2118 VI_LOCK(vp);
2119 v_incr_usecount(vp);
2120 VI_UNLOCK(vp);
2121 }
2122
2123 /*
2124 * Return reference count of a vnode.
2125 *
2126 * The results of this call are only guaranteed when some mechanism other
2127 * than the VI lock is used to stop other processes from gaining references
2128 * to the vnode. This may be the case if the caller holds the only reference.
2129 * This is also useful when stale data is acceptable as race conditions may
2130 * be accounted for by some other means.
2131 */
2132 int
2133 vrefcnt(struct vnode *vp)
2134 {
2135 int usecnt;
2136
2137 VI_LOCK(vp);
2138 usecnt = vp->v_usecount;
2139 VI_UNLOCK(vp);
2140
2141 return (usecnt);
2142 }
2143
2144
2145 /*
2146 * Vnode put/release.
2147 * If count drops to zero, call inactive routine and return to freelist.
2148 */
2149 void
2150 vrele(struct vnode *vp)
2151 {
2152 struct thread *td = curthread; /* XXX */
2153
2154 KASSERT(vp != NULL, ("vrele: null vp"));
2155 VFS_ASSERT_GIANT(vp->v_mount);
2156
2157 VI_LOCK(vp);
2158
2159 /* Skip this v_writecount check if we're going to panic below. */
2160 VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2161 ("vrele: missed vn_close"));
2162 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2163
2164 if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2165 vp->v_usecount == 1)) {
2166 v_decr_usecount(vp);
2167 return;
2168 }
2169 if (vp->v_usecount != 1) {
2170 #ifdef DIAGNOSTIC
2171 vprint("vrele: negative ref count", vp);
2172 #endif
2173 VI_UNLOCK(vp);
2174 panic("vrele: negative ref cnt");
2175 }
2176 CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp);
2177 /*
2178 * We want to hold the vnode until the inactive finishes to
2179 * prevent vgone() races. We drop the use count here and the
2180 * hold count below when we're done.
2181 */
2182 v_decr_useonly(vp);
2183 /*
2184 * We must call VOP_INACTIVE with the node locked. Mark
2185 * as VI_DOINGINACT to avoid recursion.
2186 */
2187 vp->v_iflag |= VI_OWEINACT;
2188 if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK) == 0) {
2189 VI_LOCK(vp);
2190 if (vp->v_usecount > 0)
2191 vp->v_iflag &= ~VI_OWEINACT;
2192 if (vp->v_iflag & VI_OWEINACT)
2193 vinactive(vp, td);
2194 VOP_UNLOCK(vp, 0);
2195 } else {
2196 VI_LOCK(vp);
2197 if (vp->v_usecount > 0)
2198 vp->v_iflag &= ~VI_OWEINACT;
2199 }
2200 vdropl(vp);
2201 }
2202
2203 /*
2204 * Release an already locked vnode. This give the same effects as
2205 * unlock+vrele(), but takes less time and avoids releasing and
2206 * re-aquiring the lock (as vrele() acquires the lock internally.)
2207 */
2208 void
2209 vput(struct vnode *vp)
2210 {
2211 struct thread *td = curthread; /* XXX */
2212 int error;
2213
2214 KASSERT(vp != NULL, ("vput: null vp"));
2215 ASSERT_VOP_LOCKED(vp, "vput");
2216 VFS_ASSERT_GIANT(vp->v_mount);
2217 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2218 VI_LOCK(vp);
2219 /* Skip this v_writecount check if we're going to panic below. */
2220 VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2221 ("vput: missed vn_close"));
2222 error = 0;
2223
2224 if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2225 vp->v_usecount == 1)) {
2226 VOP_UNLOCK(vp, 0);
2227 v_decr_usecount(vp);
2228 return;
2229 }
2230
2231 if (vp->v_usecount != 1) {
2232 #ifdef DIAGNOSTIC
2233 vprint("vput: negative ref count", vp);
2234 #endif
2235 panic("vput: negative ref cnt");
2236 }
2237 CTR2(KTR_VFS, "%s: return to freelist the vnode %p", __func__, vp);
2238 /*
2239 * We want to hold the vnode until the inactive finishes to
2240 * prevent vgone() races. We drop the use count here and the
2241 * hold count below when we're done.
2242 */
2243 v_decr_useonly(vp);
2244 vp->v_iflag |= VI_OWEINACT;
2245 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2246 error = VOP_LOCK(vp, LK_UPGRADE|LK_INTERLOCK|LK_NOWAIT);
2247 VI_LOCK(vp);
2248 if (error) {
2249 if (vp->v_usecount > 0)
2250 vp->v_iflag &= ~VI_OWEINACT;
2251 goto done;
2252 }
2253 }
2254 if (vp->v_usecount > 0)
2255 vp->v_iflag &= ~VI_OWEINACT;
2256 if (vp->v_iflag & VI_OWEINACT)
2257 vinactive(vp, td);
2258 VOP_UNLOCK(vp, 0);
2259 done:
2260 vdropl(vp);
2261 }
2262
2263 /*
2264 * Somebody doesn't want the vnode recycled.
2265 */
2266 void
2267 vhold(struct vnode *vp)
2268 {
2269
2270 VI_LOCK(vp);
2271 vholdl(vp);
2272 VI_UNLOCK(vp);
2273 }
2274
2275 void
2276 vholdl(struct vnode *vp)
2277 {
2278
2279 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2280 vp->v_holdcnt++;
2281 if (VSHOULDBUSY(vp))
2282 vbusy(vp);
2283 }
2284
2285 /*
2286 * Note that there is one less who cares about this vnode. vdrop() is the
2287 * opposite of vhold().
2288 */
2289 void
2290 vdrop(struct vnode *vp)
2291 {
2292
2293 VI_LOCK(vp);
2294 vdropl(vp);
2295 }
2296
2297 /*
2298 * Drop the hold count of the vnode. If this is the last reference to
2299 * the vnode we will free it if it has been vgone'd otherwise it is
2300 * placed on the free list.
2301 */
2302 void
2303 vdropl(struct vnode *vp)
2304 {
2305
2306 ASSERT_VI_LOCKED(vp, "vdropl");
2307 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2308 if (vp->v_holdcnt <= 0)
2309 panic("vdrop: holdcnt %d", vp->v_holdcnt);
2310 vp->v_holdcnt--;
2311 if (vp->v_holdcnt == 0) {
2312 if (vp->v_iflag & VI_DOOMED) {
2313 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__,
2314 vp);
2315 vdestroy(vp);
2316 return;
2317 } else
2318 vfree(vp);
2319 }
2320 VI_UNLOCK(vp);
2321 }
2322
2323 /*
2324 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
2325 * flags. DOINGINACT prevents us from recursing in calls to vinactive.
2326 * OWEINACT tracks whether a vnode missed a call to inactive due to a
2327 * failed lock upgrade.
2328 */
2329 static void
2330 vinactive(struct vnode *vp, struct thread *td)
2331 {
2332
2333 ASSERT_VOP_ELOCKED(vp, "vinactive");
2334 ASSERT_VI_LOCKED(vp, "vinactive");
2335 VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
2336 ("vinactive: recursed on VI_DOINGINACT"));
2337 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2338 vp->v_iflag |= VI_DOINGINACT;
2339 vp->v_iflag &= ~VI_OWEINACT;
2340 VI_UNLOCK(vp);
2341 VOP_INACTIVE(vp, td);
2342 VI_LOCK(vp);
2343 VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
2344 ("vinactive: lost VI_DOINGINACT"));
2345 vp->v_iflag &= ~VI_DOINGINACT;
2346 }
2347
2348 /*
2349 * Remove any vnodes in the vnode table belonging to mount point mp.
2350 *
2351 * If FORCECLOSE is not specified, there should not be any active ones,
2352 * return error if any are found (nb: this is a user error, not a
2353 * system error). If FORCECLOSE is specified, detach any active vnodes
2354 * that are found.
2355 *
2356 * If WRITECLOSE is set, only flush out regular file vnodes open for
2357 * writing.
2358 *
2359 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2360 *
2361 * `rootrefs' specifies the base reference count for the root vnode
2362 * of this filesystem. The root vnode is considered busy if its
2363 * v_usecount exceeds this value. On a successful return, vflush(, td)
2364 * will call vrele() on the root vnode exactly rootrefs times.
2365 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2366 * be zero.
2367 */
2368 #ifdef DIAGNOSTIC
2369 static int busyprt = 0; /* print out busy vnodes */
2370 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2371 #endif
2372
2373 int
2374 vflush( struct mount *mp, int rootrefs, int flags, struct thread *td)
2375 {
2376 struct vnode *vp, *mvp, *rootvp = NULL;
2377 struct vattr vattr;
2378 int busy = 0, error;
2379
2380 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
2381 rootrefs, flags);
2382 if (rootrefs > 0) {
2383 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2384 ("vflush: bad args"));
2385 /*
2386 * Get the filesystem root vnode. We can vput() it
2387 * immediately, since with rootrefs > 0, it won't go away.
2388 */
2389 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
2390 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
2391 __func__, error);
2392 return (error);
2393 }
2394 vput(rootvp);
2395
2396 }
2397 MNT_ILOCK(mp);
2398 loop:
2399 MNT_VNODE_FOREACH(vp, mp, mvp) {
2400
2401 VI_LOCK(vp);
2402 vholdl(vp);
2403 MNT_IUNLOCK(mp);
2404 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
2405 if (error) {
2406 vdrop(vp);
2407 MNT_ILOCK(mp);
2408 MNT_VNODE_FOREACH_ABORT_ILOCKED(mp, mvp);
2409 goto loop;
2410 }
2411 /*
2412 * Skip over a vnodes marked VV_SYSTEM.
2413 */
2414 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2415 VOP_UNLOCK(vp, 0);
2416 vdrop(vp);
2417 MNT_ILOCK(mp);
2418 continue;
2419 }
2420 /*
2421 * If WRITECLOSE is set, flush out unlinked but still open
2422 * files (even if open only for reading) and regular file
2423 * vnodes open for writing.
2424 */
2425 if (flags & WRITECLOSE) {
2426 error = VOP_GETATTR(vp, &vattr, td->td_ucred);
2427 VI_LOCK(vp);
2428
2429 if ((vp->v_type == VNON ||
2430 (error == 0 && vattr.va_nlink > 0)) &&
2431 (vp->v_writecount == 0 || vp->v_type != VREG)) {
2432 VOP_UNLOCK(vp, 0);
2433 vdropl(vp);
2434 MNT_ILOCK(mp);
2435 continue;
2436 }
2437 } else
2438 VI_LOCK(vp);
2439 /*
2440 * With v_usecount == 0, all we need to do is clear out the
2441 * vnode data structures and we are done.
2442 *
2443 * If FORCECLOSE is set, forcibly close the vnode.
2444 */
2445 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
2446 VNASSERT(vp->v_usecount == 0 ||
2447 (vp->v_type != VCHR && vp->v_type != VBLK), vp,
2448 ("device VNODE %p is FORCECLOSED", vp));
2449 vgonel(vp);
2450 } else {
2451 busy++;
2452 #ifdef DIAGNOSTIC
2453 if (busyprt)
2454 vprint("vflush: busy vnode", vp);
2455 #endif
2456 }
2457 VOP_UNLOCK(vp, 0);
2458 vdropl(vp);
2459 MNT_ILOCK(mp);
2460 }
2461 MNT_IUNLOCK(mp);
2462 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2463 /*
2464 * If just the root vnode is busy, and if its refcount
2465 * is equal to `rootrefs', then go ahead and kill it.
2466 */
2467 VI_LOCK(rootvp);
2468 KASSERT(busy > 0, ("vflush: not busy"));
2469 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
2470 ("vflush: usecount %d < rootrefs %d",
2471 rootvp->v_usecount, rootrefs));
2472 if (busy == 1 && rootvp->v_usecount == rootrefs) {
2473 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
2474 vgone(rootvp);
2475 VOP_UNLOCK(rootvp, 0);
2476 busy = 0;
2477 } else
2478 VI_UNLOCK(rootvp);
2479 }
2480 if (busy) {
2481 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
2482 busy);
2483 return (EBUSY);
2484 }
2485 for (; rootrefs > 0; rootrefs--)
2486 vrele(rootvp);
2487 return (0);
2488 }
2489
2490 /*
2491 * Recycle an unused vnode to the front of the free list.
2492 */
2493 int
2494 vrecycle(struct vnode *vp, struct thread *td)
2495 {
2496 int recycled;
2497
2498 ASSERT_VOP_ELOCKED(vp, "vrecycle");
2499 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2500 recycled = 0;
2501 VI_LOCK(vp);
2502 if (vp->v_usecount == 0) {
2503 recycled = 1;
2504 vgonel(vp);
2505 }
2506 VI_UNLOCK(vp);
2507 return (recycled);
2508 }
2509
2510 /*
2511 * Eliminate all activity associated with a vnode
2512 * in preparation for reuse.
2513 */
2514 void
2515 vgone(struct vnode *vp)
2516 {
2517 VI_LOCK(vp);
2518 vgonel(vp);
2519 VI_UNLOCK(vp);
2520 }
2521
2522 /*
2523 * vgone, with the vp interlock held.
2524 */
2525 void
2526 vgonel(struct vnode *vp)
2527 {
2528 struct thread *td;
2529 int oweinact;
2530 int active;
2531 struct mount *mp;
2532
2533 ASSERT_VOP_ELOCKED(vp, "vgonel");
2534 ASSERT_VI_LOCKED(vp, "vgonel");
2535 VNASSERT(vp->v_holdcnt, vp,
2536 ("vgonel: vp %p has no reference.", vp));
2537 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2538 td = curthread;
2539
2540 /*
2541 * Don't vgonel if we're already doomed.
2542 */
2543 if (vp->v_iflag & VI_DOOMED)
2544 return;
2545 vp->v_iflag |= VI_DOOMED;
2546 /*
2547 * Check to see if the vnode is in use. If so, we have to call
2548 * VOP_CLOSE() and VOP_INACTIVE().
2549 */
2550 active = vp->v_usecount;
2551 oweinact = (vp->v_iflag & VI_OWEINACT);
2552 VI_UNLOCK(vp);
2553 /*
2554 * Clean out any buffers associated with the vnode.
2555 * If the flush fails, just toss the buffers.
2556 */
2557 mp = NULL;
2558 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
2559 (void) vn_start_secondary_write(vp, &mp, V_WAIT);
2560 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0)
2561 vinvalbuf(vp, 0, 0, 0);
2562
2563 /*
2564 * If purging an active vnode, it must be closed and
2565 * deactivated before being reclaimed.
2566 */
2567 if (active)
2568 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2569 if (oweinact || active) {
2570 VI_LOCK(vp);
2571 if ((vp->v_iflag & VI_DOINGINACT) == 0)
2572 vinactive(vp, td);
2573 VI_UNLOCK(vp);
2574 }
2575 /*
2576 * Reclaim the vnode.
2577 */
2578 if (VOP_RECLAIM(vp, td))
2579 panic("vgone: cannot reclaim");
2580 if (mp != NULL)
2581 vn_finished_secondary_write(mp);
2582 VNASSERT(vp->v_object == NULL, vp,
2583 ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
2584 /*
2585 * Clear the advisory locks and wake up waiting threads.
2586 */
2587 lf_purgelocks(vp, &(vp->v_lockf));
2588 /*
2589 * Delete from old mount point vnode list.
2590 */
2591 delmntque(vp);
2592 cache_purge(vp);
2593 /*
2594 * Done with purge, reset to the standard lock and invalidate
2595 * the vnode.
2596 */
2597 VI_LOCK(vp);
2598 vp->v_vnlock = &vp->v_lock;
2599 vp->v_op = &dead_vnodeops;
2600 vp->v_tag = "none";
2601 vp->v_type = VBAD;
2602 }
2603
2604 /*
2605 * Calculate the total number of references to a special device.
2606 */
2607 int
2608 vcount(struct vnode *vp)
2609 {
2610 int count;
2611
2612 dev_lock();
2613 count = vp->v_rdev->si_usecount;
2614 dev_unlock();
2615 return (count);
2616 }
2617
2618 /*
2619 * Same as above, but using the struct cdev *as argument
2620 */
2621 int
2622 count_dev(struct cdev *dev)
2623 {
2624 int count;
2625
2626 dev_lock();
2627 count = dev->si_usecount;
2628 dev_unlock();
2629 return(count);
2630 }
2631
2632 /*
2633 * Print out a description of a vnode.
2634 */
2635 static char *typename[] =
2636 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
2637 "VMARKER"};
2638
2639 void
2640 vn_printf(struct vnode *vp, const char *fmt, ...)
2641 {
2642 va_list ap;
2643 char buf[256], buf2[16];
2644 u_long flags;
2645
2646 va_start(ap, fmt);
2647 vprintf(fmt, ap);
2648 va_end(ap);
2649 printf("%p: ", (void *)vp);
2650 printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
2651 printf(" usecount %d, writecount %d, refcount %d mountedhere %p\n",
2652 vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere);
2653 buf[0] = '\0';
2654 buf[1] = '\0';
2655 if (vp->v_vflag & VV_ROOT)
2656 strlcat(buf, "|VV_ROOT", sizeof(buf));
2657 if (vp->v_vflag & VV_ISTTY)
2658 strlcat(buf, "|VV_ISTTY", sizeof(buf));
2659 if (vp->v_vflag & VV_NOSYNC)
2660 strlcat(buf, "|VV_NOSYNC", sizeof(buf));
2661 if (vp->v_vflag & VV_CACHEDLABEL)
2662 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
2663 if (vp->v_vflag & VV_TEXT)
2664 strlcat(buf, "|VV_TEXT", sizeof(buf));
2665 if (vp->v_vflag & VV_COPYONWRITE)
2666 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
2667 if (vp->v_vflag & VV_SYSTEM)
2668 strlcat(buf, "|VV_SYSTEM", sizeof(buf));
2669 if (vp->v_vflag & VV_PROCDEP)
2670 strlcat(buf, "|VV_PROCDEP", sizeof(buf));
2671 if (vp->v_vflag & VV_NOKNOTE)
2672 strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
2673 if (vp->v_vflag & VV_DELETED)
2674 strlcat(buf, "|VV_DELETED", sizeof(buf));
2675 if (vp->v_vflag & VV_MD)
2676 strlcat(buf, "|VV_MD", sizeof(buf));
2677 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC |
2678 VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
2679 VV_NOKNOTE | VV_DELETED | VV_MD);
2680 if (flags != 0) {
2681 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
2682 strlcat(buf, buf2, sizeof(buf));
2683 }
2684 if (vp->v_iflag & VI_MOUNT)
2685 strlcat(buf, "|VI_MOUNT", sizeof(buf));
2686 if (vp->v_iflag & VI_AGE)
2687 strlcat(buf, "|VI_AGE", sizeof(buf));
2688 if (vp->v_iflag & VI_DOOMED)
2689 strlcat(buf, "|VI_DOOMED", sizeof(buf));
2690 if (vp->v_iflag & VI_FREE)
2691 strlcat(buf, "|VI_FREE", sizeof(buf));
2692 if (vp->v_iflag & VI_OBJDIRTY)
2693 strlcat(buf, "|VI_OBJDIRTY", sizeof(buf));
2694 if (vp->v_iflag & VI_DOINGINACT)
2695 strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
2696 if (vp->v_iflag & VI_OWEINACT)
2697 strlcat(buf, "|VI_OWEINACT", sizeof(buf));
2698 flags = vp->v_iflag & ~(VI_MOUNT | VI_AGE | VI_DOOMED | VI_FREE |
2699 VI_OBJDIRTY | VI_DOINGINACT | VI_OWEINACT);
2700 if (flags != 0) {
2701 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
2702 strlcat(buf, buf2, sizeof(buf));
2703 }
2704 printf(" flags (%s)\n", buf + 1);
2705 if (mtx_owned(VI_MTX(vp)))
2706 printf(" VI_LOCKed");
2707 if (vp->v_object != NULL)
2708 printf(" v_object %p ref %d pages %d\n",
2709 vp->v_object, vp->v_object->ref_count,
2710 vp->v_object->resident_page_count);
2711 printf(" ");
2712 lockmgr_printinfo(vp->v_vnlock);
2713 if (vp->v_data != NULL)
2714 VOP_PRINT(vp);
2715 }
2716
2717 #ifdef DDB
2718 /*
2719 * List all of the locked vnodes in the system.
2720 * Called when debugging the kernel.
2721 */
2722 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2723 {
2724 struct mount *mp, *nmp;
2725 struct vnode *vp;
2726
2727 /*
2728 * Note: because this is DDB, we can't obey the locking semantics
2729 * for these structures, which means we could catch an inconsistent
2730 * state and dereference a nasty pointer. Not much to be done
2731 * about that.
2732 */
2733 db_printf("Locked vnodes\n");
2734 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2735 nmp = TAILQ_NEXT(mp, mnt_list);
2736 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2737 if (vp->v_type != VMARKER &&
2738 VOP_ISLOCKED(vp))
2739 vprint("", vp);
2740 }
2741 nmp = TAILQ_NEXT(mp, mnt_list);
2742 }
2743 }
2744
2745 /*
2746 * Show details about the given vnode.
2747 */
2748 DB_SHOW_COMMAND(vnode, db_show_vnode)
2749 {
2750 struct vnode *vp;
2751
2752 if (!have_addr)
2753 return;
2754 vp = (struct vnode *)addr;
2755 vn_printf(vp, "vnode ");
2756 }
2757
2758 /*
2759 * Show details about the given mount point.
2760 */
2761 DB_SHOW_COMMAND(mount, db_show_mount)
2762 {
2763 struct mount *mp;
2764 struct statfs *sp;
2765 struct vnode *vp;
2766 char buf[512];
2767 u_int flags;
2768
2769 if (!have_addr) {
2770 /* No address given, print short info about all mount points. */
2771 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2772 db_printf("%p %s on %s (%s)\n", mp,
2773 mp->mnt_stat.f_mntfromname,
2774 mp->mnt_stat.f_mntonname,
2775 mp->mnt_stat.f_fstypename);
2776 if (db_pager_quit)
2777 break;
2778 }
2779 db_printf("\nMore info: show mount <addr>\n");
2780 return;
2781 }
2782
2783 mp = (struct mount *)addr;
2784 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
2785 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
2786
2787 buf[0] = '\0';
2788 flags = mp->mnt_flag;
2789 #define MNT_FLAG(flag) do { \
2790 if (flags & (flag)) { \
2791 if (buf[0] != '\0') \
2792 strlcat(buf, ", ", sizeof(buf)); \
2793 strlcat(buf, (#flag) + 4, sizeof(buf)); \
2794 flags &= ~(flag); \
2795 } \
2796 } while (0)
2797 MNT_FLAG(MNT_RDONLY);
2798 MNT_FLAG(MNT_SYNCHRONOUS);
2799 MNT_FLAG(MNT_NOEXEC);
2800 MNT_FLAG(MNT_NOSUID);
2801 MNT_FLAG(MNT_UNION);
2802 MNT_FLAG(MNT_ASYNC);
2803 MNT_FLAG(MNT_SUIDDIR);
2804 MNT_FLAG(MNT_SOFTDEP);
2805 MNT_FLAG(MNT_NOSYMFOLLOW);
2806 MNT_FLAG(MNT_GJOURNAL);
2807 MNT_FLAG(MNT_MULTILABEL);
2808 MNT_FLAG(MNT_ACLS);
2809 MNT_FLAG(MNT_NOATIME);
2810 MNT_FLAG(MNT_NOCLUSTERR);
2811 MNT_FLAG(MNT_NOCLUSTERW);
2812 MNT_FLAG(MNT_EXRDONLY);
2813 MNT_FLAG(MNT_EXPORTED);
2814 MNT_FLAG(MNT_DEFEXPORTED);
2815 MNT_FLAG(MNT_EXPORTANON);
2816 MNT_FLAG(MNT_EXKERB);
2817 MNT_FLAG(MNT_EXPUBLIC);
2818 MNT_FLAG(MNT_LOCAL);
2819 MNT_FLAG(MNT_QUOTA);
2820 MNT_FLAG(MNT_ROOTFS);
2821 MNT_FLAG(MNT_USER);
2822 MNT_FLAG(MNT_IGNORE);
2823 MNT_FLAG(MNT_UPDATE);
2824 MNT_FLAG(MNT_DELEXPORT);
2825 MNT_FLAG(MNT_RELOAD);
2826 MNT_FLAG(MNT_FORCE);
2827 MNT_FLAG(MNT_SNAPSHOT);
2828 MNT_FLAG(MNT_BYFSID);
2829 #undef MNT_FLAG
2830 if (flags != 0) {
2831 if (buf[0] != '\0')
2832 strlcat(buf, ", ", sizeof(buf));
2833 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
2834 "0x%08x", flags);
2835 }
2836 db_printf(" mnt_flag = %s\n", buf);
2837
2838 buf[0] = '\0';
2839 flags = mp->mnt_kern_flag;
2840 #define MNT_KERN_FLAG(flag) do { \
2841 if (flags & (flag)) { \
2842 if (buf[0] != '\0') \
2843 strlcat(buf, ", ", sizeof(buf)); \
2844 strlcat(buf, (#flag) + 5, sizeof(buf)); \
2845 flags &= ~(flag); \
2846 } \
2847 } while (0)
2848 MNT_KERN_FLAG(MNTK_UNMOUNTF);
2849 MNT_KERN_FLAG(MNTK_ASYNC);
2850 MNT_KERN_FLAG(MNTK_SOFTDEP);
2851 MNT_KERN_FLAG(MNTK_NOINSMNTQ);
2852 MNT_KERN_FLAG(MNTK_UNMOUNT);
2853 MNT_KERN_FLAG(MNTK_MWAIT);
2854 MNT_KERN_FLAG(MNTK_SUSPEND);
2855 MNT_KERN_FLAG(MNTK_SUSPEND2);
2856 MNT_KERN_FLAG(MNTK_SUSPENDED);
2857 MNT_KERN_FLAG(MNTK_MPSAFE);
2858 MNT_KERN_FLAG(MNTK_NOKNOTE);
2859 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
2860 #undef MNT_KERN_FLAG
2861 if (flags != 0) {
2862 if (buf[0] != '\0')
2863 strlcat(buf, ", ", sizeof(buf));
2864 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
2865 "0x%08x", flags);
2866 }
2867 db_printf(" mnt_kern_flag = %s\n", buf);
2868
2869 sp = &mp->mnt_stat;
2870 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx "
2871 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
2872 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
2873 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
2874 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
2875 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
2876 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
2877 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
2878 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
2879 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
2880 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
2881 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
2882
2883 db_printf(" mnt_cred = { uid=%u ruid=%u",
2884 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
2885 if (jailed(mp->mnt_cred))
2886 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
2887 db_printf(" }\n");
2888 db_printf(" mnt_ref = %d\n", mp->mnt_ref);
2889 db_printf(" mnt_gen = %d\n", mp->mnt_gen);
2890 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
2891 db_printf(" mnt_writeopcount = %d\n", mp->mnt_writeopcount);
2892 db_printf(" mnt_noasync = %u\n", mp->mnt_noasync);
2893 db_printf(" mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
2894 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max);
2895 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed);
2896 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
2897 db_printf(" mnt_secondary_accwrites = %d\n",
2898 mp->mnt_secondary_accwrites);
2899 db_printf(" mnt_gjprovider = %s\n",
2900 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
2901 db_printf("\n");
2902
2903 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2904 if (vp->v_type != VMARKER) {
2905 vn_printf(vp, "vnode ");
2906 if (db_pager_quit)
2907 break;
2908 }
2909 }
2910 }
2911 #endif /* DDB */
2912
2913 /*
2914 * Fill in a struct xvfsconf based on a struct vfsconf.
2915 */
2916 static void
2917 vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2918 {
2919
2920 strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2921 xvfsp->vfc_typenum = vfsp->vfc_typenum;
2922 xvfsp->vfc_refcount = vfsp->vfc_refcount;
2923 xvfsp->vfc_flags = vfsp->vfc_flags;
2924 /*
2925 * These are unused in userland, we keep them
2926 * to not break binary compatibility.
2927 */
2928 xvfsp->vfc_vfsops = NULL;
2929 xvfsp->vfc_next = NULL;
2930 }
2931
2932 /*
2933 * Top level filesystem related information gathering.
2934 */
2935 static int
2936 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2937 {
2938 struct vfsconf *vfsp;
2939 struct xvfsconf xvfsp;
2940 int error;
2941
2942 error = 0;
2943 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2944 bzero(&xvfsp, sizeof(xvfsp));
2945 vfsconf2x(vfsp, &xvfsp);
2946 error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp);
2947 if (error)
2948 break;
2949 }
2950 return (error);
2951 }
2952
2953 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2954 "S,xvfsconf", "List of all configured filesystems");
2955
2956 #ifndef BURN_BRIDGES
2957 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2958
2959 static int
2960 vfs_sysctl(SYSCTL_HANDLER_ARGS)
2961 {
2962 int *name = (int *)arg1 - 1; /* XXX */
2963 u_int namelen = arg2 + 1; /* XXX */
2964 struct vfsconf *vfsp;
2965 struct xvfsconf xvfsp;
2966
2967 printf("WARNING: userland calling deprecated sysctl, "
2968 "please rebuild world\n");
2969
2970 #if 1 || defined(COMPAT_PRELITE2)
2971 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2972 if (namelen == 1)
2973 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2974 #endif
2975
2976 switch (name[1]) {
2977 case VFS_MAXTYPENUM:
2978 if (namelen != 2)
2979 return (ENOTDIR);
2980 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2981 case VFS_CONF:
2982 if (namelen != 3)
2983 return (ENOTDIR); /* overloaded */
2984 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
2985 if (vfsp->vfc_typenum == name[2])
2986 break;
2987 if (vfsp == NULL)
2988 return (EOPNOTSUPP);
2989 bzero(&xvfsp, sizeof(xvfsp));
2990 vfsconf2x(vfsp, &xvfsp);
2991 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
2992 }
2993 return (EOPNOTSUPP);
2994 }
2995
2996 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP,
2997 vfs_sysctl, "Generic filesystem");
2998
2999 #if 1 || defined(COMPAT_PRELITE2)
3000
3001 static int
3002 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
3003 {
3004 int error;
3005 struct vfsconf *vfsp;
3006 struct ovfsconf ovfs;
3007
3008 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3009 bzero(&ovfs, sizeof(ovfs));
3010 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
3011 strcpy(ovfs.vfc_name, vfsp->vfc_name);
3012 ovfs.vfc_index = vfsp->vfc_typenum;
3013 ovfs.vfc_refcount = vfsp->vfc_refcount;
3014 ovfs.vfc_flags = vfsp->vfc_flags;
3015 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
3016 if (error)
3017 return error;
3018 }
3019 return 0;
3020 }
3021
3022 #endif /* 1 || COMPAT_PRELITE2 */
3023 #endif /* !BURN_BRIDGES */
3024
3025 #define KINFO_VNODESLOP 10
3026 #ifdef notyet
3027 /*
3028 * Dump vnode list (via sysctl).
3029 */
3030 /* ARGSUSED */
3031 static int
3032 sysctl_vnode(SYSCTL_HANDLER_ARGS)
3033 {
3034 struct xvnode *xvn;
3035 struct mount *mp;
3036 struct vnode *vp;
3037 int error, len, n;
3038
3039 /*
3040 * Stale numvnodes access is not fatal here.
3041 */
3042 req->lock = 0;
3043 len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
3044 if (!req->oldptr)
3045 /* Make an estimate */
3046 return (SYSCTL_OUT(req, 0, len));
3047
3048 error = sysctl_wire_old_buffer(req, 0);
3049 if (error != 0)
3050 return (error);
3051 xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
3052 n = 0;
3053 mtx_lock(&mountlist_mtx);
3054 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3055 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
3056 continue;
3057 MNT_ILOCK(mp);
3058 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3059 if (n == len)
3060 break;
3061 vref(vp);
3062 xvn[n].xv_size = sizeof *xvn;
3063 xvn[n].xv_vnode = vp;
3064 xvn[n].xv_id = 0; /* XXX compat */
3065 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3066 XV_COPY(usecount);
3067 XV_COPY(writecount);
3068 XV_COPY(holdcnt);
3069 XV_COPY(mount);
3070 XV_COPY(numoutput);
3071 XV_COPY(type);
3072 #undef XV_COPY
3073 xvn[n].xv_flag = vp->v_vflag;
3074
3075 switch (vp->v_type) {
3076 case VREG:
3077 case VDIR:
3078 case VLNK:
3079 break;
3080 case VBLK:
3081 case VCHR:
3082 if (vp->v_rdev == NULL) {
3083 vrele(vp);
3084 continue;
3085 }
3086 xvn[n].xv_dev = dev2udev(vp->v_rdev);
3087 break;
3088 case VSOCK:
3089 xvn[n].xv_socket = vp->v_socket;
3090 break;
3091 case VFIFO:
3092 xvn[n].xv_fifo = vp->v_fifoinfo;
3093 break;
3094 case VNON:
3095 case VBAD:
3096 default:
3097 /* shouldn't happen? */
3098 vrele(vp);
3099 continue;
3100 }
3101 vrele(vp);
3102 ++n;
3103 }
3104 MNT_IUNLOCK(mp);
3105 mtx_lock(&mountlist_mtx);
3106 vfs_unbusy(mp);
3107 if (n == len)
3108 break;
3109 }
3110 mtx_unlock(&mountlist_mtx);
3111
3112 error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
3113 free(xvn, M_TEMP);
3114 return (error);
3115 }
3116
3117 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
3118 0, 0, sysctl_vnode, "S,xvnode", "");
3119 #endif
3120
3121 /*
3122 * Unmount all filesystems. The list is traversed in reverse order
3123 * of mounting to avoid dependencies.
3124 */
3125 void
3126 vfs_unmountall(void)
3127 {
3128 struct mount *mp;
3129 struct thread *td;
3130 int error;
3131
3132 KASSERT(curthread != NULL, ("vfs_unmountall: NULL curthread"));
3133 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
3134 td = curthread;
3135
3136 /*
3137 * Since this only runs when rebooting, it is not interlocked.
3138 */
3139 while(!TAILQ_EMPTY(&mountlist)) {
3140 mp = TAILQ_LAST(&mountlist, mntlist);
3141 error = dounmount(mp, MNT_FORCE, td);
3142 if (error) {
3143 TAILQ_REMOVE(&mountlist, mp, mnt_list);
3144 /*
3145 * XXX: Due to the way in which we mount the root
3146 * file system off of devfs, devfs will generate a
3147 * "busy" warning when we try to unmount it before
3148 * the root. Don't print a warning as a result in
3149 * order to avoid false positive errors that may
3150 * cause needless upset.
3151 */
3152 if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) {
3153 printf("unmount of %s failed (",
3154 mp->mnt_stat.f_mntonname);
3155 if (error == EBUSY)
3156 printf("BUSY)\n");
3157 else
3158 printf("%d)\n", error);
3159 }
3160 } else {
3161 /* The unmount has removed mp from the mountlist */
3162 }
3163 }
3164 }
3165
3166 /*
3167 * perform msync on all vnodes under a mount point
3168 * the mount point must be locked.
3169 */
3170 void
3171 vfs_msync(struct mount *mp, int flags)
3172 {
3173 struct vnode *vp, *mvp;
3174 struct vm_object *obj;
3175
3176 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
3177 MNT_ILOCK(mp);
3178 MNT_VNODE_FOREACH(vp, mp, mvp) {
3179 VI_LOCK(vp);
3180 if ((vp->v_iflag & VI_OBJDIRTY) &&
3181 (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) {
3182 MNT_IUNLOCK(mp);
3183 if (!vget(vp,
3184 LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3185 curthread)) {
3186 if (vp->v_vflag & VV_NOSYNC) { /* unlinked */
3187 vput(vp);
3188 MNT_ILOCK(mp);
3189 continue;
3190 }
3191
3192 obj = vp->v_object;
3193 if (obj != NULL) {
3194 VM_OBJECT_LOCK(obj);
3195 vm_object_page_clean(obj, 0, 0,
3196 flags == MNT_WAIT ?
3197 OBJPC_SYNC : OBJPC_NOSYNC);
3198 VM_OBJECT_UNLOCK(obj);
3199 }
3200 vput(vp);
3201 }
3202 MNT_ILOCK(mp);
3203 } else
3204 VI_UNLOCK(vp);
3205 }
3206 MNT_IUNLOCK(mp);
3207 }
3208
3209 /*
3210 * Mark a vnode as free, putting it up for recycling.
3211 */
3212 static void
3213 vfree(struct vnode *vp)
3214 {
3215
3216 ASSERT_VI_LOCKED(vp, "vfree");
3217 mtx_lock(&vnode_free_list_mtx);
3218 VNASSERT(vp->v_op != NULL, vp, ("vfree: vnode already reclaimed."));
3219 VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, ("vnode already free"));
3220 VNASSERT(VSHOULDFREE(vp), vp, ("vfree: freeing when we shouldn't"));
3221 VNASSERT((vp->v_iflag & VI_DOOMED) == 0, vp,
3222 ("vfree: Freeing doomed vnode"));
3223 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3224 if (vp->v_iflag & VI_AGE) {
3225 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
3226 } else {
3227 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3228 }
3229 freevnodes++;
3230 vp->v_iflag &= ~VI_AGE;
3231 vp->v_iflag |= VI_FREE;
3232 mtx_unlock(&vnode_free_list_mtx);
3233 }
3234
3235 /*
3236 * Opposite of vfree() - mark a vnode as in use.
3237 */
3238 static void
3239 vbusy(struct vnode *vp)
3240 {
3241 ASSERT_VI_LOCKED(vp, "vbusy");
3242 VNASSERT((vp->v_iflag & VI_FREE) != 0, vp, ("vnode not free"));
3243 VNASSERT(vp->v_op != NULL, vp, ("vbusy: vnode already reclaimed."));
3244 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3245
3246 mtx_lock(&vnode_free_list_mtx);
3247 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
3248 freevnodes--;
3249 vp->v_iflag &= ~(VI_FREE|VI_AGE);
3250 mtx_unlock(&vnode_free_list_mtx);
3251 }
3252
3253 static void
3254 destroy_vpollinfo(struct vpollinfo *vi)
3255 {
3256 knlist_destroy(&vi->vpi_selinfo.si_note);
3257 mtx_destroy(&vi->vpi_lock);
3258 uma_zfree(vnodepoll_zone, vi);
3259 }
3260
3261 /*
3262 * Initalize per-vnode helper structure to hold poll-related state.
3263 */
3264 void
3265 v_addpollinfo(struct vnode *vp)
3266 {
3267 struct vpollinfo *vi;
3268
3269 if (vp->v_pollinfo != NULL)
3270 return;
3271 vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
3272 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
3273 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
3274 vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked);
3275 VI_LOCK(vp);
3276 if (vp->v_pollinfo != NULL) {
3277 VI_UNLOCK(vp);
3278 destroy_vpollinfo(vi);
3279 return;
3280 }
3281 vp->v_pollinfo = vi;
3282 VI_UNLOCK(vp);
3283 }
3284
3285 /*
3286 * Record a process's interest in events which might happen to
3287 * a vnode. Because poll uses the historic select-style interface
3288 * internally, this routine serves as both the ``check for any
3289 * pending events'' and the ``record my interest in future events''
3290 * functions. (These are done together, while the lock is held,
3291 * to avoid race conditions.)
3292 */
3293 int
3294 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
3295 {
3296
3297 v_addpollinfo(vp);
3298 mtx_lock(&vp->v_pollinfo->vpi_lock);
3299 if (vp->v_pollinfo->vpi_revents & events) {
3300 /*
3301 * This leaves events we are not interested
3302 * in available for the other process which
3303 * which presumably had requested them
3304 * (otherwise they would never have been
3305 * recorded).
3306 */
3307 events &= vp->v_pollinfo->vpi_revents;
3308 vp->v_pollinfo->vpi_revents &= ~events;
3309
3310 mtx_unlock(&vp->v_pollinfo->vpi_lock);
3311 return (events);
3312 }
3313 vp->v_pollinfo->vpi_events |= events;
3314 selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3315 mtx_unlock(&vp->v_pollinfo->vpi_lock);
3316 return (0);
3317 }
3318
3319 /*
3320 * Routine to create and manage a filesystem syncer vnode.
3321 */
3322 #define sync_close ((int (*)(struct vop_close_args *))nullop)
3323 static int sync_fsync(struct vop_fsync_args *);
3324 static int sync_inactive(struct vop_inactive_args *);
3325 static int sync_reclaim(struct vop_reclaim_args *);
3326
3327 static struct vop_vector sync_vnodeops = {
3328 .vop_bypass = VOP_EOPNOTSUPP,
3329 .vop_close = sync_close, /* close */
3330 .vop_fsync = sync_fsync, /* fsync */
3331 .vop_inactive = sync_inactive, /* inactive */
3332 .vop_reclaim = sync_reclaim, /* reclaim */
3333 .vop_lock1 = vop_stdlock, /* lock */
3334 .vop_unlock = vop_stdunlock, /* unlock */
3335 .vop_islocked = vop_stdislocked, /* islocked */
3336 };
3337
3338 /*
3339 * Create a new filesystem syncer vnode for the specified mount point.
3340 */
3341 int
3342 vfs_allocate_syncvnode(struct mount *mp)
3343 {
3344 struct vnode *vp;
3345 struct bufobj *bo;
3346 static long start, incr, next;
3347 int error;
3348
3349 /* Allocate a new vnode */
3350 if ((error = getnewvnode("syncer", mp, &sync_vnodeops, &vp)) != 0) {
3351 mp->mnt_syncer = NULL;
3352 return (error);
3353 }
3354 vp->v_type = VNON;
3355 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3356 vp->v_vflag |= VV_FORCEINSMQ;
3357 error = insmntque(vp, mp);
3358 if (error != 0)
3359 panic("vfs_allocate_syncvnode: insmntque failed");
3360 vp->v_vflag &= ~VV_FORCEINSMQ;
3361 VOP_UNLOCK(vp, 0);
3362 /*
3363 * Place the vnode onto the syncer worklist. We attempt to
3364 * scatter them about on the list so that they will go off
3365 * at evenly distributed times even if all the filesystems
3366 * are mounted at once.
3367 */
3368 next += incr;
3369 if (next == 0 || next > syncer_maxdelay) {
3370 start /= 2;
3371 incr /= 2;
3372 if (start == 0) {
3373 start = syncer_maxdelay / 2;
3374 incr = syncer_maxdelay;
3375 }
3376 next = start;
3377 }
3378 bo = &vp->v_bufobj;
3379 BO_LOCK(bo);
3380 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
3381 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3382 mtx_lock(&sync_mtx);
3383 sync_vnode_count++;
3384 mtx_unlock(&sync_mtx);
3385 BO_UNLOCK(bo);
3386 mp->mnt_syncer = vp;
3387 return (0);
3388 }
3389
3390 /*
3391 * Do a lazy sync of the filesystem.
3392 */
3393 static int
3394 sync_fsync(struct vop_fsync_args *ap)
3395 {
3396 struct vnode *syncvp = ap->a_vp;
3397 struct mount *mp = syncvp->v_mount;
3398 int error;
3399 struct bufobj *bo;
3400
3401 /*
3402 * We only need to do something if this is a lazy evaluation.
3403 */
3404 if (ap->a_waitfor != MNT_LAZY)
3405 return (0);
3406
3407 /*
3408 * Move ourselves to the back of the sync list.
3409 */
3410 bo = &syncvp->v_bufobj;
3411 BO_LOCK(bo);
3412 vn_syncer_add_to_worklist(bo, syncdelay);
3413 BO_UNLOCK(bo);
3414
3415 /*
3416 * Walk the list of vnodes pushing all that are dirty and
3417 * not already on the sync list.
3418 */
3419 mtx_lock(&mountlist_mtx);
3420 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK) != 0) {
3421 mtx_unlock(&mountlist_mtx);
3422 return (0);
3423 }
3424 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3425 vfs_unbusy(mp);
3426 return (0);
3427 }
3428 MNT_ILOCK(mp);
3429 mp->mnt_noasync++;
3430 mp->mnt_kern_flag &= ~MNTK_ASYNC;
3431 MNT_IUNLOCK(mp);
3432 vfs_msync(mp, MNT_NOWAIT);
3433 error = VFS_SYNC(mp, MNT_LAZY);
3434 MNT_ILOCK(mp);
3435 mp->mnt_noasync--;
3436 if ((mp->mnt_flag & MNT_ASYNC) != 0 && mp->mnt_noasync == 0)
3437 mp->mnt_kern_flag |= MNTK_ASYNC;
3438 MNT_IUNLOCK(mp);
3439 vn_finished_write(mp);
3440 vfs_unbusy(mp);
3441 return (error);
3442 }
3443
3444 /*
3445 * The syncer vnode is no referenced.
3446 */
3447 static int
3448 sync_inactive(struct vop_inactive_args *ap)
3449 {
3450
3451 vgone(ap->a_vp);
3452 return (0);
3453 }
3454
3455 /*
3456 * The syncer vnode is no longer needed and is being decommissioned.
3457 *
3458 * Modifications to the worklist must be protected by sync_mtx.
3459 */
3460 static int
3461 sync_reclaim(struct vop_reclaim_args *ap)
3462 {
3463 struct vnode *vp = ap->a_vp;
3464 struct bufobj *bo;
3465
3466 bo = &vp->v_bufobj;
3467 BO_LOCK(bo);
3468 vp->v_mount->mnt_syncer = NULL;
3469 if (bo->bo_flag & BO_ONWORKLST) {
3470 mtx_lock(&sync_mtx);
3471 LIST_REMOVE(bo, bo_synclist);
3472 syncer_worklist_len--;
3473 sync_vnode_count--;
3474 mtx_unlock(&sync_mtx);
3475 bo->bo_flag &= ~BO_ONWORKLST;
3476 }
3477 BO_UNLOCK(bo);
3478
3479 return (0);
3480 }
3481
3482 /*
3483 * Check if vnode represents a disk device
3484 */
3485 int
3486 vn_isdisk(struct vnode *vp, int *errp)
3487 {
3488 int error;
3489
3490 error = 0;
3491 dev_lock();
3492 if (vp->v_type != VCHR)
3493 error = ENOTBLK;
3494 else if (vp->v_rdev == NULL)
3495 error = ENXIO;
3496 else if (vp->v_rdev->si_devsw == NULL)
3497 error = ENXIO;
3498 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
3499 error = ENOTBLK;
3500 dev_unlock();
3501 if (errp != NULL)
3502 *errp = error;
3503 return (error == 0);
3504 }
3505
3506 /*
3507 * Common filesystem object access control check routine. Accepts a
3508 * vnode's type, "mode", uid and gid, requested access mode, credentials,
3509 * and optional call-by-reference privused argument allowing vaccess()
3510 * to indicate to the caller whether privilege was used to satisfy the
3511 * request (obsoleted). Returns 0 on success, or an errno on failure.
3512 *
3513 * The ifdef'd CAPABILITIES version is here for reference, but is not
3514 * actually used.
3515 */
3516 int
3517 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
3518 accmode_t accmode, struct ucred *cred, int *privused)
3519 {
3520 accmode_t dac_granted;
3521 accmode_t priv_granted;
3522
3523 /*
3524 * Look for a normal, non-privileged way to access the file/directory
3525 * as requested. If it exists, go with that.
3526 */
3527
3528 if (privused != NULL)
3529 *privused = 0;
3530
3531 dac_granted = 0;
3532
3533 /* Check the owner. */
3534 if (cred->cr_uid == file_uid) {
3535 dac_granted |= VADMIN;
3536 if (file_mode & S_IXUSR)
3537 dac_granted |= VEXEC;
3538 if (file_mode & S_IRUSR)
3539 dac_granted |= VREAD;
3540 if (file_mode & S_IWUSR)
3541 dac_granted |= (VWRITE | VAPPEND);
3542
3543 if ((accmode & dac_granted) == accmode)
3544 return (0);
3545
3546 goto privcheck;
3547 }
3548
3549 /* Otherwise, check the groups (first match) */
3550 if (groupmember(file_gid, cred)) {
3551 if (file_mode & S_IXGRP)
3552 dac_granted |= VEXEC;
3553 if (file_mode & S_IRGRP)
3554 dac_granted |= VREAD;
3555 if (file_mode & S_IWGRP)
3556 dac_granted |= (VWRITE | VAPPEND);
3557
3558 if ((accmode & dac_granted) == accmode)
3559 return (0);
3560
3561 goto privcheck;
3562 }
3563
3564 /* Otherwise, check everyone else. */
3565 if (file_mode & S_IXOTH)
3566 dac_granted |= VEXEC;
3567 if (file_mode & S_IROTH)
3568 dac_granted |= VREAD;
3569 if (file_mode & S_IWOTH)
3570 dac_granted |= (VWRITE | VAPPEND);
3571 if ((accmode & dac_granted) == accmode)
3572 return (0);
3573
3574 privcheck:
3575 /*
3576 * Build a privilege mask to determine if the set of privileges
3577 * satisfies the requirements when combined with the granted mask
3578 * from above. For each privilege, if the privilege is required,
3579 * bitwise or the request type onto the priv_granted mask.
3580 */
3581 priv_granted = 0;
3582
3583 if (type == VDIR) {
3584 /*
3585 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
3586 * requests, instead of PRIV_VFS_EXEC.
3587 */
3588 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3589 !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0))
3590 priv_granted |= VEXEC;
3591 } else {
3592 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3593 !priv_check_cred(cred, PRIV_VFS_EXEC, 0))
3594 priv_granted |= VEXEC;
3595 }
3596
3597 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
3598 !priv_check_cred(cred, PRIV_VFS_READ, 0))
3599 priv_granted |= VREAD;
3600
3601 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3602 !priv_check_cred(cred, PRIV_VFS_WRITE, 0))
3603 priv_granted |= (VWRITE | VAPPEND);
3604
3605 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3606 !priv_check_cred(cred, PRIV_VFS_ADMIN, 0))
3607 priv_granted |= VADMIN;
3608
3609 if ((accmode & (priv_granted | dac_granted)) == accmode) {
3610 /* XXX audit: privilege used */
3611 if (privused != NULL)
3612 *privused = 1;
3613 return (0);
3614 }
3615
3616 return ((accmode & VADMIN) ? EPERM : EACCES);
3617 }
3618
3619 /*
3620 * Credential check based on process requesting service, and per-attribute
3621 * permissions.
3622 */
3623 int
3624 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
3625 struct thread *td, accmode_t accmode)
3626 {
3627
3628 /*
3629 * Kernel-invoked always succeeds.
3630 */
3631 if (cred == NOCRED)
3632 return (0);
3633
3634 /*
3635 * Do not allow privileged processes in jail to directly manipulate
3636 * system attributes.
3637 */
3638 switch (attrnamespace) {
3639 case EXTATTR_NAMESPACE_SYSTEM:
3640 /* Potentially should be: return (EPERM); */
3641 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0));
3642 case EXTATTR_NAMESPACE_USER:
3643 return (VOP_ACCESS(vp, accmode, cred, td));
3644 default:
3645 return (EPERM);
3646 }
3647 }
3648
3649 #ifdef DEBUG_VFS_LOCKS
3650 /*
3651 * This only exists to supress warnings from unlocked specfs accesses. It is
3652 * no longer ok to have an unlocked VFS.
3653 */
3654 #define IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL || \
3655 (vp)->v_type == VCHR || (vp)->v_type == VBAD)
3656
3657 int vfs_badlock_ddb = 1; /* Drop into debugger on violation. */
3658 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, "");
3659
3660 int vfs_badlock_mutex = 1; /* Check for interlock across VOPs. */
3661 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, "");
3662
3663 int vfs_badlock_print = 1; /* Print lock violations. */
3664 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, "");
3665
3666 #ifdef KDB
3667 int vfs_badlock_backtrace = 1; /* Print backtrace at lock violations. */
3668 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, "");
3669 #endif
3670
3671 static void
3672 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3673 {
3674
3675 #ifdef KDB
3676 if (vfs_badlock_backtrace)
3677 kdb_backtrace();
3678 #endif
3679 if (vfs_badlock_print)
3680 printf("%s: %p %s\n", str, (void *)vp, msg);
3681 if (vfs_badlock_ddb)
3682 kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3683 }
3684
3685 void
3686 assert_vi_locked(struct vnode *vp, const char *str)
3687 {
3688
3689 if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3690 vfs_badlock("interlock is not locked but should be", str, vp);
3691 }
3692
3693 void
3694 assert_vi_unlocked(struct vnode *vp, const char *str)
3695 {
3696
3697 if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3698 vfs_badlock("interlock is locked but should not be", str, vp);
3699 }
3700
3701 void
3702 assert_vop_locked(struct vnode *vp, const char *str)
3703 {
3704
3705 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == 0)
3706 vfs_badlock("is not locked but should be", str, vp);
3707 }
3708
3709 void
3710 assert_vop_unlocked(struct vnode *vp, const char *str)
3711 {
3712
3713 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
3714 vfs_badlock("is locked but should not be", str, vp);
3715 }
3716
3717 void
3718 assert_vop_elocked(struct vnode *vp, const char *str)
3719 {
3720
3721 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
3722 vfs_badlock("is not exclusive locked but should be", str, vp);
3723 }
3724
3725 #if 0
3726 void
3727 assert_vop_elocked_other(struct vnode *vp, const char *str)
3728 {
3729
3730 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLOTHER)
3731 vfs_badlock("is not exclusive locked by another thread",
3732 str, vp);
3733 }
3734
3735 void
3736 assert_vop_slocked(struct vnode *vp, const char *str)
3737 {
3738
3739 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_SHARED)
3740 vfs_badlock("is not locked shared but should be", str, vp);
3741 }
3742 #endif /* 0 */
3743 #endif /* DEBUG_VFS_LOCKS */
3744
3745 void
3746 vop_rename_pre(void *ap)
3747 {
3748 struct vop_rename_args *a = ap;
3749
3750 #ifdef DEBUG_VFS_LOCKS
3751 if (a->a_tvp)
3752 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
3753 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
3754 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
3755 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
3756
3757 /* Check the source (from). */
3758 if (a->a_tdvp != a->a_fdvp && a->a_tvp != a->a_fdvp)
3759 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
3760 if (a->a_tvp != a->a_fvp)
3761 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
3762
3763 /* Check the target. */
3764 if (a->a_tvp)
3765 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
3766 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
3767 #endif
3768 if (a->a_tdvp != a->a_fdvp)
3769 vhold(a->a_fdvp);
3770 if (a->a_tvp != a->a_fvp)
3771 vhold(a->a_fvp);
3772 vhold(a->a_tdvp);
3773 if (a->a_tvp)
3774 vhold(a->a_tvp);
3775 }
3776
3777 void
3778 vop_strategy_pre(void *ap)
3779 {
3780 #ifdef DEBUG_VFS_LOCKS
3781 struct vop_strategy_args *a;
3782 struct buf *bp;
3783
3784 a = ap;
3785 bp = a->a_bp;
3786
3787 /*
3788 * Cluster ops lock their component buffers but not the IO container.
3789 */
3790 if ((bp->b_flags & B_CLUSTER) != 0)
3791 return;
3792
3793 if (!BUF_ISLOCKED(bp)) {
3794 if (vfs_badlock_print)
3795 printf(
3796 "VOP_STRATEGY: bp is not locked but should be\n");
3797 if (vfs_badlock_ddb)
3798 kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3799 }
3800 #endif
3801 }
3802
3803 void
3804 vop_lookup_pre(void *ap)
3805 {
3806 #ifdef DEBUG_VFS_LOCKS
3807 struct vop_lookup_args *a;
3808 struct vnode *dvp;
3809
3810 a = ap;
3811 dvp = a->a_dvp;
3812 ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3813 ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3814 #endif
3815 }
3816
3817 void
3818 vop_lookup_post(void *ap, int rc)
3819 {
3820 #ifdef DEBUG_VFS_LOCKS
3821 struct vop_lookup_args *a;
3822 struct vnode *dvp;
3823 struct vnode *vp;
3824
3825 a = ap;
3826 dvp = a->a_dvp;
3827 vp = *(a->a_vpp);
3828
3829 ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3830 ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3831
3832 if (!rc)
3833 ASSERT_VOP_LOCKED(vp, "VOP_LOOKUP (child)");
3834 #endif
3835 }
3836
3837 void
3838 vop_lock_pre(void *ap)
3839 {
3840 #ifdef DEBUG_VFS_LOCKS
3841 struct vop_lock1_args *a = ap;
3842
3843 if ((a->a_flags & LK_INTERLOCK) == 0)
3844 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3845 else
3846 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
3847 #endif
3848 }
3849
3850 void
3851 vop_lock_post(void *ap, int rc)
3852 {
3853 #ifdef DEBUG_VFS_LOCKS
3854 struct vop_lock1_args *a = ap;
3855
3856 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3857 if (rc == 0)
3858 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
3859 #endif
3860 }
3861
3862 void
3863 vop_unlock_pre(void *ap)
3864 {
3865 #ifdef DEBUG_VFS_LOCKS
3866 struct vop_unlock_args *a = ap;
3867
3868 if (a->a_flags & LK_INTERLOCK)
3869 ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
3870 ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
3871 #endif
3872 }
3873
3874 void
3875 vop_unlock_post(void *ap, int rc)
3876 {
3877 #ifdef DEBUG_VFS_LOCKS
3878 struct vop_unlock_args *a = ap;
3879
3880 if (a->a_flags & LK_INTERLOCK)
3881 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
3882 #endif
3883 }
3884
3885 void
3886 vop_create_post(void *ap, int rc)
3887 {
3888 struct vop_create_args *a = ap;
3889
3890 if (!rc)
3891 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3892 }
3893
3894 void
3895 vop_link_post(void *ap, int rc)
3896 {
3897 struct vop_link_args *a = ap;
3898
3899 if (!rc) {
3900 VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
3901 VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
3902 }
3903 }
3904
3905 void
3906 vop_mkdir_post(void *ap, int rc)
3907 {
3908 struct vop_mkdir_args *a = ap;
3909
3910 if (!rc)
3911 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
3912 }
3913
3914 void
3915 vop_mknod_post(void *ap, int rc)
3916 {
3917 struct vop_mknod_args *a = ap;
3918
3919 if (!rc)
3920 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3921 }
3922
3923 void
3924 vop_remove_post(void *ap, int rc)
3925 {
3926 struct vop_remove_args *a = ap;
3927
3928 if (!rc) {
3929 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3930 VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
3931 }
3932 }
3933
3934 void
3935 vop_rename_post(void *ap, int rc)
3936 {
3937 struct vop_rename_args *a = ap;
3938
3939 if (!rc) {
3940 VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE);
3941 VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE);
3942 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
3943 if (a->a_tvp)
3944 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
3945 }
3946 if (a->a_tdvp != a->a_fdvp)
3947 vdrop(a->a_fdvp);
3948 if (a->a_tvp != a->a_fvp)
3949 vdrop(a->a_fvp);
3950 vdrop(a->a_tdvp);
3951 if (a->a_tvp)
3952 vdrop(a->a_tvp);
3953 }
3954
3955 void
3956 vop_rmdir_post(void *ap, int rc)
3957 {
3958 struct vop_rmdir_args *a = ap;
3959
3960 if (!rc) {
3961 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
3962 VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
3963 }
3964 }
3965
3966 void
3967 vop_setattr_post(void *ap, int rc)
3968 {
3969 struct vop_setattr_args *a = ap;
3970
3971 if (!rc)
3972 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
3973 }
3974
3975 void
3976 vop_symlink_post(void *ap, int rc)
3977 {
3978 struct vop_symlink_args *a = ap;
3979
3980 if (!rc)
3981 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3982 }
3983
3984 static struct knlist fs_knlist;
3985
3986 static void
3987 vfs_event_init(void *arg)
3988 {
3989 knlist_init_mtx(&fs_knlist, NULL);
3990 }
3991 /* XXX - correct order? */
3992 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
3993
3994 void
3995 vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data __unused)
3996 {
3997
3998 KNOTE_UNLOCKED(&fs_knlist, event);
3999 }
4000
4001 static int filt_fsattach(struct knote *kn);
4002 static void filt_fsdetach(struct knote *kn);
4003 static int filt_fsevent(struct knote *kn, long hint);
4004
4005 struct filterops fs_filtops =
4006 { 0, filt_fsattach, filt_fsdetach, filt_fsevent };
4007
4008 static int
4009 filt_fsattach(struct knote *kn)
4010 {
4011
4012 kn->kn_flags |= EV_CLEAR;
4013 knlist_add(&fs_knlist, kn, 0);
4014 return (0);
4015 }
4016
4017 static void
4018 filt_fsdetach(struct knote *kn)
4019 {
4020
4021 knlist_remove(&fs_knlist, kn, 0);
4022 }
4023
4024 static int
4025 filt_fsevent(struct knote *kn, long hint)
4026 {
4027
4028 kn->kn_fflags |= hint;
4029 return (kn->kn_fflags != 0);
4030 }
4031
4032 static int
4033 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
4034 {
4035 struct vfsidctl vc;
4036 int error;
4037 struct mount *mp;
4038
4039 error = SYSCTL_IN(req, &vc, sizeof(vc));
4040 if (error)
4041 return (error);
4042 if (vc.vc_vers != VFS_CTL_VERS1)
4043 return (EINVAL);
4044 mp = vfs_getvfs(&vc.vc_fsid);
4045 if (mp == NULL)
4046 return (ENOENT);
4047 /* ensure that a specific sysctl goes to the right filesystem. */
4048 if (strcmp(vc.vc_fstypename, "*") != 0 &&
4049 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
4050 vfs_rel(mp);
4051 return (EINVAL);
4052 }
4053 VCTLTOREQ(&vc, req);
4054 error = VFS_SYSCTL(mp, vc.vc_op, req);
4055 vfs_rel(mp);
4056 return (error);
4057 }
4058
4059 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLFLAG_WR, NULL, 0, sysctl_vfs_ctl, "",
4060 "Sysctl by fsid");
4061
4062 /*
4063 * Function to initialize a va_filerev field sensibly.
4064 * XXX: Wouldn't a random number make a lot more sense ??
4065 */
4066 u_quad_t
4067 init_va_filerev(void)
4068 {
4069 struct bintime bt;
4070
4071 getbinuptime(&bt);
4072 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
4073 }
4074
4075 static int filt_vfsread(struct knote *kn, long hint);
4076 static int filt_vfswrite(struct knote *kn, long hint);
4077 static int filt_vfsvnode(struct knote *kn, long hint);
4078 static void filt_vfsdetach(struct knote *kn);
4079 static struct filterops vfsread_filtops =
4080 { 1, NULL, filt_vfsdetach, filt_vfsread };
4081 static struct filterops vfswrite_filtops =
4082 { 1, NULL, filt_vfsdetach, filt_vfswrite };
4083 static struct filterops vfsvnode_filtops =
4084 { 1, NULL, filt_vfsdetach, filt_vfsvnode };
4085
4086 static void
4087 vfs_knllock(void *arg)
4088 {
4089 struct vnode *vp = arg;
4090
4091 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4092 }
4093
4094 static void
4095 vfs_knlunlock(void *arg)
4096 {
4097 struct vnode *vp = arg;
4098
4099 VOP_UNLOCK(vp, 0);
4100 }
4101
4102 static void
4103 vfs_knl_assert_locked(void *arg)
4104 {
4105 #ifdef DEBUG_VFS_LOCKS
4106 struct vnode *vp = arg;
4107
4108 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
4109 #endif
4110 }
4111
4112 static void
4113 vfs_knl_assert_unlocked(void *arg)
4114 {
4115 #ifdef DEBUG_VFS_LOCKS
4116 struct vnode *vp = arg;
4117
4118 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
4119 #endif
4120 }
4121
4122 int
4123 vfs_kqfilter(struct vop_kqfilter_args *ap)
4124 {
4125 struct vnode *vp = ap->a_vp;
4126 struct knote *kn = ap->a_kn;
4127 struct knlist *knl;
4128
4129 switch (kn->kn_filter) {
4130 case EVFILT_READ:
4131 kn->kn_fop = &vfsread_filtops;
4132 break;
4133 case EVFILT_WRITE:
4134 kn->kn_fop = &vfswrite_filtops;
4135 break;
4136 case EVFILT_VNODE:
4137 kn->kn_fop = &vfsvnode_filtops;
4138 break;
4139 default:
4140 return (EINVAL);
4141 }
4142
4143 kn->kn_hook = (caddr_t)vp;
4144
4145 v_addpollinfo(vp);
4146 if (vp->v_pollinfo == NULL)
4147 return (ENOMEM);
4148 knl = &vp->v_pollinfo->vpi_selinfo.si_note;
4149 knlist_add(knl, kn, 0);
4150
4151 return (0);
4152 }
4153
4154 /*
4155 * Detach knote from vnode
4156 */
4157 static void
4158 filt_vfsdetach(struct knote *kn)
4159 {
4160 struct vnode *vp = (struct vnode *)kn->kn_hook;
4161
4162 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
4163 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
4164 }
4165
4166 /*ARGSUSED*/
4167 static int
4168 filt_vfsread(struct knote *kn, long hint)
4169 {
4170 struct vnode *vp = (struct vnode *)kn->kn_hook;
4171 struct vattr va;
4172 int res;
4173
4174 /*
4175 * filesystem is gone, so set the EOF flag and schedule
4176 * the knote for deletion.
4177 */
4178 if (hint == NOTE_REVOKE) {
4179 VI_LOCK(vp);
4180 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4181 VI_UNLOCK(vp);
4182 return (1);
4183 }
4184
4185 if (VOP_GETATTR(vp, &va, curthread->td_ucred))
4186 return (0);
4187
4188 VI_LOCK(vp);
4189 kn->kn_data = va.va_size - kn->kn_fp->f_offset;
4190 res = (kn->kn_data != 0);
4191 VI_UNLOCK(vp);
4192 return (res);
4193 }
4194
4195 /*ARGSUSED*/
4196 static int
4197 filt_vfswrite(struct knote *kn, long hint)
4198 {
4199 struct vnode *vp = (struct vnode *)kn->kn_hook;
4200
4201 VI_LOCK(vp);
4202
4203 /*
4204 * filesystem is gone, so set the EOF flag and schedule
4205 * the knote for deletion.
4206 */
4207 if (hint == NOTE_REVOKE)
4208 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4209
4210 kn->kn_data = 0;
4211 VI_UNLOCK(vp);
4212 return (1);
4213 }
4214
4215 static int
4216 filt_vfsvnode(struct knote *kn, long hint)
4217 {
4218 struct vnode *vp = (struct vnode *)kn->kn_hook;
4219 int res;
4220
4221 VI_LOCK(vp);
4222 if (kn->kn_sfflags & hint)
4223 kn->kn_fflags |= hint;
4224 if (hint == NOTE_REVOKE) {
4225 kn->kn_flags |= EV_EOF;
4226 VI_UNLOCK(vp);
4227 return (1);
4228 }
4229 res = (kn->kn_fflags != 0);
4230 VI_UNLOCK(vp);
4231 return (res);
4232 }
4233
4234 int
4235 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
4236 {
4237 int error;
4238
4239 if (dp->d_reclen > ap->a_uio->uio_resid)
4240 return (ENAMETOOLONG);
4241 error = uiomove(dp, dp->d_reclen, ap->a_uio);
4242 if (error) {
4243 if (ap->a_ncookies != NULL) {
4244 if (ap->a_cookies != NULL)
4245 free(ap->a_cookies, M_TEMP);
4246 ap->a_cookies = NULL;
4247 *ap->a_ncookies = 0;
4248 }
4249 return (error);
4250 }
4251 if (ap->a_ncookies == NULL)
4252 return (0);
4253
4254 KASSERT(ap->a_cookies,
4255 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
4256
4257 *ap->a_cookies = realloc(*ap->a_cookies,
4258 (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
4259 (*ap->a_cookies)[*ap->a_ncookies] = off;
4260 return (0);
4261 }
4262
4263 /*
4264 * Mark for update the access time of the file if the filesystem
4265 * supports VOP_MARKATIME. This functionality is used by execve and
4266 * mmap, so we want to avoid the I/O implied by directly setting
4267 * va_atime for the sake of efficiency.
4268 */
4269 void
4270 vfs_mark_atime(struct vnode *vp, struct ucred *cred)
4271 {
4272 struct mount *mp;
4273
4274 mp = vp->v_mount;
4275 VFS_ASSERT_GIANT(mp);
4276 ASSERT_VOP_LOCKED(vp, "vfs_mark_atime");
4277 if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
4278 (void)VOP_MARKATIME(vp);
4279 }
4280
4281 /*
4282 * The purpose of this routine is to remove granularity from accmode_t,
4283 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
4284 * VADMIN and VAPPEND.
4285 *
4286 * If it returns 0, the caller is supposed to continue with the usual
4287 * access checks using 'accmode' as modified by this routine. If it
4288 * returns nonzero value, the caller is supposed to return that value
4289 * as errno.
4290 *
4291 * Note that after this routine runs, accmode may be zero.
4292 */
4293 int
4294 vfs_unixify_accmode(accmode_t *accmode)
4295 {
4296 /*
4297 * There is no way to specify explicit "deny" rule using
4298 * file mode or POSIX.1e ACLs.
4299 */
4300 if (*accmode & VEXPLICIT_DENY) {
4301 *accmode = 0;
4302 return (0);
4303 }
4304
4305 /*
4306 * None of these can be translated into usual access bits.
4307 * Also, the common case for NFSv4 ACLs is to not contain
4308 * either of these bits. Caller should check for VWRITE
4309 * on the containing directory instead.
4310 */
4311 if (*accmode & (VDELETE_CHILD | VDELETE))
4312 return (EPERM);
4313
4314 if (*accmode & VADMIN_PERMS) {
4315 *accmode &= ~VADMIN_PERMS;
4316 *accmode |= VADMIN;
4317 }
4318
4319 /*
4320 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
4321 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
4322 */
4323 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
4324
4325 return (0);
4326 }
Cache object: 9ce903152d722f324f527f73fde7fb1a
|