The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
   11  * Copyright (c) 2013, 2014 The FreeBSD Foundation
   12  *
   13  * Portions of this software were developed by Konstantin Belousov
   14  * under sponsorship from the FreeBSD Foundation.
   15  *
   16  * Redistribution and use in source and binary forms, with or without
   17  * modification, are permitted provided that the following conditions
   18  * are met:
   19  * 1. Redistributions of source code must retain the above copyright
   20  *    notice, this list of conditions and the following disclaimer.
   21  * 2. Redistributions in binary form must reproduce the above copyright
   22  *    notice, this list of conditions and the following disclaimer in the
   23  *    documentation and/or other materials provided with the distribution.
   24  * 4. Neither the name of the University nor the names of its contributors
   25  *    may be used to endorse or promote products derived from this software
   26  *    without specific prior written permission.
   27  *
   28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   38  * SUCH DAMAGE.
   39  *
   40  *      @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94
   41  */
   42 
   43 #include <sys/cdefs.h>
   44 __FBSDID("$FreeBSD: releng/10.2/sys/kern/vfs_vnops.c 284202 2015-06-10 02:20:58Z kib $");
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/disk.h>
   49 #include <sys/fcntl.h>
   50 #include <sys/file.h>
   51 #include <sys/kdb.h>
   52 #include <sys/stat.h>
   53 #include <sys/priv.h>
   54 #include <sys/proc.h>
   55 #include <sys/limits.h>
   56 #include <sys/lock.h>
   57 #include <sys/mount.h>
   58 #include <sys/mutex.h>
   59 #include <sys/namei.h>
   60 #include <sys/vnode.h>
   61 #include <sys/bio.h>
   62 #include <sys/buf.h>
   63 #include <sys/filio.h>
   64 #include <sys/resourcevar.h>
   65 #include <sys/rwlock.h>
   66 #include <sys/sx.h>
   67 #include <sys/sysctl.h>
   68 #include <sys/ttycom.h>
   69 #include <sys/conf.h>
   70 #include <sys/syslog.h>
   71 #include <sys/unistd.h>
   72 
   73 #include <security/audit/audit.h>
   74 #include <security/mac/mac_framework.h>
   75 
   76 #include <vm/vm.h>
   77 #include <vm/vm_extern.h>
   78 #include <vm/pmap.h>
   79 #include <vm/vm_map.h>
   80 #include <vm/vm_object.h>
   81 #include <vm/vm_page.h>
   82 
   83 static fo_rdwr_t        vn_read;
   84 static fo_rdwr_t        vn_write;
   85 static fo_rdwr_t        vn_io_fault;
   86 static fo_truncate_t    vn_truncate;
   87 static fo_ioctl_t       vn_ioctl;
   88 static fo_poll_t        vn_poll;
   89 static fo_kqfilter_t    vn_kqfilter;
   90 static fo_stat_t        vn_statfile;
   91 static fo_close_t       vn_closefile;
   92 
   93 struct  fileops vnops = {
   94         .fo_read = vn_io_fault,
   95         .fo_write = vn_io_fault,
   96         .fo_truncate = vn_truncate,
   97         .fo_ioctl = vn_ioctl,
   98         .fo_poll = vn_poll,
   99         .fo_kqfilter = vn_kqfilter,
  100         .fo_stat = vn_statfile,
  101         .fo_close = vn_closefile,
  102         .fo_chmod = vn_chmod,
  103         .fo_chown = vn_chown,
  104         .fo_sendfile = vn_sendfile,
  105         .fo_seek = vn_seek,
  106         .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
  107 };
  108 
  109 static const int io_hold_cnt = 16;
  110 static int vn_io_fault_enable = 1;
  111 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
  112     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
  113 static u_long vn_io_faults_cnt;
  114 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
  115     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
  116 
  117 /*
  118  * Returns true if vn_io_fault mode of handling the i/o request should
  119  * be used.
  120  */
  121 static bool
  122 do_vn_io_fault(struct vnode *vp, struct uio *uio)
  123 {
  124         struct mount *mp;
  125 
  126         return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
  127             (mp = vp->v_mount) != NULL &&
  128             (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
  129 }
  130 
  131 /*
  132  * Structure used to pass arguments to vn_io_fault1(), to do either
  133  * file- or vnode-based I/O calls.
  134  */
  135 struct vn_io_fault_args {
  136         enum {
  137                 VN_IO_FAULT_FOP,
  138                 VN_IO_FAULT_VOP
  139         } kind;
  140         struct ucred *cred;
  141         int flags;
  142         union {
  143                 struct fop_args_tag {
  144                         struct file *fp;
  145                         fo_rdwr_t *doio;
  146                 } fop_args;
  147                 struct vop_args_tag {
  148                         struct vnode *vp;
  149                 } vop_args;
  150         } args;
  151 };
  152 
  153 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
  154     struct vn_io_fault_args *args, struct thread *td);
  155 
  156 int
  157 vn_open(ndp, flagp, cmode, fp)
  158         struct nameidata *ndp;
  159         int *flagp, cmode;
  160         struct file *fp;
  161 {
  162         struct thread *td = ndp->ni_cnd.cn_thread;
  163 
  164         return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
  165 }
  166 
  167 /*
  168  * Common code for vnode open operations via a name lookup.
  169  * Lookup the vnode and invoke VOP_CREATE if needed.
  170  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
  171  * 
  172  * Note that this does NOT free nameidata for the successful case,
  173  * due to the NDINIT being done elsewhere.
  174  */
  175 int
  176 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
  177     struct ucred *cred, struct file *fp)
  178 {
  179         struct vnode *vp;
  180         struct mount *mp;
  181         struct thread *td = ndp->ni_cnd.cn_thread;
  182         struct vattr vat;
  183         struct vattr *vap = &vat;
  184         int fmode, error;
  185 
  186 restart:
  187         fmode = *flagp;
  188         if (fmode & O_CREAT) {
  189                 ndp->ni_cnd.cn_nameiop = CREATE;
  190                 /*
  191                  * Set NOCACHE to avoid flushing the cache when
  192                  * rolling in many files at once.
  193                 */
  194                 ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
  195                 if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
  196                         ndp->ni_cnd.cn_flags |= FOLLOW;
  197                 if (!(vn_open_flags & VN_OPEN_NOAUDIT))
  198                         ndp->ni_cnd.cn_flags |= AUDITVNODE1;
  199                 if (vn_open_flags & VN_OPEN_NOCAPCHECK)
  200                         ndp->ni_cnd.cn_flags |= NOCAPCHECK;
  201                 bwillwrite();
  202                 if ((error = namei(ndp)) != 0)
  203                         return (error);
  204                 if (ndp->ni_vp == NULL) {
  205                         VATTR_NULL(vap);
  206                         vap->va_type = VREG;
  207                         vap->va_mode = cmode;
  208                         if (fmode & O_EXCL)
  209                                 vap->va_vaflags |= VA_EXCLUSIVE;
  210                         if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
  211                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  212                                 vput(ndp->ni_dvp);
  213                                 if ((error = vn_start_write(NULL, &mp,
  214                                     V_XSLEEP | PCATCH)) != 0)
  215                                         return (error);
  216                                 goto restart;
  217                         }
  218                         if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
  219                                 ndp->ni_cnd.cn_flags |= MAKEENTRY;
  220 #ifdef MAC
  221                         error = mac_vnode_check_create(cred, ndp->ni_dvp,
  222                             &ndp->ni_cnd, vap);
  223                         if (error == 0)
  224 #endif
  225                                 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
  226                                                    &ndp->ni_cnd, vap);
  227                         vput(ndp->ni_dvp);
  228                         vn_finished_write(mp);
  229                         if (error) {
  230                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  231                                 return (error);
  232                         }
  233                         fmode &= ~O_TRUNC;
  234                         vp = ndp->ni_vp;
  235                 } else {
  236                         if (ndp->ni_dvp == ndp->ni_vp)
  237                                 vrele(ndp->ni_dvp);
  238                         else
  239                                 vput(ndp->ni_dvp);
  240                         ndp->ni_dvp = NULL;
  241                         vp = ndp->ni_vp;
  242                         if (fmode & O_EXCL) {
  243                                 error = EEXIST;
  244                                 goto bad;
  245                         }
  246                         fmode &= ~O_CREAT;
  247                 }
  248         } else {
  249                 ndp->ni_cnd.cn_nameiop = LOOKUP;
  250                 ndp->ni_cnd.cn_flags = ISOPEN |
  251                     ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
  252                 if (!(fmode & FWRITE))
  253                         ndp->ni_cnd.cn_flags |= LOCKSHARED;
  254                 if (!(vn_open_flags & VN_OPEN_NOAUDIT))
  255                         ndp->ni_cnd.cn_flags |= AUDITVNODE1;
  256                 if (vn_open_flags & VN_OPEN_NOCAPCHECK)
  257                         ndp->ni_cnd.cn_flags |= NOCAPCHECK;
  258                 if ((error = namei(ndp)) != 0)
  259                         return (error);
  260                 vp = ndp->ni_vp;
  261         }
  262         error = vn_open_vnode(vp, fmode, cred, td, fp);
  263         if (error)
  264                 goto bad;
  265         *flagp = fmode;
  266         return (0);
  267 bad:
  268         NDFREE(ndp, NDF_ONLY_PNBUF);
  269         vput(vp);
  270         *flagp = fmode;
  271         ndp->ni_vp = NULL;
  272         return (error);
  273 }
  274 
  275 /*
  276  * Common code for vnode open operations once a vnode is located.
  277  * Check permissions, and call the VOP_OPEN routine.
  278  */
  279 int
  280 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
  281     struct thread *td, struct file *fp)
  282 {
  283         struct mount *mp;
  284         accmode_t accmode;
  285         struct flock lf;
  286         int error, have_flock, lock_flags, type;
  287 
  288         if (vp->v_type == VLNK)
  289                 return (EMLINK);
  290         if (vp->v_type == VSOCK)
  291                 return (EOPNOTSUPP);
  292         if (vp->v_type != VDIR && fmode & O_DIRECTORY)
  293                 return (ENOTDIR);
  294         accmode = 0;
  295         if (fmode & (FWRITE | O_TRUNC)) {
  296                 if (vp->v_type == VDIR)
  297                         return (EISDIR);
  298                 accmode |= VWRITE;
  299         }
  300         if (fmode & FREAD)
  301                 accmode |= VREAD;
  302         if (fmode & FEXEC)
  303                 accmode |= VEXEC;
  304         if ((fmode & O_APPEND) && (fmode & FWRITE))
  305                 accmode |= VAPPEND;
  306 #ifdef MAC
  307         error = mac_vnode_check_open(cred, vp, accmode);
  308         if (error)
  309                 return (error);
  310 #endif
  311         if ((fmode & O_CREAT) == 0) {
  312                 if (accmode & VWRITE) {
  313                         error = vn_writechk(vp);
  314                         if (error)
  315                                 return (error);
  316                 }
  317                 if (accmode) {
  318                         error = VOP_ACCESS(vp, accmode, cred, td);
  319                         if (error)
  320                                 return (error);
  321                 }
  322         }
  323         if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
  324                 vn_lock(vp, LK_UPGRADE | LK_RETRY);
  325         if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
  326                 return (error);
  327 
  328         if (fmode & (O_EXLOCK | O_SHLOCK)) {
  329                 KASSERT(fp != NULL, ("open with flock requires fp"));
  330                 lock_flags = VOP_ISLOCKED(vp);
  331                 VOP_UNLOCK(vp, 0);
  332                 lf.l_whence = SEEK_SET;
  333                 lf.l_start = 0;
  334                 lf.l_len = 0;
  335                 if (fmode & O_EXLOCK)
  336                         lf.l_type = F_WRLCK;
  337                 else
  338                         lf.l_type = F_RDLCK;
  339                 type = F_FLOCK;
  340                 if ((fmode & FNONBLOCK) == 0)
  341                         type |= F_WAIT;
  342                 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
  343                 have_flock = (error == 0);
  344                 vn_lock(vp, lock_flags | LK_RETRY);
  345                 if (error == 0 && vp->v_iflag & VI_DOOMED)
  346                         error = ENOENT;
  347                 /*
  348                  * Another thread might have used this vnode as an
  349                  * executable while the vnode lock was dropped.
  350                  * Ensure the vnode is still able to be opened for
  351                  * writing after the lock has been obtained.
  352                  */
  353                 if (error == 0 && accmode & VWRITE)
  354                         error = vn_writechk(vp);
  355                 if (error) {
  356                         VOP_UNLOCK(vp, 0);
  357                         if (have_flock) {
  358                                 lf.l_whence = SEEK_SET;
  359                                 lf.l_start = 0;
  360                                 lf.l_len = 0;
  361                                 lf.l_type = F_UNLCK;
  362                                 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
  363                                     F_FLOCK);
  364                         }
  365                         vn_start_write(vp, &mp, V_WAIT);
  366                         vn_lock(vp, lock_flags | LK_RETRY);
  367                         (void)VOP_CLOSE(vp, fmode, cred, td);
  368                         vn_finished_write(mp);
  369                         /* Prevent second close from fdrop()->vn_close(). */
  370                         if (fp != NULL)
  371                                 fp->f_ops= &badfileops;
  372                         return (error);
  373                 }
  374                 fp->f_flag |= FHASLOCK;
  375         }
  376         if (fmode & FWRITE) {
  377                 VOP_ADD_WRITECOUNT(vp, 1);
  378                 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
  379                     __func__, vp, vp->v_writecount);
  380         }
  381         ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
  382         return (0);
  383 }
  384 
  385 /*
  386  * Check for write permissions on the specified vnode.
  387  * Prototype text segments cannot be written.
  388  */
  389 int
  390 vn_writechk(vp)
  391         register struct vnode *vp;
  392 {
  393 
  394         ASSERT_VOP_LOCKED(vp, "vn_writechk");
  395         /*
  396          * If there's shared text associated with
  397          * the vnode, try to free it up once.  If
  398          * we fail, we can't allow writing.
  399          */
  400         if (VOP_IS_TEXT(vp))
  401                 return (ETXTBSY);
  402 
  403         return (0);
  404 }
  405 
  406 /*
  407  * Vnode close call
  408  */
  409 int
  410 vn_close(vp, flags, file_cred, td)
  411         register struct vnode *vp;
  412         int flags;
  413         struct ucred *file_cred;
  414         struct thread *td;
  415 {
  416         struct mount *mp;
  417         int error, lock_flags;
  418 
  419         if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
  420             MNT_EXTENDED_SHARED(vp->v_mount))
  421                 lock_flags = LK_SHARED;
  422         else
  423                 lock_flags = LK_EXCLUSIVE;
  424 
  425         vn_start_write(vp, &mp, V_WAIT);
  426         vn_lock(vp, lock_flags | LK_RETRY);
  427         if (flags & FWRITE) {
  428                 VNASSERT(vp->v_writecount > 0, vp, 
  429                     ("vn_close: negative writecount"));
  430                 VOP_ADD_WRITECOUNT(vp, -1);
  431                 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
  432                     __func__, vp, vp->v_writecount);
  433         }
  434         error = VOP_CLOSE(vp, flags, file_cred, td);
  435         vput(vp);
  436         vn_finished_write(mp);
  437         return (error);
  438 }
  439 
  440 /*
  441  * Heuristic to detect sequential operation.
  442  */
  443 static int
  444 sequential_heuristic(struct uio *uio, struct file *fp)
  445 {
  446 
  447         ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
  448         if (fp->f_flag & FRDAHEAD)
  449                 return (fp->f_seqcount << IO_SEQSHIFT);
  450 
  451         /*
  452          * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
  453          * that the first I/O is normally considered to be slightly
  454          * sequential.  Seeking to offset 0 doesn't change sequentiality
  455          * unless previous seeks have reduced f_seqcount to 0, in which
  456          * case offset 0 is not special.
  457          */
  458         if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
  459             uio->uio_offset == fp->f_nextoff) {
  460                 /*
  461                  * f_seqcount is in units of fixed-size blocks so that it
  462                  * depends mainly on the amount of sequential I/O and not
  463                  * much on the number of sequential I/O's.  The fixed size
  464                  * of 16384 is hard-coded here since it is (not quite) just
  465                  * a magic size that works well here.  This size is more
  466                  * closely related to the best I/O size for real disks than
  467                  * to any block size used by software.
  468                  */
  469                 fp->f_seqcount += howmany(uio->uio_resid, 16384);
  470                 if (fp->f_seqcount > IO_SEQMAX)
  471                         fp->f_seqcount = IO_SEQMAX;
  472                 return (fp->f_seqcount << IO_SEQSHIFT);
  473         }
  474 
  475         /* Not sequential.  Quickly draw-down sequentiality. */
  476         if (fp->f_seqcount > 1)
  477                 fp->f_seqcount = 1;
  478         else
  479                 fp->f_seqcount = 0;
  480         return (0);
  481 }
  482 
  483 /*
  484  * Package up an I/O request on a vnode into a uio and do it.
  485  */
  486 int
  487 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
  488     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
  489     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
  490 {
  491         struct uio auio;
  492         struct iovec aiov;
  493         struct mount *mp;
  494         struct ucred *cred;
  495         void *rl_cookie;
  496         struct vn_io_fault_args args;
  497         int error, lock_flags;
  498 
  499         auio.uio_iov = &aiov;
  500         auio.uio_iovcnt = 1;
  501         aiov.iov_base = base;
  502         aiov.iov_len = len;
  503         auio.uio_resid = len;
  504         auio.uio_offset = offset;
  505         auio.uio_segflg = segflg;
  506         auio.uio_rw = rw;
  507         auio.uio_td = td;
  508         error = 0;
  509 
  510         if ((ioflg & IO_NODELOCKED) == 0) {
  511                 if ((ioflg & IO_RANGELOCKED) == 0) {
  512                         if (rw == UIO_READ) {
  513                                 rl_cookie = vn_rangelock_rlock(vp, offset,
  514                                     offset + len);
  515                         } else {
  516                                 rl_cookie = vn_rangelock_wlock(vp, offset,
  517                                     offset + len);
  518                         }
  519                 } else
  520                         rl_cookie = NULL;
  521                 mp = NULL;
  522                 if (rw == UIO_WRITE) { 
  523                         if (vp->v_type != VCHR &&
  524                             (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
  525                             != 0)
  526                                 goto out;
  527                         if (MNT_SHARED_WRITES(mp) ||
  528                             ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
  529                                 lock_flags = LK_SHARED;
  530                         else
  531                                 lock_flags = LK_EXCLUSIVE;
  532                 } else
  533                         lock_flags = LK_SHARED;
  534                 vn_lock(vp, lock_flags | LK_RETRY);
  535         } else
  536                 rl_cookie = NULL;
  537 
  538         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
  539 #ifdef MAC
  540         if ((ioflg & IO_NOMACCHECK) == 0) {
  541                 if (rw == UIO_READ)
  542                         error = mac_vnode_check_read(active_cred, file_cred,
  543                             vp);
  544                 else
  545                         error = mac_vnode_check_write(active_cred, file_cred,
  546                             vp);
  547         }
  548 #endif
  549         if (error == 0) {
  550                 if (file_cred != NULL)
  551                         cred = file_cred;
  552                 else
  553                         cred = active_cred;
  554                 if (do_vn_io_fault(vp, &auio)) {
  555                         args.kind = VN_IO_FAULT_VOP;
  556                         args.cred = cred;
  557                         args.flags = ioflg;
  558                         args.args.vop_args.vp = vp;
  559                         error = vn_io_fault1(vp, &auio, &args, td);
  560                 } else if (rw == UIO_READ) {
  561                         error = VOP_READ(vp, &auio, ioflg, cred);
  562                 } else /* if (rw == UIO_WRITE) */ {
  563                         error = VOP_WRITE(vp, &auio, ioflg, cred);
  564                 }
  565         }
  566         if (aresid)
  567                 *aresid = auio.uio_resid;
  568         else
  569                 if (auio.uio_resid && error == 0)
  570                         error = EIO;
  571         if ((ioflg & IO_NODELOCKED) == 0) {
  572                 VOP_UNLOCK(vp, 0);
  573                 if (mp != NULL)
  574                         vn_finished_write(mp);
  575         }
  576  out:
  577         if (rl_cookie != NULL)
  578                 vn_rangelock_unlock(vp, rl_cookie);
  579         return (error);
  580 }
  581 
  582 /*
  583  * Package up an I/O request on a vnode into a uio and do it.  The I/O
  584  * request is split up into smaller chunks and we try to avoid saturating
  585  * the buffer cache while potentially holding a vnode locked, so we 
  586  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
  587  * to give other processes a chance to lock the vnode (either other processes
  588  * core'ing the same binary, or unrelated processes scanning the directory).
  589  */
  590 int
  591 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
  592     file_cred, aresid, td)
  593         enum uio_rw rw;
  594         struct vnode *vp;
  595         void *base;
  596         size_t len;
  597         off_t offset;
  598         enum uio_seg segflg;
  599         int ioflg;
  600         struct ucred *active_cred;
  601         struct ucred *file_cred;
  602         size_t *aresid;
  603         struct thread *td;
  604 {
  605         int error = 0;
  606         ssize_t iaresid;
  607 
  608         do {
  609                 int chunk;
  610 
  611                 /*
  612                  * Force `offset' to a multiple of MAXBSIZE except possibly
  613                  * for the first chunk, so that filesystems only need to
  614                  * write full blocks except possibly for the first and last
  615                  * chunks.
  616                  */
  617                 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
  618 
  619                 if (chunk > len)
  620                         chunk = len;
  621                 if (rw != UIO_READ && vp->v_type == VREG)
  622                         bwillwrite();
  623                 iaresid = 0;
  624                 error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
  625                     ioflg, active_cred, file_cred, &iaresid, td);
  626                 len -= chunk;   /* aresid calc already includes length */
  627                 if (error)
  628                         break;
  629                 offset += chunk;
  630                 base = (char *)base + chunk;
  631                 kern_yield(PRI_USER);
  632         } while (len);
  633         if (aresid)
  634                 *aresid = len + iaresid;
  635         return (error);
  636 }
  637 
  638 off_t
  639 foffset_lock(struct file *fp, int flags)
  640 {
  641         struct mtx *mtxp;
  642         off_t res;
  643 
  644         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  645 
  646 #if OFF_MAX <= LONG_MAX
  647         /*
  648          * Caller only wants the current f_offset value.  Assume that
  649          * the long and shorter integer types reads are atomic.
  650          */
  651         if ((flags & FOF_NOLOCK) != 0)
  652                 return (fp->f_offset);
  653 #endif
  654 
  655         /*
  656          * According to McKusick the vn lock was protecting f_offset here.
  657          * It is now protected by the FOFFSET_LOCKED flag.
  658          */
  659         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  660         mtx_lock(mtxp);
  661         if ((flags & FOF_NOLOCK) == 0) {
  662                 while (fp->f_vnread_flags & FOFFSET_LOCKED) {
  663                         fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
  664                         msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
  665                             "vofflock", 0);
  666                 }
  667                 fp->f_vnread_flags |= FOFFSET_LOCKED;
  668         }
  669         res = fp->f_offset;
  670         mtx_unlock(mtxp);
  671         return (res);
  672 }
  673 
  674 void
  675 foffset_unlock(struct file *fp, off_t val, int flags)
  676 {
  677         struct mtx *mtxp;
  678 
  679         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  680 
  681 #if OFF_MAX <= LONG_MAX
  682         if ((flags & FOF_NOLOCK) != 0) {
  683                 if ((flags & FOF_NOUPDATE) == 0)
  684                         fp->f_offset = val;
  685                 if ((flags & FOF_NEXTOFF) != 0)
  686                         fp->f_nextoff = val;
  687                 return;
  688         }
  689 #endif
  690 
  691         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  692         mtx_lock(mtxp);
  693         if ((flags & FOF_NOUPDATE) == 0)
  694                 fp->f_offset = val;
  695         if ((flags & FOF_NEXTOFF) != 0)
  696                 fp->f_nextoff = val;
  697         if ((flags & FOF_NOLOCK) == 0) {
  698                 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
  699                     ("Lost FOFFSET_LOCKED"));
  700                 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
  701                         wakeup(&fp->f_vnread_flags);
  702                 fp->f_vnread_flags = 0;
  703         }
  704         mtx_unlock(mtxp);
  705 }
  706 
  707 void
  708 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
  709 {
  710 
  711         if ((flags & FOF_OFFSET) == 0)
  712                 uio->uio_offset = foffset_lock(fp, flags);
  713 }
  714 
  715 void
  716 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
  717 {
  718 
  719         if ((flags & FOF_OFFSET) == 0)
  720                 foffset_unlock(fp, uio->uio_offset, flags);
  721 }
  722 
  723 static int
  724 get_advice(struct file *fp, struct uio *uio)
  725 {
  726         struct mtx *mtxp;
  727         int ret;
  728 
  729         ret = POSIX_FADV_NORMAL;
  730         if (fp->f_advice == NULL)
  731                 return (ret);
  732 
  733         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  734         mtx_lock(mtxp);
  735         if (uio->uio_offset >= fp->f_advice->fa_start &&
  736             uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
  737                 ret = fp->f_advice->fa_advice;
  738         mtx_unlock(mtxp);
  739         return (ret);
  740 }
  741 
  742 /*
  743  * File table vnode read routine.
  744  */
  745 static int
  746 vn_read(fp, uio, active_cred, flags, td)
  747         struct file *fp;
  748         struct uio *uio;
  749         struct ucred *active_cred;
  750         int flags;
  751         struct thread *td;
  752 {
  753         struct vnode *vp;
  754         struct mtx *mtxp;
  755         int error, ioflag;
  756         int advice;
  757         off_t offset, start, end;
  758 
  759         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
  760             uio->uio_td, td));
  761         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
  762         vp = fp->f_vnode;
  763         ioflag = 0;
  764         if (fp->f_flag & FNONBLOCK)
  765                 ioflag |= IO_NDELAY;
  766         if (fp->f_flag & O_DIRECT)
  767                 ioflag |= IO_DIRECT;
  768         advice = get_advice(fp, uio);
  769         vn_lock(vp, LK_SHARED | LK_RETRY);
  770 
  771         switch (advice) {
  772         case POSIX_FADV_NORMAL:
  773         case POSIX_FADV_SEQUENTIAL:
  774         case POSIX_FADV_NOREUSE:
  775                 ioflag |= sequential_heuristic(uio, fp);
  776                 break;
  777         case POSIX_FADV_RANDOM:
  778                 /* Disable read-ahead for random I/O. */
  779                 break;
  780         }
  781         offset = uio->uio_offset;
  782 
  783 #ifdef MAC
  784         error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
  785         if (error == 0)
  786 #endif
  787                 error = VOP_READ(vp, uio, ioflag, fp->f_cred);
  788         fp->f_nextoff = uio->uio_offset;
  789         VOP_UNLOCK(vp, 0);
  790         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
  791             offset != uio->uio_offset) {
  792                 /*
  793                  * Use POSIX_FADV_DONTNEED to flush clean pages and
  794                  * buffers for the backing file after a
  795                  * POSIX_FADV_NOREUSE read(2).  To optimize the common
  796                  * case of using POSIX_FADV_NOREUSE with sequential
  797                  * access, track the previous implicit DONTNEED
  798                  * request and grow this request to include the
  799                  * current read(2) in addition to the previous
  800                  * DONTNEED.  With purely sequential access this will
  801                  * cause the DONTNEED requests to continously grow to
  802                  * cover all of the previously read regions of the
  803                  * file.  This allows filesystem blocks that are
  804                  * accessed by multiple calls to read(2) to be flushed
  805                  * once the last read(2) finishes.
  806                  */
  807                 start = offset;
  808                 end = uio->uio_offset - 1;
  809                 mtxp = mtx_pool_find(mtxpool_sleep, fp);
  810                 mtx_lock(mtxp);
  811                 if (fp->f_advice != NULL &&
  812                     fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
  813                         if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
  814                                 start = fp->f_advice->fa_prevstart;
  815                         else if (fp->f_advice->fa_prevstart != 0 &&
  816                             fp->f_advice->fa_prevstart == end + 1)
  817                                 end = fp->f_advice->fa_prevend;
  818                         fp->f_advice->fa_prevstart = start;
  819                         fp->f_advice->fa_prevend = end;
  820                 }
  821                 mtx_unlock(mtxp);
  822                 error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
  823         }
  824         return (error);
  825 }
  826 
  827 /*
  828  * File table vnode write routine.
  829  */
  830 static int
  831 vn_write(fp, uio, active_cred, flags, td)
  832         struct file *fp;
  833         struct uio *uio;
  834         struct ucred *active_cred;
  835         int flags;
  836         struct thread *td;
  837 {
  838         struct vnode *vp;
  839         struct mount *mp;
  840         struct mtx *mtxp;
  841         int error, ioflag, lock_flags;
  842         int advice;
  843         off_t offset, start, end;
  844 
  845         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
  846             uio->uio_td, td));
  847         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
  848         vp = fp->f_vnode;
  849         if (vp->v_type == VREG)
  850                 bwillwrite();
  851         ioflag = IO_UNIT;
  852         if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
  853                 ioflag |= IO_APPEND;
  854         if (fp->f_flag & FNONBLOCK)
  855                 ioflag |= IO_NDELAY;
  856         if (fp->f_flag & O_DIRECT)
  857                 ioflag |= IO_DIRECT;
  858         if ((fp->f_flag & O_FSYNC) ||
  859             (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
  860                 ioflag |= IO_SYNC;
  861         mp = NULL;
  862         if (vp->v_type != VCHR &&
  863             (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
  864                 goto unlock;
  865 
  866         advice = get_advice(fp, uio);
  867 
  868         if (MNT_SHARED_WRITES(mp) ||
  869             (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
  870                 lock_flags = LK_SHARED;
  871         } else {
  872                 lock_flags = LK_EXCLUSIVE;
  873         }
  874 
  875         vn_lock(vp, lock_flags | LK_RETRY);
  876         switch (advice) {
  877         case POSIX_FADV_NORMAL:
  878         case POSIX_FADV_SEQUENTIAL:
  879         case POSIX_FADV_NOREUSE:
  880                 ioflag |= sequential_heuristic(uio, fp);
  881                 break;
  882         case POSIX_FADV_RANDOM:
  883                 /* XXX: Is this correct? */
  884                 break;
  885         }
  886         offset = uio->uio_offset;
  887 
  888 #ifdef MAC
  889         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
  890         if (error == 0)
  891 #endif
  892                 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
  893         fp->f_nextoff = uio->uio_offset;
  894         VOP_UNLOCK(vp, 0);
  895         if (vp->v_type != VCHR)
  896                 vn_finished_write(mp);
  897         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
  898             offset != uio->uio_offset) {
  899                 /*
  900                  * Use POSIX_FADV_DONTNEED to flush clean pages and
  901                  * buffers for the backing file after a
  902                  * POSIX_FADV_NOREUSE write(2).  To optimize the
  903                  * common case of using POSIX_FADV_NOREUSE with
  904                  * sequential access, track the previous implicit
  905                  * DONTNEED request and grow this request to include
  906                  * the current write(2) in addition to the previous
  907                  * DONTNEED.  With purely sequential access this will
  908                  * cause the DONTNEED requests to continously grow to
  909                  * cover all of the previously written regions of the
  910                  * file.
  911                  *
  912                  * Note that the blocks just written are almost
  913                  * certainly still dirty, so this only works when
  914                  * VOP_ADVISE() calls from subsequent writes push out
  915                  * the data written by this write(2) once the backing
  916                  * buffers are clean.  However, as compared to forcing
  917                  * IO_DIRECT, this gives much saner behavior.  Write
  918                  * clustering is still allowed, and clean pages are
  919                  * merely moved to the cache page queue rather than
  920                  * outright thrown away.  This means a subsequent
  921                  * read(2) can still avoid hitting the disk if the
  922                  * pages have not been reclaimed.
  923                  *
  924                  * This does make POSIX_FADV_NOREUSE largely useless
  925                  * with non-sequential access.  However, sequential
  926                  * access is the more common use case and the flag is
  927                  * merely advisory.
  928                  */
  929                 start = offset;
  930                 end = uio->uio_offset - 1;
  931                 mtxp = mtx_pool_find(mtxpool_sleep, fp);
  932                 mtx_lock(mtxp);
  933                 if (fp->f_advice != NULL &&
  934                     fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
  935                         if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
  936                                 start = fp->f_advice->fa_prevstart;
  937                         else if (fp->f_advice->fa_prevstart != 0 &&
  938                             fp->f_advice->fa_prevstart == end + 1)
  939                                 end = fp->f_advice->fa_prevend;
  940                         fp->f_advice->fa_prevstart = start;
  941                         fp->f_advice->fa_prevend = end;
  942                 }
  943                 mtx_unlock(mtxp);
  944                 error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
  945         }
  946         
  947 unlock:
  948         return (error);
  949 }
  950 
  951 /*
  952  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
  953  * prevent the following deadlock:
  954  *
  955  * Assume that the thread A reads from the vnode vp1 into userspace
  956  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
  957  * currently not resident, then system ends up with the call chain
  958  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
  959  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
  960  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
  961  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
  962  * backed by the pages of vnode vp1, and some page in buf2 is not
  963  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
  964  *
  965  * To prevent the lock order reversal and deadlock, vn_io_fault() does
  966  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
  967  * Instead, it first tries to do the whole range i/o with pagefaults
  968  * disabled. If all pages in the i/o buffer are resident and mapped,
  969  * VOP will succeed (ignoring the genuine filesystem errors).
  970  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
  971  * i/o in chunks, with all pages in the chunk prefaulted and held
  972  * using vm_fault_quick_hold_pages().
  973  *
  974  * Filesystems using this deadlock avoidance scheme should use the
  975  * array of the held pages from uio, saved in the curthread->td_ma,
  976  * instead of doing uiomove().  A helper function
  977  * vn_io_fault_uiomove() converts uiomove request into
  978  * uiomove_fromphys() over td_ma array.
  979  *
  980  * Since vnode locks do not cover the whole i/o anymore, rangelocks
  981  * make the current i/o request atomic with respect to other i/os and
  982  * truncations.
  983  */
  984 
  985 /*
  986  * Decode vn_io_fault_args and perform the corresponding i/o.
  987  */
  988 static int
  989 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
  990     struct thread *td)
  991 {
  992 
  993         switch (args->kind) {
  994         case VN_IO_FAULT_FOP:
  995                 return ((args->args.fop_args.doio)(args->args.fop_args.fp,
  996                     uio, args->cred, args->flags, td));
  997         case VN_IO_FAULT_VOP:
  998                 if (uio->uio_rw == UIO_READ) {
  999                         return (VOP_READ(args->args.vop_args.vp, uio,
 1000                             args->flags, args->cred));
 1001                 } else if (uio->uio_rw == UIO_WRITE) {
 1002                         return (VOP_WRITE(args->args.vop_args.vp, uio,
 1003                             args->flags, args->cred));
 1004                 }
 1005                 break;
 1006         }
 1007         panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
 1008             uio->uio_rw);
 1009 }
 1010 
 1011 /*
 1012  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
 1013  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
 1014  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
 1015  * into args and call vn_io_fault1() to handle faults during the user
 1016  * mode buffer accesses.
 1017  */
 1018 static int
 1019 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
 1020     struct thread *td)
 1021 {
 1022         vm_page_t ma[io_hold_cnt + 2];
 1023         struct uio *uio_clone, short_uio;
 1024         struct iovec short_iovec[1];
 1025         vm_page_t *prev_td_ma;
 1026         vm_prot_t prot;
 1027         vm_offset_t addr, end;
 1028         size_t len, resid;
 1029         ssize_t adv;
 1030         int error, cnt, save, saveheld, prev_td_ma_cnt;
 1031 
 1032         prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
 1033 
 1034         /*
 1035          * The UFS follows IO_UNIT directive and replays back both
 1036          * uio_offset and uio_resid if an error is encountered during the
 1037          * operation.  But, since the iovec may be already advanced,
 1038          * uio is still in an inconsistent state.
 1039          *
 1040          * Cache a copy of the original uio, which is advanced to the redo
 1041          * point using UIO_NOCOPY below.
 1042          */
 1043         uio_clone = cloneuio(uio);
 1044         resid = uio->uio_resid;
 1045 
 1046         short_uio.uio_segflg = UIO_USERSPACE;
 1047         short_uio.uio_rw = uio->uio_rw;
 1048         short_uio.uio_td = uio->uio_td;
 1049 
 1050         save = vm_fault_disable_pagefaults();
 1051         error = vn_io_fault_doio(args, uio, td);
 1052         if (error != EFAULT)
 1053                 goto out;
 1054 
 1055         atomic_add_long(&vn_io_faults_cnt, 1);
 1056         uio_clone->uio_segflg = UIO_NOCOPY;
 1057         uiomove(NULL, resid - uio->uio_resid, uio_clone);
 1058         uio_clone->uio_segflg = uio->uio_segflg;
 1059 
 1060         saveheld = curthread_pflags_set(TDP_UIOHELD);
 1061         prev_td_ma = td->td_ma;
 1062         prev_td_ma_cnt = td->td_ma_cnt;
 1063 
 1064         while (uio_clone->uio_resid != 0) {
 1065                 len = uio_clone->uio_iov->iov_len;
 1066                 if (len == 0) {
 1067                         KASSERT(uio_clone->uio_iovcnt >= 1,
 1068                             ("iovcnt underflow"));
 1069                         uio_clone->uio_iov++;
 1070                         uio_clone->uio_iovcnt--;
 1071                         continue;
 1072                 }
 1073                 if (len > io_hold_cnt * PAGE_SIZE)
 1074                         len = io_hold_cnt * PAGE_SIZE;
 1075                 addr = (uintptr_t)uio_clone->uio_iov->iov_base;
 1076                 end = round_page(addr + len);
 1077                 if (end < addr) {
 1078                         error = EFAULT;
 1079                         break;
 1080                 }
 1081                 cnt = atop(end - trunc_page(addr));
 1082                 /*
 1083                  * A perfectly misaligned address and length could cause
 1084                  * both the start and the end of the chunk to use partial
 1085                  * page.  +2 accounts for such a situation.
 1086                  */
 1087                 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
 1088                     addr, len, prot, ma, io_hold_cnt + 2);
 1089                 if (cnt == -1) {
 1090                         error = EFAULT;
 1091                         break;
 1092                 }
 1093                 short_uio.uio_iov = &short_iovec[0];
 1094                 short_iovec[0].iov_base = (void *)addr;
 1095                 short_uio.uio_iovcnt = 1;
 1096                 short_uio.uio_resid = short_iovec[0].iov_len = len;
 1097                 short_uio.uio_offset = uio_clone->uio_offset;
 1098                 td->td_ma = ma;
 1099                 td->td_ma_cnt = cnt;
 1100 
 1101                 error = vn_io_fault_doio(args, &short_uio, td);
 1102                 vm_page_unhold_pages(ma, cnt);
 1103                 adv = len - short_uio.uio_resid;
 1104 
 1105                 uio_clone->uio_iov->iov_base =
 1106                     (char *)uio_clone->uio_iov->iov_base + adv;
 1107                 uio_clone->uio_iov->iov_len -= adv;
 1108                 uio_clone->uio_resid -= adv;
 1109                 uio_clone->uio_offset += adv;
 1110 
 1111                 uio->uio_resid -= adv;
 1112                 uio->uio_offset += adv;
 1113 
 1114                 if (error != 0 || adv == 0)
 1115                         break;
 1116         }
 1117         td->td_ma = prev_td_ma;
 1118         td->td_ma_cnt = prev_td_ma_cnt;
 1119         curthread_pflags_restore(saveheld);
 1120 out:
 1121         vm_fault_enable_pagefaults(save);
 1122         free(uio_clone, M_IOV);
 1123         return (error);
 1124 }
 1125 
 1126 static int
 1127 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1128     int flags, struct thread *td)
 1129 {
 1130         fo_rdwr_t *doio;
 1131         struct vnode *vp;
 1132         void *rl_cookie;
 1133         struct vn_io_fault_args args;
 1134         int error;
 1135 
 1136         doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
 1137         vp = fp->f_vnode;
 1138         foffset_lock_uio(fp, uio, flags);
 1139         if (do_vn_io_fault(vp, uio)) {
 1140                 args.kind = VN_IO_FAULT_FOP;
 1141                 args.args.fop_args.fp = fp;
 1142                 args.args.fop_args.doio = doio;
 1143                 args.cred = active_cred;
 1144                 args.flags = flags | FOF_OFFSET;
 1145                 if (uio->uio_rw == UIO_READ) {
 1146                         rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
 1147                             uio->uio_offset + uio->uio_resid);
 1148                 } else if ((fp->f_flag & O_APPEND) != 0 ||
 1149                     (flags & FOF_OFFSET) == 0) {
 1150                         /* For appenders, punt and lock the whole range. */
 1151                         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 1152                 } else {
 1153                         rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
 1154                             uio->uio_offset + uio->uio_resid);
 1155                 }
 1156                 error = vn_io_fault1(vp, uio, &args, td);
 1157                 vn_rangelock_unlock(vp, rl_cookie);
 1158         } else {
 1159                 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
 1160         }
 1161         foffset_unlock_uio(fp, uio, flags);
 1162         return (error);
 1163 }
 1164 
 1165 /*
 1166  * Helper function to perform the requested uiomove operation using
 1167  * the held pages for io->uio_iov[0].iov_base buffer instead of
 1168  * copyin/copyout.  Access to the pages with uiomove_fromphys()
 1169  * instead of iov_base prevents page faults that could occur due to
 1170  * pmap_collect() invalidating the mapping created by
 1171  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
 1172  * object cleanup revoking the write access from page mappings.
 1173  *
 1174  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
 1175  * instead of plain uiomove().
 1176  */
 1177 int
 1178 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
 1179 {
 1180         struct uio transp_uio;
 1181         struct iovec transp_iov[1];
 1182         struct thread *td;
 1183         size_t adv;
 1184         int error, pgadv;
 1185 
 1186         td = curthread;
 1187         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1188             uio->uio_segflg != UIO_USERSPACE)
 1189                 return (uiomove(data, xfersize, uio));
 1190 
 1191         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1192         transp_iov[0].iov_base = data;
 1193         transp_uio.uio_iov = &transp_iov[0];
 1194         transp_uio.uio_iovcnt = 1;
 1195         if (xfersize > uio->uio_resid)
 1196                 xfersize = uio->uio_resid;
 1197         transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
 1198         transp_uio.uio_offset = 0;
 1199         transp_uio.uio_segflg = UIO_SYSSPACE;
 1200         /*
 1201          * Since transp_iov points to data, and td_ma page array
 1202          * corresponds to original uio->uio_iov, we need to invert the
 1203          * direction of the i/o operation as passed to
 1204          * uiomove_fromphys().
 1205          */
 1206         switch (uio->uio_rw) {
 1207         case UIO_WRITE:
 1208                 transp_uio.uio_rw = UIO_READ;
 1209                 break;
 1210         case UIO_READ:
 1211                 transp_uio.uio_rw = UIO_WRITE;
 1212                 break;
 1213         }
 1214         transp_uio.uio_td = uio->uio_td;
 1215         error = uiomove_fromphys(td->td_ma,
 1216             ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
 1217             xfersize, &transp_uio);
 1218         adv = xfersize - transp_uio.uio_resid;
 1219         pgadv =
 1220             (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
 1221             (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
 1222         td->td_ma += pgadv;
 1223         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1224             pgadv));
 1225         td->td_ma_cnt -= pgadv;
 1226         uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
 1227         uio->uio_iov->iov_len -= adv;
 1228         uio->uio_resid -= adv;
 1229         uio->uio_offset += adv;
 1230         return (error);
 1231 }
 1232 
 1233 int
 1234 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
 1235     struct uio *uio)
 1236 {
 1237         struct thread *td;
 1238         vm_offset_t iov_base;
 1239         int cnt, pgadv;
 1240 
 1241         td = curthread;
 1242         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1243             uio->uio_segflg != UIO_USERSPACE)
 1244                 return (uiomove_fromphys(ma, offset, xfersize, uio));
 1245 
 1246         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1247         cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
 1248         iov_base = (vm_offset_t)uio->uio_iov->iov_base;
 1249         switch (uio->uio_rw) {
 1250         case UIO_WRITE:
 1251                 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
 1252                     offset, cnt);
 1253                 break;
 1254         case UIO_READ:
 1255                 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
 1256                     cnt);
 1257                 break;
 1258         }
 1259         pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
 1260         td->td_ma += pgadv;
 1261         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1262             pgadv));
 1263         td->td_ma_cnt -= pgadv;
 1264         uio->uio_iov->iov_base = (char *)(iov_base + cnt);
 1265         uio->uio_iov->iov_len -= cnt;
 1266         uio->uio_resid -= cnt;
 1267         uio->uio_offset += cnt;
 1268         return (0);
 1269 }
 1270 
 1271 
 1272 /*
 1273  * File table truncate routine.
 1274  */
 1275 static int
 1276 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
 1277     struct thread *td)
 1278 {
 1279         struct vattr vattr;
 1280         struct mount *mp;
 1281         struct vnode *vp;
 1282         void *rl_cookie;
 1283         int error;
 1284 
 1285         vp = fp->f_vnode;
 1286 
 1287         /*
 1288          * Lock the whole range for truncation.  Otherwise split i/o
 1289          * might happen partly before and partly after the truncation.
 1290          */
 1291         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 1292         error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
 1293         if (error)
 1294                 goto out1;
 1295         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1296         if (vp->v_type == VDIR) {
 1297                 error = EISDIR;
 1298                 goto out;
 1299         }
 1300 #ifdef MAC
 1301         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
 1302         if (error)
 1303                 goto out;
 1304 #endif
 1305         error = vn_writechk(vp);
 1306         if (error == 0) {
 1307                 VATTR_NULL(&vattr);
 1308                 vattr.va_size = length;
 1309                 error = VOP_SETATTR(vp, &vattr, fp->f_cred);
 1310         }
 1311 out:
 1312         VOP_UNLOCK(vp, 0);
 1313         vn_finished_write(mp);
 1314 out1:
 1315         vn_rangelock_unlock(vp, rl_cookie);
 1316         return (error);
 1317 }
 1318 
 1319 /*
 1320  * File table vnode stat routine.
 1321  */
 1322 static int
 1323 vn_statfile(fp, sb, active_cred, td)
 1324         struct file *fp;
 1325         struct stat *sb;
 1326         struct ucred *active_cred;
 1327         struct thread *td;
 1328 {
 1329         struct vnode *vp = fp->f_vnode;
 1330         int error;
 1331 
 1332         vn_lock(vp, LK_SHARED | LK_RETRY);
 1333         error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
 1334         VOP_UNLOCK(vp, 0);
 1335 
 1336         return (error);
 1337 }
 1338 
 1339 /*
 1340  * Stat a vnode; implementation for the stat syscall
 1341  */
 1342 int
 1343 vn_stat(vp, sb, active_cred, file_cred, td)
 1344         struct vnode *vp;
 1345         register struct stat *sb;
 1346         struct ucred *active_cred;
 1347         struct ucred *file_cred;
 1348         struct thread *td;
 1349 {
 1350         struct vattr vattr;
 1351         register struct vattr *vap;
 1352         int error;
 1353         u_short mode;
 1354 
 1355 #ifdef MAC
 1356         error = mac_vnode_check_stat(active_cred, file_cred, vp);
 1357         if (error)
 1358                 return (error);
 1359 #endif
 1360 
 1361         vap = &vattr;
 1362 
 1363         /*
 1364          * Initialize defaults for new and unusual fields, so that file
 1365          * systems which don't support these fields don't need to know
 1366          * about them.
 1367          */
 1368         vap->va_birthtime.tv_sec = -1;
 1369         vap->va_birthtime.tv_nsec = 0;
 1370         vap->va_fsid = VNOVAL;
 1371         vap->va_rdev = NODEV;
 1372 
 1373         error = VOP_GETATTR(vp, vap, active_cred);
 1374         if (error)
 1375                 return (error);
 1376 
 1377         /*
 1378          * Zero the spare stat fields
 1379          */
 1380         bzero(sb, sizeof *sb);
 1381 
 1382         /*
 1383          * Copy from vattr table
 1384          */
 1385         if (vap->va_fsid != VNOVAL)
 1386                 sb->st_dev = vap->va_fsid;
 1387         else
 1388                 sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
 1389         sb->st_ino = vap->va_fileid;
 1390         mode = vap->va_mode;
 1391         switch (vap->va_type) {
 1392         case VREG:
 1393                 mode |= S_IFREG;
 1394                 break;
 1395         case VDIR:
 1396                 mode |= S_IFDIR;
 1397                 break;
 1398         case VBLK:
 1399                 mode |= S_IFBLK;
 1400                 break;
 1401         case VCHR:
 1402                 mode |= S_IFCHR;
 1403                 break;
 1404         case VLNK:
 1405                 mode |= S_IFLNK;
 1406                 break;
 1407         case VSOCK:
 1408                 mode |= S_IFSOCK;
 1409                 break;
 1410         case VFIFO:
 1411                 mode |= S_IFIFO;
 1412                 break;
 1413         default:
 1414                 return (EBADF);
 1415         };
 1416         sb->st_mode = mode;
 1417         sb->st_nlink = vap->va_nlink;
 1418         sb->st_uid = vap->va_uid;
 1419         sb->st_gid = vap->va_gid;
 1420         sb->st_rdev = vap->va_rdev;
 1421         if (vap->va_size > OFF_MAX)
 1422                 return (EOVERFLOW);
 1423         sb->st_size = vap->va_size;
 1424         sb->st_atim = vap->va_atime;
 1425         sb->st_mtim = vap->va_mtime;
 1426         sb->st_ctim = vap->va_ctime;
 1427         sb->st_birthtim = vap->va_birthtime;
 1428 
 1429         /*
 1430          * According to www.opengroup.org, the meaning of st_blksize is 
 1431          *   "a filesystem-specific preferred I/O block size for this 
 1432          *    object.  In some filesystem types, this may vary from file
 1433          *    to file"
 1434          * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
 1435          */
 1436 
 1437         sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
 1438         
 1439         sb->st_flags = vap->va_flags;
 1440         if (priv_check(td, PRIV_VFS_GENERATION))
 1441                 sb->st_gen = 0;
 1442         else
 1443                 sb->st_gen = vap->va_gen;
 1444 
 1445         sb->st_blocks = vap->va_bytes / S_BLKSIZE;
 1446         return (0);
 1447 }
 1448 
 1449 /*
 1450  * File table vnode ioctl routine.
 1451  */
 1452 static int
 1453 vn_ioctl(fp, com, data, active_cred, td)
 1454         struct file *fp;
 1455         u_long com;
 1456         void *data;
 1457         struct ucred *active_cred;
 1458         struct thread *td;
 1459 {
 1460         struct vattr vattr;
 1461         struct vnode *vp;
 1462         int error;
 1463 
 1464         vp = fp->f_vnode;
 1465         switch (vp->v_type) {
 1466         case VDIR:
 1467         case VREG:
 1468                 switch (com) {
 1469                 case FIONREAD:
 1470                         vn_lock(vp, LK_SHARED | LK_RETRY);
 1471                         error = VOP_GETATTR(vp, &vattr, active_cred);
 1472                         VOP_UNLOCK(vp, 0);
 1473                         if (error == 0)
 1474                                 *(int *)data = vattr.va_size - fp->f_offset;
 1475                         return (error);
 1476                 case FIONBIO:
 1477                 case FIOASYNC:
 1478                         return (0);
 1479                 default:
 1480                         return (VOP_IOCTL(vp, com, data, fp->f_flag,
 1481                             active_cred, td));
 1482                 }
 1483         default:
 1484                 return (ENOTTY);
 1485         }
 1486 }
 1487 
 1488 /*
 1489  * File table vnode poll routine.
 1490  */
 1491 static int
 1492 vn_poll(fp, events, active_cred, td)
 1493         struct file *fp;
 1494         int events;
 1495         struct ucred *active_cred;
 1496         struct thread *td;
 1497 {
 1498         struct vnode *vp;
 1499         int error;
 1500 
 1501         vp = fp->f_vnode;
 1502 #ifdef MAC
 1503         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1504         error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
 1505         VOP_UNLOCK(vp, 0);
 1506         if (!error)
 1507 #endif
 1508 
 1509         error = VOP_POLL(vp, events, fp->f_cred, td);
 1510         return (error);
 1511 }
 1512 
 1513 /*
 1514  * Acquire the requested lock and then check for validity.  LK_RETRY
 1515  * permits vn_lock to return doomed vnodes.
 1516  */
 1517 int
 1518 _vn_lock(struct vnode *vp, int flags, char *file, int line)
 1519 {
 1520         int error;
 1521 
 1522         VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
 1523             ("vn_lock called with no locktype."));
 1524         do {
 1525 #ifdef DEBUG_VFS_LOCKS
 1526                 KASSERT(vp->v_holdcnt != 0,
 1527                     ("vn_lock %p: zero hold count", vp));
 1528 #endif
 1529                 error = VOP_LOCK1(vp, flags, file, line);
 1530                 flags &= ~LK_INTERLOCK; /* Interlock is always dropped. */
 1531                 KASSERT((flags & LK_RETRY) == 0 || error == 0,
 1532                     ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
 1533                     flags, error));
 1534                 /*
 1535                  * Callers specify LK_RETRY if they wish to get dead vnodes.
 1536                  * If RETRY is not set, we return ENOENT instead.
 1537                  */
 1538                 if (error == 0 && vp->v_iflag & VI_DOOMED &&
 1539                     (flags & LK_RETRY) == 0) {
 1540                         VOP_UNLOCK(vp, 0);
 1541                         error = ENOENT;
 1542                         break;
 1543                 }
 1544         } while (flags & LK_RETRY && error != 0);
 1545         return (error);
 1546 }
 1547 
 1548 /*
 1549  * File table vnode close routine.
 1550  */
 1551 static int
 1552 vn_closefile(fp, td)
 1553         struct file *fp;
 1554         struct thread *td;
 1555 {
 1556         struct vnode *vp;
 1557         struct flock lf;
 1558         int error;
 1559 
 1560         vp = fp->f_vnode;
 1561         fp->f_ops = &badfileops;
 1562 
 1563         if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
 1564                 vref(vp);
 1565 
 1566         error = vn_close(vp, fp->f_flag, fp->f_cred, td);
 1567 
 1568         if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
 1569                 lf.l_whence = SEEK_SET;
 1570                 lf.l_start = 0;
 1571                 lf.l_len = 0;
 1572                 lf.l_type = F_UNLCK;
 1573                 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
 1574                 vrele(vp);
 1575         }
 1576         return (error);
 1577 }
 1578 
 1579 /*
 1580  * Preparing to start a filesystem write operation. If the operation is
 1581  * permitted, then we bump the count of operations in progress and
 1582  * proceed. If a suspend request is in progress, we wait until the
 1583  * suspension is over, and then proceed.
 1584  */
 1585 static int
 1586 vn_start_write_locked(struct mount *mp, int flags)
 1587 {
 1588         int error, mflags;
 1589 
 1590         mtx_assert(MNT_MTX(mp), MA_OWNED);
 1591         error = 0;
 1592 
 1593         /*
 1594          * Check on status of suspension.
 1595          */
 1596         if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
 1597             mp->mnt_susp_owner != curthread) {
 1598                 mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
 1599                     (flags & PCATCH) : 0) | (PUSER - 1);
 1600                 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 1601                         if (flags & V_NOWAIT) {
 1602                                 error = EWOULDBLOCK;
 1603                                 goto unlock;
 1604                         }
 1605                         error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
 1606                             "suspfs", 0);
 1607                         if (error)
 1608                                 goto unlock;
 1609                 }
 1610         }
 1611         if (flags & V_XSLEEP)
 1612                 goto unlock;
 1613         mp->mnt_writeopcount++;
 1614 unlock:
 1615         if (error != 0 || (flags & V_XSLEEP) != 0)
 1616                 MNT_REL(mp);
 1617         MNT_IUNLOCK(mp);
 1618         return (error);
 1619 }
 1620 
 1621 int
 1622 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
 1623 {
 1624         struct mount *mp;
 1625         int error;
 1626 
 1627         KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
 1628             ("V_MNTREF requires mp"));
 1629 
 1630         error = 0;
 1631         /*
 1632          * If a vnode is provided, get and return the mount point that
 1633          * to which it will write.
 1634          */
 1635         if (vp != NULL) {
 1636                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1637                         *mpp = NULL;
 1638                         if (error != EOPNOTSUPP)
 1639                                 return (error);
 1640                         return (0);
 1641                 }
 1642         }
 1643         if ((mp = *mpp) == NULL)
 1644                 return (0);
 1645 
 1646         /*
 1647          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1648          * a vfs_ref().
 1649          * As long as a vnode is not provided we need to acquire a
 1650          * refcount for the provided mountpoint too, in order to
 1651          * emulate a vfs_ref().
 1652          */
 1653         MNT_ILOCK(mp);
 1654         if (vp == NULL && (flags & V_MNTREF) == 0)
 1655                 MNT_REF(mp);
 1656 
 1657         return (vn_start_write_locked(mp, flags));
 1658 }
 1659 
 1660 /*
 1661  * Secondary suspension. Used by operations such as vop_inactive
 1662  * routines that are needed by the higher level functions. These
 1663  * are allowed to proceed until all the higher level functions have
 1664  * completed (indicated by mnt_writeopcount dropping to zero). At that
 1665  * time, these operations are halted until the suspension is over.
 1666  */
 1667 int
 1668 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
 1669 {
 1670         struct mount *mp;
 1671         int error;
 1672 
 1673         KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
 1674             ("V_MNTREF requires mp"));
 1675 
 1676  retry:
 1677         if (vp != NULL) {
 1678                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1679                         *mpp = NULL;
 1680                         if (error != EOPNOTSUPP)
 1681                                 return (error);
 1682                         return (0);
 1683                 }
 1684         }
 1685         /*
 1686          * If we are not suspended or have not yet reached suspended
 1687          * mode, then let the operation proceed.
 1688          */
 1689         if ((mp = *mpp) == NULL)
 1690                 return (0);
 1691 
 1692         /*
 1693          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1694          * a vfs_ref().
 1695          * As long as a vnode is not provided we need to acquire a
 1696          * refcount for the provided mountpoint too, in order to
 1697          * emulate a vfs_ref().
 1698          */
 1699         MNT_ILOCK(mp);
 1700         if (vp == NULL && (flags & V_MNTREF) == 0)
 1701                 MNT_REF(mp);
 1702         if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
 1703                 mp->mnt_secondary_writes++;
 1704                 mp->mnt_secondary_accwrites++;
 1705                 MNT_IUNLOCK(mp);
 1706                 return (0);
 1707         }
 1708         if (flags & V_NOWAIT) {
 1709                 MNT_REL(mp);
 1710                 MNT_IUNLOCK(mp);
 1711                 return (EWOULDBLOCK);
 1712         }
 1713         /*
 1714          * Wait for the suspension to finish.
 1715          */
 1716         error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
 1717             ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
 1718             "suspfs", 0);
 1719         vfs_rel(mp);
 1720         if (error == 0)
 1721                 goto retry;
 1722         return (error);
 1723 }
 1724 
 1725 /*
 1726  * Filesystem write operation has completed. If we are suspending and this
 1727  * operation is the last one, notify the suspender that the suspension is
 1728  * now in effect.
 1729  */
 1730 void
 1731 vn_finished_write(mp)
 1732         struct mount *mp;
 1733 {
 1734         if (mp == NULL)
 1735                 return;
 1736         MNT_ILOCK(mp);
 1737         MNT_REL(mp);
 1738         mp->mnt_writeopcount--;
 1739         if (mp->mnt_writeopcount < 0)
 1740                 panic("vn_finished_write: neg cnt");
 1741         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
 1742             mp->mnt_writeopcount <= 0)
 1743                 wakeup(&mp->mnt_writeopcount);
 1744         MNT_IUNLOCK(mp);
 1745 }
 1746 
 1747 
 1748 /*
 1749  * Filesystem secondary write operation has completed. If we are
 1750  * suspending and this operation is the last one, notify the suspender
 1751  * that the suspension is now in effect.
 1752  */
 1753 void
 1754 vn_finished_secondary_write(mp)
 1755         struct mount *mp;
 1756 {
 1757         if (mp == NULL)
 1758                 return;
 1759         MNT_ILOCK(mp);
 1760         MNT_REL(mp);
 1761         mp->mnt_secondary_writes--;
 1762         if (mp->mnt_secondary_writes < 0)
 1763                 panic("vn_finished_secondary_write: neg cnt");
 1764         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
 1765             mp->mnt_secondary_writes <= 0)
 1766                 wakeup(&mp->mnt_secondary_writes);
 1767         MNT_IUNLOCK(mp);
 1768 }
 1769 
 1770 
 1771 
 1772 /*
 1773  * Request a filesystem to suspend write operations.
 1774  */
 1775 int
 1776 vfs_write_suspend(struct mount *mp, int flags)
 1777 {
 1778         int error;
 1779 
 1780         MNT_ILOCK(mp);
 1781         if (mp->mnt_susp_owner == curthread) {
 1782                 MNT_IUNLOCK(mp);
 1783                 return (EALREADY);
 1784         }
 1785         while (mp->mnt_kern_flag & MNTK_SUSPEND)
 1786                 msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
 1787 
 1788         /*
 1789          * Unmount holds a write reference on the mount point.  If we
 1790          * own busy reference and drain for writers, we deadlock with
 1791          * the reference draining in the unmount path.  Callers of
 1792          * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
 1793          * vfs_busy() reference is owned and caller is not in the
 1794          * unmount context.
 1795          */
 1796         if ((flags & VS_SKIP_UNMOUNT) != 0 &&
 1797             (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
 1798                 MNT_IUNLOCK(mp);
 1799                 return (EBUSY);
 1800         }
 1801 
 1802         mp->mnt_kern_flag |= MNTK_SUSPEND;
 1803         mp->mnt_susp_owner = curthread;
 1804         if (mp->mnt_writeopcount > 0)
 1805                 (void) msleep(&mp->mnt_writeopcount, 
 1806                     MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
 1807         else
 1808                 MNT_IUNLOCK(mp);
 1809         if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
 1810                 vfs_write_resume(mp, 0);
 1811         return (error);
 1812 }
 1813 
 1814 /*
 1815  * Request a filesystem to resume write operations.
 1816  */
 1817 void
 1818 vfs_write_resume(struct mount *mp, int flags)
 1819 {
 1820 
 1821         MNT_ILOCK(mp);
 1822         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 1823                 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
 1824                 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
 1825                                        MNTK_SUSPENDED);
 1826                 mp->mnt_susp_owner = NULL;
 1827                 wakeup(&mp->mnt_writeopcount);
 1828                 wakeup(&mp->mnt_flag);
 1829                 curthread->td_pflags &= ~TDP_IGNSUSP;
 1830                 if ((flags & VR_START_WRITE) != 0) {
 1831                         MNT_REF(mp);
 1832                         mp->mnt_writeopcount++;
 1833                 }
 1834                 MNT_IUNLOCK(mp);
 1835                 if ((flags & VR_NO_SUSPCLR) == 0)
 1836                         VFS_SUSP_CLEAN(mp);
 1837         } else if ((flags & VR_START_WRITE) != 0) {
 1838                 MNT_REF(mp);
 1839                 vn_start_write_locked(mp, 0);
 1840         } else {
 1841                 MNT_IUNLOCK(mp);
 1842         }
 1843 }
 1844 
 1845 /*
 1846  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
 1847  * methods.
 1848  */
 1849 int
 1850 vfs_write_suspend_umnt(struct mount *mp)
 1851 {
 1852         int error;
 1853 
 1854         KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
 1855             ("vfs_write_suspend_umnt: recursed"));
 1856 
 1857         /* dounmount() already called vn_start_write(). */
 1858         for (;;) {
 1859                 vn_finished_write(mp);
 1860                 error = vfs_write_suspend(mp, 0);
 1861                 if (error != 0) {
 1862                         vn_start_write(NULL, &mp, V_WAIT);
 1863                         return (error);
 1864                 }
 1865                 MNT_ILOCK(mp);
 1866                 if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
 1867                         break;
 1868                 MNT_IUNLOCK(mp);
 1869                 vn_start_write(NULL, &mp, V_WAIT);
 1870         }
 1871         mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
 1872         wakeup(&mp->mnt_flag);
 1873         MNT_IUNLOCK(mp);
 1874         curthread->td_pflags |= TDP_IGNSUSP;
 1875         return (0);
 1876 }
 1877 
 1878 /*
 1879  * Implement kqueues for files by translating it to vnode operation.
 1880  */
 1881 static int
 1882 vn_kqfilter(struct file *fp, struct knote *kn)
 1883 {
 1884 
 1885         return (VOP_KQFILTER(fp->f_vnode, kn));
 1886 }
 1887 
 1888 /*
 1889  * Simplified in-kernel wrapper calls for extended attribute access.
 1890  * Both calls pass in a NULL credential, authorizing as "kernel" access.
 1891  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
 1892  */
 1893 int
 1894 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
 1895     const char *attrname, int *buflen, char *buf, struct thread *td)
 1896 {
 1897         struct uio      auio;
 1898         struct iovec    iov;
 1899         int     error;
 1900 
 1901         iov.iov_len = *buflen;
 1902         iov.iov_base = buf;
 1903 
 1904         auio.uio_iov = &iov;
 1905         auio.uio_iovcnt = 1;
 1906         auio.uio_rw = UIO_READ;
 1907         auio.uio_segflg = UIO_SYSSPACE;
 1908         auio.uio_td = td;
 1909         auio.uio_offset = 0;
 1910         auio.uio_resid = *buflen;
 1911 
 1912         if ((ioflg & IO_NODELOCKED) == 0)
 1913                 vn_lock(vp, LK_SHARED | LK_RETRY);
 1914 
 1915         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 1916 
 1917         /* authorize attribute retrieval as kernel */
 1918         error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
 1919             td);
 1920 
 1921         if ((ioflg & IO_NODELOCKED) == 0)
 1922                 VOP_UNLOCK(vp, 0);
 1923 
 1924         if (error == 0) {
 1925                 *buflen = *buflen - auio.uio_resid;
 1926         }
 1927 
 1928         return (error);
 1929 }
 1930 
 1931 /*
 1932  * XXX failure mode if partially written?
 1933  */
 1934 int
 1935 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
 1936     const char *attrname, int buflen, char *buf, struct thread *td)
 1937 {
 1938         struct uio      auio;
 1939         struct iovec    iov;
 1940         struct mount    *mp;
 1941         int     error;
 1942 
 1943         iov.iov_len = buflen;
 1944         iov.iov_base = buf;
 1945 
 1946         auio.uio_iov = &iov;
 1947         auio.uio_iovcnt = 1;
 1948         auio.uio_rw = UIO_WRITE;
 1949         auio.uio_segflg = UIO_SYSSPACE;
 1950         auio.uio_td = td;
 1951         auio.uio_offset = 0;
 1952         auio.uio_resid = buflen;
 1953 
 1954         if ((ioflg & IO_NODELOCKED) == 0) {
 1955                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 1956                         return (error);
 1957                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1958         }
 1959 
 1960         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 1961 
 1962         /* authorize attribute setting as kernel */
 1963         error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
 1964 
 1965         if ((ioflg & IO_NODELOCKED) == 0) {
 1966                 vn_finished_write(mp);
 1967                 VOP_UNLOCK(vp, 0);
 1968         }
 1969 
 1970         return (error);
 1971 }
 1972 
 1973 int
 1974 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
 1975     const char *attrname, struct thread *td)
 1976 {
 1977         struct mount    *mp;
 1978         int     error;
 1979 
 1980         if ((ioflg & IO_NODELOCKED) == 0) {
 1981                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 1982                         return (error);
 1983                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1984         }
 1985 
 1986         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 1987 
 1988         /* authorize attribute removal as kernel */
 1989         error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
 1990         if (error == EOPNOTSUPP)
 1991                 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
 1992                     NULL, td);
 1993 
 1994         if ((ioflg & IO_NODELOCKED) == 0) {
 1995                 vn_finished_write(mp);
 1996                 VOP_UNLOCK(vp, 0);
 1997         }
 1998 
 1999         return (error);
 2000 }
 2001 
 2002 static int
 2003 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
 2004     struct vnode **rvp)
 2005 {
 2006 
 2007         return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
 2008 }
 2009 
 2010 int
 2011 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
 2012 {
 2013 
 2014         return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
 2015             lkflags, rvp));
 2016 }
 2017 
 2018 int
 2019 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
 2020     int lkflags, struct vnode **rvp)
 2021 {
 2022         struct mount *mp;
 2023         int ltype, error;
 2024 
 2025         ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
 2026         mp = vp->v_mount;
 2027         ltype = VOP_ISLOCKED(vp);
 2028         KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
 2029             ("vn_vget_ino: vp not locked"));
 2030         error = vfs_busy(mp, MBF_NOWAIT);
 2031         if (error != 0) {
 2032                 vfs_ref(mp);
 2033                 VOP_UNLOCK(vp, 0);
 2034                 error = vfs_busy(mp, 0);
 2035                 vn_lock(vp, ltype | LK_RETRY);
 2036                 vfs_rel(mp);
 2037                 if (error != 0)
 2038                         return (ENOENT);
 2039                 if (vp->v_iflag & VI_DOOMED) {
 2040                         vfs_unbusy(mp);
 2041                         return (ENOENT);
 2042                 }
 2043         }
 2044         VOP_UNLOCK(vp, 0);
 2045         error = alloc(mp, alloc_arg, lkflags, rvp);
 2046         vfs_unbusy(mp);
 2047         if (*rvp != vp)
 2048                 vn_lock(vp, ltype | LK_RETRY);
 2049         if (vp->v_iflag & VI_DOOMED) {
 2050                 if (error == 0) {
 2051                         if (*rvp == vp)
 2052                                 vunref(vp);
 2053                         else
 2054                                 vput(*rvp);
 2055                 }
 2056                 error = ENOENT;
 2057         }
 2058         return (error);
 2059 }
 2060 
 2061 int
 2062 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
 2063     const struct thread *td)
 2064 {
 2065 
 2066         if (vp->v_type != VREG || td == NULL)
 2067                 return (0);
 2068         PROC_LOCK(td->td_proc);
 2069         if ((uoff_t)uio->uio_offset + uio->uio_resid >
 2070             lim_cur(td->td_proc, RLIMIT_FSIZE)) {
 2071                 kern_psignal(td->td_proc, SIGXFSZ);
 2072                 PROC_UNLOCK(td->td_proc);
 2073                 return (EFBIG);
 2074         }
 2075         PROC_UNLOCK(td->td_proc);
 2076         return (0);
 2077 }
 2078 
 2079 int
 2080 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
 2081     struct thread *td)
 2082 {
 2083         struct vnode *vp;
 2084 
 2085         vp = fp->f_vnode;
 2086 #ifdef AUDIT
 2087         vn_lock(vp, LK_SHARED | LK_RETRY);
 2088         AUDIT_ARG_VNODE1(vp);
 2089         VOP_UNLOCK(vp, 0);
 2090 #endif
 2091         return (setfmode(td, active_cred, vp, mode));
 2092 }
 2093 
 2094 int
 2095 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
 2096     struct thread *td)
 2097 {
 2098         struct vnode *vp;
 2099 
 2100         vp = fp->f_vnode;
 2101 #ifdef AUDIT
 2102         vn_lock(vp, LK_SHARED | LK_RETRY);
 2103         AUDIT_ARG_VNODE1(vp);
 2104         VOP_UNLOCK(vp, 0);
 2105 #endif
 2106         return (setfown(td, active_cred, vp, uid, gid));
 2107 }
 2108 
 2109 void
 2110 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
 2111 {
 2112         vm_object_t object;
 2113 
 2114         if ((object = vp->v_object) == NULL)
 2115                 return;
 2116         VM_OBJECT_WLOCK(object);
 2117         vm_object_page_remove(object, start, end, 0);
 2118         VM_OBJECT_WUNLOCK(object);
 2119 }
 2120 
 2121 int
 2122 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
 2123 {
 2124         struct vattr va;
 2125         daddr_t bn, bnp;
 2126         uint64_t bsize;
 2127         off_t noff;
 2128         int error;
 2129 
 2130         KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
 2131             ("Wrong command %lu", cmd));
 2132 
 2133         if (vn_lock(vp, LK_SHARED) != 0)
 2134                 return (EBADF);
 2135         if (vp->v_type != VREG) {
 2136                 error = ENOTTY;
 2137                 goto unlock;
 2138         }
 2139         error = VOP_GETATTR(vp, &va, cred);
 2140         if (error != 0)
 2141                 goto unlock;
 2142         noff = *off;
 2143         if (noff >= va.va_size) {
 2144                 error = ENXIO;
 2145                 goto unlock;
 2146         }
 2147         bsize = vp->v_mount->mnt_stat.f_iosize;
 2148         for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
 2149                 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
 2150                 if (error == EOPNOTSUPP) {
 2151                         error = ENOTTY;
 2152                         goto unlock;
 2153                 }
 2154                 if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
 2155                     (bnp != -1 && cmd == FIOSEEKDATA)) {
 2156                         noff = bn * bsize;
 2157                         if (noff < *off)
 2158                                 noff = *off;
 2159                         goto unlock;
 2160                 }
 2161         }
 2162         if (noff > va.va_size)
 2163                 noff = va.va_size;
 2164         /* noff == va.va_size. There is an implicit hole at the end of file. */
 2165         if (cmd == FIOSEEKDATA)
 2166                 error = ENXIO;
 2167 unlock:
 2168         VOP_UNLOCK(vp, 0);
 2169         if (error == 0)
 2170                 *off = noff;
 2171         return (error);
 2172 }
 2173 
 2174 int
 2175 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
 2176 {
 2177         struct ucred *cred;
 2178         struct vnode *vp;
 2179         struct vattr vattr;
 2180         off_t foffset, size;
 2181         int error, noneg;
 2182 
 2183         cred = td->td_ucred;
 2184         vp = fp->f_vnode;
 2185         foffset = foffset_lock(fp, 0);
 2186         noneg = (vp->v_type != VCHR);
 2187         error = 0;
 2188         switch (whence) {
 2189         case L_INCR:
 2190                 if (noneg &&
 2191                     (foffset < 0 ||
 2192                     (offset > 0 && foffset > OFF_MAX - offset))) {
 2193                         error = EOVERFLOW;
 2194                         break;
 2195                 }
 2196                 offset += foffset;
 2197                 break;
 2198         case L_XTND:
 2199                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2200                 error = VOP_GETATTR(vp, &vattr, cred);
 2201                 VOP_UNLOCK(vp, 0);
 2202                 if (error)
 2203                         break;
 2204 
 2205                 /*
 2206                  * If the file references a disk device, then fetch
 2207                  * the media size and use that to determine the ending
 2208                  * offset.
 2209                  */
 2210                 if (vattr.va_size == 0 && vp->v_type == VCHR &&
 2211                     fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
 2212                         vattr.va_size = size;
 2213                 if (noneg &&
 2214                     (vattr.va_size > OFF_MAX ||
 2215                     (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
 2216                         error = EOVERFLOW;
 2217                         break;
 2218                 }
 2219                 offset += vattr.va_size;
 2220                 break;
 2221         case L_SET:
 2222                 break;
 2223         case SEEK_DATA:
 2224                 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
 2225                 break;
 2226         case SEEK_HOLE:
 2227                 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
 2228                 break;
 2229         default:
 2230                 error = EINVAL;
 2231         }
 2232         if (error == 0 && noneg && offset < 0)
 2233                 error = EINVAL;
 2234         if (error != 0)
 2235                 goto drop;
 2236         VFS_KNOTE_UNLOCKED(vp, 0);
 2237         *(off_t *)(td->td_retval) = offset;
 2238 drop:
 2239         foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
 2240         return (error);
 2241 }
 2242 
 2243 int
 2244 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
 2245     struct thread *td)
 2246 {
 2247         int error;
 2248 
 2249         /*
 2250          * Grant permission if the caller is the owner of the file, or
 2251          * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
 2252          * on the file.  If the time pointer is null, then write
 2253          * permission on the file is also sufficient.
 2254          *
 2255          * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
 2256          * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
 2257          * will be allowed to set the times [..] to the current
 2258          * server time.
 2259          */
 2260         error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
 2261         if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
 2262                 error = VOP_ACCESS(vp, VWRITE, cred, td);
 2263         return (error);
 2264 }

Cache object: c731a4b835444fe92c6d09acda1c8ee5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.