The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
   11  * Copyright (c) 2013 The FreeBSD Foundation
   12  *
   13  * Portions of this software were developed by Konstantin Belousov
   14  * under sponsorship from the FreeBSD Foundation.
   15  *
   16  * Redistribution and use in source and binary forms, with or without
   17  * modification, are permitted provided that the following conditions
   18  * are met:
   19  * 1. Redistributions of source code must retain the above copyright
   20  *    notice, this list of conditions and the following disclaimer.
   21  * 2. Redistributions in binary form must reproduce the above copyright
   22  *    notice, this list of conditions and the following disclaimer in the
   23  *    documentation and/or other materials provided with the distribution.
   24  * 4. Neither the name of the University nor the names of its contributors
   25  *    may be used to endorse or promote products derived from this software
   26  *    without specific prior written permission.
   27  *
   28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   38  * SUCH DAMAGE.
   39  *
   40  *      @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94
   41  */
   42 
   43 #include <sys/cdefs.h>
   44 __FBSDID("$FreeBSD: releng/10.0/sys/kern/vfs_vnops.c 255510 2013-09-13 06:52:23Z kib $");
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/disk.h>
   49 #include <sys/fcntl.h>
   50 #include <sys/file.h>
   51 #include <sys/kdb.h>
   52 #include <sys/stat.h>
   53 #include <sys/priv.h>
   54 #include <sys/proc.h>
   55 #include <sys/limits.h>
   56 #include <sys/lock.h>
   57 #include <sys/mount.h>
   58 #include <sys/mutex.h>
   59 #include <sys/namei.h>
   60 #include <sys/vnode.h>
   61 #include <sys/bio.h>
   62 #include <sys/buf.h>
   63 #include <sys/filio.h>
   64 #include <sys/resourcevar.h>
   65 #include <sys/rwlock.h>
   66 #include <sys/sx.h>
   67 #include <sys/sysctl.h>
   68 #include <sys/ttycom.h>
   69 #include <sys/conf.h>
   70 #include <sys/syslog.h>
   71 #include <sys/unistd.h>
   72 
   73 #include <security/audit/audit.h>
   74 #include <security/mac/mac_framework.h>
   75 
   76 #include <vm/vm.h>
   77 #include <vm/vm_extern.h>
   78 #include <vm/pmap.h>
   79 #include <vm/vm_map.h>
   80 #include <vm/vm_object.h>
   81 #include <vm/vm_page.h>
   82 
   83 static fo_rdwr_t        vn_read;
   84 static fo_rdwr_t        vn_write;
   85 static fo_rdwr_t        vn_io_fault;
   86 static fo_truncate_t    vn_truncate;
   87 static fo_ioctl_t       vn_ioctl;
   88 static fo_poll_t        vn_poll;
   89 static fo_kqfilter_t    vn_kqfilter;
   90 static fo_stat_t        vn_statfile;
   91 static fo_close_t       vn_closefile;
   92 
   93 struct  fileops vnops = {
   94         .fo_read = vn_io_fault,
   95         .fo_write = vn_io_fault,
   96         .fo_truncate = vn_truncate,
   97         .fo_ioctl = vn_ioctl,
   98         .fo_poll = vn_poll,
   99         .fo_kqfilter = vn_kqfilter,
  100         .fo_stat = vn_statfile,
  101         .fo_close = vn_closefile,
  102         .fo_chmod = vn_chmod,
  103         .fo_chown = vn_chown,
  104         .fo_sendfile = vn_sendfile,
  105         .fo_seek = vn_seek,
  106         .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
  107 };
  108 
  109 int
  110 vn_open(ndp, flagp, cmode, fp)
  111         struct nameidata *ndp;
  112         int *flagp, cmode;
  113         struct file *fp;
  114 {
  115         struct thread *td = ndp->ni_cnd.cn_thread;
  116 
  117         return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
  118 }
  119 
  120 /*
  121  * Common code for vnode open operations via a name lookup.
  122  * Lookup the vnode and invoke VOP_CREATE if needed.
  123  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
  124  * 
  125  * Note that this does NOT free nameidata for the successful case,
  126  * due to the NDINIT being done elsewhere.
  127  */
  128 int
  129 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
  130     struct ucred *cred, struct file *fp)
  131 {
  132         struct vnode *vp;
  133         struct mount *mp;
  134         struct thread *td = ndp->ni_cnd.cn_thread;
  135         struct vattr vat;
  136         struct vattr *vap = &vat;
  137         int fmode, error;
  138 
  139 restart:
  140         fmode = *flagp;
  141         if (fmode & O_CREAT) {
  142                 ndp->ni_cnd.cn_nameiop = CREATE;
  143                 ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF;
  144                 if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
  145                         ndp->ni_cnd.cn_flags |= FOLLOW;
  146                 if (!(vn_open_flags & VN_OPEN_NOAUDIT))
  147                         ndp->ni_cnd.cn_flags |= AUDITVNODE1;
  148                 if (vn_open_flags & VN_OPEN_NOCAPCHECK)
  149                         ndp->ni_cnd.cn_flags |= NOCAPCHECK;
  150                 bwillwrite();
  151                 if ((error = namei(ndp)) != 0)
  152                         return (error);
  153                 if (ndp->ni_vp == NULL) {
  154                         VATTR_NULL(vap);
  155                         vap->va_type = VREG;
  156                         vap->va_mode = cmode;
  157                         if (fmode & O_EXCL)
  158                                 vap->va_vaflags |= VA_EXCLUSIVE;
  159                         if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
  160                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  161                                 vput(ndp->ni_dvp);
  162                                 if ((error = vn_start_write(NULL, &mp,
  163                                     V_XSLEEP | PCATCH)) != 0)
  164                                         return (error);
  165                                 goto restart;
  166                         }
  167 #ifdef MAC
  168                         error = mac_vnode_check_create(cred, ndp->ni_dvp,
  169                             &ndp->ni_cnd, vap);
  170                         if (error == 0)
  171 #endif
  172                                 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
  173                                                    &ndp->ni_cnd, vap);
  174                         vput(ndp->ni_dvp);
  175                         vn_finished_write(mp);
  176                         if (error) {
  177                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  178                                 return (error);
  179                         }
  180                         fmode &= ~O_TRUNC;
  181                         vp = ndp->ni_vp;
  182                 } else {
  183                         if (ndp->ni_dvp == ndp->ni_vp)
  184                                 vrele(ndp->ni_dvp);
  185                         else
  186                                 vput(ndp->ni_dvp);
  187                         ndp->ni_dvp = NULL;
  188                         vp = ndp->ni_vp;
  189                         if (fmode & O_EXCL) {
  190                                 error = EEXIST;
  191                                 goto bad;
  192                         }
  193                         fmode &= ~O_CREAT;
  194                 }
  195         } else {
  196                 ndp->ni_cnd.cn_nameiop = LOOKUP;
  197                 ndp->ni_cnd.cn_flags = ISOPEN |
  198                     ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
  199                 if (!(fmode & FWRITE))
  200                         ndp->ni_cnd.cn_flags |= LOCKSHARED;
  201                 if (!(vn_open_flags & VN_OPEN_NOAUDIT))
  202                         ndp->ni_cnd.cn_flags |= AUDITVNODE1;
  203                 if (vn_open_flags & VN_OPEN_NOCAPCHECK)
  204                         ndp->ni_cnd.cn_flags |= NOCAPCHECK;
  205                 if ((error = namei(ndp)) != 0)
  206                         return (error);
  207                 vp = ndp->ni_vp;
  208         }
  209         error = vn_open_vnode(vp, fmode, cred, td, fp);
  210         if (error)
  211                 goto bad;
  212         *flagp = fmode;
  213         return (0);
  214 bad:
  215         NDFREE(ndp, NDF_ONLY_PNBUF);
  216         vput(vp);
  217         *flagp = fmode;
  218         ndp->ni_vp = NULL;
  219         return (error);
  220 }
  221 
  222 /*
  223  * Common code for vnode open operations once a vnode is located.
  224  * Check permissions, and call the VOP_OPEN routine.
  225  */
  226 int
  227 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
  228     struct thread *td, struct file *fp)
  229 {
  230         struct mount *mp;
  231         accmode_t accmode;
  232         struct flock lf;
  233         int error, have_flock, lock_flags, type;
  234 
  235         if (vp->v_type == VLNK)
  236                 return (EMLINK);
  237         if (vp->v_type == VSOCK)
  238                 return (EOPNOTSUPP);
  239         if (vp->v_type != VDIR && fmode & O_DIRECTORY)
  240                 return (ENOTDIR);
  241         accmode = 0;
  242         if (fmode & (FWRITE | O_TRUNC)) {
  243                 if (vp->v_type == VDIR)
  244                         return (EISDIR);
  245                 accmode |= VWRITE;
  246         }
  247         if (fmode & FREAD)
  248                 accmode |= VREAD;
  249         if (fmode & FEXEC)
  250                 accmode |= VEXEC;
  251         if ((fmode & O_APPEND) && (fmode & FWRITE))
  252                 accmode |= VAPPEND;
  253 #ifdef MAC
  254         error = mac_vnode_check_open(cred, vp, accmode);
  255         if (error)
  256                 return (error);
  257 #endif
  258         if ((fmode & O_CREAT) == 0) {
  259                 if (accmode & VWRITE) {
  260                         error = vn_writechk(vp);
  261                         if (error)
  262                                 return (error);
  263                 }
  264                 if (accmode) {
  265                         error = VOP_ACCESS(vp, accmode, cred, td);
  266                         if (error)
  267                                 return (error);
  268                 }
  269         }
  270         if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
  271                 vn_lock(vp, LK_UPGRADE | LK_RETRY);
  272         if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
  273                 return (error);
  274 
  275         if (fmode & (O_EXLOCK | O_SHLOCK)) {
  276                 KASSERT(fp != NULL, ("open with flock requires fp"));
  277                 lock_flags = VOP_ISLOCKED(vp);
  278                 VOP_UNLOCK(vp, 0);
  279                 lf.l_whence = SEEK_SET;
  280                 lf.l_start = 0;
  281                 lf.l_len = 0;
  282                 if (fmode & O_EXLOCK)
  283                         lf.l_type = F_WRLCK;
  284                 else
  285                         lf.l_type = F_RDLCK;
  286                 type = F_FLOCK;
  287                 if ((fmode & FNONBLOCK) == 0)
  288                         type |= F_WAIT;
  289                 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
  290                 have_flock = (error == 0);
  291                 vn_lock(vp, lock_flags | LK_RETRY);
  292                 if (error == 0 && vp->v_iflag & VI_DOOMED)
  293                         error = ENOENT;
  294                 /*
  295                  * Another thread might have used this vnode as an
  296                  * executable while the vnode lock was dropped.
  297                  * Ensure the vnode is still able to be opened for
  298                  * writing after the lock has been obtained.
  299                  */
  300                 if (error == 0 && accmode & VWRITE)
  301                         error = vn_writechk(vp);
  302                 if (error) {
  303                         VOP_UNLOCK(vp, 0);
  304                         if (have_flock) {
  305                                 lf.l_whence = SEEK_SET;
  306                                 lf.l_start = 0;
  307                                 lf.l_len = 0;
  308                                 lf.l_type = F_UNLCK;
  309                                 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
  310                                     F_FLOCK);
  311                         }
  312                         vn_start_write(vp, &mp, V_WAIT);
  313                         vn_lock(vp, lock_flags | LK_RETRY);
  314                         (void)VOP_CLOSE(vp, fmode, cred, td);
  315                         vn_finished_write(mp);
  316                         return (error);
  317                 }
  318                 fp->f_flag |= FHASLOCK;
  319         }
  320         if (fmode & FWRITE) {
  321                 VOP_ADD_WRITECOUNT(vp, 1);
  322                 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
  323                     __func__, vp, vp->v_writecount);
  324         }
  325         ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
  326         return (0);
  327 }
  328 
  329 /*
  330  * Check for write permissions on the specified vnode.
  331  * Prototype text segments cannot be written.
  332  */
  333 int
  334 vn_writechk(vp)
  335         register struct vnode *vp;
  336 {
  337 
  338         ASSERT_VOP_LOCKED(vp, "vn_writechk");
  339         /*
  340          * If there's shared text associated with
  341          * the vnode, try to free it up once.  If
  342          * we fail, we can't allow writing.
  343          */
  344         if (VOP_IS_TEXT(vp))
  345                 return (ETXTBSY);
  346 
  347         return (0);
  348 }
  349 
  350 /*
  351  * Vnode close call
  352  */
  353 int
  354 vn_close(vp, flags, file_cred, td)
  355         register struct vnode *vp;
  356         int flags;
  357         struct ucred *file_cred;
  358         struct thread *td;
  359 {
  360         struct mount *mp;
  361         int error, lock_flags;
  362 
  363         if (vp->v_type != VFIFO && !(flags & FWRITE) && vp->v_mount != NULL &&
  364             vp->v_mount->mnt_kern_flag & MNTK_EXTENDED_SHARED)
  365                 lock_flags = LK_SHARED;
  366         else
  367                 lock_flags = LK_EXCLUSIVE;
  368 
  369         vn_start_write(vp, &mp, V_WAIT);
  370         vn_lock(vp, lock_flags | LK_RETRY);
  371         if (flags & FWRITE) {
  372                 VNASSERT(vp->v_writecount > 0, vp, 
  373                     ("vn_close: negative writecount"));
  374                 VOP_ADD_WRITECOUNT(vp, -1);
  375                 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
  376                     __func__, vp, vp->v_writecount);
  377         }
  378         error = VOP_CLOSE(vp, flags, file_cred, td);
  379         vput(vp);
  380         vn_finished_write(mp);
  381         return (error);
  382 }
  383 
  384 /*
  385  * Heuristic to detect sequential operation.
  386  */
  387 static int
  388 sequential_heuristic(struct uio *uio, struct file *fp)
  389 {
  390 
  391         if (atomic_load_acq_int(&(fp->f_flag)) & FRDAHEAD)
  392                 return (fp->f_seqcount << IO_SEQSHIFT);
  393 
  394         /*
  395          * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
  396          * that the first I/O is normally considered to be slightly
  397          * sequential.  Seeking to offset 0 doesn't change sequentiality
  398          * unless previous seeks have reduced f_seqcount to 0, in which
  399          * case offset 0 is not special.
  400          */
  401         if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
  402             uio->uio_offset == fp->f_nextoff) {
  403                 /*
  404                  * f_seqcount is in units of fixed-size blocks so that it
  405                  * depends mainly on the amount of sequential I/O and not
  406                  * much on the number of sequential I/O's.  The fixed size
  407                  * of 16384 is hard-coded here since it is (not quite) just
  408                  * a magic size that works well here.  This size is more
  409                  * closely related to the best I/O size for real disks than
  410                  * to any block size used by software.
  411                  */
  412                 fp->f_seqcount += howmany(uio->uio_resid, 16384);
  413                 if (fp->f_seqcount > IO_SEQMAX)
  414                         fp->f_seqcount = IO_SEQMAX;
  415                 return (fp->f_seqcount << IO_SEQSHIFT);
  416         }
  417 
  418         /* Not sequential.  Quickly draw-down sequentiality. */
  419         if (fp->f_seqcount > 1)
  420                 fp->f_seqcount = 1;
  421         else
  422                 fp->f_seqcount = 0;
  423         return (0);
  424 }
  425 
  426 /*
  427  * Package up an I/O request on a vnode into a uio and do it.
  428  */
  429 int
  430 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
  431     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
  432     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
  433 {
  434         struct uio auio;
  435         struct iovec aiov;
  436         struct mount *mp;
  437         struct ucred *cred;
  438         void *rl_cookie;
  439         int error, lock_flags;
  440 
  441         auio.uio_iov = &aiov;
  442         auio.uio_iovcnt = 1;
  443         aiov.iov_base = base;
  444         aiov.iov_len = len;
  445         auio.uio_resid = len;
  446         auio.uio_offset = offset;
  447         auio.uio_segflg = segflg;
  448         auio.uio_rw = rw;
  449         auio.uio_td = td;
  450         error = 0;
  451 
  452         if ((ioflg & IO_NODELOCKED) == 0) {
  453                 if (rw == UIO_READ) {
  454                         rl_cookie = vn_rangelock_rlock(vp, offset,
  455                             offset + len);
  456                 } else {
  457                         rl_cookie = vn_rangelock_wlock(vp, offset,
  458                             offset + len);
  459                 }
  460                 mp = NULL;
  461                 if (rw == UIO_WRITE) { 
  462                         if (vp->v_type != VCHR &&
  463                             (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
  464                             != 0)
  465                                 goto out;
  466                         if (MNT_SHARED_WRITES(mp) ||
  467                             ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
  468                                 lock_flags = LK_SHARED;
  469                         else
  470                                 lock_flags = LK_EXCLUSIVE;
  471                 } else
  472                         lock_flags = LK_SHARED;
  473                 vn_lock(vp, lock_flags | LK_RETRY);
  474         } else
  475                 rl_cookie = NULL;
  476 
  477         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
  478 #ifdef MAC
  479         if ((ioflg & IO_NOMACCHECK) == 0) {
  480                 if (rw == UIO_READ)
  481                         error = mac_vnode_check_read(active_cred, file_cred,
  482                             vp);
  483                 else
  484                         error = mac_vnode_check_write(active_cred, file_cred,
  485                             vp);
  486         }
  487 #endif
  488         if (error == 0) {
  489                 if (file_cred != NULL)
  490                         cred = file_cred;
  491                 else
  492                         cred = active_cred;
  493                 if (rw == UIO_READ)
  494                         error = VOP_READ(vp, &auio, ioflg, cred);
  495                 else
  496                         error = VOP_WRITE(vp, &auio, ioflg, cred);
  497         }
  498         if (aresid)
  499                 *aresid = auio.uio_resid;
  500         else
  501                 if (auio.uio_resid && error == 0)
  502                         error = EIO;
  503         if ((ioflg & IO_NODELOCKED) == 0) {
  504                 VOP_UNLOCK(vp, 0);
  505                 if (mp != NULL)
  506                         vn_finished_write(mp);
  507         }
  508  out:
  509         if (rl_cookie != NULL)
  510                 vn_rangelock_unlock(vp, rl_cookie);
  511         return (error);
  512 }
  513 
  514 /*
  515  * Package up an I/O request on a vnode into a uio and do it.  The I/O
  516  * request is split up into smaller chunks and we try to avoid saturating
  517  * the buffer cache while potentially holding a vnode locked, so we 
  518  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
  519  * to give other processes a chance to lock the vnode (either other processes
  520  * core'ing the same binary, or unrelated processes scanning the directory).
  521  */
  522 int
  523 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
  524     file_cred, aresid, td)
  525         enum uio_rw rw;
  526         struct vnode *vp;
  527         void *base;
  528         size_t len;
  529         off_t offset;
  530         enum uio_seg segflg;
  531         int ioflg;
  532         struct ucred *active_cred;
  533         struct ucred *file_cred;
  534         size_t *aresid;
  535         struct thread *td;
  536 {
  537         int error = 0;
  538         ssize_t iaresid;
  539 
  540         do {
  541                 int chunk;
  542 
  543                 /*
  544                  * Force `offset' to a multiple of MAXBSIZE except possibly
  545                  * for the first chunk, so that filesystems only need to
  546                  * write full blocks except possibly for the first and last
  547                  * chunks.
  548                  */
  549                 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
  550 
  551                 if (chunk > len)
  552                         chunk = len;
  553                 if (rw != UIO_READ && vp->v_type == VREG)
  554                         bwillwrite();
  555                 iaresid = 0;
  556                 error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
  557                     ioflg, active_cred, file_cred, &iaresid, td);
  558                 len -= chunk;   /* aresid calc already includes length */
  559                 if (error)
  560                         break;
  561                 offset += chunk;
  562                 base = (char *)base + chunk;
  563                 kern_yield(PRI_USER);
  564         } while (len);
  565         if (aresid)
  566                 *aresid = len + iaresid;
  567         return (error);
  568 }
  569 
  570 off_t
  571 foffset_lock(struct file *fp, int flags)
  572 {
  573         struct mtx *mtxp;
  574         off_t res;
  575 
  576         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  577 
  578 #if OFF_MAX <= LONG_MAX
  579         /*
  580          * Caller only wants the current f_offset value.  Assume that
  581          * the long and shorter integer types reads are atomic.
  582          */
  583         if ((flags & FOF_NOLOCK) != 0)
  584                 return (fp->f_offset);
  585 #endif
  586 
  587         /*
  588          * According to McKusick the vn lock was protecting f_offset here.
  589          * It is now protected by the FOFFSET_LOCKED flag.
  590          */
  591         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  592         mtx_lock(mtxp);
  593         if ((flags & FOF_NOLOCK) == 0) {
  594                 while (fp->f_vnread_flags & FOFFSET_LOCKED) {
  595                         fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
  596                         msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
  597                             "vofflock", 0);
  598                 }
  599                 fp->f_vnread_flags |= FOFFSET_LOCKED;
  600         }
  601         res = fp->f_offset;
  602         mtx_unlock(mtxp);
  603         return (res);
  604 }
  605 
  606 void
  607 foffset_unlock(struct file *fp, off_t val, int flags)
  608 {
  609         struct mtx *mtxp;
  610 
  611         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  612 
  613 #if OFF_MAX <= LONG_MAX
  614         if ((flags & FOF_NOLOCK) != 0) {
  615                 if ((flags & FOF_NOUPDATE) == 0)
  616                         fp->f_offset = val;
  617                 if ((flags & FOF_NEXTOFF) != 0)
  618                         fp->f_nextoff = val;
  619                 return;
  620         }
  621 #endif
  622 
  623         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  624         mtx_lock(mtxp);
  625         if ((flags & FOF_NOUPDATE) == 0)
  626                 fp->f_offset = val;
  627         if ((flags & FOF_NEXTOFF) != 0)
  628                 fp->f_nextoff = val;
  629         if ((flags & FOF_NOLOCK) == 0) {
  630                 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
  631                     ("Lost FOFFSET_LOCKED"));
  632                 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
  633                         wakeup(&fp->f_vnread_flags);
  634                 fp->f_vnread_flags = 0;
  635         }
  636         mtx_unlock(mtxp);
  637 }
  638 
  639 void
  640 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
  641 {
  642 
  643         if ((flags & FOF_OFFSET) == 0)
  644                 uio->uio_offset = foffset_lock(fp, flags);
  645 }
  646 
  647 void
  648 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
  649 {
  650 
  651         if ((flags & FOF_OFFSET) == 0)
  652                 foffset_unlock(fp, uio->uio_offset, flags);
  653 }
  654 
  655 static int
  656 get_advice(struct file *fp, struct uio *uio)
  657 {
  658         struct mtx *mtxp;
  659         int ret;
  660 
  661         ret = POSIX_FADV_NORMAL;
  662         if (fp->f_advice == NULL)
  663                 return (ret);
  664 
  665         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  666         mtx_lock(mtxp);
  667         if (uio->uio_offset >= fp->f_advice->fa_start &&
  668             uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
  669                 ret = fp->f_advice->fa_advice;
  670         mtx_unlock(mtxp);
  671         return (ret);
  672 }
  673 
  674 /*
  675  * File table vnode read routine.
  676  */
  677 static int
  678 vn_read(fp, uio, active_cred, flags, td)
  679         struct file *fp;
  680         struct uio *uio;
  681         struct ucred *active_cred;
  682         int flags;
  683         struct thread *td;
  684 {
  685         struct vnode *vp;
  686         struct mtx *mtxp;
  687         int error, ioflag;
  688         int advice;
  689         off_t offset, start, end;
  690 
  691         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
  692             uio->uio_td, td));
  693         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
  694         vp = fp->f_vnode;
  695         ioflag = 0;
  696         if (fp->f_flag & FNONBLOCK)
  697                 ioflag |= IO_NDELAY;
  698         if (fp->f_flag & O_DIRECT)
  699                 ioflag |= IO_DIRECT;
  700         advice = get_advice(fp, uio);
  701         vn_lock(vp, LK_SHARED | LK_RETRY);
  702 
  703         switch (advice) {
  704         case POSIX_FADV_NORMAL:
  705         case POSIX_FADV_SEQUENTIAL:
  706         case POSIX_FADV_NOREUSE:
  707                 ioflag |= sequential_heuristic(uio, fp);
  708                 break;
  709         case POSIX_FADV_RANDOM:
  710                 /* Disable read-ahead for random I/O. */
  711                 break;
  712         }
  713         offset = uio->uio_offset;
  714 
  715 #ifdef MAC
  716         error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
  717         if (error == 0)
  718 #endif
  719                 error = VOP_READ(vp, uio, ioflag, fp->f_cred);
  720         fp->f_nextoff = uio->uio_offset;
  721         VOP_UNLOCK(vp, 0);
  722         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
  723             offset != uio->uio_offset) {
  724                 /*
  725                  * Use POSIX_FADV_DONTNEED to flush clean pages and
  726                  * buffers for the backing file after a
  727                  * POSIX_FADV_NOREUSE read(2).  To optimize the common
  728                  * case of using POSIX_FADV_NOREUSE with sequential
  729                  * access, track the previous implicit DONTNEED
  730                  * request and grow this request to include the
  731                  * current read(2) in addition to the previous
  732                  * DONTNEED.  With purely sequential access this will
  733                  * cause the DONTNEED requests to continously grow to
  734                  * cover all of the previously read regions of the
  735                  * file.  This allows filesystem blocks that are
  736                  * accessed by multiple calls to read(2) to be flushed
  737                  * once the last read(2) finishes.
  738                  */
  739                 start = offset;
  740                 end = uio->uio_offset - 1;
  741                 mtxp = mtx_pool_find(mtxpool_sleep, fp);
  742                 mtx_lock(mtxp);
  743                 if (fp->f_advice != NULL &&
  744                     fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
  745                         if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
  746                                 start = fp->f_advice->fa_prevstart;
  747                         else if (fp->f_advice->fa_prevstart != 0 &&
  748                             fp->f_advice->fa_prevstart == end + 1)
  749                                 end = fp->f_advice->fa_prevend;
  750                         fp->f_advice->fa_prevstart = start;
  751                         fp->f_advice->fa_prevend = end;
  752                 }
  753                 mtx_unlock(mtxp);
  754                 error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
  755         }
  756         return (error);
  757 }
  758 
  759 /*
  760  * File table vnode write routine.
  761  */
  762 static int
  763 vn_write(fp, uio, active_cred, flags, td)
  764         struct file *fp;
  765         struct uio *uio;
  766         struct ucred *active_cred;
  767         int flags;
  768         struct thread *td;
  769 {
  770         struct vnode *vp;
  771         struct mount *mp;
  772         struct mtx *mtxp;
  773         int error, ioflag, lock_flags;
  774         int advice;
  775         off_t offset, start, end;
  776 
  777         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
  778             uio->uio_td, td));
  779         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
  780         vp = fp->f_vnode;
  781         if (vp->v_type == VREG)
  782                 bwillwrite();
  783         ioflag = IO_UNIT;
  784         if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
  785                 ioflag |= IO_APPEND;
  786         if (fp->f_flag & FNONBLOCK)
  787                 ioflag |= IO_NDELAY;
  788         if (fp->f_flag & O_DIRECT)
  789                 ioflag |= IO_DIRECT;
  790         if ((fp->f_flag & O_FSYNC) ||
  791             (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
  792                 ioflag |= IO_SYNC;
  793         mp = NULL;
  794         if (vp->v_type != VCHR &&
  795             (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
  796                 goto unlock;
  797 
  798         advice = get_advice(fp, uio);
  799 
  800         if (MNT_SHARED_WRITES(mp) ||
  801             (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
  802                 lock_flags = LK_SHARED;
  803         } else {
  804                 lock_flags = LK_EXCLUSIVE;
  805         }
  806 
  807         vn_lock(vp, lock_flags | LK_RETRY);
  808         switch (advice) {
  809         case POSIX_FADV_NORMAL:
  810         case POSIX_FADV_SEQUENTIAL:
  811         case POSIX_FADV_NOREUSE:
  812                 ioflag |= sequential_heuristic(uio, fp);
  813                 break;
  814         case POSIX_FADV_RANDOM:
  815                 /* XXX: Is this correct? */
  816                 break;
  817         }
  818         offset = uio->uio_offset;
  819 
  820 #ifdef MAC
  821         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
  822         if (error == 0)
  823 #endif
  824                 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
  825         fp->f_nextoff = uio->uio_offset;
  826         VOP_UNLOCK(vp, 0);
  827         if (vp->v_type != VCHR)
  828                 vn_finished_write(mp);
  829         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
  830             offset != uio->uio_offset) {
  831                 /*
  832                  * Use POSIX_FADV_DONTNEED to flush clean pages and
  833                  * buffers for the backing file after a
  834                  * POSIX_FADV_NOREUSE write(2).  To optimize the
  835                  * common case of using POSIX_FADV_NOREUSE with
  836                  * sequential access, track the previous implicit
  837                  * DONTNEED request and grow this request to include
  838                  * the current write(2) in addition to the previous
  839                  * DONTNEED.  With purely sequential access this will
  840                  * cause the DONTNEED requests to continously grow to
  841                  * cover all of the previously written regions of the
  842                  * file.
  843                  *
  844                  * Note that the blocks just written are almost
  845                  * certainly still dirty, so this only works when
  846                  * VOP_ADVISE() calls from subsequent writes push out
  847                  * the data written by this write(2) once the backing
  848                  * buffers are clean.  However, as compared to forcing
  849                  * IO_DIRECT, this gives much saner behavior.  Write
  850                  * clustering is still allowed, and clean pages are
  851                  * merely moved to the cache page queue rather than
  852                  * outright thrown away.  This means a subsequent
  853                  * read(2) can still avoid hitting the disk if the
  854                  * pages have not been reclaimed.
  855                  *
  856                  * This does make POSIX_FADV_NOREUSE largely useless
  857                  * with non-sequential access.  However, sequential
  858                  * access is the more common use case and the flag is
  859                  * merely advisory.
  860                  */
  861                 start = offset;
  862                 end = uio->uio_offset - 1;
  863                 mtxp = mtx_pool_find(mtxpool_sleep, fp);
  864                 mtx_lock(mtxp);
  865                 if (fp->f_advice != NULL &&
  866                     fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
  867                         if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
  868                                 start = fp->f_advice->fa_prevstart;
  869                         else if (fp->f_advice->fa_prevstart != 0 &&
  870                             fp->f_advice->fa_prevstart == end + 1)
  871                                 end = fp->f_advice->fa_prevend;
  872                         fp->f_advice->fa_prevstart = start;
  873                         fp->f_advice->fa_prevend = end;
  874                 }
  875                 mtx_unlock(mtxp);
  876                 error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
  877         }
  878         
  879 unlock:
  880         return (error);
  881 }
  882 
  883 static const int io_hold_cnt = 16;
  884 static int vn_io_fault_enable = 1;
  885 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
  886     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
  887 static u_long vn_io_faults_cnt;
  888 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
  889     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
  890 
  891 /*
  892  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
  893  * prevent the following deadlock:
  894  *
  895  * Assume that the thread A reads from the vnode vp1 into userspace
  896  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
  897  * currently not resident, then system ends up with the call chain
  898  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
  899  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
  900  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
  901  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
  902  * backed by the pages of vnode vp1, and some page in buf2 is not
  903  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
  904  *
  905  * To prevent the lock order reversal and deadlock, vn_io_fault() does
  906  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
  907  * Instead, it first tries to do the whole range i/o with pagefaults
  908  * disabled. If all pages in the i/o buffer are resident and mapped,
  909  * VOP will succeed (ignoring the genuine filesystem errors).
  910  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
  911  * i/o in chunks, with all pages in the chunk prefaulted and held
  912  * using vm_fault_quick_hold_pages().
  913  *
  914  * Filesystems using this deadlock avoidance scheme should use the
  915  * array of the held pages from uio, saved in the curthread->td_ma,
  916  * instead of doing uiomove().  A helper function
  917  * vn_io_fault_uiomove() converts uiomove request into
  918  * uiomove_fromphys() over td_ma array.
  919  *
  920  * Since vnode locks do not cover the whole i/o anymore, rangelocks
  921  * make the current i/o request atomic with respect to other i/os and
  922  * truncations.
  923  */
  924 static int
  925 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
  926     int flags, struct thread *td)
  927 {
  928         vm_page_t ma[io_hold_cnt + 2];
  929         struct uio *uio_clone, short_uio;
  930         struct iovec short_iovec[1];
  931         fo_rdwr_t *doio;
  932         struct vnode *vp;
  933         void *rl_cookie;
  934         struct mount *mp;
  935         vm_page_t *prev_td_ma;
  936         int cnt, error, save, saveheld, prev_td_ma_cnt;
  937         vm_offset_t addr, end;
  938         vm_prot_t prot;
  939         size_t len, resid;
  940         ssize_t adv;
  941 
  942         if (uio->uio_rw == UIO_READ)
  943                 doio = vn_read;
  944         else
  945                 doio = vn_write;
  946         vp = fp->f_vnode;
  947         foffset_lock_uio(fp, uio, flags);
  948 
  949         if (uio->uio_segflg != UIO_USERSPACE || vp->v_type != VREG ||
  950             ((mp = vp->v_mount) != NULL &&
  951             (mp->mnt_kern_flag & MNTK_NO_IOPF) == 0) ||
  952             !vn_io_fault_enable) {
  953                 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
  954                 goto out_last;
  955         }
  956 
  957         /*
  958          * The UFS follows IO_UNIT directive and replays back both
  959          * uio_offset and uio_resid if an error is encountered during the
  960          * operation.  But, since the iovec may be already advanced,
  961          * uio is still in an inconsistent state.
  962          *
  963          * Cache a copy of the original uio, which is advanced to the redo
  964          * point using UIO_NOCOPY below.
  965          */
  966         uio_clone = cloneuio(uio);
  967         resid = uio->uio_resid;
  968 
  969         short_uio.uio_segflg = UIO_USERSPACE;
  970         short_uio.uio_rw = uio->uio_rw;
  971         short_uio.uio_td = uio->uio_td;
  972 
  973         if (uio->uio_rw == UIO_READ) {
  974                 prot = VM_PROT_WRITE;
  975                 rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
  976                     uio->uio_offset + uio->uio_resid);
  977         } else {
  978                 prot = VM_PROT_READ;
  979                 if ((fp->f_flag & O_APPEND) != 0 || (flags & FOF_OFFSET) == 0)
  980                         /* For appenders, punt and lock the whole range. */
  981                         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
  982                 else
  983                         rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
  984                             uio->uio_offset + uio->uio_resid);
  985         }
  986 
  987         save = vm_fault_disable_pagefaults();
  988         error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
  989         if (error != EFAULT)
  990                 goto out;
  991 
  992         atomic_add_long(&vn_io_faults_cnt, 1);
  993         uio_clone->uio_segflg = UIO_NOCOPY;
  994         uiomove(NULL, resid - uio->uio_resid, uio_clone);
  995         uio_clone->uio_segflg = uio->uio_segflg;
  996 
  997         saveheld = curthread_pflags_set(TDP_UIOHELD);
  998         prev_td_ma = td->td_ma;
  999         prev_td_ma_cnt = td->td_ma_cnt;
 1000 
 1001         while (uio_clone->uio_resid != 0) {
 1002                 len = uio_clone->uio_iov->iov_len;
 1003                 if (len == 0) {
 1004                         KASSERT(uio_clone->uio_iovcnt >= 1,
 1005                             ("iovcnt underflow"));
 1006                         uio_clone->uio_iov++;
 1007                         uio_clone->uio_iovcnt--;
 1008                         continue;
 1009                 }
 1010 
 1011                 addr = (vm_offset_t)uio_clone->uio_iov->iov_base;
 1012                 end = round_page(addr + len);
 1013                 cnt = howmany(end - trunc_page(addr), PAGE_SIZE);
 1014                 /*
 1015                  * A perfectly misaligned address and length could cause
 1016                  * both the start and the end of the chunk to use partial
 1017                  * page.  +2 accounts for such a situation.
 1018                  */
 1019                 if (cnt > io_hold_cnt + 2) {
 1020                         len = io_hold_cnt * PAGE_SIZE;
 1021                         KASSERT(howmany(round_page(addr + len) -
 1022                             trunc_page(addr), PAGE_SIZE) <= io_hold_cnt + 2,
 1023                             ("cnt overflow"));
 1024                 }
 1025                 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
 1026                     addr, len, prot, ma, io_hold_cnt + 2);
 1027                 if (cnt == -1) {
 1028                         error = EFAULT;
 1029                         break;
 1030                 }
 1031                 short_uio.uio_iov = &short_iovec[0];
 1032                 short_iovec[0].iov_base = (void *)addr;
 1033                 short_uio.uio_iovcnt = 1;
 1034                 short_uio.uio_resid = short_iovec[0].iov_len = len;
 1035                 short_uio.uio_offset = uio_clone->uio_offset;
 1036                 td->td_ma = ma;
 1037                 td->td_ma_cnt = cnt;
 1038 
 1039                 error = doio(fp, &short_uio, active_cred, flags | FOF_OFFSET,
 1040                     td);
 1041                 vm_page_unhold_pages(ma, cnt);
 1042                 adv = len - short_uio.uio_resid;
 1043 
 1044                 uio_clone->uio_iov->iov_base =
 1045                     (char *)uio_clone->uio_iov->iov_base + adv;
 1046                 uio_clone->uio_iov->iov_len -= adv;
 1047                 uio_clone->uio_resid -= adv;
 1048                 uio_clone->uio_offset += adv;
 1049 
 1050                 uio->uio_resid -= adv;
 1051                 uio->uio_offset += adv;
 1052 
 1053                 if (error != 0 || adv == 0)
 1054                         break;
 1055         }
 1056         td->td_ma = prev_td_ma;
 1057         td->td_ma_cnt = prev_td_ma_cnt;
 1058         curthread_pflags_restore(saveheld);
 1059 out:
 1060         vm_fault_enable_pagefaults(save);
 1061         vn_rangelock_unlock(vp, rl_cookie);
 1062         free(uio_clone, M_IOV);
 1063 out_last:
 1064         foffset_unlock_uio(fp, uio, flags);
 1065         return (error);
 1066 }
 1067 
 1068 /*
 1069  * Helper function to perform the requested uiomove operation using
 1070  * the held pages for io->uio_iov[0].iov_base buffer instead of
 1071  * copyin/copyout.  Access to the pages with uiomove_fromphys()
 1072  * instead of iov_base prevents page faults that could occur due to
 1073  * pmap_collect() invalidating the mapping created by
 1074  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
 1075  * object cleanup revoking the write access from page mappings.
 1076  *
 1077  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
 1078  * instead of plain uiomove().
 1079  */
 1080 int
 1081 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
 1082 {
 1083         struct uio transp_uio;
 1084         struct iovec transp_iov[1];
 1085         struct thread *td;
 1086         size_t adv;
 1087         int error, pgadv;
 1088 
 1089         td = curthread;
 1090         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1091             uio->uio_segflg != UIO_USERSPACE)
 1092                 return (uiomove(data, xfersize, uio));
 1093 
 1094         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1095         transp_iov[0].iov_base = data;
 1096         transp_uio.uio_iov = &transp_iov[0];
 1097         transp_uio.uio_iovcnt = 1;
 1098         if (xfersize > uio->uio_resid)
 1099                 xfersize = uio->uio_resid;
 1100         transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
 1101         transp_uio.uio_offset = 0;
 1102         transp_uio.uio_segflg = UIO_SYSSPACE;
 1103         /*
 1104          * Since transp_iov points to data, and td_ma page array
 1105          * corresponds to original uio->uio_iov, we need to invert the
 1106          * direction of the i/o operation as passed to
 1107          * uiomove_fromphys().
 1108          */
 1109         switch (uio->uio_rw) {
 1110         case UIO_WRITE:
 1111                 transp_uio.uio_rw = UIO_READ;
 1112                 break;
 1113         case UIO_READ:
 1114                 transp_uio.uio_rw = UIO_WRITE;
 1115                 break;
 1116         }
 1117         transp_uio.uio_td = uio->uio_td;
 1118         error = uiomove_fromphys(td->td_ma,
 1119             ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
 1120             xfersize, &transp_uio);
 1121         adv = xfersize - transp_uio.uio_resid;
 1122         pgadv =
 1123             (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
 1124             (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
 1125         td->td_ma += pgadv;
 1126         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1127             pgadv));
 1128         td->td_ma_cnt -= pgadv;
 1129         uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
 1130         uio->uio_iov->iov_len -= adv;
 1131         uio->uio_resid -= adv;
 1132         uio->uio_offset += adv;
 1133         return (error);
 1134 }
 1135 
 1136 int
 1137 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
 1138     struct uio *uio)
 1139 {
 1140         struct thread *td;
 1141         vm_offset_t iov_base;
 1142         int cnt, pgadv;
 1143 
 1144         td = curthread;
 1145         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1146             uio->uio_segflg != UIO_USERSPACE)
 1147                 return (uiomove_fromphys(ma, offset, xfersize, uio));
 1148 
 1149         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1150         cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
 1151         iov_base = (vm_offset_t)uio->uio_iov->iov_base;
 1152         switch (uio->uio_rw) {
 1153         case UIO_WRITE:
 1154                 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
 1155                     offset, cnt);
 1156                 break;
 1157         case UIO_READ:
 1158                 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
 1159                     cnt);
 1160                 break;
 1161         }
 1162         pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
 1163         td->td_ma += pgadv;
 1164         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1165             pgadv));
 1166         td->td_ma_cnt -= pgadv;
 1167         uio->uio_iov->iov_base = (char *)(iov_base + cnt);
 1168         uio->uio_iov->iov_len -= cnt;
 1169         uio->uio_resid -= cnt;
 1170         uio->uio_offset += cnt;
 1171         return (0);
 1172 }
 1173 
 1174 
 1175 /*
 1176  * File table truncate routine.
 1177  */
 1178 static int
 1179 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
 1180     struct thread *td)
 1181 {
 1182         struct vattr vattr;
 1183         struct mount *mp;
 1184         struct vnode *vp;
 1185         void *rl_cookie;
 1186         int error;
 1187 
 1188         vp = fp->f_vnode;
 1189 
 1190         /*
 1191          * Lock the whole range for truncation.  Otherwise split i/o
 1192          * might happen partly before and partly after the truncation.
 1193          */
 1194         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 1195         error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
 1196         if (error)
 1197                 goto out1;
 1198         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1199         if (vp->v_type == VDIR) {
 1200                 error = EISDIR;
 1201                 goto out;
 1202         }
 1203 #ifdef MAC
 1204         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
 1205         if (error)
 1206                 goto out;
 1207 #endif
 1208         error = vn_writechk(vp);
 1209         if (error == 0) {
 1210                 VATTR_NULL(&vattr);
 1211                 vattr.va_size = length;
 1212                 error = VOP_SETATTR(vp, &vattr, fp->f_cred);
 1213         }
 1214 out:
 1215         VOP_UNLOCK(vp, 0);
 1216         vn_finished_write(mp);
 1217 out1:
 1218         vn_rangelock_unlock(vp, rl_cookie);
 1219         return (error);
 1220 }
 1221 
 1222 /*
 1223  * File table vnode stat routine.
 1224  */
 1225 static int
 1226 vn_statfile(fp, sb, active_cred, td)
 1227         struct file *fp;
 1228         struct stat *sb;
 1229         struct ucred *active_cred;
 1230         struct thread *td;
 1231 {
 1232         struct vnode *vp = fp->f_vnode;
 1233         int error;
 1234 
 1235         vn_lock(vp, LK_SHARED | LK_RETRY);
 1236         error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
 1237         VOP_UNLOCK(vp, 0);
 1238 
 1239         return (error);
 1240 }
 1241 
 1242 /*
 1243  * Stat a vnode; implementation for the stat syscall
 1244  */
 1245 int
 1246 vn_stat(vp, sb, active_cred, file_cred, td)
 1247         struct vnode *vp;
 1248         register struct stat *sb;
 1249         struct ucred *active_cred;
 1250         struct ucred *file_cred;
 1251         struct thread *td;
 1252 {
 1253         struct vattr vattr;
 1254         register struct vattr *vap;
 1255         int error;
 1256         u_short mode;
 1257 
 1258 #ifdef MAC
 1259         error = mac_vnode_check_stat(active_cred, file_cred, vp);
 1260         if (error)
 1261                 return (error);
 1262 #endif
 1263 
 1264         vap = &vattr;
 1265 
 1266         /*
 1267          * Initialize defaults for new and unusual fields, so that file
 1268          * systems which don't support these fields don't need to know
 1269          * about them.
 1270          */
 1271         vap->va_birthtime.tv_sec = -1;
 1272         vap->va_birthtime.tv_nsec = 0;
 1273         vap->va_fsid = VNOVAL;
 1274         vap->va_rdev = NODEV;
 1275 
 1276         error = VOP_GETATTR(vp, vap, active_cred);
 1277         if (error)
 1278                 return (error);
 1279 
 1280         /*
 1281          * Zero the spare stat fields
 1282          */
 1283         bzero(sb, sizeof *sb);
 1284 
 1285         /*
 1286          * Copy from vattr table
 1287          */
 1288         if (vap->va_fsid != VNOVAL)
 1289                 sb->st_dev = vap->va_fsid;
 1290         else
 1291                 sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
 1292         sb->st_ino = vap->va_fileid;
 1293         mode = vap->va_mode;
 1294         switch (vap->va_type) {
 1295         case VREG:
 1296                 mode |= S_IFREG;
 1297                 break;
 1298         case VDIR:
 1299                 mode |= S_IFDIR;
 1300                 break;
 1301         case VBLK:
 1302                 mode |= S_IFBLK;
 1303                 break;
 1304         case VCHR:
 1305                 mode |= S_IFCHR;
 1306                 break;
 1307         case VLNK:
 1308                 mode |= S_IFLNK;
 1309                 break;
 1310         case VSOCK:
 1311                 mode |= S_IFSOCK;
 1312                 break;
 1313         case VFIFO:
 1314                 mode |= S_IFIFO;
 1315                 break;
 1316         default:
 1317                 return (EBADF);
 1318         };
 1319         sb->st_mode = mode;
 1320         sb->st_nlink = vap->va_nlink;
 1321         sb->st_uid = vap->va_uid;
 1322         sb->st_gid = vap->va_gid;
 1323         sb->st_rdev = vap->va_rdev;
 1324         if (vap->va_size > OFF_MAX)
 1325                 return (EOVERFLOW);
 1326         sb->st_size = vap->va_size;
 1327         sb->st_atim = vap->va_atime;
 1328         sb->st_mtim = vap->va_mtime;
 1329         sb->st_ctim = vap->va_ctime;
 1330         sb->st_birthtim = vap->va_birthtime;
 1331 
 1332         /*
 1333          * According to www.opengroup.org, the meaning of st_blksize is 
 1334          *   "a filesystem-specific preferred I/O block size for this 
 1335          *    object.  In some filesystem types, this may vary from file
 1336          *    to file"
 1337          * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
 1338          */
 1339 
 1340         sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
 1341         
 1342         sb->st_flags = vap->va_flags;
 1343         if (priv_check(td, PRIV_VFS_GENERATION))
 1344                 sb->st_gen = 0;
 1345         else
 1346                 sb->st_gen = vap->va_gen;
 1347 
 1348         sb->st_blocks = vap->va_bytes / S_BLKSIZE;
 1349         return (0);
 1350 }
 1351 
 1352 /*
 1353  * File table vnode ioctl routine.
 1354  */
 1355 static int
 1356 vn_ioctl(fp, com, data, active_cred, td)
 1357         struct file *fp;
 1358         u_long com;
 1359         void *data;
 1360         struct ucred *active_cred;
 1361         struct thread *td;
 1362 {
 1363         struct vattr vattr;
 1364         struct vnode *vp;
 1365         int error;
 1366 
 1367         vp = fp->f_vnode;
 1368         switch (vp->v_type) {
 1369         case VDIR:
 1370         case VREG:
 1371                 switch (com) {
 1372                 case FIONREAD:
 1373                         vn_lock(vp, LK_SHARED | LK_RETRY);
 1374                         error = VOP_GETATTR(vp, &vattr, active_cred);
 1375                         VOP_UNLOCK(vp, 0);
 1376                         if (error == 0)
 1377                                 *(int *)data = vattr.va_size - fp->f_offset;
 1378                         return (error);
 1379                 case FIONBIO:
 1380                 case FIOASYNC:
 1381                         return (0);
 1382                 default:
 1383                         return (VOP_IOCTL(vp, com, data, fp->f_flag,
 1384                             active_cred, td));
 1385                 }
 1386         default:
 1387                 return (ENOTTY);
 1388         }
 1389 }
 1390 
 1391 /*
 1392  * File table vnode poll routine.
 1393  */
 1394 static int
 1395 vn_poll(fp, events, active_cred, td)
 1396         struct file *fp;
 1397         int events;
 1398         struct ucred *active_cred;
 1399         struct thread *td;
 1400 {
 1401         struct vnode *vp;
 1402         int error;
 1403 
 1404         vp = fp->f_vnode;
 1405 #ifdef MAC
 1406         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1407         error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
 1408         VOP_UNLOCK(vp, 0);
 1409         if (!error)
 1410 #endif
 1411 
 1412         error = VOP_POLL(vp, events, fp->f_cred, td);
 1413         return (error);
 1414 }
 1415 
 1416 /*
 1417  * Acquire the requested lock and then check for validity.  LK_RETRY
 1418  * permits vn_lock to return doomed vnodes.
 1419  */
 1420 int
 1421 _vn_lock(struct vnode *vp, int flags, char *file, int line)
 1422 {
 1423         int error;
 1424 
 1425         VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
 1426             ("vn_lock called with no locktype."));
 1427         do {
 1428 #ifdef DEBUG_VFS_LOCKS
 1429                 KASSERT(vp->v_holdcnt != 0,
 1430                     ("vn_lock %p: zero hold count", vp));
 1431 #endif
 1432                 error = VOP_LOCK1(vp, flags, file, line);
 1433                 flags &= ~LK_INTERLOCK; /* Interlock is always dropped. */
 1434                 KASSERT((flags & LK_RETRY) == 0 || error == 0,
 1435                     ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
 1436                     flags, error));
 1437                 /*
 1438                  * Callers specify LK_RETRY if they wish to get dead vnodes.
 1439                  * If RETRY is not set, we return ENOENT instead.
 1440                  */
 1441                 if (error == 0 && vp->v_iflag & VI_DOOMED &&
 1442                     (flags & LK_RETRY) == 0) {
 1443                         VOP_UNLOCK(vp, 0);
 1444                         error = ENOENT;
 1445                         break;
 1446                 }
 1447         } while (flags & LK_RETRY && error != 0);
 1448         return (error);
 1449 }
 1450 
 1451 /*
 1452  * File table vnode close routine.
 1453  */
 1454 static int
 1455 vn_closefile(fp, td)
 1456         struct file *fp;
 1457         struct thread *td;
 1458 {
 1459         struct vnode *vp;
 1460         struct flock lf;
 1461         int error;
 1462 
 1463         vp = fp->f_vnode;
 1464         fp->f_ops = &badfileops;
 1465 
 1466         if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
 1467                 vref(vp);
 1468 
 1469         error = vn_close(vp, fp->f_flag, fp->f_cred, td);
 1470 
 1471         if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
 1472                 lf.l_whence = SEEK_SET;
 1473                 lf.l_start = 0;
 1474                 lf.l_len = 0;
 1475                 lf.l_type = F_UNLCK;
 1476                 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
 1477                 vrele(vp);
 1478         }
 1479         return (error);
 1480 }
 1481 
 1482 /*
 1483  * Preparing to start a filesystem write operation. If the operation is
 1484  * permitted, then we bump the count of operations in progress and
 1485  * proceed. If a suspend request is in progress, we wait until the
 1486  * suspension is over, and then proceed.
 1487  */
 1488 static int
 1489 vn_start_write_locked(struct mount *mp, int flags)
 1490 {
 1491         int error;
 1492 
 1493         mtx_assert(MNT_MTX(mp), MA_OWNED);
 1494         error = 0;
 1495 
 1496         /*
 1497          * Check on status of suspension.
 1498          */
 1499         if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
 1500             mp->mnt_susp_owner != curthread) {
 1501                 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 1502                         if (flags & V_NOWAIT) {
 1503                                 error = EWOULDBLOCK;
 1504                                 goto unlock;
 1505                         }
 1506                         error = msleep(&mp->mnt_flag, MNT_MTX(mp),
 1507                             (PUSER - 1) | (flags & PCATCH), "suspfs", 0);
 1508                         if (error)
 1509                                 goto unlock;
 1510                 }
 1511         }
 1512         if (flags & V_XSLEEP)
 1513                 goto unlock;
 1514         mp->mnt_writeopcount++;
 1515 unlock:
 1516         if (error != 0 || (flags & V_XSLEEP) != 0)
 1517                 MNT_REL(mp);
 1518         MNT_IUNLOCK(mp);
 1519         return (error);
 1520 }
 1521 
 1522 int
 1523 vn_start_write(vp, mpp, flags)
 1524         struct vnode *vp;
 1525         struct mount **mpp;
 1526         int flags;
 1527 {
 1528         struct mount *mp;
 1529         int error;
 1530 
 1531         error = 0;
 1532         /*
 1533          * If a vnode is provided, get and return the mount point that
 1534          * to which it will write.
 1535          */
 1536         if (vp != NULL) {
 1537                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1538                         *mpp = NULL;
 1539                         if (error != EOPNOTSUPP)
 1540                                 return (error);
 1541                         return (0);
 1542                 }
 1543         }
 1544         if ((mp = *mpp) == NULL)
 1545                 return (0);
 1546 
 1547         /*
 1548          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1549          * a vfs_ref().
 1550          * As long as a vnode is not provided we need to acquire a
 1551          * refcount for the provided mountpoint too, in order to
 1552          * emulate a vfs_ref().
 1553          */
 1554         MNT_ILOCK(mp);
 1555         if (vp == NULL)
 1556                 MNT_REF(mp);
 1557 
 1558         return (vn_start_write_locked(mp, flags));
 1559 }
 1560 
 1561 /*
 1562  * Secondary suspension. Used by operations such as vop_inactive
 1563  * routines that are needed by the higher level functions. These
 1564  * are allowed to proceed until all the higher level functions have
 1565  * completed (indicated by mnt_writeopcount dropping to zero). At that
 1566  * time, these operations are halted until the suspension is over.
 1567  */
 1568 int
 1569 vn_start_secondary_write(vp, mpp, flags)
 1570         struct vnode *vp;
 1571         struct mount **mpp;
 1572         int flags;
 1573 {
 1574         struct mount *mp;
 1575         int error;
 1576 
 1577  retry:
 1578         if (vp != NULL) {
 1579                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1580                         *mpp = NULL;
 1581                         if (error != EOPNOTSUPP)
 1582                                 return (error);
 1583                         return (0);
 1584                 }
 1585         }
 1586         /*
 1587          * If we are not suspended or have not yet reached suspended
 1588          * mode, then let the operation proceed.
 1589          */
 1590         if ((mp = *mpp) == NULL)
 1591                 return (0);
 1592 
 1593         /*
 1594          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1595          * a vfs_ref().
 1596          * As long as a vnode is not provided we need to acquire a
 1597          * refcount for the provided mountpoint too, in order to
 1598          * emulate a vfs_ref().
 1599          */
 1600         MNT_ILOCK(mp);
 1601         if (vp == NULL)
 1602                 MNT_REF(mp);
 1603         if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
 1604                 mp->mnt_secondary_writes++;
 1605                 mp->mnt_secondary_accwrites++;
 1606                 MNT_IUNLOCK(mp);
 1607                 return (0);
 1608         }
 1609         if (flags & V_NOWAIT) {
 1610                 MNT_REL(mp);
 1611                 MNT_IUNLOCK(mp);
 1612                 return (EWOULDBLOCK);
 1613         }
 1614         /*
 1615          * Wait for the suspension to finish.
 1616          */
 1617         error = msleep(&mp->mnt_flag, MNT_MTX(mp),
 1618                        (PUSER - 1) | (flags & PCATCH) | PDROP, "suspfs", 0);
 1619         vfs_rel(mp);
 1620         if (error == 0)
 1621                 goto retry;
 1622         return (error);
 1623 }
 1624 
 1625 /*
 1626  * Filesystem write operation has completed. If we are suspending and this
 1627  * operation is the last one, notify the suspender that the suspension is
 1628  * now in effect.
 1629  */
 1630 void
 1631 vn_finished_write(mp)
 1632         struct mount *mp;
 1633 {
 1634         if (mp == NULL)
 1635                 return;
 1636         MNT_ILOCK(mp);
 1637         MNT_REL(mp);
 1638         mp->mnt_writeopcount--;
 1639         if (mp->mnt_writeopcount < 0)
 1640                 panic("vn_finished_write: neg cnt");
 1641         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
 1642             mp->mnt_writeopcount <= 0)
 1643                 wakeup(&mp->mnt_writeopcount);
 1644         MNT_IUNLOCK(mp);
 1645 }
 1646 
 1647 
 1648 /*
 1649  * Filesystem secondary write operation has completed. If we are
 1650  * suspending and this operation is the last one, notify the suspender
 1651  * that the suspension is now in effect.
 1652  */
 1653 void
 1654 vn_finished_secondary_write(mp)
 1655         struct mount *mp;
 1656 {
 1657         if (mp == NULL)
 1658                 return;
 1659         MNT_ILOCK(mp);
 1660         MNT_REL(mp);
 1661         mp->mnt_secondary_writes--;
 1662         if (mp->mnt_secondary_writes < 0)
 1663                 panic("vn_finished_secondary_write: neg cnt");
 1664         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
 1665             mp->mnt_secondary_writes <= 0)
 1666                 wakeup(&mp->mnt_secondary_writes);
 1667         MNT_IUNLOCK(mp);
 1668 }
 1669 
 1670 
 1671 
 1672 /*
 1673  * Request a filesystem to suspend write operations.
 1674  */
 1675 int
 1676 vfs_write_suspend(struct mount *mp, int flags)
 1677 {
 1678         int error;
 1679 
 1680         MNT_ILOCK(mp);
 1681         if (mp->mnt_susp_owner == curthread) {
 1682                 MNT_IUNLOCK(mp);
 1683                 return (EALREADY);
 1684         }
 1685         while (mp->mnt_kern_flag & MNTK_SUSPEND)
 1686                 msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
 1687 
 1688         /*
 1689          * Unmount holds a write reference on the mount point.  If we
 1690          * own busy reference and drain for writers, we deadlock with
 1691          * the reference draining in the unmount path.  Callers of
 1692          * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
 1693          * vfs_busy() reference is owned and caller is not in the
 1694          * unmount context.
 1695          */
 1696         if ((flags & VS_SKIP_UNMOUNT) != 0 &&
 1697             (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
 1698                 MNT_IUNLOCK(mp);
 1699                 return (EBUSY);
 1700         }
 1701 
 1702         mp->mnt_kern_flag |= MNTK_SUSPEND;
 1703         mp->mnt_susp_owner = curthread;
 1704         if (mp->mnt_writeopcount > 0)
 1705                 (void) msleep(&mp->mnt_writeopcount, 
 1706                     MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
 1707         else
 1708                 MNT_IUNLOCK(mp);
 1709         if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
 1710                 vfs_write_resume(mp, 0);
 1711         return (error);
 1712 }
 1713 
 1714 /*
 1715  * Request a filesystem to resume write operations.
 1716  */
 1717 void
 1718 vfs_write_resume(struct mount *mp, int flags)
 1719 {
 1720 
 1721         MNT_ILOCK(mp);
 1722         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 1723                 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
 1724                 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
 1725                                        MNTK_SUSPENDED);
 1726                 mp->mnt_susp_owner = NULL;
 1727                 wakeup(&mp->mnt_writeopcount);
 1728                 wakeup(&mp->mnt_flag);
 1729                 curthread->td_pflags &= ~TDP_IGNSUSP;
 1730                 if ((flags & VR_START_WRITE) != 0) {
 1731                         MNT_REF(mp);
 1732                         mp->mnt_writeopcount++;
 1733                 }
 1734                 MNT_IUNLOCK(mp);
 1735                 if ((flags & VR_NO_SUSPCLR) == 0)
 1736                         VFS_SUSP_CLEAN(mp);
 1737         } else if ((flags & VR_START_WRITE) != 0) {
 1738                 MNT_REF(mp);
 1739                 vn_start_write_locked(mp, 0);
 1740         } else {
 1741                 MNT_IUNLOCK(mp);
 1742         }
 1743 }
 1744 
 1745 /*
 1746  * Implement kqueues for files by translating it to vnode operation.
 1747  */
 1748 static int
 1749 vn_kqfilter(struct file *fp, struct knote *kn)
 1750 {
 1751 
 1752         return (VOP_KQFILTER(fp->f_vnode, kn));
 1753 }
 1754 
 1755 /*
 1756  * Simplified in-kernel wrapper calls for extended attribute access.
 1757  * Both calls pass in a NULL credential, authorizing as "kernel" access.
 1758  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
 1759  */
 1760 int
 1761 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
 1762     const char *attrname, int *buflen, char *buf, struct thread *td)
 1763 {
 1764         struct uio      auio;
 1765         struct iovec    iov;
 1766         int     error;
 1767 
 1768         iov.iov_len = *buflen;
 1769         iov.iov_base = buf;
 1770 
 1771         auio.uio_iov = &iov;
 1772         auio.uio_iovcnt = 1;
 1773         auio.uio_rw = UIO_READ;
 1774         auio.uio_segflg = UIO_SYSSPACE;
 1775         auio.uio_td = td;
 1776         auio.uio_offset = 0;
 1777         auio.uio_resid = *buflen;
 1778 
 1779         if ((ioflg & IO_NODELOCKED) == 0)
 1780                 vn_lock(vp, LK_SHARED | LK_RETRY);
 1781 
 1782         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 1783 
 1784         /* authorize attribute retrieval as kernel */
 1785         error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
 1786             td);
 1787 
 1788         if ((ioflg & IO_NODELOCKED) == 0)
 1789                 VOP_UNLOCK(vp, 0);
 1790 
 1791         if (error == 0) {
 1792                 *buflen = *buflen - auio.uio_resid;
 1793         }
 1794 
 1795         return (error);
 1796 }
 1797 
 1798 /*
 1799  * XXX failure mode if partially written?
 1800  */
 1801 int
 1802 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
 1803     const char *attrname, int buflen, char *buf, struct thread *td)
 1804 {
 1805         struct uio      auio;
 1806         struct iovec    iov;
 1807         struct mount    *mp;
 1808         int     error;
 1809 
 1810         iov.iov_len = buflen;
 1811         iov.iov_base = buf;
 1812 
 1813         auio.uio_iov = &iov;
 1814         auio.uio_iovcnt = 1;
 1815         auio.uio_rw = UIO_WRITE;
 1816         auio.uio_segflg = UIO_SYSSPACE;
 1817         auio.uio_td = td;
 1818         auio.uio_offset = 0;
 1819         auio.uio_resid = buflen;
 1820 
 1821         if ((ioflg & IO_NODELOCKED) == 0) {
 1822                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 1823                         return (error);
 1824                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1825         }
 1826 
 1827         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 1828 
 1829         /* authorize attribute setting as kernel */
 1830         error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
 1831 
 1832         if ((ioflg & IO_NODELOCKED) == 0) {
 1833                 vn_finished_write(mp);
 1834                 VOP_UNLOCK(vp, 0);
 1835         }
 1836 
 1837         return (error);
 1838 }
 1839 
 1840 int
 1841 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
 1842     const char *attrname, struct thread *td)
 1843 {
 1844         struct mount    *mp;
 1845         int     error;
 1846 
 1847         if ((ioflg & IO_NODELOCKED) == 0) {
 1848                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 1849                         return (error);
 1850                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1851         }
 1852 
 1853         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 1854 
 1855         /* authorize attribute removal as kernel */
 1856         error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
 1857         if (error == EOPNOTSUPP)
 1858                 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
 1859                     NULL, td);
 1860 
 1861         if ((ioflg & IO_NODELOCKED) == 0) {
 1862                 vn_finished_write(mp);
 1863                 VOP_UNLOCK(vp, 0);
 1864         }
 1865 
 1866         return (error);
 1867 }
 1868 
 1869 int
 1870 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
 1871 {
 1872         struct mount *mp;
 1873         int ltype, error;
 1874 
 1875         mp = vp->v_mount;
 1876         ltype = VOP_ISLOCKED(vp);
 1877         KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
 1878             ("vn_vget_ino: vp not locked"));
 1879         error = vfs_busy(mp, MBF_NOWAIT);
 1880         if (error != 0) {
 1881                 vfs_ref(mp);
 1882                 VOP_UNLOCK(vp, 0);
 1883                 error = vfs_busy(mp, 0);
 1884                 vn_lock(vp, ltype | LK_RETRY);
 1885                 vfs_rel(mp);
 1886                 if (error != 0)
 1887                         return (ENOENT);
 1888                 if (vp->v_iflag & VI_DOOMED) {
 1889                         vfs_unbusy(mp);
 1890                         return (ENOENT);
 1891                 }
 1892         }
 1893         VOP_UNLOCK(vp, 0);
 1894         error = VFS_VGET(mp, ino, lkflags, rvp);
 1895         vfs_unbusy(mp);
 1896         vn_lock(vp, ltype | LK_RETRY);
 1897         if (vp->v_iflag & VI_DOOMED) {
 1898                 if (error == 0)
 1899                         vput(*rvp);
 1900                 error = ENOENT;
 1901         }
 1902         return (error);
 1903 }
 1904 
 1905 int
 1906 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
 1907     const struct thread *td)
 1908 {
 1909 
 1910         if (vp->v_type != VREG || td == NULL)
 1911                 return (0);
 1912         PROC_LOCK(td->td_proc);
 1913         if ((uoff_t)uio->uio_offset + uio->uio_resid >
 1914             lim_cur(td->td_proc, RLIMIT_FSIZE)) {
 1915                 kern_psignal(td->td_proc, SIGXFSZ);
 1916                 PROC_UNLOCK(td->td_proc);
 1917                 return (EFBIG);
 1918         }
 1919         PROC_UNLOCK(td->td_proc);
 1920         return (0);
 1921 }
 1922 
 1923 int
 1924 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
 1925     struct thread *td)
 1926 {
 1927         struct vnode *vp;
 1928 
 1929         vp = fp->f_vnode;
 1930 #ifdef AUDIT
 1931         vn_lock(vp, LK_SHARED | LK_RETRY);
 1932         AUDIT_ARG_VNODE1(vp);
 1933         VOP_UNLOCK(vp, 0);
 1934 #endif
 1935         return (setfmode(td, active_cred, vp, mode));
 1936 }
 1937 
 1938 int
 1939 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
 1940     struct thread *td)
 1941 {
 1942         struct vnode *vp;
 1943 
 1944         vp = fp->f_vnode;
 1945 #ifdef AUDIT
 1946         vn_lock(vp, LK_SHARED | LK_RETRY);
 1947         AUDIT_ARG_VNODE1(vp);
 1948         VOP_UNLOCK(vp, 0);
 1949 #endif
 1950         return (setfown(td, active_cred, vp, uid, gid));
 1951 }
 1952 
 1953 void
 1954 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
 1955 {
 1956         vm_object_t object;
 1957 
 1958         if ((object = vp->v_object) == NULL)
 1959                 return;
 1960         VM_OBJECT_WLOCK(object);
 1961         vm_object_page_remove(object, start, end, 0);
 1962         VM_OBJECT_WUNLOCK(object);
 1963 }
 1964 
 1965 int
 1966 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
 1967 {
 1968         struct vattr va;
 1969         daddr_t bn, bnp;
 1970         uint64_t bsize;
 1971         off_t noff;
 1972         int error;
 1973 
 1974         KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
 1975             ("Wrong command %lu", cmd));
 1976 
 1977         if (vn_lock(vp, LK_SHARED) != 0)
 1978                 return (EBADF);
 1979         if (vp->v_type != VREG) {
 1980                 error = ENOTTY;
 1981                 goto unlock;
 1982         }
 1983         error = VOP_GETATTR(vp, &va, cred);
 1984         if (error != 0)
 1985                 goto unlock;
 1986         noff = *off;
 1987         if (noff >= va.va_size) {
 1988                 error = ENXIO;
 1989                 goto unlock;
 1990         }
 1991         bsize = vp->v_mount->mnt_stat.f_iosize;
 1992         for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
 1993                 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
 1994                 if (error == EOPNOTSUPP) {
 1995                         error = ENOTTY;
 1996                         goto unlock;
 1997                 }
 1998                 if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
 1999                     (bnp != -1 && cmd == FIOSEEKDATA)) {
 2000                         noff = bn * bsize;
 2001                         if (noff < *off)
 2002                                 noff = *off;
 2003                         goto unlock;
 2004                 }
 2005         }
 2006         if (noff > va.va_size)
 2007                 noff = va.va_size;
 2008         /* noff == va.va_size. There is an implicit hole at the end of file. */
 2009         if (cmd == FIOSEEKDATA)
 2010                 error = ENXIO;
 2011 unlock:
 2012         VOP_UNLOCK(vp, 0);
 2013         if (error == 0)
 2014                 *off = noff;
 2015         return (error);
 2016 }
 2017 
 2018 int
 2019 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
 2020 {
 2021         struct ucred *cred;
 2022         struct vnode *vp;
 2023         struct vattr vattr;
 2024         off_t foffset, size;
 2025         int error, noneg;
 2026 
 2027         cred = td->td_ucred;
 2028         vp = fp->f_vnode;
 2029         foffset = foffset_lock(fp, 0);
 2030         noneg = (vp->v_type != VCHR);
 2031         error = 0;
 2032         switch (whence) {
 2033         case L_INCR:
 2034                 if (noneg &&
 2035                     (foffset < 0 ||
 2036                     (offset > 0 && foffset > OFF_MAX - offset))) {
 2037                         error = EOVERFLOW;
 2038                         break;
 2039                 }
 2040                 offset += foffset;
 2041                 break;
 2042         case L_XTND:
 2043                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2044                 error = VOP_GETATTR(vp, &vattr, cred);
 2045                 VOP_UNLOCK(vp, 0);
 2046                 if (error)
 2047                         break;
 2048 
 2049                 /*
 2050                  * If the file references a disk device, then fetch
 2051                  * the media size and use that to determine the ending
 2052                  * offset.
 2053                  */
 2054                 if (vattr.va_size == 0 && vp->v_type == VCHR &&
 2055                     fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
 2056                         vattr.va_size = size;
 2057                 if (noneg &&
 2058                     (vattr.va_size > OFF_MAX ||
 2059                     (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
 2060                         error = EOVERFLOW;
 2061                         break;
 2062                 }
 2063                 offset += vattr.va_size;
 2064                 break;
 2065         case L_SET:
 2066                 break;
 2067         case SEEK_DATA:
 2068                 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
 2069                 break;
 2070         case SEEK_HOLE:
 2071                 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
 2072                 break;
 2073         default:
 2074                 error = EINVAL;
 2075         }
 2076         if (error == 0 && noneg && offset < 0)
 2077                 error = EINVAL;
 2078         if (error != 0)
 2079                 goto drop;
 2080         VFS_KNOTE_UNLOCKED(vp, 0);
 2081         *(off_t *)(td->td_retval) = offset;
 2082 drop:
 2083         foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
 2084         return (error);
 2085 }

Cache object: 888a7f15b1ed0f86a9d1aa837ac7d73b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.