The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
   11  * Copyright (c) 2013, 2014 The FreeBSD Foundation
   12  *
   13  * Portions of this software were developed by Konstantin Belousov
   14  * under sponsorship from the FreeBSD Foundation.
   15  *
   16  * Redistribution and use in source and binary forms, with or without
   17  * modification, are permitted provided that the following conditions
   18  * are met:
   19  * 1. Redistributions of source code must retain the above copyright
   20  *    notice, this list of conditions and the following disclaimer.
   21  * 2. Redistributions in binary form must reproduce the above copyright
   22  *    notice, this list of conditions and the following disclaimer in the
   23  *    documentation and/or other materials provided with the distribution.
   24  * 4. Neither the name of the University nor the names of its contributors
   25  *    may be used to endorse or promote products derived from this software
   26  *    without specific prior written permission.
   27  *
   28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   38  * SUCH DAMAGE.
   39  *
   40  *      @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94
   41  */
   42 
   43 #include <sys/cdefs.h>
   44 __FBSDID("$FreeBSD: releng/10.1/sys/kern/vfs_vnops.c 272187 2014-09-26 20:05:28Z mjg $");
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/disk.h>
   49 #include <sys/fcntl.h>
   50 #include <sys/file.h>
   51 #include <sys/kdb.h>
   52 #include <sys/stat.h>
   53 #include <sys/priv.h>
   54 #include <sys/proc.h>
   55 #include <sys/limits.h>
   56 #include <sys/lock.h>
   57 #include <sys/mount.h>
   58 #include <sys/mutex.h>
   59 #include <sys/namei.h>
   60 #include <sys/vnode.h>
   61 #include <sys/bio.h>
   62 #include <sys/buf.h>
   63 #include <sys/filio.h>
   64 #include <sys/resourcevar.h>
   65 #include <sys/rwlock.h>
   66 #include <sys/sx.h>
   67 #include <sys/sysctl.h>
   68 #include <sys/ttycom.h>
   69 #include <sys/conf.h>
   70 #include <sys/syslog.h>
   71 #include <sys/unistd.h>
   72 
   73 #include <security/audit/audit.h>
   74 #include <security/mac/mac_framework.h>
   75 
   76 #include <vm/vm.h>
   77 #include <vm/vm_extern.h>
   78 #include <vm/pmap.h>
   79 #include <vm/vm_map.h>
   80 #include <vm/vm_object.h>
   81 #include <vm/vm_page.h>
   82 
   83 static fo_rdwr_t        vn_read;
   84 static fo_rdwr_t        vn_write;
   85 static fo_rdwr_t        vn_io_fault;
   86 static fo_truncate_t    vn_truncate;
   87 static fo_ioctl_t       vn_ioctl;
   88 static fo_poll_t        vn_poll;
   89 static fo_kqfilter_t    vn_kqfilter;
   90 static fo_stat_t        vn_statfile;
   91 static fo_close_t       vn_closefile;
   92 
   93 struct  fileops vnops = {
   94         .fo_read = vn_io_fault,
   95         .fo_write = vn_io_fault,
   96         .fo_truncate = vn_truncate,
   97         .fo_ioctl = vn_ioctl,
   98         .fo_poll = vn_poll,
   99         .fo_kqfilter = vn_kqfilter,
  100         .fo_stat = vn_statfile,
  101         .fo_close = vn_closefile,
  102         .fo_chmod = vn_chmod,
  103         .fo_chown = vn_chown,
  104         .fo_sendfile = vn_sendfile,
  105         .fo_seek = vn_seek,
  106         .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
  107 };
  108 
  109 static const int io_hold_cnt = 16;
  110 static int vn_io_fault_enable = 1;
  111 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
  112     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
  113 static u_long vn_io_faults_cnt;
  114 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
  115     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
  116 
  117 /*
  118  * Returns true if vn_io_fault mode of handling the i/o request should
  119  * be used.
  120  */
  121 static bool
  122 do_vn_io_fault(struct vnode *vp, struct uio *uio)
  123 {
  124         struct mount *mp;
  125 
  126         return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
  127             (mp = vp->v_mount) != NULL &&
  128             (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
  129 }
  130 
  131 /*
  132  * Structure used to pass arguments to vn_io_fault1(), to do either
  133  * file- or vnode-based I/O calls.
  134  */
  135 struct vn_io_fault_args {
  136         enum {
  137                 VN_IO_FAULT_FOP,
  138                 VN_IO_FAULT_VOP
  139         } kind;
  140         struct ucred *cred;
  141         int flags;
  142         union {
  143                 struct fop_args_tag {
  144                         struct file *fp;
  145                         fo_rdwr_t *doio;
  146                 } fop_args;
  147                 struct vop_args_tag {
  148                         struct vnode *vp;
  149                 } vop_args;
  150         } args;
  151 };
  152 
  153 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
  154     struct vn_io_fault_args *args, struct thread *td);
  155 
  156 int
  157 vn_open(ndp, flagp, cmode, fp)
  158         struct nameidata *ndp;
  159         int *flagp, cmode;
  160         struct file *fp;
  161 {
  162         struct thread *td = ndp->ni_cnd.cn_thread;
  163 
  164         return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
  165 }
  166 
  167 /*
  168  * Common code for vnode open operations via a name lookup.
  169  * Lookup the vnode and invoke VOP_CREATE if needed.
  170  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
  171  * 
  172  * Note that this does NOT free nameidata for the successful case,
  173  * due to the NDINIT being done elsewhere.
  174  */
  175 int
  176 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
  177     struct ucred *cred, struct file *fp)
  178 {
  179         struct vnode *vp;
  180         struct mount *mp;
  181         struct thread *td = ndp->ni_cnd.cn_thread;
  182         struct vattr vat;
  183         struct vattr *vap = &vat;
  184         int fmode, error;
  185 
  186 restart:
  187         fmode = *flagp;
  188         if (fmode & O_CREAT) {
  189                 ndp->ni_cnd.cn_nameiop = CREATE;
  190                 ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF;
  191                 if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
  192                         ndp->ni_cnd.cn_flags |= FOLLOW;
  193                 if (!(vn_open_flags & VN_OPEN_NOAUDIT))
  194                         ndp->ni_cnd.cn_flags |= AUDITVNODE1;
  195                 if (vn_open_flags & VN_OPEN_NOCAPCHECK)
  196                         ndp->ni_cnd.cn_flags |= NOCAPCHECK;
  197                 bwillwrite();
  198                 if ((error = namei(ndp)) != 0)
  199                         return (error);
  200                 if (ndp->ni_vp == NULL) {
  201                         VATTR_NULL(vap);
  202                         vap->va_type = VREG;
  203                         vap->va_mode = cmode;
  204                         if (fmode & O_EXCL)
  205                                 vap->va_vaflags |= VA_EXCLUSIVE;
  206                         if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
  207                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  208                                 vput(ndp->ni_dvp);
  209                                 if ((error = vn_start_write(NULL, &mp,
  210                                     V_XSLEEP | PCATCH)) != 0)
  211                                         return (error);
  212                                 goto restart;
  213                         }
  214 #ifdef MAC
  215                         error = mac_vnode_check_create(cred, ndp->ni_dvp,
  216                             &ndp->ni_cnd, vap);
  217                         if (error == 0)
  218 #endif
  219                                 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
  220                                                    &ndp->ni_cnd, vap);
  221                         vput(ndp->ni_dvp);
  222                         vn_finished_write(mp);
  223                         if (error) {
  224                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  225                                 return (error);
  226                         }
  227                         fmode &= ~O_TRUNC;
  228                         vp = ndp->ni_vp;
  229                 } else {
  230                         if (ndp->ni_dvp == ndp->ni_vp)
  231                                 vrele(ndp->ni_dvp);
  232                         else
  233                                 vput(ndp->ni_dvp);
  234                         ndp->ni_dvp = NULL;
  235                         vp = ndp->ni_vp;
  236                         if (fmode & O_EXCL) {
  237                                 error = EEXIST;
  238                                 goto bad;
  239                         }
  240                         fmode &= ~O_CREAT;
  241                 }
  242         } else {
  243                 ndp->ni_cnd.cn_nameiop = LOOKUP;
  244                 ndp->ni_cnd.cn_flags = ISOPEN |
  245                     ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
  246                 if (!(fmode & FWRITE))
  247                         ndp->ni_cnd.cn_flags |= LOCKSHARED;
  248                 if (!(vn_open_flags & VN_OPEN_NOAUDIT))
  249                         ndp->ni_cnd.cn_flags |= AUDITVNODE1;
  250                 if (vn_open_flags & VN_OPEN_NOCAPCHECK)
  251                         ndp->ni_cnd.cn_flags |= NOCAPCHECK;
  252                 if ((error = namei(ndp)) != 0)
  253                         return (error);
  254                 vp = ndp->ni_vp;
  255         }
  256         error = vn_open_vnode(vp, fmode, cred, td, fp);
  257         if (error)
  258                 goto bad;
  259         *flagp = fmode;
  260         return (0);
  261 bad:
  262         NDFREE(ndp, NDF_ONLY_PNBUF);
  263         vput(vp);
  264         *flagp = fmode;
  265         ndp->ni_vp = NULL;
  266         return (error);
  267 }
  268 
  269 /*
  270  * Common code for vnode open operations once a vnode is located.
  271  * Check permissions, and call the VOP_OPEN routine.
  272  */
  273 int
  274 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
  275     struct thread *td, struct file *fp)
  276 {
  277         struct mount *mp;
  278         accmode_t accmode;
  279         struct flock lf;
  280         int error, have_flock, lock_flags, type;
  281 
  282         if (vp->v_type == VLNK)
  283                 return (EMLINK);
  284         if (vp->v_type == VSOCK)
  285                 return (EOPNOTSUPP);
  286         if (vp->v_type != VDIR && fmode & O_DIRECTORY)
  287                 return (ENOTDIR);
  288         accmode = 0;
  289         if (fmode & (FWRITE | O_TRUNC)) {
  290                 if (vp->v_type == VDIR)
  291                         return (EISDIR);
  292                 accmode |= VWRITE;
  293         }
  294         if (fmode & FREAD)
  295                 accmode |= VREAD;
  296         if (fmode & FEXEC)
  297                 accmode |= VEXEC;
  298         if ((fmode & O_APPEND) && (fmode & FWRITE))
  299                 accmode |= VAPPEND;
  300 #ifdef MAC
  301         error = mac_vnode_check_open(cred, vp, accmode);
  302         if (error)
  303                 return (error);
  304 #endif
  305         if ((fmode & O_CREAT) == 0) {
  306                 if (accmode & VWRITE) {
  307                         error = vn_writechk(vp);
  308                         if (error)
  309                                 return (error);
  310                 }
  311                 if (accmode) {
  312                         error = VOP_ACCESS(vp, accmode, cred, td);
  313                         if (error)
  314                                 return (error);
  315                 }
  316         }
  317         if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
  318                 vn_lock(vp, LK_UPGRADE | LK_RETRY);
  319         if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
  320                 return (error);
  321 
  322         if (fmode & (O_EXLOCK | O_SHLOCK)) {
  323                 KASSERT(fp != NULL, ("open with flock requires fp"));
  324                 lock_flags = VOP_ISLOCKED(vp);
  325                 VOP_UNLOCK(vp, 0);
  326                 lf.l_whence = SEEK_SET;
  327                 lf.l_start = 0;
  328                 lf.l_len = 0;
  329                 if (fmode & O_EXLOCK)
  330                         lf.l_type = F_WRLCK;
  331                 else
  332                         lf.l_type = F_RDLCK;
  333                 type = F_FLOCK;
  334                 if ((fmode & FNONBLOCK) == 0)
  335                         type |= F_WAIT;
  336                 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
  337                 have_flock = (error == 0);
  338                 vn_lock(vp, lock_flags | LK_RETRY);
  339                 if (error == 0 && vp->v_iflag & VI_DOOMED)
  340                         error = ENOENT;
  341                 /*
  342                  * Another thread might have used this vnode as an
  343                  * executable while the vnode lock was dropped.
  344                  * Ensure the vnode is still able to be opened for
  345                  * writing after the lock has been obtained.
  346                  */
  347                 if (error == 0 && accmode & VWRITE)
  348                         error = vn_writechk(vp);
  349                 if (error) {
  350                         VOP_UNLOCK(vp, 0);
  351                         if (have_flock) {
  352                                 lf.l_whence = SEEK_SET;
  353                                 lf.l_start = 0;
  354                                 lf.l_len = 0;
  355                                 lf.l_type = F_UNLCK;
  356                                 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
  357                                     F_FLOCK);
  358                         }
  359                         vn_start_write(vp, &mp, V_WAIT);
  360                         vn_lock(vp, lock_flags | LK_RETRY);
  361                         (void)VOP_CLOSE(vp, fmode, cred, td);
  362                         vn_finished_write(mp);
  363                         /* Prevent second close from fdrop()->vn_close(). */
  364                         if (fp != NULL)
  365                                 fp->f_ops= &badfileops;
  366                         return (error);
  367                 }
  368                 fp->f_flag |= FHASLOCK;
  369         }
  370         if (fmode & FWRITE) {
  371                 VOP_ADD_WRITECOUNT(vp, 1);
  372                 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
  373                     __func__, vp, vp->v_writecount);
  374         }
  375         ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
  376         return (0);
  377 }
  378 
  379 /*
  380  * Check for write permissions on the specified vnode.
  381  * Prototype text segments cannot be written.
  382  */
  383 int
  384 vn_writechk(vp)
  385         register struct vnode *vp;
  386 {
  387 
  388         ASSERT_VOP_LOCKED(vp, "vn_writechk");
  389         /*
  390          * If there's shared text associated with
  391          * the vnode, try to free it up once.  If
  392          * we fail, we can't allow writing.
  393          */
  394         if (VOP_IS_TEXT(vp))
  395                 return (ETXTBSY);
  396 
  397         return (0);
  398 }
  399 
  400 /*
  401  * Vnode close call
  402  */
  403 int
  404 vn_close(vp, flags, file_cred, td)
  405         register struct vnode *vp;
  406         int flags;
  407         struct ucred *file_cred;
  408         struct thread *td;
  409 {
  410         struct mount *mp;
  411         int error, lock_flags;
  412 
  413         if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
  414             MNT_EXTENDED_SHARED(vp->v_mount))
  415                 lock_flags = LK_SHARED;
  416         else
  417                 lock_flags = LK_EXCLUSIVE;
  418 
  419         vn_start_write(vp, &mp, V_WAIT);
  420         vn_lock(vp, lock_flags | LK_RETRY);
  421         if (flags & FWRITE) {
  422                 VNASSERT(vp->v_writecount > 0, vp, 
  423                     ("vn_close: negative writecount"));
  424                 VOP_ADD_WRITECOUNT(vp, -1);
  425                 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
  426                     __func__, vp, vp->v_writecount);
  427         }
  428         error = VOP_CLOSE(vp, flags, file_cred, td);
  429         vput(vp);
  430         vn_finished_write(mp);
  431         return (error);
  432 }
  433 
  434 /*
  435  * Heuristic to detect sequential operation.
  436  */
  437 static int
  438 sequential_heuristic(struct uio *uio, struct file *fp)
  439 {
  440 
  441         ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
  442         if (fp->f_flag & FRDAHEAD)
  443                 return (fp->f_seqcount << IO_SEQSHIFT);
  444 
  445         /*
  446          * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
  447          * that the first I/O is normally considered to be slightly
  448          * sequential.  Seeking to offset 0 doesn't change sequentiality
  449          * unless previous seeks have reduced f_seqcount to 0, in which
  450          * case offset 0 is not special.
  451          */
  452         if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
  453             uio->uio_offset == fp->f_nextoff) {
  454                 /*
  455                  * f_seqcount is in units of fixed-size blocks so that it
  456                  * depends mainly on the amount of sequential I/O and not
  457                  * much on the number of sequential I/O's.  The fixed size
  458                  * of 16384 is hard-coded here since it is (not quite) just
  459                  * a magic size that works well here.  This size is more
  460                  * closely related to the best I/O size for real disks than
  461                  * to any block size used by software.
  462                  */
  463                 fp->f_seqcount += howmany(uio->uio_resid, 16384);
  464                 if (fp->f_seqcount > IO_SEQMAX)
  465                         fp->f_seqcount = IO_SEQMAX;
  466                 return (fp->f_seqcount << IO_SEQSHIFT);
  467         }
  468 
  469         /* Not sequential.  Quickly draw-down sequentiality. */
  470         if (fp->f_seqcount > 1)
  471                 fp->f_seqcount = 1;
  472         else
  473                 fp->f_seqcount = 0;
  474         return (0);
  475 }
  476 
  477 /*
  478  * Package up an I/O request on a vnode into a uio and do it.
  479  */
  480 int
  481 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
  482     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
  483     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
  484 {
  485         struct uio auio;
  486         struct iovec aiov;
  487         struct mount *mp;
  488         struct ucred *cred;
  489         void *rl_cookie;
  490         struct vn_io_fault_args args;
  491         int error, lock_flags;
  492 
  493         auio.uio_iov = &aiov;
  494         auio.uio_iovcnt = 1;
  495         aiov.iov_base = base;
  496         aiov.iov_len = len;
  497         auio.uio_resid = len;
  498         auio.uio_offset = offset;
  499         auio.uio_segflg = segflg;
  500         auio.uio_rw = rw;
  501         auio.uio_td = td;
  502         error = 0;
  503 
  504         if ((ioflg & IO_NODELOCKED) == 0) {
  505                 if (rw == UIO_READ) {
  506                         rl_cookie = vn_rangelock_rlock(vp, offset,
  507                             offset + len);
  508                 } else {
  509                         rl_cookie = vn_rangelock_wlock(vp, offset,
  510                             offset + len);
  511                 }
  512                 mp = NULL;
  513                 if (rw == UIO_WRITE) { 
  514                         if (vp->v_type != VCHR &&
  515                             (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
  516                             != 0)
  517                                 goto out;
  518                         if (MNT_SHARED_WRITES(mp) ||
  519                             ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
  520                                 lock_flags = LK_SHARED;
  521                         else
  522                                 lock_flags = LK_EXCLUSIVE;
  523                 } else
  524                         lock_flags = LK_SHARED;
  525                 vn_lock(vp, lock_flags | LK_RETRY);
  526         } else
  527                 rl_cookie = NULL;
  528 
  529         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
  530 #ifdef MAC
  531         if ((ioflg & IO_NOMACCHECK) == 0) {
  532                 if (rw == UIO_READ)
  533                         error = mac_vnode_check_read(active_cred, file_cred,
  534                             vp);
  535                 else
  536                         error = mac_vnode_check_write(active_cred, file_cred,
  537                             vp);
  538         }
  539 #endif
  540         if (error == 0) {
  541                 if (file_cred != NULL)
  542                         cred = file_cred;
  543                 else
  544                         cred = active_cred;
  545                 if (do_vn_io_fault(vp, &auio)) {
  546                         args.kind = VN_IO_FAULT_VOP;
  547                         args.cred = cred;
  548                         args.flags = ioflg;
  549                         args.args.vop_args.vp = vp;
  550                         error = vn_io_fault1(vp, &auio, &args, td);
  551                 } else if (rw == UIO_READ) {
  552                         error = VOP_READ(vp, &auio, ioflg, cred);
  553                 } else /* if (rw == UIO_WRITE) */ {
  554                         error = VOP_WRITE(vp, &auio, ioflg, cred);
  555                 }
  556         }
  557         if (aresid)
  558                 *aresid = auio.uio_resid;
  559         else
  560                 if (auio.uio_resid && error == 0)
  561                         error = EIO;
  562         if ((ioflg & IO_NODELOCKED) == 0) {
  563                 VOP_UNLOCK(vp, 0);
  564                 if (mp != NULL)
  565                         vn_finished_write(mp);
  566         }
  567  out:
  568         if (rl_cookie != NULL)
  569                 vn_rangelock_unlock(vp, rl_cookie);
  570         return (error);
  571 }
  572 
  573 /*
  574  * Package up an I/O request on a vnode into a uio and do it.  The I/O
  575  * request is split up into smaller chunks and we try to avoid saturating
  576  * the buffer cache while potentially holding a vnode locked, so we 
  577  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
  578  * to give other processes a chance to lock the vnode (either other processes
  579  * core'ing the same binary, or unrelated processes scanning the directory).
  580  */
  581 int
  582 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
  583     file_cred, aresid, td)
  584         enum uio_rw rw;
  585         struct vnode *vp;
  586         void *base;
  587         size_t len;
  588         off_t offset;
  589         enum uio_seg segflg;
  590         int ioflg;
  591         struct ucred *active_cred;
  592         struct ucred *file_cred;
  593         size_t *aresid;
  594         struct thread *td;
  595 {
  596         int error = 0;
  597         ssize_t iaresid;
  598 
  599         do {
  600                 int chunk;
  601 
  602                 /*
  603                  * Force `offset' to a multiple of MAXBSIZE except possibly
  604                  * for the first chunk, so that filesystems only need to
  605                  * write full blocks except possibly for the first and last
  606                  * chunks.
  607                  */
  608                 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
  609 
  610                 if (chunk > len)
  611                         chunk = len;
  612                 if (rw != UIO_READ && vp->v_type == VREG)
  613                         bwillwrite();
  614                 iaresid = 0;
  615                 error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
  616                     ioflg, active_cred, file_cred, &iaresid, td);
  617                 len -= chunk;   /* aresid calc already includes length */
  618                 if (error)
  619                         break;
  620                 offset += chunk;
  621                 base = (char *)base + chunk;
  622                 kern_yield(PRI_USER);
  623         } while (len);
  624         if (aresid)
  625                 *aresid = len + iaresid;
  626         return (error);
  627 }
  628 
  629 off_t
  630 foffset_lock(struct file *fp, int flags)
  631 {
  632         struct mtx *mtxp;
  633         off_t res;
  634 
  635         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  636 
  637 #if OFF_MAX <= LONG_MAX
  638         /*
  639          * Caller only wants the current f_offset value.  Assume that
  640          * the long and shorter integer types reads are atomic.
  641          */
  642         if ((flags & FOF_NOLOCK) != 0)
  643                 return (fp->f_offset);
  644 #endif
  645 
  646         /*
  647          * According to McKusick the vn lock was protecting f_offset here.
  648          * It is now protected by the FOFFSET_LOCKED flag.
  649          */
  650         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  651         mtx_lock(mtxp);
  652         if ((flags & FOF_NOLOCK) == 0) {
  653                 while (fp->f_vnread_flags & FOFFSET_LOCKED) {
  654                         fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
  655                         msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
  656                             "vofflock", 0);
  657                 }
  658                 fp->f_vnread_flags |= FOFFSET_LOCKED;
  659         }
  660         res = fp->f_offset;
  661         mtx_unlock(mtxp);
  662         return (res);
  663 }
  664 
  665 void
  666 foffset_unlock(struct file *fp, off_t val, int flags)
  667 {
  668         struct mtx *mtxp;
  669 
  670         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  671 
  672 #if OFF_MAX <= LONG_MAX
  673         if ((flags & FOF_NOLOCK) != 0) {
  674                 if ((flags & FOF_NOUPDATE) == 0)
  675                         fp->f_offset = val;
  676                 if ((flags & FOF_NEXTOFF) != 0)
  677                         fp->f_nextoff = val;
  678                 return;
  679         }
  680 #endif
  681 
  682         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  683         mtx_lock(mtxp);
  684         if ((flags & FOF_NOUPDATE) == 0)
  685                 fp->f_offset = val;
  686         if ((flags & FOF_NEXTOFF) != 0)
  687                 fp->f_nextoff = val;
  688         if ((flags & FOF_NOLOCK) == 0) {
  689                 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
  690                     ("Lost FOFFSET_LOCKED"));
  691                 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
  692                         wakeup(&fp->f_vnread_flags);
  693                 fp->f_vnread_flags = 0;
  694         }
  695         mtx_unlock(mtxp);
  696 }
  697 
  698 void
  699 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
  700 {
  701 
  702         if ((flags & FOF_OFFSET) == 0)
  703                 uio->uio_offset = foffset_lock(fp, flags);
  704 }
  705 
  706 void
  707 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
  708 {
  709 
  710         if ((flags & FOF_OFFSET) == 0)
  711                 foffset_unlock(fp, uio->uio_offset, flags);
  712 }
  713 
  714 static int
  715 get_advice(struct file *fp, struct uio *uio)
  716 {
  717         struct mtx *mtxp;
  718         int ret;
  719 
  720         ret = POSIX_FADV_NORMAL;
  721         if (fp->f_advice == NULL)
  722                 return (ret);
  723 
  724         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  725         mtx_lock(mtxp);
  726         if (uio->uio_offset >= fp->f_advice->fa_start &&
  727             uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
  728                 ret = fp->f_advice->fa_advice;
  729         mtx_unlock(mtxp);
  730         return (ret);
  731 }
  732 
  733 /*
  734  * File table vnode read routine.
  735  */
  736 static int
  737 vn_read(fp, uio, active_cred, flags, td)
  738         struct file *fp;
  739         struct uio *uio;
  740         struct ucred *active_cred;
  741         int flags;
  742         struct thread *td;
  743 {
  744         struct vnode *vp;
  745         struct mtx *mtxp;
  746         int error, ioflag;
  747         int advice;
  748         off_t offset, start, end;
  749 
  750         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
  751             uio->uio_td, td));
  752         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
  753         vp = fp->f_vnode;
  754         ioflag = 0;
  755         if (fp->f_flag & FNONBLOCK)
  756                 ioflag |= IO_NDELAY;
  757         if (fp->f_flag & O_DIRECT)
  758                 ioflag |= IO_DIRECT;
  759         advice = get_advice(fp, uio);
  760         vn_lock(vp, LK_SHARED | LK_RETRY);
  761 
  762         switch (advice) {
  763         case POSIX_FADV_NORMAL:
  764         case POSIX_FADV_SEQUENTIAL:
  765         case POSIX_FADV_NOREUSE:
  766                 ioflag |= sequential_heuristic(uio, fp);
  767                 break;
  768         case POSIX_FADV_RANDOM:
  769                 /* Disable read-ahead for random I/O. */
  770                 break;
  771         }
  772         offset = uio->uio_offset;
  773 
  774 #ifdef MAC
  775         error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
  776         if (error == 0)
  777 #endif
  778                 error = VOP_READ(vp, uio, ioflag, fp->f_cred);
  779         fp->f_nextoff = uio->uio_offset;
  780         VOP_UNLOCK(vp, 0);
  781         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
  782             offset != uio->uio_offset) {
  783                 /*
  784                  * Use POSIX_FADV_DONTNEED to flush clean pages and
  785                  * buffers for the backing file after a
  786                  * POSIX_FADV_NOREUSE read(2).  To optimize the common
  787                  * case of using POSIX_FADV_NOREUSE with sequential
  788                  * access, track the previous implicit DONTNEED
  789                  * request and grow this request to include the
  790                  * current read(2) in addition to the previous
  791                  * DONTNEED.  With purely sequential access this will
  792                  * cause the DONTNEED requests to continously grow to
  793                  * cover all of the previously read regions of the
  794                  * file.  This allows filesystem blocks that are
  795                  * accessed by multiple calls to read(2) to be flushed
  796                  * once the last read(2) finishes.
  797                  */
  798                 start = offset;
  799                 end = uio->uio_offset - 1;
  800                 mtxp = mtx_pool_find(mtxpool_sleep, fp);
  801                 mtx_lock(mtxp);
  802                 if (fp->f_advice != NULL &&
  803                     fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
  804                         if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
  805                                 start = fp->f_advice->fa_prevstart;
  806                         else if (fp->f_advice->fa_prevstart != 0 &&
  807                             fp->f_advice->fa_prevstart == end + 1)
  808                                 end = fp->f_advice->fa_prevend;
  809                         fp->f_advice->fa_prevstart = start;
  810                         fp->f_advice->fa_prevend = end;
  811                 }
  812                 mtx_unlock(mtxp);
  813                 error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
  814         }
  815         return (error);
  816 }
  817 
  818 /*
  819  * File table vnode write routine.
  820  */
  821 static int
  822 vn_write(fp, uio, active_cred, flags, td)
  823         struct file *fp;
  824         struct uio *uio;
  825         struct ucred *active_cred;
  826         int flags;
  827         struct thread *td;
  828 {
  829         struct vnode *vp;
  830         struct mount *mp;
  831         struct mtx *mtxp;
  832         int error, ioflag, lock_flags;
  833         int advice;
  834         off_t offset, start, end;
  835 
  836         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
  837             uio->uio_td, td));
  838         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
  839         vp = fp->f_vnode;
  840         if (vp->v_type == VREG)
  841                 bwillwrite();
  842         ioflag = IO_UNIT;
  843         if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
  844                 ioflag |= IO_APPEND;
  845         if (fp->f_flag & FNONBLOCK)
  846                 ioflag |= IO_NDELAY;
  847         if (fp->f_flag & O_DIRECT)
  848                 ioflag |= IO_DIRECT;
  849         if ((fp->f_flag & O_FSYNC) ||
  850             (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
  851                 ioflag |= IO_SYNC;
  852         mp = NULL;
  853         if (vp->v_type != VCHR &&
  854             (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
  855                 goto unlock;
  856 
  857         advice = get_advice(fp, uio);
  858 
  859         if (MNT_SHARED_WRITES(mp) ||
  860             (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
  861                 lock_flags = LK_SHARED;
  862         } else {
  863                 lock_flags = LK_EXCLUSIVE;
  864         }
  865 
  866         vn_lock(vp, lock_flags | LK_RETRY);
  867         switch (advice) {
  868         case POSIX_FADV_NORMAL:
  869         case POSIX_FADV_SEQUENTIAL:
  870         case POSIX_FADV_NOREUSE:
  871                 ioflag |= sequential_heuristic(uio, fp);
  872                 break;
  873         case POSIX_FADV_RANDOM:
  874                 /* XXX: Is this correct? */
  875                 break;
  876         }
  877         offset = uio->uio_offset;
  878 
  879 #ifdef MAC
  880         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
  881         if (error == 0)
  882 #endif
  883                 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
  884         fp->f_nextoff = uio->uio_offset;
  885         VOP_UNLOCK(vp, 0);
  886         if (vp->v_type != VCHR)
  887                 vn_finished_write(mp);
  888         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
  889             offset != uio->uio_offset) {
  890                 /*
  891                  * Use POSIX_FADV_DONTNEED to flush clean pages and
  892                  * buffers for the backing file after a
  893                  * POSIX_FADV_NOREUSE write(2).  To optimize the
  894                  * common case of using POSIX_FADV_NOREUSE with
  895                  * sequential access, track the previous implicit
  896                  * DONTNEED request and grow this request to include
  897                  * the current write(2) in addition to the previous
  898                  * DONTNEED.  With purely sequential access this will
  899                  * cause the DONTNEED requests to continously grow to
  900                  * cover all of the previously written regions of the
  901                  * file.
  902                  *
  903                  * Note that the blocks just written are almost
  904                  * certainly still dirty, so this only works when
  905                  * VOP_ADVISE() calls from subsequent writes push out
  906                  * the data written by this write(2) once the backing
  907                  * buffers are clean.  However, as compared to forcing
  908                  * IO_DIRECT, this gives much saner behavior.  Write
  909                  * clustering is still allowed, and clean pages are
  910                  * merely moved to the cache page queue rather than
  911                  * outright thrown away.  This means a subsequent
  912                  * read(2) can still avoid hitting the disk if the
  913                  * pages have not been reclaimed.
  914                  *
  915                  * This does make POSIX_FADV_NOREUSE largely useless
  916                  * with non-sequential access.  However, sequential
  917                  * access is the more common use case and the flag is
  918                  * merely advisory.
  919                  */
  920                 start = offset;
  921                 end = uio->uio_offset - 1;
  922                 mtxp = mtx_pool_find(mtxpool_sleep, fp);
  923                 mtx_lock(mtxp);
  924                 if (fp->f_advice != NULL &&
  925                     fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
  926                         if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
  927                                 start = fp->f_advice->fa_prevstart;
  928                         else if (fp->f_advice->fa_prevstart != 0 &&
  929                             fp->f_advice->fa_prevstart == end + 1)
  930                                 end = fp->f_advice->fa_prevend;
  931                         fp->f_advice->fa_prevstart = start;
  932                         fp->f_advice->fa_prevend = end;
  933                 }
  934                 mtx_unlock(mtxp);
  935                 error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
  936         }
  937         
  938 unlock:
  939         return (error);
  940 }
  941 
  942 /*
  943  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
  944  * prevent the following deadlock:
  945  *
  946  * Assume that the thread A reads from the vnode vp1 into userspace
  947  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
  948  * currently not resident, then system ends up with the call chain
  949  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
  950  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
  951  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
  952  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
  953  * backed by the pages of vnode vp1, and some page in buf2 is not
  954  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
  955  *
  956  * To prevent the lock order reversal and deadlock, vn_io_fault() does
  957  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
  958  * Instead, it first tries to do the whole range i/o with pagefaults
  959  * disabled. If all pages in the i/o buffer are resident and mapped,
  960  * VOP will succeed (ignoring the genuine filesystem errors).
  961  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
  962  * i/o in chunks, with all pages in the chunk prefaulted and held
  963  * using vm_fault_quick_hold_pages().
  964  *
  965  * Filesystems using this deadlock avoidance scheme should use the
  966  * array of the held pages from uio, saved in the curthread->td_ma,
  967  * instead of doing uiomove().  A helper function
  968  * vn_io_fault_uiomove() converts uiomove request into
  969  * uiomove_fromphys() over td_ma array.
  970  *
  971  * Since vnode locks do not cover the whole i/o anymore, rangelocks
  972  * make the current i/o request atomic with respect to other i/os and
  973  * truncations.
  974  */
  975 
  976 /*
  977  * Decode vn_io_fault_args and perform the corresponding i/o.
  978  */
  979 static int
  980 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
  981     struct thread *td)
  982 {
  983 
  984         switch (args->kind) {
  985         case VN_IO_FAULT_FOP:
  986                 return ((args->args.fop_args.doio)(args->args.fop_args.fp,
  987                     uio, args->cred, args->flags, td));
  988         case VN_IO_FAULT_VOP:
  989                 if (uio->uio_rw == UIO_READ) {
  990                         return (VOP_READ(args->args.vop_args.vp, uio,
  991                             args->flags, args->cred));
  992                 } else if (uio->uio_rw == UIO_WRITE) {
  993                         return (VOP_WRITE(args->args.vop_args.vp, uio,
  994                             args->flags, args->cred));
  995                 }
  996                 break;
  997         }
  998         panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
  999             uio->uio_rw);
 1000 }
 1001 
 1002 /*
 1003  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
 1004  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
 1005  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
 1006  * into args and call vn_io_fault1() to handle faults during the user
 1007  * mode buffer accesses.
 1008  */
 1009 static int
 1010 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
 1011     struct thread *td)
 1012 {
 1013         vm_page_t ma[io_hold_cnt + 2];
 1014         struct uio *uio_clone, short_uio;
 1015         struct iovec short_iovec[1];
 1016         vm_page_t *prev_td_ma;
 1017         vm_prot_t prot;
 1018         vm_offset_t addr, end;
 1019         size_t len, resid;
 1020         ssize_t adv;
 1021         int error, cnt, save, saveheld, prev_td_ma_cnt;
 1022 
 1023         prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
 1024 
 1025         /*
 1026          * The UFS follows IO_UNIT directive and replays back both
 1027          * uio_offset and uio_resid if an error is encountered during the
 1028          * operation.  But, since the iovec may be already advanced,
 1029          * uio is still in an inconsistent state.
 1030          *
 1031          * Cache a copy of the original uio, which is advanced to the redo
 1032          * point using UIO_NOCOPY below.
 1033          */
 1034         uio_clone = cloneuio(uio);
 1035         resid = uio->uio_resid;
 1036 
 1037         short_uio.uio_segflg = UIO_USERSPACE;
 1038         short_uio.uio_rw = uio->uio_rw;
 1039         short_uio.uio_td = uio->uio_td;
 1040 
 1041         save = vm_fault_disable_pagefaults();
 1042         error = vn_io_fault_doio(args, uio, td);
 1043         if (error != EFAULT)
 1044                 goto out;
 1045 
 1046         atomic_add_long(&vn_io_faults_cnt, 1);
 1047         uio_clone->uio_segflg = UIO_NOCOPY;
 1048         uiomove(NULL, resid - uio->uio_resid, uio_clone);
 1049         uio_clone->uio_segflg = uio->uio_segflg;
 1050 
 1051         saveheld = curthread_pflags_set(TDP_UIOHELD);
 1052         prev_td_ma = td->td_ma;
 1053         prev_td_ma_cnt = td->td_ma_cnt;
 1054 
 1055         while (uio_clone->uio_resid != 0) {
 1056                 len = uio_clone->uio_iov->iov_len;
 1057                 if (len == 0) {
 1058                         KASSERT(uio_clone->uio_iovcnt >= 1,
 1059                             ("iovcnt underflow"));
 1060                         uio_clone->uio_iov++;
 1061                         uio_clone->uio_iovcnt--;
 1062                         continue;
 1063                 }
 1064                 if (len > io_hold_cnt * PAGE_SIZE)
 1065                         len = io_hold_cnt * PAGE_SIZE;
 1066                 addr = (uintptr_t)uio_clone->uio_iov->iov_base;
 1067                 end = round_page(addr + len);
 1068                 if (end < addr) {
 1069                         error = EFAULT;
 1070                         break;
 1071                 }
 1072                 cnt = atop(end - trunc_page(addr));
 1073                 /*
 1074                  * A perfectly misaligned address and length could cause
 1075                  * both the start and the end of the chunk to use partial
 1076                  * page.  +2 accounts for such a situation.
 1077                  */
 1078                 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
 1079                     addr, len, prot, ma, io_hold_cnt + 2);
 1080                 if (cnt == -1) {
 1081                         error = EFAULT;
 1082                         break;
 1083                 }
 1084                 short_uio.uio_iov = &short_iovec[0];
 1085                 short_iovec[0].iov_base = (void *)addr;
 1086                 short_uio.uio_iovcnt = 1;
 1087                 short_uio.uio_resid = short_iovec[0].iov_len = len;
 1088                 short_uio.uio_offset = uio_clone->uio_offset;
 1089                 td->td_ma = ma;
 1090                 td->td_ma_cnt = cnt;
 1091 
 1092                 error = vn_io_fault_doio(args, &short_uio, td);
 1093                 vm_page_unhold_pages(ma, cnt);
 1094                 adv = len - short_uio.uio_resid;
 1095 
 1096                 uio_clone->uio_iov->iov_base =
 1097                     (char *)uio_clone->uio_iov->iov_base + adv;
 1098                 uio_clone->uio_iov->iov_len -= adv;
 1099                 uio_clone->uio_resid -= adv;
 1100                 uio_clone->uio_offset += adv;
 1101 
 1102                 uio->uio_resid -= adv;
 1103                 uio->uio_offset += adv;
 1104 
 1105                 if (error != 0 || adv == 0)
 1106                         break;
 1107         }
 1108         td->td_ma = prev_td_ma;
 1109         td->td_ma_cnt = prev_td_ma_cnt;
 1110         curthread_pflags_restore(saveheld);
 1111 out:
 1112         vm_fault_enable_pagefaults(save);
 1113         free(uio_clone, M_IOV);
 1114         return (error);
 1115 }
 1116 
 1117 static int
 1118 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1119     int flags, struct thread *td)
 1120 {
 1121         fo_rdwr_t *doio;
 1122         struct vnode *vp;
 1123         void *rl_cookie;
 1124         struct vn_io_fault_args args;
 1125         int error;
 1126 
 1127         doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
 1128         vp = fp->f_vnode;
 1129         foffset_lock_uio(fp, uio, flags);
 1130         if (do_vn_io_fault(vp, uio)) {
 1131                 args.kind = VN_IO_FAULT_FOP;
 1132                 args.args.fop_args.fp = fp;
 1133                 args.args.fop_args.doio = doio;
 1134                 args.cred = active_cred;
 1135                 args.flags = flags | FOF_OFFSET;
 1136                 if (uio->uio_rw == UIO_READ) {
 1137                         rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
 1138                             uio->uio_offset + uio->uio_resid);
 1139                 } else if ((fp->f_flag & O_APPEND) != 0 ||
 1140                     (flags & FOF_OFFSET) == 0) {
 1141                         /* For appenders, punt and lock the whole range. */
 1142                         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 1143                 } else {
 1144                         rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
 1145                             uio->uio_offset + uio->uio_resid);
 1146                 }
 1147                 error = vn_io_fault1(vp, uio, &args, td);
 1148                 vn_rangelock_unlock(vp, rl_cookie);
 1149         } else {
 1150                 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
 1151         }
 1152         foffset_unlock_uio(fp, uio, flags);
 1153         return (error);
 1154 }
 1155 
 1156 /*
 1157  * Helper function to perform the requested uiomove operation using
 1158  * the held pages for io->uio_iov[0].iov_base buffer instead of
 1159  * copyin/copyout.  Access to the pages with uiomove_fromphys()
 1160  * instead of iov_base prevents page faults that could occur due to
 1161  * pmap_collect() invalidating the mapping created by
 1162  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
 1163  * object cleanup revoking the write access from page mappings.
 1164  *
 1165  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
 1166  * instead of plain uiomove().
 1167  */
 1168 int
 1169 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
 1170 {
 1171         struct uio transp_uio;
 1172         struct iovec transp_iov[1];
 1173         struct thread *td;
 1174         size_t adv;
 1175         int error, pgadv;
 1176 
 1177         td = curthread;
 1178         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1179             uio->uio_segflg != UIO_USERSPACE)
 1180                 return (uiomove(data, xfersize, uio));
 1181 
 1182         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1183         transp_iov[0].iov_base = data;
 1184         transp_uio.uio_iov = &transp_iov[0];
 1185         transp_uio.uio_iovcnt = 1;
 1186         if (xfersize > uio->uio_resid)
 1187                 xfersize = uio->uio_resid;
 1188         transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
 1189         transp_uio.uio_offset = 0;
 1190         transp_uio.uio_segflg = UIO_SYSSPACE;
 1191         /*
 1192          * Since transp_iov points to data, and td_ma page array
 1193          * corresponds to original uio->uio_iov, we need to invert the
 1194          * direction of the i/o operation as passed to
 1195          * uiomove_fromphys().
 1196          */
 1197         switch (uio->uio_rw) {
 1198         case UIO_WRITE:
 1199                 transp_uio.uio_rw = UIO_READ;
 1200                 break;
 1201         case UIO_READ:
 1202                 transp_uio.uio_rw = UIO_WRITE;
 1203                 break;
 1204         }
 1205         transp_uio.uio_td = uio->uio_td;
 1206         error = uiomove_fromphys(td->td_ma,
 1207             ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
 1208             xfersize, &transp_uio);
 1209         adv = xfersize - transp_uio.uio_resid;
 1210         pgadv =
 1211             (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
 1212             (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
 1213         td->td_ma += pgadv;
 1214         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1215             pgadv));
 1216         td->td_ma_cnt -= pgadv;
 1217         uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
 1218         uio->uio_iov->iov_len -= adv;
 1219         uio->uio_resid -= adv;
 1220         uio->uio_offset += adv;
 1221         return (error);
 1222 }
 1223 
 1224 int
 1225 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
 1226     struct uio *uio)
 1227 {
 1228         struct thread *td;
 1229         vm_offset_t iov_base;
 1230         int cnt, pgadv;
 1231 
 1232         td = curthread;
 1233         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1234             uio->uio_segflg != UIO_USERSPACE)
 1235                 return (uiomove_fromphys(ma, offset, xfersize, uio));
 1236 
 1237         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1238         cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
 1239         iov_base = (vm_offset_t)uio->uio_iov->iov_base;
 1240         switch (uio->uio_rw) {
 1241         case UIO_WRITE:
 1242                 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
 1243                     offset, cnt);
 1244                 break;
 1245         case UIO_READ:
 1246                 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
 1247                     cnt);
 1248                 break;
 1249         }
 1250         pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
 1251         td->td_ma += pgadv;
 1252         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1253             pgadv));
 1254         td->td_ma_cnt -= pgadv;
 1255         uio->uio_iov->iov_base = (char *)(iov_base + cnt);
 1256         uio->uio_iov->iov_len -= cnt;
 1257         uio->uio_resid -= cnt;
 1258         uio->uio_offset += cnt;
 1259         return (0);
 1260 }
 1261 
 1262 
 1263 /*
 1264  * File table truncate routine.
 1265  */
 1266 static int
 1267 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
 1268     struct thread *td)
 1269 {
 1270         struct vattr vattr;
 1271         struct mount *mp;
 1272         struct vnode *vp;
 1273         void *rl_cookie;
 1274         int error;
 1275 
 1276         vp = fp->f_vnode;
 1277 
 1278         /*
 1279          * Lock the whole range for truncation.  Otherwise split i/o
 1280          * might happen partly before and partly after the truncation.
 1281          */
 1282         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 1283         error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
 1284         if (error)
 1285                 goto out1;
 1286         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1287         if (vp->v_type == VDIR) {
 1288                 error = EISDIR;
 1289                 goto out;
 1290         }
 1291 #ifdef MAC
 1292         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
 1293         if (error)
 1294                 goto out;
 1295 #endif
 1296         error = vn_writechk(vp);
 1297         if (error == 0) {
 1298                 VATTR_NULL(&vattr);
 1299                 vattr.va_size = length;
 1300                 error = VOP_SETATTR(vp, &vattr, fp->f_cred);
 1301         }
 1302 out:
 1303         VOP_UNLOCK(vp, 0);
 1304         vn_finished_write(mp);
 1305 out1:
 1306         vn_rangelock_unlock(vp, rl_cookie);
 1307         return (error);
 1308 }
 1309 
 1310 /*
 1311  * File table vnode stat routine.
 1312  */
 1313 static int
 1314 vn_statfile(fp, sb, active_cred, td)
 1315         struct file *fp;
 1316         struct stat *sb;
 1317         struct ucred *active_cred;
 1318         struct thread *td;
 1319 {
 1320         struct vnode *vp = fp->f_vnode;
 1321         int error;
 1322 
 1323         vn_lock(vp, LK_SHARED | LK_RETRY);
 1324         error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
 1325         VOP_UNLOCK(vp, 0);
 1326 
 1327         return (error);
 1328 }
 1329 
 1330 /*
 1331  * Stat a vnode; implementation for the stat syscall
 1332  */
 1333 int
 1334 vn_stat(vp, sb, active_cred, file_cred, td)
 1335         struct vnode *vp;
 1336         register struct stat *sb;
 1337         struct ucred *active_cred;
 1338         struct ucred *file_cred;
 1339         struct thread *td;
 1340 {
 1341         struct vattr vattr;
 1342         register struct vattr *vap;
 1343         int error;
 1344         u_short mode;
 1345 
 1346 #ifdef MAC
 1347         error = mac_vnode_check_stat(active_cred, file_cred, vp);
 1348         if (error)
 1349                 return (error);
 1350 #endif
 1351 
 1352         vap = &vattr;
 1353 
 1354         /*
 1355          * Initialize defaults for new and unusual fields, so that file
 1356          * systems which don't support these fields don't need to know
 1357          * about them.
 1358          */
 1359         vap->va_birthtime.tv_sec = -1;
 1360         vap->va_birthtime.tv_nsec = 0;
 1361         vap->va_fsid = VNOVAL;
 1362         vap->va_rdev = NODEV;
 1363 
 1364         error = VOP_GETATTR(vp, vap, active_cred);
 1365         if (error)
 1366                 return (error);
 1367 
 1368         /*
 1369          * Zero the spare stat fields
 1370          */
 1371         bzero(sb, sizeof *sb);
 1372 
 1373         /*
 1374          * Copy from vattr table
 1375          */
 1376         if (vap->va_fsid != VNOVAL)
 1377                 sb->st_dev = vap->va_fsid;
 1378         else
 1379                 sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
 1380         sb->st_ino = vap->va_fileid;
 1381         mode = vap->va_mode;
 1382         switch (vap->va_type) {
 1383         case VREG:
 1384                 mode |= S_IFREG;
 1385                 break;
 1386         case VDIR:
 1387                 mode |= S_IFDIR;
 1388                 break;
 1389         case VBLK:
 1390                 mode |= S_IFBLK;
 1391                 break;
 1392         case VCHR:
 1393                 mode |= S_IFCHR;
 1394                 break;
 1395         case VLNK:
 1396                 mode |= S_IFLNK;
 1397                 break;
 1398         case VSOCK:
 1399                 mode |= S_IFSOCK;
 1400                 break;
 1401         case VFIFO:
 1402                 mode |= S_IFIFO;
 1403                 break;
 1404         default:
 1405                 return (EBADF);
 1406         };
 1407         sb->st_mode = mode;
 1408         sb->st_nlink = vap->va_nlink;
 1409         sb->st_uid = vap->va_uid;
 1410         sb->st_gid = vap->va_gid;
 1411         sb->st_rdev = vap->va_rdev;
 1412         if (vap->va_size > OFF_MAX)
 1413                 return (EOVERFLOW);
 1414         sb->st_size = vap->va_size;
 1415         sb->st_atim = vap->va_atime;
 1416         sb->st_mtim = vap->va_mtime;
 1417         sb->st_ctim = vap->va_ctime;
 1418         sb->st_birthtim = vap->va_birthtime;
 1419 
 1420         /*
 1421          * According to www.opengroup.org, the meaning of st_blksize is 
 1422          *   "a filesystem-specific preferred I/O block size for this 
 1423          *    object.  In some filesystem types, this may vary from file
 1424          *    to file"
 1425          * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
 1426          */
 1427 
 1428         sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
 1429         
 1430         sb->st_flags = vap->va_flags;
 1431         if (priv_check(td, PRIV_VFS_GENERATION))
 1432                 sb->st_gen = 0;
 1433         else
 1434                 sb->st_gen = vap->va_gen;
 1435 
 1436         sb->st_blocks = vap->va_bytes / S_BLKSIZE;
 1437         return (0);
 1438 }
 1439 
 1440 /*
 1441  * File table vnode ioctl routine.
 1442  */
 1443 static int
 1444 vn_ioctl(fp, com, data, active_cred, td)
 1445         struct file *fp;
 1446         u_long com;
 1447         void *data;
 1448         struct ucred *active_cred;
 1449         struct thread *td;
 1450 {
 1451         struct vattr vattr;
 1452         struct vnode *vp;
 1453         int error;
 1454 
 1455         vp = fp->f_vnode;
 1456         switch (vp->v_type) {
 1457         case VDIR:
 1458         case VREG:
 1459                 switch (com) {
 1460                 case FIONREAD:
 1461                         vn_lock(vp, LK_SHARED | LK_RETRY);
 1462                         error = VOP_GETATTR(vp, &vattr, active_cred);
 1463                         VOP_UNLOCK(vp, 0);
 1464                         if (error == 0)
 1465                                 *(int *)data = vattr.va_size - fp->f_offset;
 1466                         return (error);
 1467                 case FIONBIO:
 1468                 case FIOASYNC:
 1469                         return (0);
 1470                 default:
 1471                         return (VOP_IOCTL(vp, com, data, fp->f_flag,
 1472                             active_cred, td));
 1473                 }
 1474         default:
 1475                 return (ENOTTY);
 1476         }
 1477 }
 1478 
 1479 /*
 1480  * File table vnode poll routine.
 1481  */
 1482 static int
 1483 vn_poll(fp, events, active_cred, td)
 1484         struct file *fp;
 1485         int events;
 1486         struct ucred *active_cred;
 1487         struct thread *td;
 1488 {
 1489         struct vnode *vp;
 1490         int error;
 1491 
 1492         vp = fp->f_vnode;
 1493 #ifdef MAC
 1494         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1495         error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
 1496         VOP_UNLOCK(vp, 0);
 1497         if (!error)
 1498 #endif
 1499 
 1500         error = VOP_POLL(vp, events, fp->f_cred, td);
 1501         return (error);
 1502 }
 1503 
 1504 /*
 1505  * Acquire the requested lock and then check for validity.  LK_RETRY
 1506  * permits vn_lock to return doomed vnodes.
 1507  */
 1508 int
 1509 _vn_lock(struct vnode *vp, int flags, char *file, int line)
 1510 {
 1511         int error;
 1512 
 1513         VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
 1514             ("vn_lock called with no locktype."));
 1515         do {
 1516 #ifdef DEBUG_VFS_LOCKS
 1517                 KASSERT(vp->v_holdcnt != 0,
 1518                     ("vn_lock %p: zero hold count", vp));
 1519 #endif
 1520                 error = VOP_LOCK1(vp, flags, file, line);
 1521                 flags &= ~LK_INTERLOCK; /* Interlock is always dropped. */
 1522                 KASSERT((flags & LK_RETRY) == 0 || error == 0,
 1523                     ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
 1524                     flags, error));
 1525                 /*
 1526                  * Callers specify LK_RETRY if they wish to get dead vnodes.
 1527                  * If RETRY is not set, we return ENOENT instead.
 1528                  */
 1529                 if (error == 0 && vp->v_iflag & VI_DOOMED &&
 1530                     (flags & LK_RETRY) == 0) {
 1531                         VOP_UNLOCK(vp, 0);
 1532                         error = ENOENT;
 1533                         break;
 1534                 }
 1535         } while (flags & LK_RETRY && error != 0);
 1536         return (error);
 1537 }
 1538 
 1539 /*
 1540  * File table vnode close routine.
 1541  */
 1542 static int
 1543 vn_closefile(fp, td)
 1544         struct file *fp;
 1545         struct thread *td;
 1546 {
 1547         struct vnode *vp;
 1548         struct flock lf;
 1549         int error;
 1550 
 1551         vp = fp->f_vnode;
 1552         fp->f_ops = &badfileops;
 1553 
 1554         if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
 1555                 vref(vp);
 1556 
 1557         error = vn_close(vp, fp->f_flag, fp->f_cred, td);
 1558 
 1559         if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
 1560                 lf.l_whence = SEEK_SET;
 1561                 lf.l_start = 0;
 1562                 lf.l_len = 0;
 1563                 lf.l_type = F_UNLCK;
 1564                 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
 1565                 vrele(vp);
 1566         }
 1567         return (error);
 1568 }
 1569 
 1570 /*
 1571  * Preparing to start a filesystem write operation. If the operation is
 1572  * permitted, then we bump the count of operations in progress and
 1573  * proceed. If a suspend request is in progress, we wait until the
 1574  * suspension is over, and then proceed.
 1575  */
 1576 static int
 1577 vn_start_write_locked(struct mount *mp, int flags)
 1578 {
 1579         int error;
 1580 
 1581         mtx_assert(MNT_MTX(mp), MA_OWNED);
 1582         error = 0;
 1583 
 1584         /*
 1585          * Check on status of suspension.
 1586          */
 1587         if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
 1588             mp->mnt_susp_owner != curthread) {
 1589                 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 1590                         if (flags & V_NOWAIT) {
 1591                                 error = EWOULDBLOCK;
 1592                                 goto unlock;
 1593                         }
 1594                         error = msleep(&mp->mnt_flag, MNT_MTX(mp),
 1595                             (PUSER - 1) | (flags & PCATCH), "suspfs", 0);
 1596                         if (error)
 1597                                 goto unlock;
 1598                 }
 1599         }
 1600         if (flags & V_XSLEEP)
 1601                 goto unlock;
 1602         mp->mnt_writeopcount++;
 1603 unlock:
 1604         if (error != 0 || (flags & V_XSLEEP) != 0)
 1605                 MNT_REL(mp);
 1606         MNT_IUNLOCK(mp);
 1607         return (error);
 1608 }
 1609 
 1610 int
 1611 vn_start_write(vp, mpp, flags)
 1612         struct vnode *vp;
 1613         struct mount **mpp;
 1614         int flags;
 1615 {
 1616         struct mount *mp;
 1617         int error;
 1618 
 1619         error = 0;
 1620         /*
 1621          * If a vnode is provided, get and return the mount point that
 1622          * to which it will write.
 1623          */
 1624         if (vp != NULL) {
 1625                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1626                         *mpp = NULL;
 1627                         if (error != EOPNOTSUPP)
 1628                                 return (error);
 1629                         return (0);
 1630                 }
 1631         }
 1632         if ((mp = *mpp) == NULL)
 1633                 return (0);
 1634 
 1635         /*
 1636          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1637          * a vfs_ref().
 1638          * As long as a vnode is not provided we need to acquire a
 1639          * refcount for the provided mountpoint too, in order to
 1640          * emulate a vfs_ref().
 1641          */
 1642         MNT_ILOCK(mp);
 1643         if (vp == NULL)
 1644                 MNT_REF(mp);
 1645 
 1646         return (vn_start_write_locked(mp, flags));
 1647 }
 1648 
 1649 /*
 1650  * Secondary suspension. Used by operations such as vop_inactive
 1651  * routines that are needed by the higher level functions. These
 1652  * are allowed to proceed until all the higher level functions have
 1653  * completed (indicated by mnt_writeopcount dropping to zero). At that
 1654  * time, these operations are halted until the suspension is over.
 1655  */
 1656 int
 1657 vn_start_secondary_write(vp, mpp, flags)
 1658         struct vnode *vp;
 1659         struct mount **mpp;
 1660         int flags;
 1661 {
 1662         struct mount *mp;
 1663         int error;
 1664 
 1665  retry:
 1666         if (vp != NULL) {
 1667                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1668                         *mpp = NULL;
 1669                         if (error != EOPNOTSUPP)
 1670                                 return (error);
 1671                         return (0);
 1672                 }
 1673         }
 1674         /*
 1675          * If we are not suspended or have not yet reached suspended
 1676          * mode, then let the operation proceed.
 1677          */
 1678         if ((mp = *mpp) == NULL)
 1679                 return (0);
 1680 
 1681         /*
 1682          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1683          * a vfs_ref().
 1684          * As long as a vnode is not provided we need to acquire a
 1685          * refcount for the provided mountpoint too, in order to
 1686          * emulate a vfs_ref().
 1687          */
 1688         MNT_ILOCK(mp);
 1689         if (vp == NULL)
 1690                 MNT_REF(mp);
 1691         if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
 1692                 mp->mnt_secondary_writes++;
 1693                 mp->mnt_secondary_accwrites++;
 1694                 MNT_IUNLOCK(mp);
 1695                 return (0);
 1696         }
 1697         if (flags & V_NOWAIT) {
 1698                 MNT_REL(mp);
 1699                 MNT_IUNLOCK(mp);
 1700                 return (EWOULDBLOCK);
 1701         }
 1702         /*
 1703          * Wait for the suspension to finish.
 1704          */
 1705         error = msleep(&mp->mnt_flag, MNT_MTX(mp),
 1706                        (PUSER - 1) | (flags & PCATCH) | PDROP, "suspfs", 0);
 1707         vfs_rel(mp);
 1708         if (error == 0)
 1709                 goto retry;
 1710         return (error);
 1711 }
 1712 
 1713 /*
 1714  * Filesystem write operation has completed. If we are suspending and this
 1715  * operation is the last one, notify the suspender that the suspension is
 1716  * now in effect.
 1717  */
 1718 void
 1719 vn_finished_write(mp)
 1720         struct mount *mp;
 1721 {
 1722         if (mp == NULL)
 1723                 return;
 1724         MNT_ILOCK(mp);
 1725         MNT_REL(mp);
 1726         mp->mnt_writeopcount--;
 1727         if (mp->mnt_writeopcount < 0)
 1728                 panic("vn_finished_write: neg cnt");
 1729         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
 1730             mp->mnt_writeopcount <= 0)
 1731                 wakeup(&mp->mnt_writeopcount);
 1732         MNT_IUNLOCK(mp);
 1733 }
 1734 
 1735 
 1736 /*
 1737  * Filesystem secondary write operation has completed. If we are
 1738  * suspending and this operation is the last one, notify the suspender
 1739  * that the suspension is now in effect.
 1740  */
 1741 void
 1742 vn_finished_secondary_write(mp)
 1743         struct mount *mp;
 1744 {
 1745         if (mp == NULL)
 1746                 return;
 1747         MNT_ILOCK(mp);
 1748         MNT_REL(mp);
 1749         mp->mnt_secondary_writes--;
 1750         if (mp->mnt_secondary_writes < 0)
 1751                 panic("vn_finished_secondary_write: neg cnt");
 1752         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
 1753             mp->mnt_secondary_writes <= 0)
 1754                 wakeup(&mp->mnt_secondary_writes);
 1755         MNT_IUNLOCK(mp);
 1756 }
 1757 
 1758 
 1759 
 1760 /*
 1761  * Request a filesystem to suspend write operations.
 1762  */
 1763 int
 1764 vfs_write_suspend(struct mount *mp, int flags)
 1765 {
 1766         int error;
 1767 
 1768         MNT_ILOCK(mp);
 1769         if (mp->mnt_susp_owner == curthread) {
 1770                 MNT_IUNLOCK(mp);
 1771                 return (EALREADY);
 1772         }
 1773         while (mp->mnt_kern_flag & MNTK_SUSPEND)
 1774                 msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
 1775 
 1776         /*
 1777          * Unmount holds a write reference on the mount point.  If we
 1778          * own busy reference and drain for writers, we deadlock with
 1779          * the reference draining in the unmount path.  Callers of
 1780          * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
 1781          * vfs_busy() reference is owned and caller is not in the
 1782          * unmount context.
 1783          */
 1784         if ((flags & VS_SKIP_UNMOUNT) != 0 &&
 1785             (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
 1786                 MNT_IUNLOCK(mp);
 1787                 return (EBUSY);
 1788         }
 1789 
 1790         mp->mnt_kern_flag |= MNTK_SUSPEND;
 1791         mp->mnt_susp_owner = curthread;
 1792         if (mp->mnt_writeopcount > 0)
 1793                 (void) msleep(&mp->mnt_writeopcount, 
 1794                     MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
 1795         else
 1796                 MNT_IUNLOCK(mp);
 1797         if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
 1798                 vfs_write_resume(mp, 0);
 1799         return (error);
 1800 }
 1801 
 1802 /*
 1803  * Request a filesystem to resume write operations.
 1804  */
 1805 void
 1806 vfs_write_resume(struct mount *mp, int flags)
 1807 {
 1808 
 1809         MNT_ILOCK(mp);
 1810         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 1811                 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
 1812                 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
 1813                                        MNTK_SUSPENDED);
 1814                 mp->mnt_susp_owner = NULL;
 1815                 wakeup(&mp->mnt_writeopcount);
 1816                 wakeup(&mp->mnt_flag);
 1817                 curthread->td_pflags &= ~TDP_IGNSUSP;
 1818                 if ((flags & VR_START_WRITE) != 0) {
 1819                         MNT_REF(mp);
 1820                         mp->mnt_writeopcount++;
 1821                 }
 1822                 MNT_IUNLOCK(mp);
 1823                 if ((flags & VR_NO_SUSPCLR) == 0)
 1824                         VFS_SUSP_CLEAN(mp);
 1825         } else if ((flags & VR_START_WRITE) != 0) {
 1826                 MNT_REF(mp);
 1827                 vn_start_write_locked(mp, 0);
 1828         } else {
 1829                 MNT_IUNLOCK(mp);
 1830         }
 1831 }
 1832 
 1833 /*
 1834  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
 1835  * methods.
 1836  */
 1837 int
 1838 vfs_write_suspend_umnt(struct mount *mp)
 1839 {
 1840         int error;
 1841 
 1842         KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
 1843             ("vfs_write_suspend_umnt: recursed"));
 1844 
 1845         /* dounmount() already called vn_start_write(). */
 1846         for (;;) {
 1847                 vn_finished_write(mp);
 1848                 error = vfs_write_suspend(mp, 0);
 1849                 if (error != 0)
 1850                         return (error);
 1851                 MNT_ILOCK(mp);
 1852                 if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
 1853                         break;
 1854                 MNT_IUNLOCK(mp);
 1855                 vn_start_write(NULL, &mp, V_WAIT);
 1856         }
 1857         mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
 1858         wakeup(&mp->mnt_flag);
 1859         MNT_IUNLOCK(mp);
 1860         curthread->td_pflags |= TDP_IGNSUSP;
 1861         return (0);
 1862 }
 1863 
 1864 /*
 1865  * Implement kqueues for files by translating it to vnode operation.
 1866  */
 1867 static int
 1868 vn_kqfilter(struct file *fp, struct knote *kn)
 1869 {
 1870 
 1871         return (VOP_KQFILTER(fp->f_vnode, kn));
 1872 }
 1873 
 1874 /*
 1875  * Simplified in-kernel wrapper calls for extended attribute access.
 1876  * Both calls pass in a NULL credential, authorizing as "kernel" access.
 1877  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
 1878  */
 1879 int
 1880 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
 1881     const char *attrname, int *buflen, char *buf, struct thread *td)
 1882 {
 1883         struct uio      auio;
 1884         struct iovec    iov;
 1885         int     error;
 1886 
 1887         iov.iov_len = *buflen;
 1888         iov.iov_base = buf;
 1889 
 1890         auio.uio_iov = &iov;
 1891         auio.uio_iovcnt = 1;
 1892         auio.uio_rw = UIO_READ;
 1893         auio.uio_segflg = UIO_SYSSPACE;
 1894         auio.uio_td = td;
 1895         auio.uio_offset = 0;
 1896         auio.uio_resid = *buflen;
 1897 
 1898         if ((ioflg & IO_NODELOCKED) == 0)
 1899                 vn_lock(vp, LK_SHARED | LK_RETRY);
 1900 
 1901         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 1902 
 1903         /* authorize attribute retrieval as kernel */
 1904         error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
 1905             td);
 1906 
 1907         if ((ioflg & IO_NODELOCKED) == 0)
 1908                 VOP_UNLOCK(vp, 0);
 1909 
 1910         if (error == 0) {
 1911                 *buflen = *buflen - auio.uio_resid;
 1912         }
 1913 
 1914         return (error);
 1915 }
 1916 
 1917 /*
 1918  * XXX failure mode if partially written?
 1919  */
 1920 int
 1921 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
 1922     const char *attrname, int buflen, char *buf, struct thread *td)
 1923 {
 1924         struct uio      auio;
 1925         struct iovec    iov;
 1926         struct mount    *mp;
 1927         int     error;
 1928 
 1929         iov.iov_len = buflen;
 1930         iov.iov_base = buf;
 1931 
 1932         auio.uio_iov = &iov;
 1933         auio.uio_iovcnt = 1;
 1934         auio.uio_rw = UIO_WRITE;
 1935         auio.uio_segflg = UIO_SYSSPACE;
 1936         auio.uio_td = td;
 1937         auio.uio_offset = 0;
 1938         auio.uio_resid = buflen;
 1939 
 1940         if ((ioflg & IO_NODELOCKED) == 0) {
 1941                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 1942                         return (error);
 1943                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1944         }
 1945 
 1946         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 1947 
 1948         /* authorize attribute setting as kernel */
 1949         error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
 1950 
 1951         if ((ioflg & IO_NODELOCKED) == 0) {
 1952                 vn_finished_write(mp);
 1953                 VOP_UNLOCK(vp, 0);
 1954         }
 1955 
 1956         return (error);
 1957 }
 1958 
 1959 int
 1960 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
 1961     const char *attrname, struct thread *td)
 1962 {
 1963         struct mount    *mp;
 1964         int     error;
 1965 
 1966         if ((ioflg & IO_NODELOCKED) == 0) {
 1967                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 1968                         return (error);
 1969                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1970         }
 1971 
 1972         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 1973 
 1974         /* authorize attribute removal as kernel */
 1975         error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
 1976         if (error == EOPNOTSUPP)
 1977                 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
 1978                     NULL, td);
 1979 
 1980         if ((ioflg & IO_NODELOCKED) == 0) {
 1981                 vn_finished_write(mp);
 1982                 VOP_UNLOCK(vp, 0);
 1983         }
 1984 
 1985         return (error);
 1986 }
 1987 
 1988 static int
 1989 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
 1990     struct vnode **rvp)
 1991 {
 1992 
 1993         return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
 1994 }
 1995 
 1996 int
 1997 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
 1998 {
 1999 
 2000         return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
 2001             lkflags, rvp));
 2002 }
 2003 
 2004 int
 2005 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
 2006     int lkflags, struct vnode **rvp)
 2007 {
 2008         struct mount *mp;
 2009         int ltype, error;
 2010 
 2011         ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
 2012         mp = vp->v_mount;
 2013         ltype = VOP_ISLOCKED(vp);
 2014         KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
 2015             ("vn_vget_ino: vp not locked"));
 2016         error = vfs_busy(mp, MBF_NOWAIT);
 2017         if (error != 0) {
 2018                 vfs_ref(mp);
 2019                 VOP_UNLOCK(vp, 0);
 2020                 error = vfs_busy(mp, 0);
 2021                 vn_lock(vp, ltype | LK_RETRY);
 2022                 vfs_rel(mp);
 2023                 if (error != 0)
 2024                         return (ENOENT);
 2025                 if (vp->v_iflag & VI_DOOMED) {
 2026                         vfs_unbusy(mp);
 2027                         return (ENOENT);
 2028                 }
 2029         }
 2030         VOP_UNLOCK(vp, 0);
 2031         error = alloc(mp, alloc_arg, lkflags, rvp);
 2032         vfs_unbusy(mp);
 2033         if (*rvp != vp)
 2034                 vn_lock(vp, ltype | LK_RETRY);
 2035         if (vp->v_iflag & VI_DOOMED) {
 2036                 if (error == 0) {
 2037                         if (*rvp == vp)
 2038                                 vunref(vp);
 2039                         else
 2040                                 vput(*rvp);
 2041                 }
 2042                 error = ENOENT;
 2043         }
 2044         return (error);
 2045 }
 2046 
 2047 int
 2048 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
 2049     const struct thread *td)
 2050 {
 2051 
 2052         if (vp->v_type != VREG || td == NULL)
 2053                 return (0);
 2054         PROC_LOCK(td->td_proc);
 2055         if ((uoff_t)uio->uio_offset + uio->uio_resid >
 2056             lim_cur(td->td_proc, RLIMIT_FSIZE)) {
 2057                 kern_psignal(td->td_proc, SIGXFSZ);
 2058                 PROC_UNLOCK(td->td_proc);
 2059                 return (EFBIG);
 2060         }
 2061         PROC_UNLOCK(td->td_proc);
 2062         return (0);
 2063 }
 2064 
 2065 int
 2066 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
 2067     struct thread *td)
 2068 {
 2069         struct vnode *vp;
 2070 
 2071         vp = fp->f_vnode;
 2072 #ifdef AUDIT
 2073         vn_lock(vp, LK_SHARED | LK_RETRY);
 2074         AUDIT_ARG_VNODE1(vp);
 2075         VOP_UNLOCK(vp, 0);
 2076 #endif
 2077         return (setfmode(td, active_cred, vp, mode));
 2078 }
 2079 
 2080 int
 2081 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
 2082     struct thread *td)
 2083 {
 2084         struct vnode *vp;
 2085 
 2086         vp = fp->f_vnode;
 2087 #ifdef AUDIT
 2088         vn_lock(vp, LK_SHARED | LK_RETRY);
 2089         AUDIT_ARG_VNODE1(vp);
 2090         VOP_UNLOCK(vp, 0);
 2091 #endif
 2092         return (setfown(td, active_cred, vp, uid, gid));
 2093 }
 2094 
 2095 void
 2096 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
 2097 {
 2098         vm_object_t object;
 2099 
 2100         if ((object = vp->v_object) == NULL)
 2101                 return;
 2102         VM_OBJECT_WLOCK(object);
 2103         vm_object_page_remove(object, start, end, 0);
 2104         VM_OBJECT_WUNLOCK(object);
 2105 }
 2106 
 2107 int
 2108 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
 2109 {
 2110         struct vattr va;
 2111         daddr_t bn, bnp;
 2112         uint64_t bsize;
 2113         off_t noff;
 2114         int error;
 2115 
 2116         KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
 2117             ("Wrong command %lu", cmd));
 2118 
 2119         if (vn_lock(vp, LK_SHARED) != 0)
 2120                 return (EBADF);
 2121         if (vp->v_type != VREG) {
 2122                 error = ENOTTY;
 2123                 goto unlock;
 2124         }
 2125         error = VOP_GETATTR(vp, &va, cred);
 2126         if (error != 0)
 2127                 goto unlock;
 2128         noff = *off;
 2129         if (noff >= va.va_size) {
 2130                 error = ENXIO;
 2131                 goto unlock;
 2132         }
 2133         bsize = vp->v_mount->mnt_stat.f_iosize;
 2134         for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
 2135                 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
 2136                 if (error == EOPNOTSUPP) {
 2137                         error = ENOTTY;
 2138                         goto unlock;
 2139                 }
 2140                 if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
 2141                     (bnp != -1 && cmd == FIOSEEKDATA)) {
 2142                         noff = bn * bsize;
 2143                         if (noff < *off)
 2144                                 noff = *off;
 2145                         goto unlock;
 2146                 }
 2147         }
 2148         if (noff > va.va_size)
 2149                 noff = va.va_size;
 2150         /* noff == va.va_size. There is an implicit hole at the end of file. */
 2151         if (cmd == FIOSEEKDATA)
 2152                 error = ENXIO;
 2153 unlock:
 2154         VOP_UNLOCK(vp, 0);
 2155         if (error == 0)
 2156                 *off = noff;
 2157         return (error);
 2158 }
 2159 
 2160 int
 2161 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
 2162 {
 2163         struct ucred *cred;
 2164         struct vnode *vp;
 2165         struct vattr vattr;
 2166         off_t foffset, size;
 2167         int error, noneg;
 2168 
 2169         cred = td->td_ucred;
 2170         vp = fp->f_vnode;
 2171         foffset = foffset_lock(fp, 0);
 2172         noneg = (vp->v_type != VCHR);
 2173         error = 0;
 2174         switch (whence) {
 2175         case L_INCR:
 2176                 if (noneg &&
 2177                     (foffset < 0 ||
 2178                     (offset > 0 && foffset > OFF_MAX - offset))) {
 2179                         error = EOVERFLOW;
 2180                         break;
 2181                 }
 2182                 offset += foffset;
 2183                 break;
 2184         case L_XTND:
 2185                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2186                 error = VOP_GETATTR(vp, &vattr, cred);
 2187                 VOP_UNLOCK(vp, 0);
 2188                 if (error)
 2189                         break;
 2190 
 2191                 /*
 2192                  * If the file references a disk device, then fetch
 2193                  * the media size and use that to determine the ending
 2194                  * offset.
 2195                  */
 2196                 if (vattr.va_size == 0 && vp->v_type == VCHR &&
 2197                     fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
 2198                         vattr.va_size = size;
 2199                 if (noneg &&
 2200                     (vattr.va_size > OFF_MAX ||
 2201                     (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
 2202                         error = EOVERFLOW;
 2203                         break;
 2204                 }
 2205                 offset += vattr.va_size;
 2206                 break;
 2207         case L_SET:
 2208                 break;
 2209         case SEEK_DATA:
 2210                 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
 2211                 break;
 2212         case SEEK_HOLE:
 2213                 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
 2214                 break;
 2215         default:
 2216                 error = EINVAL;
 2217         }
 2218         if (error == 0 && noneg && offset < 0)
 2219                 error = EINVAL;
 2220         if (error != 0)
 2221                 goto drop;
 2222         VFS_KNOTE_UNLOCKED(vp, 0);
 2223         *(off_t *)(td->td_retval) = offset;
 2224 drop:
 2225         foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
 2226         return (error);
 2227 }
 2228 
 2229 int
 2230 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
 2231     struct thread *td)
 2232 {
 2233         int error;
 2234 
 2235         error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
 2236 
 2237         /*
 2238          * From utimes(2):
 2239          * Grant permission if the caller is the owner of the file or
 2240          * the super-user.  If the time pointer is null, then write
 2241          * permission on the file is also sufficient.
 2242          *
 2243          * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
 2244          * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
 2245          * will be allowed to set the times [..] to the current
 2246          * server time.
 2247          */
 2248         if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
 2249                 error = VOP_ACCESS(vp, VWRITE, cred, td);
 2250         return (error);
 2251 }

Cache object: 5e4c96a6224981ea49e4e2048899b55e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.