The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
   11  * Copyright (c) 2013, 2014 The FreeBSD Foundation
   12  *
   13  * Portions of this software were developed by Konstantin Belousov
   14  * under sponsorship from the FreeBSD Foundation.
   15  *
   16  * Redistribution and use in source and binary forms, with or without
   17  * modification, are permitted provided that the following conditions
   18  * are met:
   19  * 1. Redistributions of source code must retain the above copyright
   20  *    notice, this list of conditions and the following disclaimer.
   21  * 2. Redistributions in binary form must reproduce the above copyright
   22  *    notice, this list of conditions and the following disclaimer in the
   23  *    documentation and/or other materials provided with the distribution.
   24  * 4. Neither the name of the University nor the names of its contributors
   25  *    may be used to endorse or promote products derived from this software
   26  *    without specific prior written permission.
   27  *
   28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   38  * SUCH DAMAGE.
   39  *
   40  *      @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94
   41  */
   42 
   43 #include <sys/cdefs.h>
   44 __FBSDID("$FreeBSD$");
   45 
   46 #include "opt_hwpmc_hooks.h"
   47 
   48 #include <sys/param.h>
   49 #include <sys/systm.h>
   50 #include <sys/disk.h>
   51 #include <sys/fail.h>
   52 #include <sys/fcntl.h>
   53 #include <sys/file.h>
   54 #include <sys/kdb.h>
   55 #include <sys/stat.h>
   56 #include <sys/priv.h>
   57 #include <sys/proc.h>
   58 #include <sys/limits.h>
   59 #include <sys/lock.h>
   60 #include <sys/mman.h>
   61 #include <sys/mount.h>
   62 #include <sys/mutex.h>
   63 #include <sys/namei.h>
   64 #include <sys/vnode.h>
   65 #include <sys/bio.h>
   66 #include <sys/buf.h>
   67 #include <sys/filio.h>
   68 #include <sys/resourcevar.h>
   69 #include <sys/rwlock.h>
   70 #include <sys/sx.h>
   71 #include <sys/sysctl.h>
   72 #include <sys/ttycom.h>
   73 #include <sys/conf.h>
   74 #include <sys/syslog.h>
   75 #include <sys/unistd.h>
   76 #include <sys/user.h>
   77 
   78 #include <security/audit/audit.h>
   79 #include <security/mac/mac_framework.h>
   80 
   81 #include <vm/vm.h>
   82 #include <vm/vm_extern.h>
   83 #include <vm/pmap.h>
   84 #include <vm/vm_map.h>
   85 #include <vm/vm_object.h>
   86 #include <vm/vm_page.h>
   87 #include <vm/vnode_pager.h>
   88 
   89 #ifdef HWPMC_HOOKS
   90 #include <sys/pmckern.h>
   91 #endif
   92 
   93 static fo_rdwr_t        vn_read;
   94 static fo_rdwr_t        vn_write;
   95 static fo_rdwr_t        vn_io_fault;
   96 static fo_truncate_t    vn_truncate;
   97 static fo_ioctl_t       vn_ioctl;
   98 static fo_poll_t        vn_poll;
   99 static fo_kqfilter_t    vn_kqfilter;
  100 static fo_stat_t        vn_statfile;
  101 static fo_close_t       vn_closefile;
  102 static fo_mmap_t        vn_mmap;
  103 
  104 struct  fileops vnops = {
  105         .fo_read = vn_io_fault,
  106         .fo_write = vn_io_fault,
  107         .fo_truncate = vn_truncate,
  108         .fo_ioctl = vn_ioctl,
  109         .fo_poll = vn_poll,
  110         .fo_kqfilter = vn_kqfilter,
  111         .fo_stat = vn_statfile,
  112         .fo_close = vn_closefile,
  113         .fo_chmod = vn_chmod,
  114         .fo_chown = vn_chown,
  115         .fo_sendfile = vn_sendfile,
  116         .fo_seek = vn_seek,
  117         .fo_fill_kinfo = vn_fill_kinfo,
  118         .fo_mmap = vn_mmap,
  119         .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
  120 };
  121 
  122 static const int io_hold_cnt = 16;
  123 static int vn_io_fault_enable = 1;
  124 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
  125     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
  126 static int vn_io_fault_prefault = 0;
  127 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
  128     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
  129 static u_long vn_io_faults_cnt;
  130 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
  131     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
  132 
  133 /*
  134  * Returns true if vn_io_fault mode of handling the i/o request should
  135  * be used.
  136  */
  137 static bool
  138 do_vn_io_fault(struct vnode *vp, struct uio *uio)
  139 {
  140         struct mount *mp;
  141 
  142         return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
  143             (mp = vp->v_mount) != NULL &&
  144             (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
  145 }
  146 
  147 /*
  148  * Structure used to pass arguments to vn_io_fault1(), to do either
  149  * file- or vnode-based I/O calls.
  150  */
  151 struct vn_io_fault_args {
  152         enum {
  153                 VN_IO_FAULT_FOP,
  154                 VN_IO_FAULT_VOP
  155         } kind;
  156         struct ucred *cred;
  157         int flags;
  158         union {
  159                 struct fop_args_tag {
  160                         struct file *fp;
  161                         fo_rdwr_t *doio;
  162                 } fop_args;
  163                 struct vop_args_tag {
  164                         struct vnode *vp;
  165                 } vop_args;
  166         } args;
  167 };
  168 
  169 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
  170     struct vn_io_fault_args *args, struct thread *td);
  171 
  172 int
  173 vn_open(ndp, flagp, cmode, fp)
  174         struct nameidata *ndp;
  175         int *flagp, cmode;
  176         struct file *fp;
  177 {
  178         struct thread *td = ndp->ni_cnd.cn_thread;
  179 
  180         return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
  181 }
  182 
  183 /*
  184  * Common code for vnode open operations via a name lookup.
  185  * Lookup the vnode and invoke VOP_CREATE if needed.
  186  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
  187  * 
  188  * Note that this does NOT free nameidata for the successful case,
  189  * due to the NDINIT being done elsewhere.
  190  */
  191 int
  192 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
  193     struct ucred *cred, struct file *fp)
  194 {
  195         struct vnode *vp;
  196         struct mount *mp;
  197         struct thread *td = ndp->ni_cnd.cn_thread;
  198         struct vattr vat;
  199         struct vattr *vap = &vat;
  200         int fmode, error;
  201 
  202 restart:
  203         fmode = *flagp;
  204         if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
  205             O_EXCL | O_DIRECTORY))
  206                 return (EINVAL);
  207         else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
  208                 ndp->ni_cnd.cn_nameiop = CREATE;
  209                 /*
  210                  * Set NOCACHE to avoid flushing the cache when
  211                  * rolling in many files at once.
  212                 */
  213                 ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
  214                 if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
  215                         ndp->ni_cnd.cn_flags |= FOLLOW;
  216                 if (!(vn_open_flags & VN_OPEN_NOAUDIT))
  217                         ndp->ni_cnd.cn_flags |= AUDITVNODE1;
  218                 if (vn_open_flags & VN_OPEN_NOCAPCHECK)
  219                         ndp->ni_cnd.cn_flags |= NOCAPCHECK;
  220                 if ((vn_open_flags & VN_OPEN_INVFS) == 0)
  221                         bwillwrite();
  222                 if ((error = namei(ndp)) != 0)
  223                         return (error);
  224                 if (ndp->ni_vp == NULL) {
  225                         VATTR_NULL(vap);
  226                         vap->va_type = VREG;
  227                         vap->va_mode = cmode;
  228                         if (fmode & O_EXCL)
  229                                 vap->va_vaflags |= VA_EXCLUSIVE;
  230                         if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
  231                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  232                                 vput(ndp->ni_dvp);
  233                                 if ((error = vn_start_write(NULL, &mp,
  234                                     V_XSLEEP | PCATCH)) != 0)
  235                                         return (error);
  236                                 goto restart;
  237                         }
  238                         if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
  239                                 ndp->ni_cnd.cn_flags |= MAKEENTRY;
  240 #ifdef MAC
  241                         error = mac_vnode_check_create(cred, ndp->ni_dvp,
  242                             &ndp->ni_cnd, vap);
  243                         if (error == 0)
  244 #endif
  245                                 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
  246                                                    &ndp->ni_cnd, vap);
  247                         vput(ndp->ni_dvp);
  248                         vn_finished_write(mp);
  249                         if (error) {
  250                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  251                                 return (error);
  252                         }
  253                         fmode &= ~O_TRUNC;
  254                         vp = ndp->ni_vp;
  255                 } else {
  256                         if (ndp->ni_dvp == ndp->ni_vp)
  257                                 vrele(ndp->ni_dvp);
  258                         else
  259                                 vput(ndp->ni_dvp);
  260                         ndp->ni_dvp = NULL;
  261                         vp = ndp->ni_vp;
  262                         if (fmode & O_EXCL) {
  263                                 error = EEXIST;
  264                                 goto bad;
  265                         }
  266                         if (vp->v_type == VDIR) {
  267                                 error = EISDIR;
  268                                 goto bad;
  269                         }
  270                         fmode &= ~O_CREAT;
  271                 }
  272         } else {
  273                 ndp->ni_cnd.cn_nameiop = LOOKUP;
  274                 ndp->ni_cnd.cn_flags = ISOPEN |
  275                     ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
  276                 if (!(fmode & FWRITE))
  277                         ndp->ni_cnd.cn_flags |= LOCKSHARED;
  278                 if (!(vn_open_flags & VN_OPEN_NOAUDIT))
  279                         ndp->ni_cnd.cn_flags |= AUDITVNODE1;
  280                 if (vn_open_flags & VN_OPEN_NOCAPCHECK)
  281                         ndp->ni_cnd.cn_flags |= NOCAPCHECK;
  282                 if ((error = namei(ndp)) != 0)
  283                         return (error);
  284                 vp = ndp->ni_vp;
  285         }
  286         error = vn_open_vnode(vp, fmode, cred, td, fp);
  287         if (error)
  288                 goto bad;
  289         *flagp = fmode;
  290         return (0);
  291 bad:
  292         NDFREE(ndp, NDF_ONLY_PNBUF);
  293         vput(vp);
  294         *flagp = fmode;
  295         ndp->ni_vp = NULL;
  296         return (error);
  297 }
  298 
  299 /*
  300  * Common code for vnode open operations once a vnode is located.
  301  * Check permissions, and call the VOP_OPEN routine.
  302  */
  303 int
  304 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
  305     struct thread *td, struct file *fp)
  306 {
  307         accmode_t accmode;
  308         struct flock lf;
  309         int error, lock_flags, type;
  310 
  311         if (vp->v_type == VLNK)
  312                 return (EMLINK);
  313         if (vp->v_type == VSOCK)
  314                 return (EOPNOTSUPP);
  315         if (vp->v_type != VDIR && fmode & O_DIRECTORY)
  316                 return (ENOTDIR);
  317         accmode = 0;
  318         if (fmode & (FWRITE | O_TRUNC)) {
  319                 if (vp->v_type == VDIR)
  320                         return (EISDIR);
  321                 accmode |= VWRITE;
  322         }
  323         if (fmode & FREAD)
  324                 accmode |= VREAD;
  325         if (fmode & FEXEC)
  326                 accmode |= VEXEC;
  327         if ((fmode & O_APPEND) && (fmode & FWRITE))
  328                 accmode |= VAPPEND;
  329 #ifdef MAC
  330         if (fmode & O_CREAT)
  331                 accmode |= VCREAT;
  332         if (fmode & O_VERIFY)
  333                 accmode |= VVERIFY;
  334         error = mac_vnode_check_open(cred, vp, accmode);
  335         if (error)
  336                 return (error);
  337 
  338         accmode &= ~(VCREAT | VVERIFY);
  339 #endif
  340         if ((fmode & O_CREAT) == 0) {
  341                 if (accmode & VWRITE) {
  342                         error = vn_writechk(vp);
  343                         if (error)
  344                                 return (error);
  345                 }
  346                 if (accmode) {
  347                         error = VOP_ACCESS(vp, accmode, cred, td);
  348                         if (error)
  349                                 return (error);
  350                 }
  351         }
  352         if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
  353                 vn_lock(vp, LK_UPGRADE | LK_RETRY);
  354         if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
  355                 return (error);
  356 
  357         while ((fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
  358                 KASSERT(fp != NULL, ("open with flock requires fp"));
  359                 if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE) {
  360                         error = EOPNOTSUPP;
  361                         break;
  362                 }
  363                 lock_flags = VOP_ISLOCKED(vp);
  364                 VOP_UNLOCK(vp, 0);
  365                 lf.l_whence = SEEK_SET;
  366                 lf.l_start = 0;
  367                 lf.l_len = 0;
  368                 if (fmode & O_EXLOCK)
  369                         lf.l_type = F_WRLCK;
  370                 else
  371                         lf.l_type = F_RDLCK;
  372                 type = F_FLOCK;
  373                 if ((fmode & FNONBLOCK) == 0)
  374                         type |= F_WAIT;
  375                 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
  376                 if (error == 0)
  377                         fp->f_flag |= FHASLOCK;
  378                 vn_lock(vp, lock_flags | LK_RETRY);
  379                 if (error != 0)
  380                         break;
  381                 if ((vp->v_iflag & VI_DOOMED) != 0) {
  382                         error = ENOENT;
  383                         break;
  384                 }
  385 
  386                 /*
  387                  * Another thread might have used this vnode as an
  388                  * executable while the vnode lock was dropped.
  389                  * Ensure the vnode is still able to be opened for
  390                  * writing after the lock has been obtained.
  391                  */
  392                 if ((accmode & VWRITE) != 0)
  393                         error = vn_writechk(vp);
  394                 break;
  395         }
  396 
  397         if (error != 0) {
  398                 fp->f_flag |= FOPENFAILED;
  399                 fp->f_vnode = vp;
  400                 if (fp->f_ops == &badfileops) {
  401                         fp->f_type = DTYPE_VNODE;
  402                         fp->f_ops = &vnops;
  403                 }
  404                 vref(vp);
  405         } else if  ((fmode & FWRITE) != 0) {
  406                 VOP_ADD_WRITECOUNT(vp, 1);
  407                 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
  408                     __func__, vp, vp->v_writecount);
  409         }
  410         ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
  411         return (error);
  412 }
  413 
  414 /*
  415  * Check for write permissions on the specified vnode.
  416  * Prototype text segments cannot be written.
  417  */
  418 int
  419 vn_writechk(struct vnode *vp)
  420 {
  421 
  422         ASSERT_VOP_LOCKED(vp, "vn_writechk");
  423         /*
  424          * If there's shared text associated with
  425          * the vnode, try to free it up once.  If
  426          * we fail, we can't allow writing.
  427          */
  428         if (VOP_IS_TEXT(vp))
  429                 return (ETXTBSY);
  430 
  431         return (0);
  432 }
  433 
  434 /*
  435  * Vnode close call
  436  */
  437 static int
  438 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
  439     struct thread *td, bool keep_ref)
  440 {
  441         struct mount *mp;
  442         int error, lock_flags;
  443 
  444         if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
  445             MNT_EXTENDED_SHARED(vp->v_mount))
  446                 lock_flags = LK_SHARED;
  447         else
  448                 lock_flags = LK_EXCLUSIVE;
  449 
  450         vn_start_write(vp, &mp, V_WAIT);
  451         vn_lock(vp, lock_flags | LK_RETRY);
  452         AUDIT_ARG_VNODE1(vp);
  453         if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
  454                 VNASSERT(vp->v_writecount > 0, vp, 
  455                     ("vn_close: negative writecount"));
  456                 VOP_ADD_WRITECOUNT(vp, -1);
  457                 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
  458                     __func__, vp, vp->v_writecount);
  459         }
  460         error = VOP_CLOSE(vp, flags, file_cred, td);
  461         if (keep_ref)
  462                 VOP_UNLOCK(vp, 0);
  463         else
  464                 vput(vp);
  465         vn_finished_write(mp);
  466         return (error);
  467 }
  468 
  469 int
  470 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
  471     struct thread *td)
  472 {
  473 
  474         return (vn_close1(vp, flags, file_cred, td, false));
  475 }
  476 
  477 /*
  478  * Heuristic to detect sequential operation.
  479  */
  480 static int
  481 sequential_heuristic(struct uio *uio, struct file *fp)
  482 {
  483 
  484         ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
  485         if (fp->f_flag & FRDAHEAD)
  486                 return (fp->f_seqcount << IO_SEQSHIFT);
  487 
  488         /*
  489          * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
  490          * that the first I/O is normally considered to be slightly
  491          * sequential.  Seeking to offset 0 doesn't change sequentiality
  492          * unless previous seeks have reduced f_seqcount to 0, in which
  493          * case offset 0 is not special.
  494          */
  495         if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
  496             uio->uio_offset == fp->f_nextoff) {
  497                 /*
  498                  * f_seqcount is in units of fixed-size blocks so that it
  499                  * depends mainly on the amount of sequential I/O and not
  500                  * much on the number of sequential I/O's.  The fixed size
  501                  * of 16384 is hard-coded here since it is (not quite) just
  502                  * a magic size that works well here.  This size is more
  503                  * closely related to the best I/O size for real disks than
  504                  * to any block size used by software.
  505                  */
  506                 fp->f_seqcount += howmany(uio->uio_resid, 16384);
  507                 if (fp->f_seqcount > IO_SEQMAX)
  508                         fp->f_seqcount = IO_SEQMAX;
  509                 return (fp->f_seqcount << IO_SEQSHIFT);
  510         }
  511 
  512         /* Not sequential.  Quickly draw-down sequentiality. */
  513         if (fp->f_seqcount > 1)
  514                 fp->f_seqcount = 1;
  515         else
  516                 fp->f_seqcount = 0;
  517         return (0);
  518 }
  519 
  520 /*
  521  * Package up an I/O request on a vnode into a uio and do it.
  522  */
  523 int
  524 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
  525     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
  526     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
  527 {
  528         struct uio auio;
  529         struct iovec aiov;
  530         struct mount *mp;
  531         struct ucred *cred;
  532         void *rl_cookie;
  533         struct vn_io_fault_args args;
  534         int error, lock_flags;
  535 
  536         if (offset < 0 && vp->v_type != VCHR)
  537                 return (EINVAL);
  538         auio.uio_iov = &aiov;
  539         auio.uio_iovcnt = 1;
  540         aiov.iov_base = base;
  541         aiov.iov_len = len;
  542         auio.uio_resid = len;
  543         auio.uio_offset = offset;
  544         auio.uio_segflg = segflg;
  545         auio.uio_rw = rw;
  546         auio.uio_td = td;
  547         error = 0;
  548 
  549         if ((ioflg & IO_NODELOCKED) == 0) {
  550                 if ((ioflg & IO_RANGELOCKED) == 0) {
  551                         if (rw == UIO_READ) {
  552                                 rl_cookie = vn_rangelock_rlock(vp, offset,
  553                                     offset + len);
  554                         } else {
  555                                 rl_cookie = vn_rangelock_wlock(vp, offset,
  556                                     offset + len);
  557                         }
  558                 } else
  559                         rl_cookie = NULL;
  560                 mp = NULL;
  561                 if (rw == UIO_WRITE) { 
  562                         if (vp->v_type != VCHR &&
  563                             (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
  564                             != 0)
  565                                 goto out;
  566                         if (MNT_SHARED_WRITES(mp) ||
  567                             ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
  568                                 lock_flags = LK_SHARED;
  569                         else
  570                                 lock_flags = LK_EXCLUSIVE;
  571                 } else
  572                         lock_flags = LK_SHARED;
  573                 vn_lock(vp, lock_flags | LK_RETRY);
  574         } else
  575                 rl_cookie = NULL;
  576 
  577         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
  578 #ifdef MAC
  579         if ((ioflg & IO_NOMACCHECK) == 0) {
  580                 if (rw == UIO_READ)
  581                         error = mac_vnode_check_read(active_cred, file_cred,
  582                             vp);
  583                 else
  584                         error = mac_vnode_check_write(active_cred, file_cred,
  585                             vp);
  586         }
  587 #endif
  588         if (error == 0) {
  589                 if (file_cred != NULL)
  590                         cred = file_cred;
  591                 else
  592                         cred = active_cred;
  593                 if (do_vn_io_fault(vp, &auio)) {
  594                         args.kind = VN_IO_FAULT_VOP;
  595                         args.cred = cred;
  596                         args.flags = ioflg;
  597                         args.args.vop_args.vp = vp;
  598                         error = vn_io_fault1(vp, &auio, &args, td);
  599                 } else if (rw == UIO_READ) {
  600                         error = VOP_READ(vp, &auio, ioflg, cred);
  601                 } else /* if (rw == UIO_WRITE) */ {
  602                         error = VOP_WRITE(vp, &auio, ioflg, cred);
  603                 }
  604         }
  605         if (aresid)
  606                 *aresid = auio.uio_resid;
  607         else
  608                 if (auio.uio_resid && error == 0)
  609                         error = EIO;
  610         if ((ioflg & IO_NODELOCKED) == 0) {
  611                 VOP_UNLOCK(vp, 0);
  612                 if (mp != NULL)
  613                         vn_finished_write(mp);
  614         }
  615  out:
  616         if (rl_cookie != NULL)
  617                 vn_rangelock_unlock(vp, rl_cookie);
  618         return (error);
  619 }
  620 
  621 /*
  622  * Package up an I/O request on a vnode into a uio and do it.  The I/O
  623  * request is split up into smaller chunks and we try to avoid saturating
  624  * the buffer cache while potentially holding a vnode locked, so we 
  625  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
  626  * to give other processes a chance to lock the vnode (either other processes
  627  * core'ing the same binary, or unrelated processes scanning the directory).
  628  */
  629 int
  630 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
  631     file_cred, aresid, td)
  632         enum uio_rw rw;
  633         struct vnode *vp;
  634         void *base;
  635         size_t len;
  636         off_t offset;
  637         enum uio_seg segflg;
  638         int ioflg;
  639         struct ucred *active_cred;
  640         struct ucred *file_cred;
  641         size_t *aresid;
  642         struct thread *td;
  643 {
  644         int error = 0;
  645         ssize_t iaresid;
  646 
  647         do {
  648                 int chunk;
  649 
  650                 /*
  651                  * Force `offset' to a multiple of MAXBSIZE except possibly
  652                  * for the first chunk, so that filesystems only need to
  653                  * write full blocks except possibly for the first and last
  654                  * chunks.
  655                  */
  656                 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
  657 
  658                 if (chunk > len)
  659                         chunk = len;
  660                 if (rw != UIO_READ && vp->v_type == VREG)
  661                         bwillwrite();
  662                 iaresid = 0;
  663                 error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
  664                     ioflg, active_cred, file_cred, &iaresid, td);
  665                 len -= chunk;   /* aresid calc already includes length */
  666                 if (error)
  667                         break;
  668                 offset += chunk;
  669                 base = (char *)base + chunk;
  670                 kern_yield(PRI_USER);
  671         } while (len);
  672         if (aresid)
  673                 *aresid = len + iaresid;
  674         return (error);
  675 }
  676 
  677 off_t
  678 foffset_lock(struct file *fp, int flags)
  679 {
  680         struct mtx *mtxp;
  681         off_t res;
  682 
  683         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  684 
  685 #if OFF_MAX <= LONG_MAX
  686         /*
  687          * Caller only wants the current f_offset value.  Assume that
  688          * the long and shorter integer types reads are atomic.
  689          */
  690         if ((flags & FOF_NOLOCK) != 0)
  691                 return (fp->f_offset);
  692 #endif
  693 
  694         /*
  695          * According to McKusick the vn lock was protecting f_offset here.
  696          * It is now protected by the FOFFSET_LOCKED flag.
  697          */
  698         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  699         mtx_lock(mtxp);
  700         if ((flags & FOF_NOLOCK) == 0) {
  701                 while (fp->f_vnread_flags & FOFFSET_LOCKED) {
  702                         fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
  703                         msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
  704                             "vofflock", 0);
  705                 }
  706                 fp->f_vnread_flags |= FOFFSET_LOCKED;
  707         }
  708         res = fp->f_offset;
  709         mtx_unlock(mtxp);
  710         return (res);
  711 }
  712 
  713 void
  714 foffset_unlock(struct file *fp, off_t val, int flags)
  715 {
  716         struct mtx *mtxp;
  717 
  718         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  719 
  720 #if OFF_MAX <= LONG_MAX
  721         if ((flags & FOF_NOLOCK) != 0) {
  722                 if ((flags & FOF_NOUPDATE) == 0)
  723                         fp->f_offset = val;
  724                 if ((flags & FOF_NEXTOFF) != 0)
  725                         fp->f_nextoff = val;
  726                 return;
  727         }
  728 #endif
  729 
  730         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  731         mtx_lock(mtxp);
  732         if ((flags & FOF_NOUPDATE) == 0)
  733                 fp->f_offset = val;
  734         if ((flags & FOF_NEXTOFF) != 0)
  735                 fp->f_nextoff = val;
  736         if ((flags & FOF_NOLOCK) == 0) {
  737                 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
  738                     ("Lost FOFFSET_LOCKED"));
  739                 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
  740                         wakeup(&fp->f_vnread_flags);
  741                 fp->f_vnread_flags = 0;
  742         }
  743         mtx_unlock(mtxp);
  744 }
  745 
  746 void
  747 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
  748 {
  749 
  750         if ((flags & FOF_OFFSET) == 0)
  751                 uio->uio_offset = foffset_lock(fp, flags);
  752 }
  753 
  754 void
  755 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
  756 {
  757 
  758         if ((flags & FOF_OFFSET) == 0)
  759                 foffset_unlock(fp, uio->uio_offset, flags);
  760 }
  761 
  762 static int
  763 get_advice(struct file *fp, struct uio *uio)
  764 {
  765         struct mtx *mtxp;
  766         int ret;
  767 
  768         ret = POSIX_FADV_NORMAL;
  769         if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
  770                 return (ret);
  771 
  772         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  773         mtx_lock(mtxp);
  774         if (fp->f_advice != NULL &&
  775             uio->uio_offset >= fp->f_advice->fa_start &&
  776             uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
  777                 ret = fp->f_advice->fa_advice;
  778         mtx_unlock(mtxp);
  779         return (ret);
  780 }
  781 
  782 /*
  783  * File table vnode read routine.
  784  */
  785 static int
  786 vn_read(fp, uio, active_cred, flags, td)
  787         struct file *fp;
  788         struct uio *uio;
  789         struct ucred *active_cred;
  790         int flags;
  791         struct thread *td;
  792 {
  793         struct vnode *vp;
  794         off_t orig_offset;
  795         int error, ioflag;
  796         int advice;
  797 
  798         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
  799             uio->uio_td, td));
  800         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
  801         vp = fp->f_vnode;
  802         ioflag = 0;
  803         if (fp->f_flag & FNONBLOCK)
  804                 ioflag |= IO_NDELAY;
  805         if (fp->f_flag & O_DIRECT)
  806                 ioflag |= IO_DIRECT;
  807         advice = get_advice(fp, uio);
  808         vn_lock(vp, LK_SHARED | LK_RETRY);
  809 
  810         switch (advice) {
  811         case POSIX_FADV_NORMAL:
  812         case POSIX_FADV_SEQUENTIAL:
  813         case POSIX_FADV_NOREUSE:
  814                 ioflag |= sequential_heuristic(uio, fp);
  815                 break;
  816         case POSIX_FADV_RANDOM:
  817                 /* Disable read-ahead for random I/O. */
  818                 break;
  819         }
  820         orig_offset = uio->uio_offset;
  821 
  822 #ifdef MAC
  823         error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
  824         if (error == 0)
  825 #endif
  826                 error = VOP_READ(vp, uio, ioflag, fp->f_cred);
  827         fp->f_nextoff = uio->uio_offset;
  828         VOP_UNLOCK(vp, 0);
  829         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
  830             orig_offset != uio->uio_offset)
  831                 /*
  832                  * Use POSIX_FADV_DONTNEED to flush pages and buffers
  833                  * for the backing file after a POSIX_FADV_NOREUSE
  834                  * read(2).
  835                  */
  836                 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
  837                     POSIX_FADV_DONTNEED);
  838         return (error);
  839 }
  840 
  841 /*
  842  * File table vnode write routine.
  843  */
  844 static int
  845 vn_write(fp, uio, active_cred, flags, td)
  846         struct file *fp;
  847         struct uio *uio;
  848         struct ucred *active_cred;
  849         int flags;
  850         struct thread *td;
  851 {
  852         struct vnode *vp;
  853         struct mount *mp;
  854         off_t orig_offset;
  855         int error, ioflag, lock_flags;
  856         int advice;
  857 
  858         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
  859             uio->uio_td, td));
  860         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
  861         vp = fp->f_vnode;
  862         if (vp->v_type == VREG)
  863                 bwillwrite();
  864         ioflag = IO_UNIT;
  865         if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
  866                 ioflag |= IO_APPEND;
  867         if (fp->f_flag & FNONBLOCK)
  868                 ioflag |= IO_NDELAY;
  869         if (fp->f_flag & O_DIRECT)
  870                 ioflag |= IO_DIRECT;
  871         if ((fp->f_flag & O_FSYNC) ||
  872             (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
  873                 ioflag |= IO_SYNC;
  874         mp = NULL;
  875         if (vp->v_type != VCHR &&
  876             (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
  877                 goto unlock;
  878 
  879         advice = get_advice(fp, uio);
  880 
  881         if (MNT_SHARED_WRITES(mp) ||
  882             (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
  883                 lock_flags = LK_SHARED;
  884         } else {
  885                 lock_flags = LK_EXCLUSIVE;
  886         }
  887 
  888         vn_lock(vp, lock_flags | LK_RETRY);
  889         switch (advice) {
  890         case POSIX_FADV_NORMAL:
  891         case POSIX_FADV_SEQUENTIAL:
  892         case POSIX_FADV_NOREUSE:
  893                 ioflag |= sequential_heuristic(uio, fp);
  894                 break;
  895         case POSIX_FADV_RANDOM:
  896                 /* XXX: Is this correct? */
  897                 break;
  898         }
  899         orig_offset = uio->uio_offset;
  900 
  901 #ifdef MAC
  902         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
  903         if (error == 0)
  904 #endif
  905                 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
  906         fp->f_nextoff = uio->uio_offset;
  907         VOP_UNLOCK(vp, 0);
  908         if (vp->v_type != VCHR)
  909                 vn_finished_write(mp);
  910         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
  911             orig_offset != uio->uio_offset)
  912                 /*
  913                  * Use POSIX_FADV_DONTNEED to flush pages and buffers
  914                  * for the backing file after a POSIX_FADV_NOREUSE
  915                  * write(2).
  916                  */
  917                 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
  918                     POSIX_FADV_DONTNEED);
  919 unlock:
  920         return (error);
  921 }
  922 
  923 /*
  924  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
  925  * prevent the following deadlock:
  926  *
  927  * Assume that the thread A reads from the vnode vp1 into userspace
  928  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
  929  * currently not resident, then system ends up with the call chain
  930  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
  931  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
  932  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
  933  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
  934  * backed by the pages of vnode vp1, and some page in buf2 is not
  935  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
  936  *
  937  * To prevent the lock order reversal and deadlock, vn_io_fault() does
  938  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
  939  * Instead, it first tries to do the whole range i/o with pagefaults
  940  * disabled. If all pages in the i/o buffer are resident and mapped,
  941  * VOP will succeed (ignoring the genuine filesystem errors).
  942  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
  943  * i/o in chunks, with all pages in the chunk prefaulted and held
  944  * using vm_fault_quick_hold_pages().
  945  *
  946  * Filesystems using this deadlock avoidance scheme should use the
  947  * array of the held pages from uio, saved in the curthread->td_ma,
  948  * instead of doing uiomove().  A helper function
  949  * vn_io_fault_uiomove() converts uiomove request into
  950  * uiomove_fromphys() over td_ma array.
  951  *
  952  * Since vnode locks do not cover the whole i/o anymore, rangelocks
  953  * make the current i/o request atomic with respect to other i/os and
  954  * truncations.
  955  */
  956 
  957 /*
  958  * Decode vn_io_fault_args and perform the corresponding i/o.
  959  */
  960 static int
  961 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
  962     struct thread *td)
  963 {
  964         int error, save;
  965 
  966         error = 0;
  967         save = vm_fault_disable_pagefaults();
  968         switch (args->kind) {
  969         case VN_IO_FAULT_FOP:
  970                 error = (args->args.fop_args.doio)(args->args.fop_args.fp,
  971                     uio, args->cred, args->flags, td);
  972                 break;
  973         case VN_IO_FAULT_VOP:
  974                 if (uio->uio_rw == UIO_READ) {
  975                         error = VOP_READ(args->args.vop_args.vp, uio,
  976                             args->flags, args->cred);
  977                 } else if (uio->uio_rw == UIO_WRITE) {
  978                         error = VOP_WRITE(args->args.vop_args.vp, uio,
  979                             args->flags, args->cred);
  980                 }
  981                 break;
  982         default:
  983                 panic("vn_io_fault_doio: unknown kind of io %d %d",
  984                     args->kind, uio->uio_rw);
  985         }
  986         vm_fault_enable_pagefaults(save);
  987         return (error);
  988 }
  989 
  990 static int
  991 vn_io_fault_touch(char *base, const struct uio *uio)
  992 {
  993         int r;
  994 
  995         r = fubyte(base);
  996         if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
  997                 return (EFAULT);
  998         return (0);
  999 }
 1000 
 1001 static int
 1002 vn_io_fault_prefault_user(const struct uio *uio)
 1003 {
 1004         char *base;
 1005         const struct iovec *iov;
 1006         size_t len;
 1007         ssize_t resid;
 1008         int error, i;
 1009 
 1010         KASSERT(uio->uio_segflg == UIO_USERSPACE,
 1011             ("vn_io_fault_prefault userspace"));
 1012 
 1013         error = i = 0;
 1014         iov = uio->uio_iov;
 1015         resid = uio->uio_resid;
 1016         base = iov->iov_base;
 1017         len = iov->iov_len;
 1018         while (resid > 0) {
 1019                 error = vn_io_fault_touch(base, uio);
 1020                 if (error != 0)
 1021                         break;
 1022                 if (len < PAGE_SIZE) {
 1023                         if (len != 0) {
 1024                                 error = vn_io_fault_touch(base + len - 1, uio);
 1025                                 if (error != 0)
 1026                                         break;
 1027                                 resid -= len;
 1028                         }
 1029                         if (++i >= uio->uio_iovcnt)
 1030                                 break;
 1031                         iov = uio->uio_iov + i;
 1032                         base = iov->iov_base;
 1033                         len = iov->iov_len;
 1034                 } else {
 1035                         len -= PAGE_SIZE;
 1036                         base += PAGE_SIZE;
 1037                         resid -= PAGE_SIZE;
 1038                 }
 1039         }
 1040         return (error);
 1041 }
 1042 
 1043 /*
 1044  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
 1045  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
 1046  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
 1047  * into args and call vn_io_fault1() to handle faults during the user
 1048  * mode buffer accesses.
 1049  */
 1050 static int
 1051 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
 1052     struct thread *td)
 1053 {
 1054         vm_page_t ma[io_hold_cnt + 2];
 1055         struct uio *uio_clone, short_uio;
 1056         struct iovec short_iovec[1];
 1057         vm_page_t *prev_td_ma;
 1058         vm_prot_t prot;
 1059         vm_offset_t addr, end;
 1060         size_t len, resid;
 1061         ssize_t adv;
 1062         int error, cnt, saveheld, prev_td_ma_cnt;
 1063 
 1064         if (vn_io_fault_prefault) {
 1065                 error = vn_io_fault_prefault_user(uio);
 1066                 if (error != 0)
 1067                         return (error); /* Or ignore ? */
 1068         }
 1069 
 1070         prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
 1071 
 1072         /*
 1073          * The UFS follows IO_UNIT directive and replays back both
 1074          * uio_offset and uio_resid if an error is encountered during the
 1075          * operation.  But, since the iovec may be already advanced,
 1076          * uio is still in an inconsistent state.
 1077          *
 1078          * Cache a copy of the original uio, which is advanced to the redo
 1079          * point using UIO_NOCOPY below.
 1080          */
 1081         uio_clone = cloneuio(uio);
 1082         resid = uio->uio_resid;
 1083 
 1084         short_uio.uio_segflg = UIO_USERSPACE;
 1085         short_uio.uio_rw = uio->uio_rw;
 1086         short_uio.uio_td = uio->uio_td;
 1087 
 1088         error = vn_io_fault_doio(args, uio, td);
 1089         if (error != EFAULT)
 1090                 goto out;
 1091 
 1092         atomic_add_long(&vn_io_faults_cnt, 1);
 1093         uio_clone->uio_segflg = UIO_NOCOPY;
 1094         uiomove(NULL, resid - uio->uio_resid, uio_clone);
 1095         uio_clone->uio_segflg = uio->uio_segflg;
 1096 
 1097         saveheld = curthread_pflags_set(TDP_UIOHELD);
 1098         prev_td_ma = td->td_ma;
 1099         prev_td_ma_cnt = td->td_ma_cnt;
 1100 
 1101         while (uio_clone->uio_resid != 0) {
 1102                 len = uio_clone->uio_iov->iov_len;
 1103                 if (len == 0) {
 1104                         KASSERT(uio_clone->uio_iovcnt >= 1,
 1105                             ("iovcnt underflow"));
 1106                         uio_clone->uio_iov++;
 1107                         uio_clone->uio_iovcnt--;
 1108                         continue;
 1109                 }
 1110                 if (len > io_hold_cnt * PAGE_SIZE)
 1111                         len = io_hold_cnt * PAGE_SIZE;
 1112                 addr = (uintptr_t)uio_clone->uio_iov->iov_base;
 1113                 end = round_page(addr + len);
 1114                 if (end < addr) {
 1115                         error = EFAULT;
 1116                         break;
 1117                 }
 1118                 cnt = atop(end - trunc_page(addr));
 1119                 /*
 1120                  * A perfectly misaligned address and length could cause
 1121                  * both the start and the end of the chunk to use partial
 1122                  * page.  +2 accounts for such a situation.
 1123                  */
 1124                 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
 1125                     addr, len, prot, ma, io_hold_cnt + 2);
 1126                 if (cnt == -1) {
 1127                         error = EFAULT;
 1128                         break;
 1129                 }
 1130                 short_uio.uio_iov = &short_iovec[0];
 1131                 short_iovec[0].iov_base = (void *)addr;
 1132                 short_uio.uio_iovcnt = 1;
 1133                 short_uio.uio_resid = short_iovec[0].iov_len = len;
 1134                 short_uio.uio_offset = uio_clone->uio_offset;
 1135                 td->td_ma = ma;
 1136                 td->td_ma_cnt = cnt;
 1137 
 1138                 error = vn_io_fault_doio(args, &short_uio, td);
 1139                 vm_page_unhold_pages(ma, cnt);
 1140                 adv = len - short_uio.uio_resid;
 1141 
 1142                 uio_clone->uio_iov->iov_base =
 1143                     (char *)uio_clone->uio_iov->iov_base + adv;
 1144                 uio_clone->uio_iov->iov_len -= adv;
 1145                 uio_clone->uio_resid -= adv;
 1146                 uio_clone->uio_offset += adv;
 1147 
 1148                 uio->uio_resid -= adv;
 1149                 uio->uio_offset += adv;
 1150 
 1151                 if (error != 0 || adv == 0)
 1152                         break;
 1153         }
 1154         td->td_ma = prev_td_ma;
 1155         td->td_ma_cnt = prev_td_ma_cnt;
 1156         curthread_pflags_restore(saveheld);
 1157 out:
 1158         free(uio_clone, M_IOV);
 1159         return (error);
 1160 }
 1161 
 1162 static int
 1163 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1164     int flags, struct thread *td)
 1165 {
 1166         fo_rdwr_t *doio;
 1167         struct vnode *vp;
 1168         void *rl_cookie;
 1169         struct vn_io_fault_args args;
 1170         int error;
 1171 
 1172         doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
 1173         vp = fp->f_vnode;
 1174         foffset_lock_uio(fp, uio, flags);
 1175         if (do_vn_io_fault(vp, uio)) {
 1176                 args.kind = VN_IO_FAULT_FOP;
 1177                 args.args.fop_args.fp = fp;
 1178                 args.args.fop_args.doio = doio;
 1179                 args.cred = active_cred;
 1180                 args.flags = flags | FOF_OFFSET;
 1181                 if (uio->uio_rw == UIO_READ) {
 1182                         rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
 1183                             uio->uio_offset + uio->uio_resid);
 1184                 } else if ((fp->f_flag & O_APPEND) != 0 ||
 1185                     (flags & FOF_OFFSET) == 0) {
 1186                         /* For appenders, punt and lock the whole range. */
 1187                         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 1188                 } else {
 1189                         rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
 1190                             uio->uio_offset + uio->uio_resid);
 1191                 }
 1192                 error = vn_io_fault1(vp, uio, &args, td);
 1193                 vn_rangelock_unlock(vp, rl_cookie);
 1194         } else {
 1195                 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
 1196         }
 1197         foffset_unlock_uio(fp, uio, flags);
 1198         return (error);
 1199 }
 1200 
 1201 /*
 1202  * Helper function to perform the requested uiomove operation using
 1203  * the held pages for io->uio_iov[0].iov_base buffer instead of
 1204  * copyin/copyout.  Access to the pages with uiomove_fromphys()
 1205  * instead of iov_base prevents page faults that could occur due to
 1206  * pmap_collect() invalidating the mapping created by
 1207  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
 1208  * object cleanup revoking the write access from page mappings.
 1209  *
 1210  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
 1211  * instead of plain uiomove().
 1212  */
 1213 int
 1214 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
 1215 {
 1216         struct uio transp_uio;
 1217         struct iovec transp_iov[1];
 1218         struct thread *td;
 1219         size_t adv;
 1220         int error, pgadv;
 1221 
 1222         td = curthread;
 1223         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1224             uio->uio_segflg != UIO_USERSPACE)
 1225                 return (uiomove(data, xfersize, uio));
 1226 
 1227         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1228         transp_iov[0].iov_base = data;
 1229         transp_uio.uio_iov = &transp_iov[0];
 1230         transp_uio.uio_iovcnt = 1;
 1231         if (xfersize > uio->uio_resid)
 1232                 xfersize = uio->uio_resid;
 1233         transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
 1234         transp_uio.uio_offset = 0;
 1235         transp_uio.uio_segflg = UIO_SYSSPACE;
 1236         /*
 1237          * Since transp_iov points to data, and td_ma page array
 1238          * corresponds to original uio->uio_iov, we need to invert the
 1239          * direction of the i/o operation as passed to
 1240          * uiomove_fromphys().
 1241          */
 1242         switch (uio->uio_rw) {
 1243         case UIO_WRITE:
 1244                 transp_uio.uio_rw = UIO_READ;
 1245                 break;
 1246         case UIO_READ:
 1247                 transp_uio.uio_rw = UIO_WRITE;
 1248                 break;
 1249         }
 1250         transp_uio.uio_td = uio->uio_td;
 1251         error = uiomove_fromphys(td->td_ma,
 1252             ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
 1253             xfersize, &transp_uio);
 1254         adv = xfersize - transp_uio.uio_resid;
 1255         pgadv =
 1256             (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
 1257             (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
 1258         td->td_ma += pgadv;
 1259         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1260             pgadv));
 1261         td->td_ma_cnt -= pgadv;
 1262         uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
 1263         uio->uio_iov->iov_len -= adv;
 1264         uio->uio_resid -= adv;
 1265         uio->uio_offset += adv;
 1266         return (error);
 1267 }
 1268 
 1269 int
 1270 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
 1271     struct uio *uio)
 1272 {
 1273         struct thread *td;
 1274         vm_offset_t iov_base;
 1275         int cnt, pgadv;
 1276 
 1277         td = curthread;
 1278         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1279             uio->uio_segflg != UIO_USERSPACE)
 1280                 return (uiomove_fromphys(ma, offset, xfersize, uio));
 1281 
 1282         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1283         cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
 1284         iov_base = (vm_offset_t)uio->uio_iov->iov_base;
 1285         switch (uio->uio_rw) {
 1286         case UIO_WRITE:
 1287                 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
 1288                     offset, cnt);
 1289                 break;
 1290         case UIO_READ:
 1291                 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
 1292                     cnt);
 1293                 break;
 1294         }
 1295         pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
 1296         td->td_ma += pgadv;
 1297         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1298             pgadv));
 1299         td->td_ma_cnt -= pgadv;
 1300         uio->uio_iov->iov_base = (char *)(iov_base + cnt);
 1301         uio->uio_iov->iov_len -= cnt;
 1302         uio->uio_resid -= cnt;
 1303         uio->uio_offset += cnt;
 1304         return (0);
 1305 }
 1306 
 1307 
 1308 /*
 1309  * File table truncate routine.
 1310  */
 1311 static int
 1312 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
 1313     struct thread *td)
 1314 {
 1315         struct vattr vattr;
 1316         struct mount *mp;
 1317         struct vnode *vp;
 1318         void *rl_cookie;
 1319         int error;
 1320 
 1321         vp = fp->f_vnode;
 1322 
 1323         /*
 1324          * Lock the whole range for truncation.  Otherwise split i/o
 1325          * might happen partly before and partly after the truncation.
 1326          */
 1327         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 1328         error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
 1329         if (error)
 1330                 goto out1;
 1331         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1332         if (vp->v_type == VDIR) {
 1333                 error = EISDIR;
 1334                 goto out;
 1335         }
 1336 #ifdef MAC
 1337         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
 1338         if (error)
 1339                 goto out;
 1340 #endif
 1341         error = vn_writechk(vp);
 1342         if (error == 0) {
 1343                 VATTR_NULL(&vattr);
 1344                 vattr.va_size = length;
 1345                 if ((fp->f_flag & O_FSYNC) != 0)
 1346                         vattr.va_vaflags |= VA_SYNC;
 1347                 error = VOP_SETATTR(vp, &vattr, fp->f_cred);
 1348         }
 1349 out:
 1350         VOP_UNLOCK(vp, 0);
 1351         vn_finished_write(mp);
 1352 out1:
 1353         vn_rangelock_unlock(vp, rl_cookie);
 1354         return (error);
 1355 }
 1356 
 1357 /*
 1358  * File table vnode stat routine.
 1359  */
 1360 static int
 1361 vn_statfile(fp, sb, active_cred, td)
 1362         struct file *fp;
 1363         struct stat *sb;
 1364         struct ucred *active_cred;
 1365         struct thread *td;
 1366 {
 1367         struct vnode *vp = fp->f_vnode;
 1368         int error;
 1369 
 1370         vn_lock(vp, LK_SHARED | LK_RETRY);
 1371         error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
 1372         VOP_UNLOCK(vp, 0);
 1373 
 1374         return (error);
 1375 }
 1376 
 1377 /*
 1378  * Stat a vnode; implementation for the stat syscall
 1379  */
 1380 int
 1381 vn_stat(struct vnode *vp, struct stat *sb, struct ucred *active_cred,
 1382     struct ucred *file_cred, struct thread *td)
 1383 {
 1384         struct vattr vattr;
 1385         struct vattr *vap;
 1386         int error;
 1387         u_short mode;
 1388 
 1389         AUDIT_ARG_VNODE1(vp);
 1390 #ifdef MAC
 1391         error = mac_vnode_check_stat(active_cred, file_cred, vp);
 1392         if (error)
 1393                 return (error);
 1394 #endif
 1395 
 1396         vap = &vattr;
 1397 
 1398         /*
 1399          * Initialize defaults for new and unusual fields, so that file
 1400          * systems which don't support these fields don't need to know
 1401          * about them.
 1402          */
 1403         vap->va_birthtime.tv_sec = -1;
 1404         vap->va_birthtime.tv_nsec = 0;
 1405         vap->va_fsid = VNOVAL;
 1406         vap->va_rdev = NODEV;
 1407 
 1408         error = VOP_GETATTR(vp, vap, active_cred);
 1409         if (error)
 1410                 return (error);
 1411 
 1412         /*
 1413          * Zero the spare stat fields
 1414          */
 1415         bzero(sb, sizeof *sb);
 1416 
 1417         /*
 1418          * Copy from vattr table
 1419          */
 1420         if (vap->va_fsid != VNOVAL)
 1421                 sb->st_dev = vap->va_fsid;
 1422         else
 1423                 sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
 1424         sb->st_ino = vap->va_fileid;
 1425         mode = vap->va_mode;
 1426         switch (vap->va_type) {
 1427         case VREG:
 1428                 mode |= S_IFREG;
 1429                 break;
 1430         case VDIR:
 1431                 mode |= S_IFDIR;
 1432                 break;
 1433         case VBLK:
 1434                 mode |= S_IFBLK;
 1435                 break;
 1436         case VCHR:
 1437                 mode |= S_IFCHR;
 1438                 break;
 1439         case VLNK:
 1440                 mode |= S_IFLNK;
 1441                 break;
 1442         case VSOCK:
 1443                 mode |= S_IFSOCK;
 1444                 break;
 1445         case VFIFO:
 1446                 mode |= S_IFIFO;
 1447                 break;
 1448         default:
 1449                 return (EBADF);
 1450         }
 1451         sb->st_mode = mode;
 1452         sb->st_nlink = vap->va_nlink;
 1453         sb->st_uid = vap->va_uid;
 1454         sb->st_gid = vap->va_gid;
 1455         sb->st_rdev = vap->va_rdev;
 1456         if (vap->va_size > OFF_MAX)
 1457                 return (EOVERFLOW);
 1458         sb->st_size = vap->va_size;
 1459         sb->st_atim = vap->va_atime;
 1460         sb->st_mtim = vap->va_mtime;
 1461         sb->st_ctim = vap->va_ctime;
 1462         sb->st_birthtim = vap->va_birthtime;
 1463 
 1464         /*
 1465          * According to www.opengroup.org, the meaning of st_blksize is 
 1466          *   "a filesystem-specific preferred I/O block size for this 
 1467          *    object.  In some filesystem types, this may vary from file
 1468          *    to file"
 1469          * Use minimum/default of PAGE_SIZE (e.g. for VCHR).
 1470          */
 1471 
 1472         sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
 1473         
 1474         sb->st_flags = vap->va_flags;
 1475         if (priv_check(td, PRIV_VFS_GENERATION))
 1476                 sb->st_gen = 0;
 1477         else
 1478                 sb->st_gen = vap->va_gen;
 1479 
 1480         sb->st_blocks = vap->va_bytes / S_BLKSIZE;
 1481         return (0);
 1482 }
 1483 
 1484 /*
 1485  * File table vnode ioctl routine.
 1486  */
 1487 static int
 1488 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
 1489     struct thread *td)
 1490 {
 1491         struct vattr vattr;
 1492         struct vnode *vp;
 1493         int error;
 1494 
 1495         vp = fp->f_vnode;
 1496         switch (vp->v_type) {
 1497         case VDIR:
 1498         case VREG:
 1499                 switch (com) {
 1500                 case FIONREAD:
 1501                         vn_lock(vp, LK_SHARED | LK_RETRY);
 1502                         error = VOP_GETATTR(vp, &vattr, active_cred);
 1503                         VOP_UNLOCK(vp, 0);
 1504                         if (error == 0)
 1505                                 *(int *)data = vattr.va_size - fp->f_offset;
 1506                         return (error);
 1507                 case FIONBIO:
 1508                 case FIOASYNC:
 1509                         return (0);
 1510                 default:
 1511                         return (VOP_IOCTL(vp, com, data, fp->f_flag,
 1512                             active_cred, td));
 1513                 }
 1514         default:
 1515                 return (ENOTTY);
 1516         }
 1517 }
 1518 
 1519 /*
 1520  * File table vnode poll routine.
 1521  */
 1522 static int
 1523 vn_poll(struct file *fp, int events, struct ucred *active_cred,
 1524     struct thread *td)
 1525 {
 1526         struct vnode *vp;
 1527         int error;
 1528 
 1529         vp = fp->f_vnode;
 1530 #ifdef MAC
 1531         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1532         AUDIT_ARG_VNODE1(vp);
 1533         error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
 1534         VOP_UNLOCK(vp, 0);
 1535         if (!error)
 1536 #endif
 1537 
 1538         error = VOP_POLL(vp, events, fp->f_cred, td);
 1539         return (error);
 1540 }
 1541 
 1542 /*
 1543  * Acquire the requested lock and then check for validity.  LK_RETRY
 1544  * permits vn_lock to return doomed vnodes.
 1545  */
 1546 int
 1547 _vn_lock(struct vnode *vp, int flags, char *file, int line)
 1548 {
 1549         int error;
 1550 
 1551         VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
 1552             ("vn_lock: no locktype"));
 1553         VNASSERT(vp->v_holdcnt != 0, vp, ("vn_lock: zero hold count"));
 1554 retry:
 1555         error = VOP_LOCK1(vp, flags, file, line);
 1556         flags &= ~LK_INTERLOCK; /* Interlock is always dropped. */
 1557         KASSERT((flags & LK_RETRY) == 0 || error == 0,
 1558             ("vn_lock: error %d incompatible with flags %#x", error, flags));
 1559 
 1560         if ((flags & LK_RETRY) == 0) {
 1561                 if (error == 0 && (vp->v_iflag & VI_DOOMED) != 0) {
 1562                         VOP_UNLOCK(vp, 0);
 1563                         error = ENOENT;
 1564                 }
 1565         } else if (error != 0)
 1566                 goto retry;
 1567         return (error);
 1568 }
 1569 
 1570 /*
 1571  * File table vnode close routine.
 1572  */
 1573 static int
 1574 vn_closefile(struct file *fp, struct thread *td)
 1575 {
 1576         struct vnode *vp;
 1577         struct flock lf;
 1578         int error;
 1579         bool ref;
 1580 
 1581         vp = fp->f_vnode;
 1582         fp->f_ops = &badfileops;
 1583         ref= (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
 1584 
 1585         error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
 1586 
 1587         if (__predict_false(ref)) {
 1588                 lf.l_whence = SEEK_SET;
 1589                 lf.l_start = 0;
 1590                 lf.l_len = 0;
 1591                 lf.l_type = F_UNLCK;
 1592                 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
 1593                 vrele(vp);
 1594         }
 1595         return (error);
 1596 }
 1597 
 1598 static bool
 1599 vn_suspendable(struct mount *mp)
 1600 {
 1601 
 1602         return (mp->mnt_op->vfs_susp_clean != NULL);
 1603 }
 1604 
 1605 /*
 1606  * Preparing to start a filesystem write operation. If the operation is
 1607  * permitted, then we bump the count of operations in progress and
 1608  * proceed. If a suspend request is in progress, we wait until the
 1609  * suspension is over, and then proceed.
 1610  */
 1611 static int
 1612 vn_start_write_locked(struct mount *mp, int flags)
 1613 {
 1614         int error, mflags;
 1615 
 1616         mtx_assert(MNT_MTX(mp), MA_OWNED);
 1617         error = 0;
 1618 
 1619         /*
 1620          * Check on status of suspension.
 1621          */
 1622         if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
 1623             mp->mnt_susp_owner != curthread) {
 1624                 mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
 1625                     (flags & PCATCH) : 0) | (PUSER - 1);
 1626                 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 1627                         if (flags & V_NOWAIT) {
 1628                                 error = EWOULDBLOCK;
 1629                                 goto unlock;
 1630                         }
 1631                         error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
 1632                             "suspfs", 0);
 1633                         if (error)
 1634                                 goto unlock;
 1635                 }
 1636         }
 1637         if (flags & V_XSLEEP)
 1638                 goto unlock;
 1639         mp->mnt_writeopcount++;
 1640 unlock:
 1641         if (error != 0 || (flags & V_XSLEEP) != 0)
 1642                 MNT_REL(mp);
 1643         MNT_IUNLOCK(mp);
 1644         return (error);
 1645 }
 1646 
 1647 int
 1648 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
 1649 {
 1650         struct mount *mp;
 1651         int error;
 1652 
 1653         KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
 1654             ("V_MNTREF requires mp"));
 1655 
 1656         error = 0;
 1657         /*
 1658          * If a vnode is provided, get and return the mount point that
 1659          * to which it will write.
 1660          */
 1661         if (vp != NULL) {
 1662                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1663                         *mpp = NULL;
 1664                         if (error != EOPNOTSUPP)
 1665                                 return (error);
 1666                         return (0);
 1667                 }
 1668         }
 1669         if ((mp = *mpp) == NULL)
 1670                 return (0);
 1671 
 1672         if (!vn_suspendable(mp)) {
 1673                 if (vp != NULL || (flags & V_MNTREF) != 0)
 1674                         vfs_rel(mp);
 1675                 return (0);
 1676         }
 1677 
 1678         /*
 1679          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1680          * a vfs_ref().
 1681          * As long as a vnode is not provided we need to acquire a
 1682          * refcount for the provided mountpoint too, in order to
 1683          * emulate a vfs_ref().
 1684          */
 1685         MNT_ILOCK(mp);
 1686         if (vp == NULL && (flags & V_MNTREF) == 0)
 1687                 MNT_REF(mp);
 1688 
 1689         return (vn_start_write_locked(mp, flags));
 1690 }
 1691 
 1692 /*
 1693  * Secondary suspension. Used by operations such as vop_inactive
 1694  * routines that are needed by the higher level functions. These
 1695  * are allowed to proceed until all the higher level functions have
 1696  * completed (indicated by mnt_writeopcount dropping to zero). At that
 1697  * time, these operations are halted until the suspension is over.
 1698  */
 1699 int
 1700 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
 1701 {
 1702         struct mount *mp;
 1703         int error;
 1704 
 1705         KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
 1706             ("V_MNTREF requires mp"));
 1707 
 1708  retry:
 1709         if (vp != NULL) {
 1710                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1711                         *mpp = NULL;
 1712                         if (error != EOPNOTSUPP)
 1713                                 return (error);
 1714                         return (0);
 1715                 }
 1716         }
 1717         /*
 1718          * If we are not suspended or have not yet reached suspended
 1719          * mode, then let the operation proceed.
 1720          */
 1721         if ((mp = *mpp) == NULL)
 1722                 return (0);
 1723 
 1724         if (!vn_suspendable(mp)) {
 1725                 if (vp != NULL || (flags & V_MNTREF) != 0)
 1726                         vfs_rel(mp);
 1727                 return (0);
 1728         }
 1729 
 1730         /*
 1731          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1732          * a vfs_ref().
 1733          * As long as a vnode is not provided we need to acquire a
 1734          * refcount for the provided mountpoint too, in order to
 1735          * emulate a vfs_ref().
 1736          */
 1737         MNT_ILOCK(mp);
 1738         if (vp == NULL && (flags & V_MNTREF) == 0)
 1739                 MNT_REF(mp);
 1740         if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
 1741                 mp->mnt_secondary_writes++;
 1742                 mp->mnt_secondary_accwrites++;
 1743                 MNT_IUNLOCK(mp);
 1744                 return (0);
 1745         }
 1746         if (flags & V_NOWAIT) {
 1747                 MNT_REL(mp);
 1748                 MNT_IUNLOCK(mp);
 1749                 return (EWOULDBLOCK);
 1750         }
 1751         /*
 1752          * Wait for the suspension to finish.
 1753          */
 1754         error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
 1755             ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
 1756             "suspfs", 0);
 1757         vfs_rel(mp);
 1758         if (error == 0)
 1759                 goto retry;
 1760         return (error);
 1761 }
 1762 
 1763 /*
 1764  * Filesystem write operation has completed. If we are suspending and this
 1765  * operation is the last one, notify the suspender that the suspension is
 1766  * now in effect.
 1767  */
 1768 void
 1769 vn_finished_write(struct mount *mp)
 1770 {
 1771         if (mp == NULL || !vn_suspendable(mp))
 1772                 return;
 1773         MNT_ILOCK(mp);
 1774         MNT_REL(mp);
 1775         mp->mnt_writeopcount--;
 1776         if (mp->mnt_writeopcount < 0)
 1777                 panic("vn_finished_write: neg cnt");
 1778         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
 1779             mp->mnt_writeopcount <= 0)
 1780                 wakeup(&mp->mnt_writeopcount);
 1781         MNT_IUNLOCK(mp);
 1782 }
 1783 
 1784 
 1785 /*
 1786  * Filesystem secondary write operation has completed. If we are
 1787  * suspending and this operation is the last one, notify the suspender
 1788  * that the suspension is now in effect.
 1789  */
 1790 void
 1791 vn_finished_secondary_write(struct mount *mp)
 1792 {
 1793         if (mp == NULL || !vn_suspendable(mp))
 1794                 return;
 1795         MNT_ILOCK(mp);
 1796         MNT_REL(mp);
 1797         mp->mnt_secondary_writes--;
 1798         if (mp->mnt_secondary_writes < 0)
 1799                 panic("vn_finished_secondary_write: neg cnt");
 1800         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
 1801             mp->mnt_secondary_writes <= 0)
 1802                 wakeup(&mp->mnt_secondary_writes);
 1803         MNT_IUNLOCK(mp);
 1804 }
 1805 
 1806 
 1807 
 1808 /*
 1809  * Request a filesystem to suspend write operations.
 1810  */
 1811 int
 1812 vfs_write_suspend(struct mount *mp, int flags)
 1813 {
 1814         int error;
 1815 
 1816         MPASS(vn_suspendable(mp));
 1817 
 1818         MNT_ILOCK(mp);
 1819         if (mp->mnt_susp_owner == curthread) {
 1820                 MNT_IUNLOCK(mp);
 1821                 return (EALREADY);
 1822         }
 1823         while (mp->mnt_kern_flag & MNTK_SUSPEND)
 1824                 msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
 1825 
 1826         /*
 1827          * Unmount holds a write reference on the mount point.  If we
 1828          * own busy reference and drain for writers, we deadlock with
 1829          * the reference draining in the unmount path.  Callers of
 1830          * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
 1831          * vfs_busy() reference is owned and caller is not in the
 1832          * unmount context.
 1833          */
 1834         if ((flags & VS_SKIP_UNMOUNT) != 0 &&
 1835             (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
 1836                 MNT_IUNLOCK(mp);
 1837                 return (EBUSY);
 1838         }
 1839 
 1840         mp->mnt_kern_flag |= MNTK_SUSPEND;
 1841         mp->mnt_susp_owner = curthread;
 1842         if (mp->mnt_writeopcount > 0)
 1843                 (void) msleep(&mp->mnt_writeopcount, 
 1844                     MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
 1845         else
 1846                 MNT_IUNLOCK(mp);
 1847         if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
 1848                 vfs_write_resume(mp, 0);
 1849         return (error);
 1850 }
 1851 
 1852 /*
 1853  * Request a filesystem to resume write operations.
 1854  */
 1855 void
 1856 vfs_write_resume(struct mount *mp, int flags)
 1857 {
 1858 
 1859         MPASS(vn_suspendable(mp));
 1860 
 1861         MNT_ILOCK(mp);
 1862         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 1863                 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
 1864                 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
 1865                                        MNTK_SUSPENDED);
 1866                 mp->mnt_susp_owner = NULL;
 1867                 wakeup(&mp->mnt_writeopcount);
 1868                 wakeup(&mp->mnt_flag);
 1869                 curthread->td_pflags &= ~TDP_IGNSUSP;
 1870                 if ((flags & VR_START_WRITE) != 0) {
 1871                         MNT_REF(mp);
 1872                         mp->mnt_writeopcount++;
 1873                 }
 1874                 MNT_IUNLOCK(mp);
 1875                 if ((flags & VR_NO_SUSPCLR) == 0)
 1876                         VFS_SUSP_CLEAN(mp);
 1877         } else if ((flags & VR_START_WRITE) != 0) {
 1878                 MNT_REF(mp);
 1879                 vn_start_write_locked(mp, 0);
 1880         } else {
 1881                 MNT_IUNLOCK(mp);
 1882         }
 1883 }
 1884 
 1885 /*
 1886  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
 1887  * methods.
 1888  */
 1889 int
 1890 vfs_write_suspend_umnt(struct mount *mp)
 1891 {
 1892         int error;
 1893 
 1894         MPASS(vn_suspendable(mp));
 1895         KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
 1896             ("vfs_write_suspend_umnt: recursed"));
 1897 
 1898         /* dounmount() already called vn_start_write(). */
 1899         for (;;) {
 1900                 vn_finished_write(mp);
 1901                 error = vfs_write_suspend(mp, 0);
 1902                 if (error != 0) {
 1903                         vn_start_write(NULL, &mp, V_WAIT);
 1904                         return (error);
 1905                 }
 1906                 MNT_ILOCK(mp);
 1907                 if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
 1908                         break;
 1909                 MNT_IUNLOCK(mp);
 1910                 vn_start_write(NULL, &mp, V_WAIT);
 1911         }
 1912         mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
 1913         wakeup(&mp->mnt_flag);
 1914         MNT_IUNLOCK(mp);
 1915         curthread->td_pflags |= TDP_IGNSUSP;
 1916         return (0);
 1917 }
 1918 
 1919 /*
 1920  * Implement kqueues for files by translating it to vnode operation.
 1921  */
 1922 static int
 1923 vn_kqfilter(struct file *fp, struct knote *kn)
 1924 {
 1925 
 1926         return (VOP_KQFILTER(fp->f_vnode, kn));
 1927 }
 1928 
 1929 /*
 1930  * Simplified in-kernel wrapper calls for extended attribute access.
 1931  * Both calls pass in a NULL credential, authorizing as "kernel" access.
 1932  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
 1933  */
 1934 int
 1935 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
 1936     const char *attrname, int *buflen, char *buf, struct thread *td)
 1937 {
 1938         struct uio      auio;
 1939         struct iovec    iov;
 1940         int     error;
 1941 
 1942         iov.iov_len = *buflen;
 1943         iov.iov_base = buf;
 1944 
 1945         auio.uio_iov = &iov;
 1946         auio.uio_iovcnt = 1;
 1947         auio.uio_rw = UIO_READ;
 1948         auio.uio_segflg = UIO_SYSSPACE;
 1949         auio.uio_td = td;
 1950         auio.uio_offset = 0;
 1951         auio.uio_resid = *buflen;
 1952 
 1953         if ((ioflg & IO_NODELOCKED) == 0)
 1954                 vn_lock(vp, LK_SHARED | LK_RETRY);
 1955 
 1956         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 1957 
 1958         /* authorize attribute retrieval as kernel */
 1959         error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
 1960             td);
 1961 
 1962         if ((ioflg & IO_NODELOCKED) == 0)
 1963                 VOP_UNLOCK(vp, 0);
 1964 
 1965         if (error == 0) {
 1966                 *buflen = *buflen - auio.uio_resid;
 1967         }
 1968 
 1969         return (error);
 1970 }
 1971 
 1972 /*
 1973  * XXX failure mode if partially written?
 1974  */
 1975 int
 1976 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
 1977     const char *attrname, int buflen, char *buf, struct thread *td)
 1978 {
 1979         struct uio      auio;
 1980         struct iovec    iov;
 1981         struct mount    *mp;
 1982         int     error;
 1983 
 1984         iov.iov_len = buflen;
 1985         iov.iov_base = buf;
 1986 
 1987         auio.uio_iov = &iov;
 1988         auio.uio_iovcnt = 1;
 1989         auio.uio_rw = UIO_WRITE;
 1990         auio.uio_segflg = UIO_SYSSPACE;
 1991         auio.uio_td = td;
 1992         auio.uio_offset = 0;
 1993         auio.uio_resid = buflen;
 1994 
 1995         if ((ioflg & IO_NODELOCKED) == 0) {
 1996                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 1997                         return (error);
 1998                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1999         }
 2000 
 2001         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 2002 
 2003         /* authorize attribute setting as kernel */
 2004         error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
 2005 
 2006         if ((ioflg & IO_NODELOCKED) == 0) {
 2007                 vn_finished_write(mp);
 2008                 VOP_UNLOCK(vp, 0);
 2009         }
 2010 
 2011         return (error);
 2012 }
 2013 
 2014 int
 2015 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
 2016     const char *attrname, struct thread *td)
 2017 {
 2018         struct mount    *mp;
 2019         int     error;
 2020 
 2021         if ((ioflg & IO_NODELOCKED) == 0) {
 2022                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 2023                         return (error);
 2024                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2025         }
 2026 
 2027         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 2028 
 2029         /* authorize attribute removal as kernel */
 2030         error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
 2031         if (error == EOPNOTSUPP)
 2032                 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
 2033                     NULL, td);
 2034 
 2035         if ((ioflg & IO_NODELOCKED) == 0) {
 2036                 vn_finished_write(mp);
 2037                 VOP_UNLOCK(vp, 0);
 2038         }
 2039 
 2040         return (error);
 2041 }
 2042 
 2043 static int
 2044 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
 2045     struct vnode **rvp)
 2046 {
 2047 
 2048         return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
 2049 }
 2050 
 2051 int
 2052 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
 2053 {
 2054 
 2055         return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
 2056             lkflags, rvp));
 2057 }
 2058 
 2059 int
 2060 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
 2061     int lkflags, struct vnode **rvp)
 2062 {
 2063         struct mount *mp;
 2064         int ltype, error;
 2065 
 2066         ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
 2067         mp = vp->v_mount;
 2068         ltype = VOP_ISLOCKED(vp);
 2069         KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
 2070             ("vn_vget_ino: vp not locked"));
 2071         error = vfs_busy(mp, MBF_NOWAIT);
 2072         if (error != 0) {
 2073                 vfs_ref(mp);
 2074                 VOP_UNLOCK(vp, 0);
 2075                 error = vfs_busy(mp, 0);
 2076                 vn_lock(vp, ltype | LK_RETRY);
 2077                 vfs_rel(mp);
 2078                 if (error != 0)
 2079                         return (ENOENT);
 2080                 if (vp->v_iflag & VI_DOOMED) {
 2081                         vfs_unbusy(mp);
 2082                         return (ENOENT);
 2083                 }
 2084         }
 2085         VOP_UNLOCK(vp, 0);
 2086         error = alloc(mp, alloc_arg, lkflags, rvp);
 2087         vfs_unbusy(mp);
 2088         if (error != 0 || *rvp != vp)
 2089                 vn_lock(vp, ltype | LK_RETRY);
 2090         if (vp->v_iflag & VI_DOOMED) {
 2091                 if (error == 0) {
 2092                         if (*rvp == vp)
 2093                                 vunref(vp);
 2094                         else
 2095                                 vput(*rvp);
 2096                 }
 2097                 error = ENOENT;
 2098         }
 2099         return (error);
 2100 }
 2101 
 2102 int
 2103 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
 2104     struct thread *td)
 2105 {
 2106 
 2107         if (vp->v_type != VREG || td == NULL)
 2108                 return (0);
 2109         if ((uoff_t)uio->uio_offset + uio->uio_resid >
 2110             lim_cur(td, RLIMIT_FSIZE)) {
 2111                 PROC_LOCK(td->td_proc);
 2112                 kern_psignal(td->td_proc, SIGXFSZ);
 2113                 PROC_UNLOCK(td->td_proc);
 2114                 return (EFBIG);
 2115         }
 2116         return (0);
 2117 }
 2118 
 2119 int
 2120 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
 2121     struct thread *td)
 2122 {
 2123         struct vnode *vp;
 2124 
 2125         vp = fp->f_vnode;
 2126 #ifdef AUDIT
 2127         vn_lock(vp, LK_SHARED | LK_RETRY);
 2128         AUDIT_ARG_VNODE1(vp);
 2129         VOP_UNLOCK(vp, 0);
 2130 #endif
 2131         return (setfmode(td, active_cred, vp, mode));
 2132 }
 2133 
 2134 int
 2135 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
 2136     struct thread *td)
 2137 {
 2138         struct vnode *vp;
 2139 
 2140         vp = fp->f_vnode;
 2141 #ifdef AUDIT
 2142         vn_lock(vp, LK_SHARED | LK_RETRY);
 2143         AUDIT_ARG_VNODE1(vp);
 2144         VOP_UNLOCK(vp, 0);
 2145 #endif
 2146         return (setfown(td, active_cred, vp, uid, gid));
 2147 }
 2148 
 2149 void
 2150 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
 2151 {
 2152         vm_object_t object;
 2153 
 2154         if ((object = vp->v_object) == NULL)
 2155                 return;
 2156         VM_OBJECT_WLOCK(object);
 2157         vm_object_page_remove(object, start, end, 0);
 2158         VM_OBJECT_WUNLOCK(object);
 2159 }
 2160 
 2161 int
 2162 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
 2163 {
 2164         struct vattr va;
 2165         daddr_t bn, bnp;
 2166         uint64_t bsize;
 2167         off_t noff;
 2168         int error;
 2169 
 2170         KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
 2171             ("Wrong command %lu", cmd));
 2172 
 2173         if (vn_lock(vp, LK_SHARED) != 0)
 2174                 return (EBADF);
 2175         if (vp->v_type != VREG) {
 2176                 error = ENOTTY;
 2177                 goto unlock;
 2178         }
 2179         error = VOP_GETATTR(vp, &va, cred);
 2180         if (error != 0)
 2181                 goto unlock;
 2182         noff = *off;
 2183         if (noff >= va.va_size) {
 2184                 error = ENXIO;
 2185                 goto unlock;
 2186         }
 2187         bsize = vp->v_mount->mnt_stat.f_iosize;
 2188         for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize -
 2189             noff % bsize) {
 2190                 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
 2191                 if (error == EOPNOTSUPP) {
 2192                         error = ENOTTY;
 2193                         goto unlock;
 2194                 }
 2195                 if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
 2196                     (bnp != -1 && cmd == FIOSEEKDATA)) {
 2197                         noff = bn * bsize;
 2198                         if (noff < *off)
 2199                                 noff = *off;
 2200                         goto unlock;
 2201                 }
 2202         }
 2203         if (noff > va.va_size)
 2204                 noff = va.va_size;
 2205         /* noff == va.va_size. There is an implicit hole at the end of file. */
 2206         if (cmd == FIOSEEKDATA)
 2207                 error = ENXIO;
 2208 unlock:
 2209         VOP_UNLOCK(vp, 0);
 2210         if (error == 0)
 2211                 *off = noff;
 2212         return (error);
 2213 }
 2214 
 2215 int
 2216 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
 2217 {
 2218         struct ucred *cred;
 2219         struct vnode *vp;
 2220         struct vattr vattr;
 2221         off_t foffset, size;
 2222         int error, noneg;
 2223 
 2224         cred = td->td_ucred;
 2225         vp = fp->f_vnode;
 2226         foffset = foffset_lock(fp, 0);
 2227         noneg = (vp->v_type != VCHR);
 2228         error = 0;
 2229         switch (whence) {
 2230         case L_INCR:
 2231                 if (noneg &&
 2232                     (foffset < 0 ||
 2233                     (offset > 0 && foffset > OFF_MAX - offset))) {
 2234                         error = EOVERFLOW;
 2235                         break;
 2236                 }
 2237                 offset += foffset;
 2238                 break;
 2239         case L_XTND:
 2240                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2241                 error = VOP_GETATTR(vp, &vattr, cred);
 2242                 VOP_UNLOCK(vp, 0);
 2243                 if (error)
 2244                         break;
 2245 
 2246                 /*
 2247                  * If the file references a disk device, then fetch
 2248                  * the media size and use that to determine the ending
 2249                  * offset.
 2250                  */
 2251                 if (vattr.va_size == 0 && vp->v_type == VCHR &&
 2252                     fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
 2253                         vattr.va_size = size;
 2254                 if (noneg &&
 2255                     (vattr.va_size > OFF_MAX ||
 2256                     (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
 2257                         error = EOVERFLOW;
 2258                         break;
 2259                 }
 2260                 offset += vattr.va_size;
 2261                 break;
 2262         case L_SET:
 2263                 break;
 2264         case SEEK_DATA:
 2265                 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
 2266                 break;
 2267         case SEEK_HOLE:
 2268                 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
 2269                 break;
 2270         default:
 2271                 error = EINVAL;
 2272         }
 2273         if (error == 0 && noneg && offset < 0)
 2274                 error = EINVAL;
 2275         if (error != 0)
 2276                 goto drop;
 2277         VFS_KNOTE_UNLOCKED(vp, 0);
 2278         td->td_uretoff.tdu_off = offset;
 2279 drop:
 2280         foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
 2281         return (error);
 2282 }
 2283 
 2284 int
 2285 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
 2286     struct thread *td)
 2287 {
 2288         int error;
 2289 
 2290         /*
 2291          * Grant permission if the caller is the owner of the file, or
 2292          * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
 2293          * on the file.  If the time pointer is null, then write
 2294          * permission on the file is also sufficient.
 2295          *
 2296          * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
 2297          * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
 2298          * will be allowed to set the times [..] to the current
 2299          * server time.
 2300          */
 2301         error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
 2302         if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
 2303                 error = VOP_ACCESS(vp, VWRITE, cred, td);
 2304         return (error);
 2305 }
 2306 
 2307 int
 2308 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
 2309 {
 2310         struct vnode *vp;
 2311         int error;
 2312 
 2313         if (fp->f_type == DTYPE_FIFO)
 2314                 kif->kf_type = KF_TYPE_FIFO;
 2315         else
 2316                 kif->kf_type = KF_TYPE_VNODE;
 2317         vp = fp->f_vnode;
 2318         vref(vp);
 2319         FILEDESC_SUNLOCK(fdp);
 2320         error = vn_fill_kinfo_vnode(vp, kif);
 2321         vrele(vp);
 2322         FILEDESC_SLOCK(fdp);
 2323         return (error);
 2324 }
 2325 
 2326 static inline void
 2327 vn_fill_junk(struct kinfo_file *kif)
 2328 {
 2329         size_t len, olen;
 2330 
 2331         /*
 2332          * Simulate vn_fullpath returning changing values for a given
 2333          * vp during e.g. coredump.
 2334          */
 2335         len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
 2336         olen = strlen(kif->kf_path);
 2337         if (len < olen)
 2338                 strcpy(&kif->kf_path[len - 1], "$");
 2339         else
 2340                 for (; olen < len; olen++)
 2341                         strcpy(&kif->kf_path[olen], "A");
 2342 }
 2343 
 2344 int
 2345 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
 2346 {
 2347         struct vattr va;
 2348         char *fullpath, *freepath;
 2349         int error;
 2350 
 2351         kif->kf_vnode_type = vntype_to_kinfo(vp->v_type);
 2352         freepath = NULL;
 2353         fullpath = "-";
 2354         error = vn_fullpath(curthread, vp, &fullpath, &freepath);
 2355         if (error == 0) {
 2356                 strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
 2357         }
 2358         if (freepath != NULL)
 2359                 free(freepath, M_TEMP);
 2360 
 2361         KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
 2362                 vn_fill_junk(kif);
 2363         );
 2364 
 2365         /*
 2366          * Retrieve vnode attributes.
 2367          */
 2368         va.va_fsid = VNOVAL;
 2369         va.va_rdev = NODEV;
 2370         vn_lock(vp, LK_SHARED | LK_RETRY);
 2371         error = VOP_GETATTR(vp, &va, curthread->td_ucred);
 2372         VOP_UNLOCK(vp, 0);
 2373         if (error != 0)
 2374                 return (error);
 2375         if (va.va_fsid != VNOVAL)
 2376                 kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
 2377         else
 2378                 kif->kf_un.kf_file.kf_file_fsid =
 2379                     vp->v_mount->mnt_stat.f_fsid.val[0];
 2380         kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
 2381         kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
 2382         kif->kf_un.kf_file.kf_file_size = va.va_size;
 2383         kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
 2384         return (0);
 2385 }
 2386 
 2387 int
 2388 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
 2389     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
 2390     struct thread *td)
 2391 {
 2392 #ifdef HWPMC_HOOKS
 2393         struct pmckern_map_in pkm;
 2394 #endif
 2395         struct mount *mp;
 2396         struct vnode *vp;
 2397         vm_object_t object;
 2398         vm_prot_t maxprot;
 2399         boolean_t writecounted;
 2400         int error;
 2401 
 2402 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
 2403     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
 2404         /*
 2405          * POSIX shared-memory objects are defined to have
 2406          * kernel persistence, and are not defined to support
 2407          * read(2)/write(2) -- or even open(2).  Thus, we can
 2408          * use MAP_ASYNC to trade on-disk coherence for speed.
 2409          * The shm_open(3) library routine turns on the FPOSIXSHM
 2410          * flag to request this behavior.
 2411          */
 2412         if ((fp->f_flag & FPOSIXSHM) != 0)
 2413                 flags |= MAP_NOSYNC;
 2414 #endif
 2415         vp = fp->f_vnode;
 2416 
 2417         /*
 2418          * Ensure that file and memory protections are
 2419          * compatible.  Note that we only worry about
 2420          * writability if mapping is shared; in this case,
 2421          * current and max prot are dictated by the open file.
 2422          * XXX use the vnode instead?  Problem is: what
 2423          * credentials do we use for determination? What if
 2424          * proc does a setuid?
 2425          */
 2426         mp = vp->v_mount;
 2427         if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
 2428                 maxprot = VM_PROT_NONE;
 2429                 if ((prot & VM_PROT_EXECUTE) != 0)
 2430                         return (EACCES);
 2431         } else
 2432                 maxprot = VM_PROT_EXECUTE;
 2433         if ((fp->f_flag & FREAD) != 0)
 2434                 maxprot |= VM_PROT_READ;
 2435         else if ((prot & VM_PROT_READ) != 0)
 2436                 return (EACCES);
 2437 
 2438         /*
 2439          * If we are sharing potential changes via MAP_SHARED and we
 2440          * are trying to get write permission although we opened it
 2441          * without asking for it, bail out.
 2442          */
 2443         if ((flags & MAP_SHARED) != 0) {
 2444                 if ((fp->f_flag & FWRITE) != 0)
 2445                         maxprot |= VM_PROT_WRITE;
 2446                 else if ((prot & VM_PROT_WRITE) != 0)
 2447                         return (EACCES);
 2448         } else {
 2449                 maxprot |= VM_PROT_WRITE;
 2450                 cap_maxprot |= VM_PROT_WRITE;
 2451         }
 2452         maxprot &= cap_maxprot;
 2453 
 2454         /*
 2455          * For regular files and shared memory, POSIX requires that
 2456          * the value of foff be a legitimate offset within the data
 2457          * object.  In particular, negative offsets are invalid.
 2458          * Blocking negative offsets and overflows here avoids
 2459          * possible wraparound or user-level access into reserved
 2460          * ranges of the data object later.  In contrast, POSIX does
 2461          * not dictate how offsets are used by device drivers, so in
 2462          * the case of a device mapping a negative offset is passed
 2463          * on.
 2464          */
 2465         if (
 2466 #ifdef _LP64
 2467             size > OFF_MAX ||
 2468 #endif
 2469             foff < 0 || foff > OFF_MAX - size)
 2470                 return (EINVAL);
 2471 
 2472         writecounted = FALSE;
 2473         error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
 2474             &foff, &object, &writecounted);
 2475         if (error != 0)
 2476                 return (error);
 2477         error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
 2478             foff, writecounted, td);
 2479         if (error != 0) {
 2480                 /*
 2481                  * If this mapping was accounted for in the vnode's
 2482                  * writecount, then undo that now.
 2483                  */
 2484                 if (writecounted)
 2485                         vnode_pager_release_writecount(object, 0, size);
 2486                 vm_object_deallocate(object);
 2487         }
 2488 #ifdef HWPMC_HOOKS
 2489         /* Inform hwpmc(4) if an executable is being mapped. */
 2490         if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
 2491                 if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
 2492                         pkm.pm_file = vp;
 2493                         pkm.pm_address = (uintptr_t) *addr;
 2494                         PMC_CALL_HOOK(td, PMC_FN_MMAP, (void *) &pkm);
 2495                 }
 2496         }
 2497 #endif
 2498         return (error);
 2499 }

Cache object: 22f38b095491e4d5275b69bc09fe5de6


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.