The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
   11  * Copyright (c) 2013, 2014 The FreeBSD Foundation
   12  *
   13  * Portions of this software were developed by Konstantin Belousov
   14  * under sponsorship from the FreeBSD Foundation.
   15  *
   16  * Redistribution and use in source and binary forms, with or without
   17  * modification, are permitted provided that the following conditions
   18  * are met:
   19  * 1. Redistributions of source code must retain the above copyright
   20  *    notice, this list of conditions and the following disclaimer.
   21  * 2. Redistributions in binary form must reproduce the above copyright
   22  *    notice, this list of conditions and the following disclaimer in the
   23  *    documentation and/or other materials provided with the distribution.
   24  * 4. Neither the name of the University nor the names of its contributors
   25  *    may be used to endorse or promote products derived from this software
   26  *    without specific prior written permission.
   27  *
   28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   38  * SUCH DAMAGE.
   39  *
   40  *      @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94
   41  */
   42 
   43 #include <sys/cdefs.h>
   44 __FBSDID("$FreeBSD: releng/11.1/sys/kern/vfs_vnops.c 338606 2018-09-12 05:07:35Z gordon $");
   45 
   46 #include "opt_hwpmc_hooks.h"
   47 
   48 #include <sys/param.h>
   49 #include <sys/systm.h>
   50 #include <sys/disk.h>
   51 #include <sys/fail.h>
   52 #include <sys/fcntl.h>
   53 #include <sys/file.h>
   54 #include <sys/kdb.h>
   55 #include <sys/stat.h>
   56 #include <sys/priv.h>
   57 #include <sys/proc.h>
   58 #include <sys/limits.h>
   59 #include <sys/lock.h>
   60 #include <sys/mman.h>
   61 #include <sys/mount.h>
   62 #include <sys/mutex.h>
   63 #include <sys/namei.h>
   64 #include <sys/vnode.h>
   65 #include <sys/bio.h>
   66 #include <sys/buf.h>
   67 #include <sys/filio.h>
   68 #include <sys/resourcevar.h>
   69 #include <sys/rwlock.h>
   70 #include <sys/sx.h>
   71 #include <sys/sysctl.h>
   72 #include <sys/ttycom.h>
   73 #include <sys/conf.h>
   74 #include <sys/syslog.h>
   75 #include <sys/unistd.h>
   76 #include <sys/user.h>
   77 
   78 #include <security/audit/audit.h>
   79 #include <security/mac/mac_framework.h>
   80 
   81 #include <vm/vm.h>
   82 #include <vm/vm_extern.h>
   83 #include <vm/pmap.h>
   84 #include <vm/vm_map.h>
   85 #include <vm/vm_object.h>
   86 #include <vm/vm_page.h>
   87 #include <vm/vnode_pager.h>
   88 
   89 #ifdef HWPMC_HOOKS
   90 #include <sys/pmckern.h>
   91 #endif
   92 
   93 static fo_rdwr_t        vn_read;
   94 static fo_rdwr_t        vn_write;
   95 static fo_rdwr_t        vn_io_fault;
   96 static fo_truncate_t    vn_truncate;
   97 static fo_ioctl_t       vn_ioctl;
   98 static fo_poll_t        vn_poll;
   99 static fo_kqfilter_t    vn_kqfilter;
  100 static fo_stat_t        vn_statfile;
  101 static fo_close_t       vn_closefile;
  102 static fo_mmap_t        vn_mmap;
  103 
  104 struct  fileops vnops = {
  105         .fo_read = vn_io_fault,
  106         .fo_write = vn_io_fault,
  107         .fo_truncate = vn_truncate,
  108         .fo_ioctl = vn_ioctl,
  109         .fo_poll = vn_poll,
  110         .fo_kqfilter = vn_kqfilter,
  111         .fo_stat = vn_statfile,
  112         .fo_close = vn_closefile,
  113         .fo_chmod = vn_chmod,
  114         .fo_chown = vn_chown,
  115         .fo_sendfile = vn_sendfile,
  116         .fo_seek = vn_seek,
  117         .fo_fill_kinfo = vn_fill_kinfo,
  118         .fo_mmap = vn_mmap,
  119         .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
  120 };
  121 
  122 static const int io_hold_cnt = 16;
  123 static int vn_io_fault_enable = 1;
  124 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
  125     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
  126 static int vn_io_fault_prefault = 0;
  127 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
  128     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
  129 static u_long vn_io_faults_cnt;
  130 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
  131     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
  132 
  133 /*
  134  * Returns true if vn_io_fault mode of handling the i/o request should
  135  * be used.
  136  */
  137 static bool
  138 do_vn_io_fault(struct vnode *vp, struct uio *uio)
  139 {
  140         struct mount *mp;
  141 
  142         return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
  143             (mp = vp->v_mount) != NULL &&
  144             (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
  145 }
  146 
  147 /*
  148  * Structure used to pass arguments to vn_io_fault1(), to do either
  149  * file- or vnode-based I/O calls.
  150  */
  151 struct vn_io_fault_args {
  152         enum {
  153                 VN_IO_FAULT_FOP,
  154                 VN_IO_FAULT_VOP
  155         } kind;
  156         struct ucred *cred;
  157         int flags;
  158         union {
  159                 struct fop_args_tag {
  160                         struct file *fp;
  161                         fo_rdwr_t *doio;
  162                 } fop_args;
  163                 struct vop_args_tag {
  164                         struct vnode *vp;
  165                 } vop_args;
  166         } args;
  167 };
  168 
  169 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
  170     struct vn_io_fault_args *args, struct thread *td);
  171 
  172 int
  173 vn_open(ndp, flagp, cmode, fp)
  174         struct nameidata *ndp;
  175         int *flagp, cmode;
  176         struct file *fp;
  177 {
  178         struct thread *td = ndp->ni_cnd.cn_thread;
  179 
  180         return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
  181 }
  182 
  183 /*
  184  * Common code for vnode open operations via a name lookup.
  185  * Lookup the vnode and invoke VOP_CREATE if needed.
  186  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
  187  * 
  188  * Note that this does NOT free nameidata for the successful case,
  189  * due to the NDINIT being done elsewhere.
  190  */
  191 int
  192 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
  193     struct ucred *cred, struct file *fp)
  194 {
  195         struct vnode *vp;
  196         struct mount *mp;
  197         struct thread *td = ndp->ni_cnd.cn_thread;
  198         struct vattr vat;
  199         struct vattr *vap = &vat;
  200         int fmode, error;
  201 
  202 restart:
  203         fmode = *flagp;
  204         if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
  205             O_EXCL | O_DIRECTORY))
  206                 return (EINVAL);
  207         else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
  208                 ndp->ni_cnd.cn_nameiop = CREATE;
  209                 /*
  210                  * Set NOCACHE to avoid flushing the cache when
  211                  * rolling in many files at once.
  212                 */
  213                 ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
  214                 if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
  215                         ndp->ni_cnd.cn_flags |= FOLLOW;
  216                 if (!(vn_open_flags & VN_OPEN_NOAUDIT))
  217                         ndp->ni_cnd.cn_flags |= AUDITVNODE1;
  218                 if (vn_open_flags & VN_OPEN_NOCAPCHECK)
  219                         ndp->ni_cnd.cn_flags |= NOCAPCHECK;
  220                 bwillwrite();
  221                 if ((error = namei(ndp)) != 0)
  222                         return (error);
  223                 if (ndp->ni_vp == NULL) {
  224                         VATTR_NULL(vap);
  225                         vap->va_type = VREG;
  226                         vap->va_mode = cmode;
  227                         if (fmode & O_EXCL)
  228                                 vap->va_vaflags |= VA_EXCLUSIVE;
  229                         if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
  230                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  231                                 vput(ndp->ni_dvp);
  232                                 if ((error = vn_start_write(NULL, &mp,
  233                                     V_XSLEEP | PCATCH)) != 0)
  234                                         return (error);
  235                                 goto restart;
  236                         }
  237                         if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
  238                                 ndp->ni_cnd.cn_flags |= MAKEENTRY;
  239 #ifdef MAC
  240                         error = mac_vnode_check_create(cred, ndp->ni_dvp,
  241                             &ndp->ni_cnd, vap);
  242                         if (error == 0)
  243 #endif
  244                                 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
  245                                                    &ndp->ni_cnd, vap);
  246                         vput(ndp->ni_dvp);
  247                         vn_finished_write(mp);
  248                         if (error) {
  249                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  250                                 return (error);
  251                         }
  252                         fmode &= ~O_TRUNC;
  253                         vp = ndp->ni_vp;
  254                 } else {
  255                         if (ndp->ni_dvp == ndp->ni_vp)
  256                                 vrele(ndp->ni_dvp);
  257                         else
  258                                 vput(ndp->ni_dvp);
  259                         ndp->ni_dvp = NULL;
  260                         vp = ndp->ni_vp;
  261                         if (fmode & O_EXCL) {
  262                                 error = EEXIST;
  263                                 goto bad;
  264                         }
  265                         fmode &= ~O_CREAT;
  266                 }
  267         } else {
  268                 ndp->ni_cnd.cn_nameiop = LOOKUP;
  269                 ndp->ni_cnd.cn_flags = ISOPEN |
  270                     ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
  271                 if (!(fmode & FWRITE))
  272                         ndp->ni_cnd.cn_flags |= LOCKSHARED;
  273                 if (!(vn_open_flags & VN_OPEN_NOAUDIT))
  274                         ndp->ni_cnd.cn_flags |= AUDITVNODE1;
  275                 if (vn_open_flags & VN_OPEN_NOCAPCHECK)
  276                         ndp->ni_cnd.cn_flags |= NOCAPCHECK;
  277                 if ((error = namei(ndp)) != 0)
  278                         return (error);
  279                 vp = ndp->ni_vp;
  280         }
  281         error = vn_open_vnode(vp, fmode, cred, td, fp);
  282         if (error)
  283                 goto bad;
  284         *flagp = fmode;
  285         return (0);
  286 bad:
  287         NDFREE(ndp, NDF_ONLY_PNBUF);
  288         vput(vp);
  289         *flagp = fmode;
  290         ndp->ni_vp = NULL;
  291         return (error);
  292 }
  293 
  294 /*
  295  * Common code for vnode open operations once a vnode is located.
  296  * Check permissions, and call the VOP_OPEN routine.
  297  */
  298 int
  299 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
  300     struct thread *td, struct file *fp)
  301 {
  302         accmode_t accmode;
  303         struct flock lf;
  304         int error, lock_flags, type;
  305 
  306         if (vp->v_type == VLNK)
  307                 return (EMLINK);
  308         if (vp->v_type == VSOCK)
  309                 return (EOPNOTSUPP);
  310         if (vp->v_type != VDIR && fmode & O_DIRECTORY)
  311                 return (ENOTDIR);
  312         accmode = 0;
  313         if (fmode & (FWRITE | O_TRUNC)) {
  314                 if (vp->v_type == VDIR)
  315                         return (EISDIR);
  316                 accmode |= VWRITE;
  317         }
  318         if (fmode & FREAD)
  319                 accmode |= VREAD;
  320         if (fmode & FEXEC)
  321                 accmode |= VEXEC;
  322         if ((fmode & O_APPEND) && (fmode & FWRITE))
  323                 accmode |= VAPPEND;
  324 #ifdef MAC
  325         if (fmode & O_CREAT)
  326                 accmode |= VCREAT;
  327         if (fmode & O_VERIFY)
  328                 accmode |= VVERIFY;
  329         error = mac_vnode_check_open(cred, vp, accmode);
  330         if (error)
  331                 return (error);
  332 
  333         accmode &= ~(VCREAT | VVERIFY);
  334 #endif
  335         if ((fmode & O_CREAT) == 0) {
  336                 if (accmode & VWRITE) {
  337                         error = vn_writechk(vp);
  338                         if (error)
  339                                 return (error);
  340                 }
  341                 if (accmode) {
  342                         error = VOP_ACCESS(vp, accmode, cred, td);
  343                         if (error)
  344                                 return (error);
  345                 }
  346         }
  347         if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
  348                 vn_lock(vp, LK_UPGRADE | LK_RETRY);
  349         if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
  350                 return (error);
  351 
  352         while ((fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
  353                 KASSERT(fp != NULL, ("open with flock requires fp"));
  354                 if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE) {
  355                         error = EOPNOTSUPP;
  356                         break;
  357                 }
  358                 lock_flags = VOP_ISLOCKED(vp);
  359                 VOP_UNLOCK(vp, 0);
  360                 lf.l_whence = SEEK_SET;
  361                 lf.l_start = 0;
  362                 lf.l_len = 0;
  363                 if (fmode & O_EXLOCK)
  364                         lf.l_type = F_WRLCK;
  365                 else
  366                         lf.l_type = F_RDLCK;
  367                 type = F_FLOCK;
  368                 if ((fmode & FNONBLOCK) == 0)
  369                         type |= F_WAIT;
  370                 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
  371                 if (error == 0)
  372                         fp->f_flag |= FHASLOCK;
  373                 vn_lock(vp, lock_flags | LK_RETRY);
  374                 if (error != 0)
  375                         break;
  376                 if ((vp->v_iflag & VI_DOOMED) != 0) {
  377                         error = ENOENT;
  378                         break;
  379                 }
  380 
  381                 /*
  382                  * Another thread might have used this vnode as an
  383                  * executable while the vnode lock was dropped.
  384                  * Ensure the vnode is still able to be opened for
  385                  * writing after the lock has been obtained.
  386                  */
  387                 if ((accmode & VWRITE) != 0)
  388                         error = vn_writechk(vp);
  389                 break;
  390         }
  391 
  392         if (error != 0) {
  393                 fp->f_flag |= FOPENFAILED;
  394                 fp->f_vnode = vp;
  395                 if (fp->f_ops == &badfileops) {
  396                         fp->f_type = DTYPE_VNODE;
  397                         fp->f_ops = &vnops;
  398                 }
  399                 vref(vp);
  400         } else if  ((fmode & FWRITE) != 0) {
  401                 VOP_ADD_WRITECOUNT(vp, 1);
  402                 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
  403                     __func__, vp, vp->v_writecount);
  404         }
  405         ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
  406         return (error);
  407 }
  408 
  409 /*
  410  * Check for write permissions on the specified vnode.
  411  * Prototype text segments cannot be written.
  412  */
  413 int
  414 vn_writechk(vp)
  415         register struct vnode *vp;
  416 {
  417 
  418         ASSERT_VOP_LOCKED(vp, "vn_writechk");
  419         /*
  420          * If there's shared text associated with
  421          * the vnode, try to free it up once.  If
  422          * we fail, we can't allow writing.
  423          */
  424         if (VOP_IS_TEXT(vp))
  425                 return (ETXTBSY);
  426 
  427         return (0);
  428 }
  429 
  430 /*
  431  * Vnode close call
  432  */
  433 static int
  434 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
  435     struct thread *td, bool keep_ref)
  436 {
  437         struct mount *mp;
  438         int error, lock_flags;
  439 
  440         if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
  441             MNT_EXTENDED_SHARED(vp->v_mount))
  442                 lock_flags = LK_SHARED;
  443         else
  444                 lock_flags = LK_EXCLUSIVE;
  445 
  446         vn_start_write(vp, &mp, V_WAIT);
  447         vn_lock(vp, lock_flags | LK_RETRY);
  448         AUDIT_ARG_VNODE1(vp);
  449         if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
  450                 VNASSERT(vp->v_writecount > 0, vp, 
  451                     ("vn_close: negative writecount"));
  452                 VOP_ADD_WRITECOUNT(vp, -1);
  453                 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
  454                     __func__, vp, vp->v_writecount);
  455         }
  456         error = VOP_CLOSE(vp, flags, file_cred, td);
  457         if (keep_ref)
  458                 VOP_UNLOCK(vp, 0);
  459         else
  460                 vput(vp);
  461         vn_finished_write(mp);
  462         return (error);
  463 }
  464 
  465 int
  466 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
  467     struct thread *td)
  468 {
  469 
  470         return (vn_close1(vp, flags, file_cred, td, false));
  471 }
  472 
  473 /*
  474  * Heuristic to detect sequential operation.
  475  */
  476 static int
  477 sequential_heuristic(struct uio *uio, struct file *fp)
  478 {
  479 
  480         ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
  481         if (fp->f_flag & FRDAHEAD)
  482                 return (fp->f_seqcount << IO_SEQSHIFT);
  483 
  484         /*
  485          * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
  486          * that the first I/O is normally considered to be slightly
  487          * sequential.  Seeking to offset 0 doesn't change sequentiality
  488          * unless previous seeks have reduced f_seqcount to 0, in which
  489          * case offset 0 is not special.
  490          */
  491         if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
  492             uio->uio_offset == fp->f_nextoff) {
  493                 /*
  494                  * f_seqcount is in units of fixed-size blocks so that it
  495                  * depends mainly on the amount of sequential I/O and not
  496                  * much on the number of sequential I/O's.  The fixed size
  497                  * of 16384 is hard-coded here since it is (not quite) just
  498                  * a magic size that works well here.  This size is more
  499                  * closely related to the best I/O size for real disks than
  500                  * to any block size used by software.
  501                  */
  502                 fp->f_seqcount += howmany(uio->uio_resid, 16384);
  503                 if (fp->f_seqcount > IO_SEQMAX)
  504                         fp->f_seqcount = IO_SEQMAX;
  505                 return (fp->f_seqcount << IO_SEQSHIFT);
  506         }
  507 
  508         /* Not sequential.  Quickly draw-down sequentiality. */
  509         if (fp->f_seqcount > 1)
  510                 fp->f_seqcount = 1;
  511         else
  512                 fp->f_seqcount = 0;
  513         return (0);
  514 }
  515 
  516 /*
  517  * Package up an I/O request on a vnode into a uio and do it.
  518  */
  519 int
  520 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
  521     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
  522     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
  523 {
  524         struct uio auio;
  525         struct iovec aiov;
  526         struct mount *mp;
  527         struct ucred *cred;
  528         void *rl_cookie;
  529         struct vn_io_fault_args args;
  530         int error, lock_flags;
  531 
  532         if (offset < 0 && vp->v_type != VCHR)
  533                 return (EINVAL);
  534         auio.uio_iov = &aiov;
  535         auio.uio_iovcnt = 1;
  536         aiov.iov_base = base;
  537         aiov.iov_len = len;
  538         auio.uio_resid = len;
  539         auio.uio_offset = offset;
  540         auio.uio_segflg = segflg;
  541         auio.uio_rw = rw;
  542         auio.uio_td = td;
  543         error = 0;
  544 
  545         if ((ioflg & IO_NODELOCKED) == 0) {
  546                 if ((ioflg & IO_RANGELOCKED) == 0) {
  547                         if (rw == UIO_READ) {
  548                                 rl_cookie = vn_rangelock_rlock(vp, offset,
  549                                     offset + len);
  550                         } else {
  551                                 rl_cookie = vn_rangelock_wlock(vp, offset,
  552                                     offset + len);
  553                         }
  554                 } else
  555                         rl_cookie = NULL;
  556                 mp = NULL;
  557                 if (rw == UIO_WRITE) { 
  558                         if (vp->v_type != VCHR &&
  559                             (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
  560                             != 0)
  561                                 goto out;
  562                         if (MNT_SHARED_WRITES(mp) ||
  563                             ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
  564                                 lock_flags = LK_SHARED;
  565                         else
  566                                 lock_flags = LK_EXCLUSIVE;
  567                 } else
  568                         lock_flags = LK_SHARED;
  569                 vn_lock(vp, lock_flags | LK_RETRY);
  570         } else
  571                 rl_cookie = NULL;
  572 
  573         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
  574 #ifdef MAC
  575         if ((ioflg & IO_NOMACCHECK) == 0) {
  576                 if (rw == UIO_READ)
  577                         error = mac_vnode_check_read(active_cred, file_cred,
  578                             vp);
  579                 else
  580                         error = mac_vnode_check_write(active_cred, file_cred,
  581                             vp);
  582         }
  583 #endif
  584         if (error == 0) {
  585                 if (file_cred != NULL)
  586                         cred = file_cred;
  587                 else
  588                         cred = active_cred;
  589                 if (do_vn_io_fault(vp, &auio)) {
  590                         args.kind = VN_IO_FAULT_VOP;
  591                         args.cred = cred;
  592                         args.flags = ioflg;
  593                         args.args.vop_args.vp = vp;
  594                         error = vn_io_fault1(vp, &auio, &args, td);
  595                 } else if (rw == UIO_READ) {
  596                         error = VOP_READ(vp, &auio, ioflg, cred);
  597                 } else /* if (rw == UIO_WRITE) */ {
  598                         error = VOP_WRITE(vp, &auio, ioflg, cred);
  599                 }
  600         }
  601         if (aresid)
  602                 *aresid = auio.uio_resid;
  603         else
  604                 if (auio.uio_resid && error == 0)
  605                         error = EIO;
  606         if ((ioflg & IO_NODELOCKED) == 0) {
  607                 VOP_UNLOCK(vp, 0);
  608                 if (mp != NULL)
  609                         vn_finished_write(mp);
  610         }
  611  out:
  612         if (rl_cookie != NULL)
  613                 vn_rangelock_unlock(vp, rl_cookie);
  614         return (error);
  615 }
  616 
  617 /*
  618  * Package up an I/O request on a vnode into a uio and do it.  The I/O
  619  * request is split up into smaller chunks and we try to avoid saturating
  620  * the buffer cache while potentially holding a vnode locked, so we 
  621  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
  622  * to give other processes a chance to lock the vnode (either other processes
  623  * core'ing the same binary, or unrelated processes scanning the directory).
  624  */
  625 int
  626 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
  627     file_cred, aresid, td)
  628         enum uio_rw rw;
  629         struct vnode *vp;
  630         void *base;
  631         size_t len;
  632         off_t offset;
  633         enum uio_seg segflg;
  634         int ioflg;
  635         struct ucred *active_cred;
  636         struct ucred *file_cred;
  637         size_t *aresid;
  638         struct thread *td;
  639 {
  640         int error = 0;
  641         ssize_t iaresid;
  642 
  643         do {
  644                 int chunk;
  645 
  646                 /*
  647                  * Force `offset' to a multiple of MAXBSIZE except possibly
  648                  * for the first chunk, so that filesystems only need to
  649                  * write full blocks except possibly for the first and last
  650                  * chunks.
  651                  */
  652                 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
  653 
  654                 if (chunk > len)
  655                         chunk = len;
  656                 if (rw != UIO_READ && vp->v_type == VREG)
  657                         bwillwrite();
  658                 iaresid = 0;
  659                 error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
  660                     ioflg, active_cred, file_cred, &iaresid, td);
  661                 len -= chunk;   /* aresid calc already includes length */
  662                 if (error)
  663                         break;
  664                 offset += chunk;
  665                 base = (char *)base + chunk;
  666                 kern_yield(PRI_USER);
  667         } while (len);
  668         if (aresid)
  669                 *aresid = len + iaresid;
  670         return (error);
  671 }
  672 
  673 off_t
  674 foffset_lock(struct file *fp, int flags)
  675 {
  676         struct mtx *mtxp;
  677         off_t res;
  678 
  679         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  680 
  681 #if OFF_MAX <= LONG_MAX
  682         /*
  683          * Caller only wants the current f_offset value.  Assume that
  684          * the long and shorter integer types reads are atomic.
  685          */
  686         if ((flags & FOF_NOLOCK) != 0)
  687                 return (fp->f_offset);
  688 #endif
  689 
  690         /*
  691          * According to McKusick the vn lock was protecting f_offset here.
  692          * It is now protected by the FOFFSET_LOCKED flag.
  693          */
  694         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  695         mtx_lock(mtxp);
  696         if ((flags & FOF_NOLOCK) == 0) {
  697                 while (fp->f_vnread_flags & FOFFSET_LOCKED) {
  698                         fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
  699                         msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
  700                             "vofflock", 0);
  701                 }
  702                 fp->f_vnread_flags |= FOFFSET_LOCKED;
  703         }
  704         res = fp->f_offset;
  705         mtx_unlock(mtxp);
  706         return (res);
  707 }
  708 
  709 void
  710 foffset_unlock(struct file *fp, off_t val, int flags)
  711 {
  712         struct mtx *mtxp;
  713 
  714         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  715 
  716 #if OFF_MAX <= LONG_MAX
  717         if ((flags & FOF_NOLOCK) != 0) {
  718                 if ((flags & FOF_NOUPDATE) == 0)
  719                         fp->f_offset = val;
  720                 if ((flags & FOF_NEXTOFF) != 0)
  721                         fp->f_nextoff = val;
  722                 return;
  723         }
  724 #endif
  725 
  726         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  727         mtx_lock(mtxp);
  728         if ((flags & FOF_NOUPDATE) == 0)
  729                 fp->f_offset = val;
  730         if ((flags & FOF_NEXTOFF) != 0)
  731                 fp->f_nextoff = val;
  732         if ((flags & FOF_NOLOCK) == 0) {
  733                 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
  734                     ("Lost FOFFSET_LOCKED"));
  735                 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
  736                         wakeup(&fp->f_vnread_flags);
  737                 fp->f_vnread_flags = 0;
  738         }
  739         mtx_unlock(mtxp);
  740 }
  741 
  742 void
  743 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
  744 {
  745 
  746         if ((flags & FOF_OFFSET) == 0)
  747                 uio->uio_offset = foffset_lock(fp, flags);
  748 }
  749 
  750 void
  751 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
  752 {
  753 
  754         if ((flags & FOF_OFFSET) == 0)
  755                 foffset_unlock(fp, uio->uio_offset, flags);
  756 }
  757 
  758 static int
  759 get_advice(struct file *fp, struct uio *uio)
  760 {
  761         struct mtx *mtxp;
  762         int ret;
  763 
  764         ret = POSIX_FADV_NORMAL;
  765         if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
  766                 return (ret);
  767 
  768         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  769         mtx_lock(mtxp);
  770         if (fp->f_advice != NULL &&
  771             uio->uio_offset >= fp->f_advice->fa_start &&
  772             uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
  773                 ret = fp->f_advice->fa_advice;
  774         mtx_unlock(mtxp);
  775         return (ret);
  776 }
  777 
  778 /*
  779  * File table vnode read routine.
  780  */
  781 static int
  782 vn_read(fp, uio, active_cred, flags, td)
  783         struct file *fp;
  784         struct uio *uio;
  785         struct ucred *active_cred;
  786         int flags;
  787         struct thread *td;
  788 {
  789         struct vnode *vp;
  790         off_t orig_offset;
  791         int error, ioflag;
  792         int advice;
  793 
  794         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
  795             uio->uio_td, td));
  796         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
  797         vp = fp->f_vnode;
  798         ioflag = 0;
  799         if (fp->f_flag & FNONBLOCK)
  800                 ioflag |= IO_NDELAY;
  801         if (fp->f_flag & O_DIRECT)
  802                 ioflag |= IO_DIRECT;
  803         advice = get_advice(fp, uio);
  804         vn_lock(vp, LK_SHARED | LK_RETRY);
  805 
  806         switch (advice) {
  807         case POSIX_FADV_NORMAL:
  808         case POSIX_FADV_SEQUENTIAL:
  809         case POSIX_FADV_NOREUSE:
  810                 ioflag |= sequential_heuristic(uio, fp);
  811                 break;
  812         case POSIX_FADV_RANDOM:
  813                 /* Disable read-ahead for random I/O. */
  814                 break;
  815         }
  816         orig_offset = uio->uio_offset;
  817 
  818 #ifdef MAC
  819         error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
  820         if (error == 0)
  821 #endif
  822                 error = VOP_READ(vp, uio, ioflag, fp->f_cred);
  823         fp->f_nextoff = uio->uio_offset;
  824         VOP_UNLOCK(vp, 0);
  825         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
  826             orig_offset != uio->uio_offset)
  827                 /*
  828                  * Use POSIX_FADV_DONTNEED to flush pages and buffers
  829                  * for the backing file after a POSIX_FADV_NOREUSE
  830                  * read(2).
  831                  */
  832                 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
  833                     POSIX_FADV_DONTNEED);
  834         return (error);
  835 }
  836 
  837 /*
  838  * File table vnode write routine.
  839  */
  840 static int
  841 vn_write(fp, uio, active_cred, flags, td)
  842         struct file *fp;
  843         struct uio *uio;
  844         struct ucred *active_cred;
  845         int flags;
  846         struct thread *td;
  847 {
  848         struct vnode *vp;
  849         struct mount *mp;
  850         off_t orig_offset;
  851         int error, ioflag, lock_flags;
  852         int advice;
  853 
  854         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
  855             uio->uio_td, td));
  856         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
  857         vp = fp->f_vnode;
  858         if (vp->v_type == VREG)
  859                 bwillwrite();
  860         ioflag = IO_UNIT;
  861         if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
  862                 ioflag |= IO_APPEND;
  863         if (fp->f_flag & FNONBLOCK)
  864                 ioflag |= IO_NDELAY;
  865         if (fp->f_flag & O_DIRECT)
  866                 ioflag |= IO_DIRECT;
  867         if ((fp->f_flag & O_FSYNC) ||
  868             (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
  869                 ioflag |= IO_SYNC;
  870         mp = NULL;
  871         if (vp->v_type != VCHR &&
  872             (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
  873                 goto unlock;
  874 
  875         advice = get_advice(fp, uio);
  876 
  877         if (MNT_SHARED_WRITES(mp) ||
  878             (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
  879                 lock_flags = LK_SHARED;
  880         } else {
  881                 lock_flags = LK_EXCLUSIVE;
  882         }
  883 
  884         vn_lock(vp, lock_flags | LK_RETRY);
  885         switch (advice) {
  886         case POSIX_FADV_NORMAL:
  887         case POSIX_FADV_SEQUENTIAL:
  888         case POSIX_FADV_NOREUSE:
  889                 ioflag |= sequential_heuristic(uio, fp);
  890                 break;
  891         case POSIX_FADV_RANDOM:
  892                 /* XXX: Is this correct? */
  893                 break;
  894         }
  895         orig_offset = uio->uio_offset;
  896 
  897 #ifdef MAC
  898         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
  899         if (error == 0)
  900 #endif
  901                 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
  902         fp->f_nextoff = uio->uio_offset;
  903         VOP_UNLOCK(vp, 0);
  904         if (vp->v_type != VCHR)
  905                 vn_finished_write(mp);
  906         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
  907             orig_offset != uio->uio_offset)
  908                 /*
  909                  * Use POSIX_FADV_DONTNEED to flush pages and buffers
  910                  * for the backing file after a POSIX_FADV_NOREUSE
  911                  * write(2).
  912                  */
  913                 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
  914                     POSIX_FADV_DONTNEED);
  915 unlock:
  916         return (error);
  917 }
  918 
  919 /*
  920  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
  921  * prevent the following deadlock:
  922  *
  923  * Assume that the thread A reads from the vnode vp1 into userspace
  924  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
  925  * currently not resident, then system ends up with the call chain
  926  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
  927  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
  928  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
  929  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
  930  * backed by the pages of vnode vp1, and some page in buf2 is not
  931  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
  932  *
  933  * To prevent the lock order reversal and deadlock, vn_io_fault() does
  934  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
  935  * Instead, it first tries to do the whole range i/o with pagefaults
  936  * disabled. If all pages in the i/o buffer are resident and mapped,
  937  * VOP will succeed (ignoring the genuine filesystem errors).
  938  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
  939  * i/o in chunks, with all pages in the chunk prefaulted and held
  940  * using vm_fault_quick_hold_pages().
  941  *
  942  * Filesystems using this deadlock avoidance scheme should use the
  943  * array of the held pages from uio, saved in the curthread->td_ma,
  944  * instead of doing uiomove().  A helper function
  945  * vn_io_fault_uiomove() converts uiomove request into
  946  * uiomove_fromphys() over td_ma array.
  947  *
  948  * Since vnode locks do not cover the whole i/o anymore, rangelocks
  949  * make the current i/o request atomic with respect to other i/os and
  950  * truncations.
  951  */
  952 
  953 /*
  954  * Decode vn_io_fault_args and perform the corresponding i/o.
  955  */
  956 static int
  957 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
  958     struct thread *td)
  959 {
  960 
  961         switch (args->kind) {
  962         case VN_IO_FAULT_FOP:
  963                 return ((args->args.fop_args.doio)(args->args.fop_args.fp,
  964                     uio, args->cred, args->flags, td));
  965         case VN_IO_FAULT_VOP:
  966                 if (uio->uio_rw == UIO_READ) {
  967                         return (VOP_READ(args->args.vop_args.vp, uio,
  968                             args->flags, args->cred));
  969                 } else if (uio->uio_rw == UIO_WRITE) {
  970                         return (VOP_WRITE(args->args.vop_args.vp, uio,
  971                             args->flags, args->cred));
  972                 }
  973                 break;
  974         }
  975         panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
  976             uio->uio_rw);
  977 }
  978 
  979 static int
  980 vn_io_fault_touch(char *base, const struct uio *uio)
  981 {
  982         int r;
  983 
  984         r = fubyte(base);
  985         if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
  986                 return (EFAULT);
  987         return (0);
  988 }
  989 
  990 static int
  991 vn_io_fault_prefault_user(const struct uio *uio)
  992 {
  993         char *base;
  994         const struct iovec *iov;
  995         size_t len;
  996         ssize_t resid;
  997         int error, i;
  998 
  999         KASSERT(uio->uio_segflg == UIO_USERSPACE,
 1000             ("vn_io_fault_prefault userspace"));
 1001 
 1002         error = i = 0;
 1003         iov = uio->uio_iov;
 1004         resid = uio->uio_resid;
 1005         base = iov->iov_base;
 1006         len = iov->iov_len;
 1007         while (resid > 0) {
 1008                 error = vn_io_fault_touch(base, uio);
 1009                 if (error != 0)
 1010                         break;
 1011                 if (len < PAGE_SIZE) {
 1012                         if (len != 0) {
 1013                                 error = vn_io_fault_touch(base + len - 1, uio);
 1014                                 if (error != 0)
 1015                                         break;
 1016                                 resid -= len;
 1017                         }
 1018                         if (++i >= uio->uio_iovcnt)
 1019                                 break;
 1020                         iov = uio->uio_iov + i;
 1021                         base = iov->iov_base;
 1022                         len = iov->iov_len;
 1023                 } else {
 1024                         len -= PAGE_SIZE;
 1025                         base += PAGE_SIZE;
 1026                         resid -= PAGE_SIZE;
 1027                 }
 1028         }
 1029         return (error);
 1030 }
 1031 
 1032 /*
 1033  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
 1034  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
 1035  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
 1036  * into args and call vn_io_fault1() to handle faults during the user
 1037  * mode buffer accesses.
 1038  */
 1039 static int
 1040 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
 1041     struct thread *td)
 1042 {
 1043         vm_page_t ma[io_hold_cnt + 2];
 1044         struct uio *uio_clone, short_uio;
 1045         struct iovec short_iovec[1];
 1046         vm_page_t *prev_td_ma;
 1047         vm_prot_t prot;
 1048         vm_offset_t addr, end;
 1049         size_t len, resid;
 1050         ssize_t adv;
 1051         int error, cnt, save, saveheld, prev_td_ma_cnt;
 1052 
 1053         if (vn_io_fault_prefault) {
 1054                 error = vn_io_fault_prefault_user(uio);
 1055                 if (error != 0)
 1056                         return (error); /* Or ignore ? */
 1057         }
 1058 
 1059         prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
 1060 
 1061         /*
 1062          * The UFS follows IO_UNIT directive and replays back both
 1063          * uio_offset and uio_resid if an error is encountered during the
 1064          * operation.  But, since the iovec may be already advanced,
 1065          * uio is still in an inconsistent state.
 1066          *
 1067          * Cache a copy of the original uio, which is advanced to the redo
 1068          * point using UIO_NOCOPY below.
 1069          */
 1070         uio_clone = cloneuio(uio);
 1071         resid = uio->uio_resid;
 1072 
 1073         short_uio.uio_segflg = UIO_USERSPACE;
 1074         short_uio.uio_rw = uio->uio_rw;
 1075         short_uio.uio_td = uio->uio_td;
 1076 
 1077         save = vm_fault_disable_pagefaults();
 1078         error = vn_io_fault_doio(args, uio, td);
 1079         if (error != EFAULT)
 1080                 goto out;
 1081 
 1082         atomic_add_long(&vn_io_faults_cnt, 1);
 1083         uio_clone->uio_segflg = UIO_NOCOPY;
 1084         uiomove(NULL, resid - uio->uio_resid, uio_clone);
 1085         uio_clone->uio_segflg = uio->uio_segflg;
 1086 
 1087         saveheld = curthread_pflags_set(TDP_UIOHELD);
 1088         prev_td_ma = td->td_ma;
 1089         prev_td_ma_cnt = td->td_ma_cnt;
 1090 
 1091         while (uio_clone->uio_resid != 0) {
 1092                 len = uio_clone->uio_iov->iov_len;
 1093                 if (len == 0) {
 1094                         KASSERT(uio_clone->uio_iovcnt >= 1,
 1095                             ("iovcnt underflow"));
 1096                         uio_clone->uio_iov++;
 1097                         uio_clone->uio_iovcnt--;
 1098                         continue;
 1099                 }
 1100                 if (len > io_hold_cnt * PAGE_SIZE)
 1101                         len = io_hold_cnt * PAGE_SIZE;
 1102                 addr = (uintptr_t)uio_clone->uio_iov->iov_base;
 1103                 end = round_page(addr + len);
 1104                 if (end < addr) {
 1105                         error = EFAULT;
 1106                         break;
 1107                 }
 1108                 cnt = atop(end - trunc_page(addr));
 1109                 /*
 1110                  * A perfectly misaligned address and length could cause
 1111                  * both the start and the end of the chunk to use partial
 1112                  * page.  +2 accounts for such a situation.
 1113                  */
 1114                 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
 1115                     addr, len, prot, ma, io_hold_cnt + 2);
 1116                 if (cnt == -1) {
 1117                         error = EFAULT;
 1118                         break;
 1119                 }
 1120                 short_uio.uio_iov = &short_iovec[0];
 1121                 short_iovec[0].iov_base = (void *)addr;
 1122                 short_uio.uio_iovcnt = 1;
 1123                 short_uio.uio_resid = short_iovec[0].iov_len = len;
 1124                 short_uio.uio_offset = uio_clone->uio_offset;
 1125                 td->td_ma = ma;
 1126                 td->td_ma_cnt = cnt;
 1127 
 1128                 error = vn_io_fault_doio(args, &short_uio, td);
 1129                 vm_page_unhold_pages(ma, cnt);
 1130                 adv = len - short_uio.uio_resid;
 1131 
 1132                 uio_clone->uio_iov->iov_base =
 1133                     (char *)uio_clone->uio_iov->iov_base + adv;
 1134                 uio_clone->uio_iov->iov_len -= adv;
 1135                 uio_clone->uio_resid -= adv;
 1136                 uio_clone->uio_offset += adv;
 1137 
 1138                 uio->uio_resid -= adv;
 1139                 uio->uio_offset += adv;
 1140 
 1141                 if (error != 0 || adv == 0)
 1142                         break;
 1143         }
 1144         td->td_ma = prev_td_ma;
 1145         td->td_ma_cnt = prev_td_ma_cnt;
 1146         curthread_pflags_restore(saveheld);
 1147 out:
 1148         vm_fault_enable_pagefaults(save);
 1149         free(uio_clone, M_IOV);
 1150         return (error);
 1151 }
 1152 
 1153 static int
 1154 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1155     int flags, struct thread *td)
 1156 {
 1157         fo_rdwr_t *doio;
 1158         struct vnode *vp;
 1159         void *rl_cookie;
 1160         struct vn_io_fault_args args;
 1161         int error;
 1162 
 1163         doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
 1164         vp = fp->f_vnode;
 1165         foffset_lock_uio(fp, uio, flags);
 1166         if (do_vn_io_fault(vp, uio)) {
 1167                 args.kind = VN_IO_FAULT_FOP;
 1168                 args.args.fop_args.fp = fp;
 1169                 args.args.fop_args.doio = doio;
 1170                 args.cred = active_cred;
 1171                 args.flags = flags | FOF_OFFSET;
 1172                 if (uio->uio_rw == UIO_READ) {
 1173                         rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
 1174                             uio->uio_offset + uio->uio_resid);
 1175                 } else if ((fp->f_flag & O_APPEND) != 0 ||
 1176                     (flags & FOF_OFFSET) == 0) {
 1177                         /* For appenders, punt and lock the whole range. */
 1178                         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 1179                 } else {
 1180                         rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
 1181                             uio->uio_offset + uio->uio_resid);
 1182                 }
 1183                 error = vn_io_fault1(vp, uio, &args, td);
 1184                 vn_rangelock_unlock(vp, rl_cookie);
 1185         } else {
 1186                 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
 1187         }
 1188         foffset_unlock_uio(fp, uio, flags);
 1189         return (error);
 1190 }
 1191 
 1192 /*
 1193  * Helper function to perform the requested uiomove operation using
 1194  * the held pages for io->uio_iov[0].iov_base buffer instead of
 1195  * copyin/copyout.  Access to the pages with uiomove_fromphys()
 1196  * instead of iov_base prevents page faults that could occur due to
 1197  * pmap_collect() invalidating the mapping created by
 1198  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
 1199  * object cleanup revoking the write access from page mappings.
 1200  *
 1201  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
 1202  * instead of plain uiomove().
 1203  */
 1204 int
 1205 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
 1206 {
 1207         struct uio transp_uio;
 1208         struct iovec transp_iov[1];
 1209         struct thread *td;
 1210         size_t adv;
 1211         int error, pgadv;
 1212 
 1213         td = curthread;
 1214         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1215             uio->uio_segflg != UIO_USERSPACE)
 1216                 return (uiomove(data, xfersize, uio));
 1217 
 1218         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1219         transp_iov[0].iov_base = data;
 1220         transp_uio.uio_iov = &transp_iov[0];
 1221         transp_uio.uio_iovcnt = 1;
 1222         if (xfersize > uio->uio_resid)
 1223                 xfersize = uio->uio_resid;
 1224         transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
 1225         transp_uio.uio_offset = 0;
 1226         transp_uio.uio_segflg = UIO_SYSSPACE;
 1227         /*
 1228          * Since transp_iov points to data, and td_ma page array
 1229          * corresponds to original uio->uio_iov, we need to invert the
 1230          * direction of the i/o operation as passed to
 1231          * uiomove_fromphys().
 1232          */
 1233         switch (uio->uio_rw) {
 1234         case UIO_WRITE:
 1235                 transp_uio.uio_rw = UIO_READ;
 1236                 break;
 1237         case UIO_READ:
 1238                 transp_uio.uio_rw = UIO_WRITE;
 1239                 break;
 1240         }
 1241         transp_uio.uio_td = uio->uio_td;
 1242         error = uiomove_fromphys(td->td_ma,
 1243             ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
 1244             xfersize, &transp_uio);
 1245         adv = xfersize - transp_uio.uio_resid;
 1246         pgadv =
 1247             (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
 1248             (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
 1249         td->td_ma += pgadv;
 1250         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1251             pgadv));
 1252         td->td_ma_cnt -= pgadv;
 1253         uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
 1254         uio->uio_iov->iov_len -= adv;
 1255         uio->uio_resid -= adv;
 1256         uio->uio_offset += adv;
 1257         return (error);
 1258 }
 1259 
 1260 int
 1261 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
 1262     struct uio *uio)
 1263 {
 1264         struct thread *td;
 1265         vm_offset_t iov_base;
 1266         int cnt, pgadv;
 1267 
 1268         td = curthread;
 1269         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1270             uio->uio_segflg != UIO_USERSPACE)
 1271                 return (uiomove_fromphys(ma, offset, xfersize, uio));
 1272 
 1273         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1274         cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
 1275         iov_base = (vm_offset_t)uio->uio_iov->iov_base;
 1276         switch (uio->uio_rw) {
 1277         case UIO_WRITE:
 1278                 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
 1279                     offset, cnt);
 1280                 break;
 1281         case UIO_READ:
 1282                 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
 1283                     cnt);
 1284                 break;
 1285         }
 1286         pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
 1287         td->td_ma += pgadv;
 1288         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1289             pgadv));
 1290         td->td_ma_cnt -= pgadv;
 1291         uio->uio_iov->iov_base = (char *)(iov_base + cnt);
 1292         uio->uio_iov->iov_len -= cnt;
 1293         uio->uio_resid -= cnt;
 1294         uio->uio_offset += cnt;
 1295         return (0);
 1296 }
 1297 
 1298 
 1299 /*
 1300  * File table truncate routine.
 1301  */
 1302 static int
 1303 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
 1304     struct thread *td)
 1305 {
 1306         struct vattr vattr;
 1307         struct mount *mp;
 1308         struct vnode *vp;
 1309         void *rl_cookie;
 1310         int error;
 1311 
 1312         vp = fp->f_vnode;
 1313 
 1314         /*
 1315          * Lock the whole range for truncation.  Otherwise split i/o
 1316          * might happen partly before and partly after the truncation.
 1317          */
 1318         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 1319         error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
 1320         if (error)
 1321                 goto out1;
 1322         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1323         if (vp->v_type == VDIR) {
 1324                 error = EISDIR;
 1325                 goto out;
 1326         }
 1327 #ifdef MAC
 1328         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
 1329         if (error)
 1330                 goto out;
 1331 #endif
 1332         error = vn_writechk(vp);
 1333         if (error == 0) {
 1334                 VATTR_NULL(&vattr);
 1335                 vattr.va_size = length;
 1336                 if ((fp->f_flag & O_FSYNC) != 0)
 1337                         vattr.va_vaflags |= VA_SYNC;
 1338                 error = VOP_SETATTR(vp, &vattr, fp->f_cred);
 1339         }
 1340 out:
 1341         VOP_UNLOCK(vp, 0);
 1342         vn_finished_write(mp);
 1343 out1:
 1344         vn_rangelock_unlock(vp, rl_cookie);
 1345         return (error);
 1346 }
 1347 
 1348 /*
 1349  * File table vnode stat routine.
 1350  */
 1351 static int
 1352 vn_statfile(fp, sb, active_cred, td)
 1353         struct file *fp;
 1354         struct stat *sb;
 1355         struct ucred *active_cred;
 1356         struct thread *td;
 1357 {
 1358         struct vnode *vp = fp->f_vnode;
 1359         int error;
 1360 
 1361         vn_lock(vp, LK_SHARED | LK_RETRY);
 1362         error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
 1363         VOP_UNLOCK(vp, 0);
 1364 
 1365         return (error);
 1366 }
 1367 
 1368 /*
 1369  * Stat a vnode; implementation for the stat syscall
 1370  */
 1371 int
 1372 vn_stat(vp, sb, active_cred, file_cred, td)
 1373         struct vnode *vp;
 1374         register struct stat *sb;
 1375         struct ucred *active_cred;
 1376         struct ucred *file_cred;
 1377         struct thread *td;
 1378 {
 1379         struct vattr vattr;
 1380         register struct vattr *vap;
 1381         int error;
 1382         u_short mode;
 1383 
 1384         AUDIT_ARG_VNODE1(vp);
 1385 #ifdef MAC
 1386         error = mac_vnode_check_stat(active_cred, file_cred, vp);
 1387         if (error)
 1388                 return (error);
 1389 #endif
 1390 
 1391         vap = &vattr;
 1392 
 1393         /*
 1394          * Initialize defaults for new and unusual fields, so that file
 1395          * systems which don't support these fields don't need to know
 1396          * about them.
 1397          */
 1398         vap->va_birthtime.tv_sec = -1;
 1399         vap->va_birthtime.tv_nsec = 0;
 1400         vap->va_fsid = VNOVAL;
 1401         vap->va_rdev = NODEV;
 1402 
 1403         error = VOP_GETATTR(vp, vap, active_cred);
 1404         if (error)
 1405                 return (error);
 1406 
 1407         /*
 1408          * Zero the spare stat fields
 1409          */
 1410         bzero(sb, sizeof *sb);
 1411 
 1412         /*
 1413          * Copy from vattr table
 1414          */
 1415         if (vap->va_fsid != VNOVAL)
 1416                 sb->st_dev = vap->va_fsid;
 1417         else
 1418                 sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
 1419         sb->st_ino = vap->va_fileid;
 1420         mode = vap->va_mode;
 1421         switch (vap->va_type) {
 1422         case VREG:
 1423                 mode |= S_IFREG;
 1424                 break;
 1425         case VDIR:
 1426                 mode |= S_IFDIR;
 1427                 break;
 1428         case VBLK:
 1429                 mode |= S_IFBLK;
 1430                 break;
 1431         case VCHR:
 1432                 mode |= S_IFCHR;
 1433                 break;
 1434         case VLNK:
 1435                 mode |= S_IFLNK;
 1436                 break;
 1437         case VSOCK:
 1438                 mode |= S_IFSOCK;
 1439                 break;
 1440         case VFIFO:
 1441                 mode |= S_IFIFO;
 1442                 break;
 1443         default:
 1444                 return (EBADF);
 1445         }
 1446         sb->st_mode = mode;
 1447         sb->st_nlink = vap->va_nlink;
 1448         sb->st_uid = vap->va_uid;
 1449         sb->st_gid = vap->va_gid;
 1450         sb->st_rdev = vap->va_rdev;
 1451         if (vap->va_size > OFF_MAX)
 1452                 return (EOVERFLOW);
 1453         sb->st_size = vap->va_size;
 1454         sb->st_atim = vap->va_atime;
 1455         sb->st_mtim = vap->va_mtime;
 1456         sb->st_ctim = vap->va_ctime;
 1457         sb->st_birthtim = vap->va_birthtime;
 1458 
 1459         /*
 1460          * According to www.opengroup.org, the meaning of st_blksize is 
 1461          *   "a filesystem-specific preferred I/O block size for this 
 1462          *    object.  In some filesystem types, this may vary from file
 1463          *    to file"
 1464          * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
 1465          */
 1466 
 1467         sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
 1468         
 1469         sb->st_flags = vap->va_flags;
 1470         if (priv_check(td, PRIV_VFS_GENERATION))
 1471                 sb->st_gen = 0;
 1472         else
 1473                 sb->st_gen = vap->va_gen;
 1474 
 1475         sb->st_blocks = vap->va_bytes / S_BLKSIZE;
 1476         return (0);
 1477 }
 1478 
 1479 /*
 1480  * File table vnode ioctl routine.
 1481  */
 1482 static int
 1483 vn_ioctl(fp, com, data, active_cred, td)
 1484         struct file *fp;
 1485         u_long com;
 1486         void *data;
 1487         struct ucred *active_cred;
 1488         struct thread *td;
 1489 {
 1490         struct vattr vattr;
 1491         struct vnode *vp;
 1492         int error;
 1493 
 1494         vp = fp->f_vnode;
 1495         switch (vp->v_type) {
 1496         case VDIR:
 1497         case VREG:
 1498                 switch (com) {
 1499                 case FIONREAD:
 1500                         vn_lock(vp, LK_SHARED | LK_RETRY);
 1501                         error = VOP_GETATTR(vp, &vattr, active_cred);
 1502                         VOP_UNLOCK(vp, 0);
 1503                         if (error == 0)
 1504                                 *(int *)data = vattr.va_size - fp->f_offset;
 1505                         return (error);
 1506                 case FIONBIO:
 1507                 case FIOASYNC:
 1508                         return (0);
 1509                 default:
 1510                         return (VOP_IOCTL(vp, com, data, fp->f_flag,
 1511                             active_cred, td));
 1512                 }
 1513         default:
 1514                 return (ENOTTY);
 1515         }
 1516 }
 1517 
 1518 /*
 1519  * File table vnode poll routine.
 1520  */
 1521 static int
 1522 vn_poll(fp, events, active_cred, td)
 1523         struct file *fp;
 1524         int events;
 1525         struct ucred *active_cred;
 1526         struct thread *td;
 1527 {
 1528         struct vnode *vp;
 1529         int error;
 1530 
 1531         vp = fp->f_vnode;
 1532 #ifdef MAC
 1533         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1534         AUDIT_ARG_VNODE1(vp);
 1535         error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
 1536         VOP_UNLOCK(vp, 0);
 1537         if (!error)
 1538 #endif
 1539 
 1540         error = VOP_POLL(vp, events, fp->f_cred, td);
 1541         return (error);
 1542 }
 1543 
 1544 /*
 1545  * Acquire the requested lock and then check for validity.  LK_RETRY
 1546  * permits vn_lock to return doomed vnodes.
 1547  */
 1548 int
 1549 _vn_lock(struct vnode *vp, int flags, char *file, int line)
 1550 {
 1551         int error;
 1552 
 1553         VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
 1554             ("vn_lock: no locktype"));
 1555         VNASSERT(vp->v_holdcnt != 0, vp, ("vn_lock: zero hold count"));
 1556 retry:
 1557         error = VOP_LOCK1(vp, flags, file, line);
 1558         flags &= ~LK_INTERLOCK; /* Interlock is always dropped. */
 1559         KASSERT((flags & LK_RETRY) == 0 || error == 0,
 1560             ("vn_lock: error %d incompatible with flags %#x", error, flags));
 1561 
 1562         if ((flags & LK_RETRY) == 0) {
 1563                 if (error == 0 && (vp->v_iflag & VI_DOOMED) != 0) {
 1564                         VOP_UNLOCK(vp, 0);
 1565                         error = ENOENT;
 1566                 }
 1567         } else if (error != 0)
 1568                 goto retry;
 1569         return (error);
 1570 }
 1571 
 1572 /*
 1573  * File table vnode close routine.
 1574  */
 1575 static int
 1576 vn_closefile(struct file *fp, struct thread *td)
 1577 {
 1578         struct vnode *vp;
 1579         struct flock lf;
 1580         int error;
 1581         bool ref;
 1582 
 1583         vp = fp->f_vnode;
 1584         fp->f_ops = &badfileops;
 1585         ref= (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
 1586 
 1587         error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
 1588 
 1589         if (__predict_false(ref)) {
 1590                 lf.l_whence = SEEK_SET;
 1591                 lf.l_start = 0;
 1592                 lf.l_len = 0;
 1593                 lf.l_type = F_UNLCK;
 1594                 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
 1595                 vrele(vp);
 1596         }
 1597         return (error);
 1598 }
 1599 
 1600 static bool
 1601 vn_suspendable(struct mount *mp)
 1602 {
 1603 
 1604         return (mp->mnt_op->vfs_susp_clean != NULL);
 1605 }
 1606 
 1607 /*
 1608  * Preparing to start a filesystem write operation. If the operation is
 1609  * permitted, then we bump the count of operations in progress and
 1610  * proceed. If a suspend request is in progress, we wait until the
 1611  * suspension is over, and then proceed.
 1612  */
 1613 static int
 1614 vn_start_write_locked(struct mount *mp, int flags)
 1615 {
 1616         int error, mflags;
 1617 
 1618         mtx_assert(MNT_MTX(mp), MA_OWNED);
 1619         error = 0;
 1620 
 1621         /*
 1622          * Check on status of suspension.
 1623          */
 1624         if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
 1625             mp->mnt_susp_owner != curthread) {
 1626                 mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
 1627                     (flags & PCATCH) : 0) | (PUSER - 1);
 1628                 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 1629                         if (flags & V_NOWAIT) {
 1630                                 error = EWOULDBLOCK;
 1631                                 goto unlock;
 1632                         }
 1633                         error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
 1634                             "suspfs", 0);
 1635                         if (error)
 1636                                 goto unlock;
 1637                 }
 1638         }
 1639         if (flags & V_XSLEEP)
 1640                 goto unlock;
 1641         mp->mnt_writeopcount++;
 1642 unlock:
 1643         if (error != 0 || (flags & V_XSLEEP) != 0)
 1644                 MNT_REL(mp);
 1645         MNT_IUNLOCK(mp);
 1646         return (error);
 1647 }
 1648 
 1649 int
 1650 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
 1651 {
 1652         struct mount *mp;
 1653         int error;
 1654 
 1655         KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
 1656             ("V_MNTREF requires mp"));
 1657 
 1658         error = 0;
 1659         /*
 1660          * If a vnode is provided, get and return the mount point that
 1661          * to which it will write.
 1662          */
 1663         if (vp != NULL) {
 1664                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1665                         *mpp = NULL;
 1666                         if (error != EOPNOTSUPP)
 1667                                 return (error);
 1668                         return (0);
 1669                 }
 1670         }
 1671         if ((mp = *mpp) == NULL)
 1672                 return (0);
 1673 
 1674         if (!vn_suspendable(mp)) {
 1675                 if (vp != NULL || (flags & V_MNTREF) != 0)
 1676                         vfs_rel(mp);
 1677                 return (0);
 1678         }
 1679 
 1680         /*
 1681          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1682          * a vfs_ref().
 1683          * As long as a vnode is not provided we need to acquire a
 1684          * refcount for the provided mountpoint too, in order to
 1685          * emulate a vfs_ref().
 1686          */
 1687         MNT_ILOCK(mp);
 1688         if (vp == NULL && (flags & V_MNTREF) == 0)
 1689                 MNT_REF(mp);
 1690 
 1691         return (vn_start_write_locked(mp, flags));
 1692 }
 1693 
 1694 /*
 1695  * Secondary suspension. Used by operations such as vop_inactive
 1696  * routines that are needed by the higher level functions. These
 1697  * are allowed to proceed until all the higher level functions have
 1698  * completed (indicated by mnt_writeopcount dropping to zero). At that
 1699  * time, these operations are halted until the suspension is over.
 1700  */
 1701 int
 1702 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
 1703 {
 1704         struct mount *mp;
 1705         int error;
 1706 
 1707         KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
 1708             ("V_MNTREF requires mp"));
 1709 
 1710  retry:
 1711         if (vp != NULL) {
 1712                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1713                         *mpp = NULL;
 1714                         if (error != EOPNOTSUPP)
 1715                                 return (error);
 1716                         return (0);
 1717                 }
 1718         }
 1719         /*
 1720          * If we are not suspended or have not yet reached suspended
 1721          * mode, then let the operation proceed.
 1722          */
 1723         if ((mp = *mpp) == NULL)
 1724                 return (0);
 1725 
 1726         if (!vn_suspendable(mp)) {
 1727                 if (vp != NULL || (flags & V_MNTREF) != 0)
 1728                         vfs_rel(mp);
 1729                 return (0);
 1730         }
 1731 
 1732         /*
 1733          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1734          * a vfs_ref().
 1735          * As long as a vnode is not provided we need to acquire a
 1736          * refcount for the provided mountpoint too, in order to
 1737          * emulate a vfs_ref().
 1738          */
 1739         MNT_ILOCK(mp);
 1740         if (vp == NULL && (flags & V_MNTREF) == 0)
 1741                 MNT_REF(mp);
 1742         if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
 1743                 mp->mnt_secondary_writes++;
 1744                 mp->mnt_secondary_accwrites++;
 1745                 MNT_IUNLOCK(mp);
 1746                 return (0);
 1747         }
 1748         if (flags & V_NOWAIT) {
 1749                 MNT_REL(mp);
 1750                 MNT_IUNLOCK(mp);
 1751                 return (EWOULDBLOCK);
 1752         }
 1753         /*
 1754          * Wait for the suspension to finish.
 1755          */
 1756         error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
 1757             ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
 1758             "suspfs", 0);
 1759         vfs_rel(mp);
 1760         if (error == 0)
 1761                 goto retry;
 1762         return (error);
 1763 }
 1764 
 1765 /*
 1766  * Filesystem write operation has completed. If we are suspending and this
 1767  * operation is the last one, notify the suspender that the suspension is
 1768  * now in effect.
 1769  */
 1770 void
 1771 vn_finished_write(mp)
 1772         struct mount *mp;
 1773 {
 1774         if (mp == NULL || !vn_suspendable(mp))
 1775                 return;
 1776         MNT_ILOCK(mp);
 1777         MNT_REL(mp);
 1778         mp->mnt_writeopcount--;
 1779         if (mp->mnt_writeopcount < 0)
 1780                 panic("vn_finished_write: neg cnt");
 1781         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
 1782             mp->mnt_writeopcount <= 0)
 1783                 wakeup(&mp->mnt_writeopcount);
 1784         MNT_IUNLOCK(mp);
 1785 }
 1786 
 1787 
 1788 /*
 1789  * Filesystem secondary write operation has completed. If we are
 1790  * suspending and this operation is the last one, notify the suspender
 1791  * that the suspension is now in effect.
 1792  */
 1793 void
 1794 vn_finished_secondary_write(mp)
 1795         struct mount *mp;
 1796 {
 1797         if (mp == NULL || !vn_suspendable(mp))
 1798                 return;
 1799         MNT_ILOCK(mp);
 1800         MNT_REL(mp);
 1801         mp->mnt_secondary_writes--;
 1802         if (mp->mnt_secondary_writes < 0)
 1803                 panic("vn_finished_secondary_write: neg cnt");
 1804         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
 1805             mp->mnt_secondary_writes <= 0)
 1806                 wakeup(&mp->mnt_secondary_writes);
 1807         MNT_IUNLOCK(mp);
 1808 }
 1809 
 1810 
 1811 
 1812 /*
 1813  * Request a filesystem to suspend write operations.
 1814  */
 1815 int
 1816 vfs_write_suspend(struct mount *mp, int flags)
 1817 {
 1818         int error;
 1819 
 1820         MPASS(vn_suspendable(mp));
 1821 
 1822         MNT_ILOCK(mp);
 1823         if (mp->mnt_susp_owner == curthread) {
 1824                 MNT_IUNLOCK(mp);
 1825                 return (EALREADY);
 1826         }
 1827         while (mp->mnt_kern_flag & MNTK_SUSPEND)
 1828                 msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
 1829 
 1830         /*
 1831          * Unmount holds a write reference on the mount point.  If we
 1832          * own busy reference and drain for writers, we deadlock with
 1833          * the reference draining in the unmount path.  Callers of
 1834          * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
 1835          * vfs_busy() reference is owned and caller is not in the
 1836          * unmount context.
 1837          */
 1838         if ((flags & VS_SKIP_UNMOUNT) != 0 &&
 1839             (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
 1840                 MNT_IUNLOCK(mp);
 1841                 return (EBUSY);
 1842         }
 1843 
 1844         mp->mnt_kern_flag |= MNTK_SUSPEND;
 1845         mp->mnt_susp_owner = curthread;
 1846         if (mp->mnt_writeopcount > 0)
 1847                 (void) msleep(&mp->mnt_writeopcount, 
 1848                     MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
 1849         else
 1850                 MNT_IUNLOCK(mp);
 1851         if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
 1852                 vfs_write_resume(mp, 0);
 1853         return (error);
 1854 }
 1855 
 1856 /*
 1857  * Request a filesystem to resume write operations.
 1858  */
 1859 void
 1860 vfs_write_resume(struct mount *mp, int flags)
 1861 {
 1862 
 1863         MPASS(vn_suspendable(mp));
 1864 
 1865         MNT_ILOCK(mp);
 1866         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 1867                 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
 1868                 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
 1869                                        MNTK_SUSPENDED);
 1870                 mp->mnt_susp_owner = NULL;
 1871                 wakeup(&mp->mnt_writeopcount);
 1872                 wakeup(&mp->mnt_flag);
 1873                 curthread->td_pflags &= ~TDP_IGNSUSP;
 1874                 if ((flags & VR_START_WRITE) != 0) {
 1875                         MNT_REF(mp);
 1876                         mp->mnt_writeopcount++;
 1877                 }
 1878                 MNT_IUNLOCK(mp);
 1879                 if ((flags & VR_NO_SUSPCLR) == 0)
 1880                         VFS_SUSP_CLEAN(mp);
 1881         } else if ((flags & VR_START_WRITE) != 0) {
 1882                 MNT_REF(mp);
 1883                 vn_start_write_locked(mp, 0);
 1884         } else {
 1885                 MNT_IUNLOCK(mp);
 1886         }
 1887 }
 1888 
 1889 /*
 1890  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
 1891  * methods.
 1892  */
 1893 int
 1894 vfs_write_suspend_umnt(struct mount *mp)
 1895 {
 1896         int error;
 1897 
 1898         MPASS(vn_suspendable(mp));
 1899         KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
 1900             ("vfs_write_suspend_umnt: recursed"));
 1901 
 1902         /* dounmount() already called vn_start_write(). */
 1903         for (;;) {
 1904                 vn_finished_write(mp);
 1905                 error = vfs_write_suspend(mp, 0);
 1906                 if (error != 0) {
 1907                         vn_start_write(NULL, &mp, V_WAIT);
 1908                         return (error);
 1909                 }
 1910                 MNT_ILOCK(mp);
 1911                 if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
 1912                         break;
 1913                 MNT_IUNLOCK(mp);
 1914                 vn_start_write(NULL, &mp, V_WAIT);
 1915         }
 1916         mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
 1917         wakeup(&mp->mnt_flag);
 1918         MNT_IUNLOCK(mp);
 1919         curthread->td_pflags |= TDP_IGNSUSP;
 1920         return (0);
 1921 }
 1922 
 1923 /*
 1924  * Implement kqueues for files by translating it to vnode operation.
 1925  */
 1926 static int
 1927 vn_kqfilter(struct file *fp, struct knote *kn)
 1928 {
 1929 
 1930         return (VOP_KQFILTER(fp->f_vnode, kn));
 1931 }
 1932 
 1933 /*
 1934  * Simplified in-kernel wrapper calls for extended attribute access.
 1935  * Both calls pass in a NULL credential, authorizing as "kernel" access.
 1936  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
 1937  */
 1938 int
 1939 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
 1940     const char *attrname, int *buflen, char *buf, struct thread *td)
 1941 {
 1942         struct uio      auio;
 1943         struct iovec    iov;
 1944         int     error;
 1945 
 1946         iov.iov_len = *buflen;
 1947         iov.iov_base = buf;
 1948 
 1949         auio.uio_iov = &iov;
 1950         auio.uio_iovcnt = 1;
 1951         auio.uio_rw = UIO_READ;
 1952         auio.uio_segflg = UIO_SYSSPACE;
 1953         auio.uio_td = td;
 1954         auio.uio_offset = 0;
 1955         auio.uio_resid = *buflen;
 1956 
 1957         if ((ioflg & IO_NODELOCKED) == 0)
 1958                 vn_lock(vp, LK_SHARED | LK_RETRY);
 1959 
 1960         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 1961 
 1962         /* authorize attribute retrieval as kernel */
 1963         error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
 1964             td);
 1965 
 1966         if ((ioflg & IO_NODELOCKED) == 0)
 1967                 VOP_UNLOCK(vp, 0);
 1968 
 1969         if (error == 0) {
 1970                 *buflen = *buflen - auio.uio_resid;
 1971         }
 1972 
 1973         return (error);
 1974 }
 1975 
 1976 /*
 1977  * XXX failure mode if partially written?
 1978  */
 1979 int
 1980 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
 1981     const char *attrname, int buflen, char *buf, struct thread *td)
 1982 {
 1983         struct uio      auio;
 1984         struct iovec    iov;
 1985         struct mount    *mp;
 1986         int     error;
 1987 
 1988         iov.iov_len = buflen;
 1989         iov.iov_base = buf;
 1990 
 1991         auio.uio_iov = &iov;
 1992         auio.uio_iovcnt = 1;
 1993         auio.uio_rw = UIO_WRITE;
 1994         auio.uio_segflg = UIO_SYSSPACE;
 1995         auio.uio_td = td;
 1996         auio.uio_offset = 0;
 1997         auio.uio_resid = buflen;
 1998 
 1999         if ((ioflg & IO_NODELOCKED) == 0) {
 2000                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 2001                         return (error);
 2002                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2003         }
 2004 
 2005         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 2006 
 2007         /* authorize attribute setting as kernel */
 2008         error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
 2009 
 2010         if ((ioflg & IO_NODELOCKED) == 0) {
 2011                 vn_finished_write(mp);
 2012                 VOP_UNLOCK(vp, 0);
 2013         }
 2014 
 2015         return (error);
 2016 }
 2017 
 2018 int
 2019 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
 2020     const char *attrname, struct thread *td)
 2021 {
 2022         struct mount    *mp;
 2023         int     error;
 2024 
 2025         if ((ioflg & IO_NODELOCKED) == 0) {
 2026                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 2027                         return (error);
 2028                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2029         }
 2030 
 2031         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 2032 
 2033         /* authorize attribute removal as kernel */
 2034         error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
 2035         if (error == EOPNOTSUPP)
 2036                 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
 2037                     NULL, td);
 2038 
 2039         if ((ioflg & IO_NODELOCKED) == 0) {
 2040                 vn_finished_write(mp);
 2041                 VOP_UNLOCK(vp, 0);
 2042         }
 2043 
 2044         return (error);
 2045 }
 2046 
 2047 static int
 2048 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
 2049     struct vnode **rvp)
 2050 {
 2051 
 2052         return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
 2053 }
 2054 
 2055 int
 2056 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
 2057 {
 2058 
 2059         return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
 2060             lkflags, rvp));
 2061 }
 2062 
 2063 int
 2064 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
 2065     int lkflags, struct vnode **rvp)
 2066 {
 2067         struct mount *mp;
 2068         int ltype, error;
 2069 
 2070         ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
 2071         mp = vp->v_mount;
 2072         ltype = VOP_ISLOCKED(vp);
 2073         KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
 2074             ("vn_vget_ino: vp not locked"));
 2075         error = vfs_busy(mp, MBF_NOWAIT);
 2076         if (error != 0) {
 2077                 vfs_ref(mp);
 2078                 VOP_UNLOCK(vp, 0);
 2079                 error = vfs_busy(mp, 0);
 2080                 vn_lock(vp, ltype | LK_RETRY);
 2081                 vfs_rel(mp);
 2082                 if (error != 0)
 2083                         return (ENOENT);
 2084                 if (vp->v_iflag & VI_DOOMED) {
 2085                         vfs_unbusy(mp);
 2086                         return (ENOENT);
 2087                 }
 2088         }
 2089         VOP_UNLOCK(vp, 0);
 2090         error = alloc(mp, alloc_arg, lkflags, rvp);
 2091         vfs_unbusy(mp);
 2092         if (*rvp != vp)
 2093                 vn_lock(vp, ltype | LK_RETRY);
 2094         if (vp->v_iflag & VI_DOOMED) {
 2095                 if (error == 0) {
 2096                         if (*rvp == vp)
 2097                                 vunref(vp);
 2098                         else
 2099                                 vput(*rvp);
 2100                 }
 2101                 error = ENOENT;
 2102         }
 2103         return (error);
 2104 }
 2105 
 2106 int
 2107 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
 2108     struct thread *td)
 2109 {
 2110 
 2111         if (vp->v_type != VREG || td == NULL)
 2112                 return (0);
 2113         if ((uoff_t)uio->uio_offset + uio->uio_resid >
 2114             lim_cur(td, RLIMIT_FSIZE)) {
 2115                 PROC_LOCK(td->td_proc);
 2116                 kern_psignal(td->td_proc, SIGXFSZ);
 2117                 PROC_UNLOCK(td->td_proc);
 2118                 return (EFBIG);
 2119         }
 2120         return (0);
 2121 }
 2122 
 2123 int
 2124 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
 2125     struct thread *td)
 2126 {
 2127         struct vnode *vp;
 2128 
 2129         vp = fp->f_vnode;
 2130 #ifdef AUDIT
 2131         vn_lock(vp, LK_SHARED | LK_RETRY);
 2132         AUDIT_ARG_VNODE1(vp);
 2133         VOP_UNLOCK(vp, 0);
 2134 #endif
 2135         return (setfmode(td, active_cred, vp, mode));
 2136 }
 2137 
 2138 int
 2139 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
 2140     struct thread *td)
 2141 {
 2142         struct vnode *vp;
 2143 
 2144         vp = fp->f_vnode;
 2145 #ifdef AUDIT
 2146         vn_lock(vp, LK_SHARED | LK_RETRY);
 2147         AUDIT_ARG_VNODE1(vp);
 2148         VOP_UNLOCK(vp, 0);
 2149 #endif
 2150         return (setfown(td, active_cred, vp, uid, gid));
 2151 }
 2152 
 2153 void
 2154 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
 2155 {
 2156         vm_object_t object;
 2157 
 2158         if ((object = vp->v_object) == NULL)
 2159                 return;
 2160         VM_OBJECT_WLOCK(object);
 2161         vm_object_page_remove(object, start, end, 0);
 2162         VM_OBJECT_WUNLOCK(object);
 2163 }
 2164 
 2165 int
 2166 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
 2167 {
 2168         struct vattr va;
 2169         daddr_t bn, bnp;
 2170         uint64_t bsize;
 2171         off_t noff;
 2172         int error;
 2173 
 2174         KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
 2175             ("Wrong command %lu", cmd));
 2176 
 2177         if (vn_lock(vp, LK_SHARED) != 0)
 2178                 return (EBADF);
 2179         if (vp->v_type != VREG) {
 2180                 error = ENOTTY;
 2181                 goto unlock;
 2182         }
 2183         error = VOP_GETATTR(vp, &va, cred);
 2184         if (error != 0)
 2185                 goto unlock;
 2186         noff = *off;
 2187         if (noff >= va.va_size) {
 2188                 error = ENXIO;
 2189                 goto unlock;
 2190         }
 2191         bsize = vp->v_mount->mnt_stat.f_iosize;
 2192         for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
 2193                 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
 2194                 if (error == EOPNOTSUPP) {
 2195                         error = ENOTTY;
 2196                         goto unlock;
 2197                 }
 2198                 if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
 2199                     (bnp != -1 && cmd == FIOSEEKDATA)) {
 2200                         noff = bn * bsize;
 2201                         if (noff < *off)
 2202                                 noff = *off;
 2203                         goto unlock;
 2204                 }
 2205         }
 2206         if (noff > va.va_size)
 2207                 noff = va.va_size;
 2208         /* noff == va.va_size. There is an implicit hole at the end of file. */
 2209         if (cmd == FIOSEEKDATA)
 2210                 error = ENXIO;
 2211 unlock:
 2212         VOP_UNLOCK(vp, 0);
 2213         if (error == 0)
 2214                 *off = noff;
 2215         return (error);
 2216 }
 2217 
 2218 int
 2219 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
 2220 {
 2221         struct ucred *cred;
 2222         struct vnode *vp;
 2223         struct vattr vattr;
 2224         off_t foffset, size;
 2225         int error, noneg;
 2226 
 2227         cred = td->td_ucred;
 2228         vp = fp->f_vnode;
 2229         foffset = foffset_lock(fp, 0);
 2230         noneg = (vp->v_type != VCHR);
 2231         error = 0;
 2232         switch (whence) {
 2233         case L_INCR:
 2234                 if (noneg &&
 2235                     (foffset < 0 ||
 2236                     (offset > 0 && foffset > OFF_MAX - offset))) {
 2237                         error = EOVERFLOW;
 2238                         break;
 2239                 }
 2240                 offset += foffset;
 2241                 break;
 2242         case L_XTND:
 2243                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2244                 error = VOP_GETATTR(vp, &vattr, cred);
 2245                 VOP_UNLOCK(vp, 0);
 2246                 if (error)
 2247                         break;
 2248 
 2249                 /*
 2250                  * If the file references a disk device, then fetch
 2251                  * the media size and use that to determine the ending
 2252                  * offset.
 2253                  */
 2254                 if (vattr.va_size == 0 && vp->v_type == VCHR &&
 2255                     fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
 2256                         vattr.va_size = size;
 2257                 if (noneg &&
 2258                     (vattr.va_size > OFF_MAX ||
 2259                     (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
 2260                         error = EOVERFLOW;
 2261                         break;
 2262                 }
 2263                 offset += vattr.va_size;
 2264                 break;
 2265         case L_SET:
 2266                 break;
 2267         case SEEK_DATA:
 2268                 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
 2269                 break;
 2270         case SEEK_HOLE:
 2271                 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
 2272                 break;
 2273         default:
 2274                 error = EINVAL;
 2275         }
 2276         if (error == 0 && noneg && offset < 0)
 2277                 error = EINVAL;
 2278         if (error != 0)
 2279                 goto drop;
 2280         VFS_KNOTE_UNLOCKED(vp, 0);
 2281         td->td_uretoff.tdu_off = offset;
 2282 drop:
 2283         foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
 2284         return (error);
 2285 }
 2286 
 2287 int
 2288 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
 2289     struct thread *td)
 2290 {
 2291         int error;
 2292 
 2293         /*
 2294          * Grant permission if the caller is the owner of the file, or
 2295          * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
 2296          * on the file.  If the time pointer is null, then write
 2297          * permission on the file is also sufficient.
 2298          *
 2299          * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
 2300          * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
 2301          * will be allowed to set the times [..] to the current
 2302          * server time.
 2303          */
 2304         error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
 2305         if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
 2306                 error = VOP_ACCESS(vp, VWRITE, cred, td);
 2307         return (error);
 2308 }
 2309 
 2310 int
 2311 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
 2312 {
 2313         struct vnode *vp;
 2314         int error;
 2315 
 2316         if (fp->f_type == DTYPE_FIFO)
 2317                 kif->kf_type = KF_TYPE_FIFO;
 2318         else
 2319                 kif->kf_type = KF_TYPE_VNODE;
 2320         vp = fp->f_vnode;
 2321         vref(vp);
 2322         FILEDESC_SUNLOCK(fdp);
 2323         error = vn_fill_kinfo_vnode(vp, kif);
 2324         vrele(vp);
 2325         FILEDESC_SLOCK(fdp);
 2326         return (error);
 2327 }
 2328 
 2329 static inline void
 2330 vn_fill_junk(struct kinfo_file *kif)
 2331 {
 2332         size_t len, olen;
 2333 
 2334         /*
 2335          * Simulate vn_fullpath returning changing values for a given
 2336          * vp during e.g. coredump.
 2337          */
 2338         len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
 2339         olen = strlen(kif->kf_path);
 2340         if (len < olen)
 2341                 strcpy(&kif->kf_path[len - 1], "$");
 2342         else
 2343                 for (; olen < len; olen++)
 2344                         strcpy(&kif->kf_path[olen], "A");
 2345 }
 2346 
 2347 int
 2348 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
 2349 {
 2350         struct vattr va;
 2351         char *fullpath, *freepath;
 2352         int error;
 2353 
 2354         kif->kf_vnode_type = vntype_to_kinfo(vp->v_type);
 2355         freepath = NULL;
 2356         fullpath = "-";
 2357         error = vn_fullpath(curthread, vp, &fullpath, &freepath);
 2358         if (error == 0) {
 2359                 strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
 2360         }
 2361         if (freepath != NULL)
 2362                 free(freepath, M_TEMP);
 2363 
 2364         KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
 2365                 vn_fill_junk(kif);
 2366         );
 2367 
 2368         /*
 2369          * Retrieve vnode attributes.
 2370          */
 2371         va.va_fsid = VNOVAL;
 2372         va.va_rdev = NODEV;
 2373         vn_lock(vp, LK_SHARED | LK_RETRY);
 2374         error = VOP_GETATTR(vp, &va, curthread->td_ucred);
 2375         VOP_UNLOCK(vp, 0);
 2376         if (error != 0)
 2377                 return (error);
 2378         if (va.va_fsid != VNOVAL)
 2379                 kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
 2380         else
 2381                 kif->kf_un.kf_file.kf_file_fsid =
 2382                     vp->v_mount->mnt_stat.f_fsid.val[0];
 2383         kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
 2384         kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
 2385         kif->kf_un.kf_file.kf_file_size = va.va_size;
 2386         kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
 2387         return (0);
 2388 }
 2389 
 2390 int
 2391 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
 2392     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
 2393     struct thread *td)
 2394 {
 2395 #ifdef HWPMC_HOOKS
 2396         struct pmckern_map_in pkm;
 2397 #endif
 2398         struct mount *mp;
 2399         struct vnode *vp;
 2400         vm_object_t object;
 2401         vm_prot_t maxprot;
 2402         boolean_t writecounted;
 2403         int error;
 2404 
 2405 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
 2406     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
 2407         /*
 2408          * POSIX shared-memory objects are defined to have
 2409          * kernel persistence, and are not defined to support
 2410          * read(2)/write(2) -- or even open(2).  Thus, we can
 2411          * use MAP_ASYNC to trade on-disk coherence for speed.
 2412          * The shm_open(3) library routine turns on the FPOSIXSHM
 2413          * flag to request this behavior.
 2414          */
 2415         if ((fp->f_flag & FPOSIXSHM) != 0)
 2416                 flags |= MAP_NOSYNC;
 2417 #endif
 2418         vp = fp->f_vnode;
 2419 
 2420         /*
 2421          * Ensure that file and memory protections are
 2422          * compatible.  Note that we only worry about
 2423          * writability if mapping is shared; in this case,
 2424          * current and max prot are dictated by the open file.
 2425          * XXX use the vnode instead?  Problem is: what
 2426          * credentials do we use for determination? What if
 2427          * proc does a setuid?
 2428          */
 2429         mp = vp->v_mount;
 2430         if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
 2431                 maxprot = VM_PROT_NONE;
 2432                 if ((prot & VM_PROT_EXECUTE) != 0)
 2433                         return (EACCES);
 2434         } else
 2435                 maxprot = VM_PROT_EXECUTE;
 2436         if ((fp->f_flag & FREAD) != 0)
 2437                 maxprot |= VM_PROT_READ;
 2438         else if ((prot & VM_PROT_READ) != 0)
 2439                 return (EACCES);
 2440 
 2441         /*
 2442          * If we are sharing potential changes via MAP_SHARED and we
 2443          * are trying to get write permission although we opened it
 2444          * without asking for it, bail out.
 2445          */
 2446         if ((flags & MAP_SHARED) != 0) {
 2447                 if ((fp->f_flag & FWRITE) != 0)
 2448                         maxprot |= VM_PROT_WRITE;
 2449                 else if ((prot & VM_PROT_WRITE) != 0)
 2450                         return (EACCES);
 2451         } else {
 2452                 maxprot |= VM_PROT_WRITE;
 2453                 cap_maxprot |= VM_PROT_WRITE;
 2454         }
 2455         maxprot &= cap_maxprot;
 2456 
 2457         /*
 2458          * For regular files and shared memory, POSIX requires that
 2459          * the value of foff be a legitimate offset within the data
 2460          * object.  In particular, negative offsets are invalid.
 2461          * Blocking negative offsets and overflows here avoids
 2462          * possible wraparound or user-level access into reserved
 2463          * ranges of the data object later.  In contrast, POSIX does
 2464          * not dictate how offsets are used by device drivers, so in
 2465          * the case of a device mapping a negative offset is passed
 2466          * on.
 2467          */
 2468         if (
 2469 #ifdef _LP64
 2470             size > OFF_MAX ||
 2471 #endif
 2472             foff < 0 || foff > OFF_MAX - size)
 2473                 return (EINVAL);
 2474 
 2475         writecounted = FALSE;
 2476         error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
 2477             &foff, &object, &writecounted);
 2478         if (error != 0)
 2479                 return (error);
 2480         error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
 2481             foff, writecounted, td);
 2482         if (error != 0) {
 2483                 /*
 2484                  * If this mapping was accounted for in the vnode's
 2485                  * writecount, then undo that now.
 2486                  */
 2487                 if (writecounted)
 2488                         vnode_pager_release_writecount(object, 0, size);
 2489                 vm_object_deallocate(object);
 2490         }
 2491 #ifdef HWPMC_HOOKS
 2492         /* Inform hwpmc(4) if an executable is being mapped. */
 2493         if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
 2494                 if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
 2495                         pkm.pm_file = vp;
 2496                         pkm.pm_address = (uintptr_t) *addr;
 2497                         PMC_CALL_HOOK(td, PMC_FN_MMAP, (void *) &pkm);
 2498                 }
 2499         }
 2500 #endif
 2501         return (error);
 2502 }

Cache object: 0830a95a31ccde120200f4dbef20c9fe


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.