The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1989, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
   13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
   14  *
   15  * Portions of this software were developed by Konstantin Belousov
   16  * under sponsorship from the FreeBSD Foundation.
   17  *
   18  * Redistribution and use in source and binary forms, with or without
   19  * modification, are permitted provided that the following conditions
   20  * are met:
   21  * 1. Redistributions of source code must retain the above copyright
   22  *    notice, this list of conditions and the following disclaimer.
   23  * 2. Redistributions in binary form must reproduce the above copyright
   24  *    notice, this list of conditions and the following disclaimer in the
   25  *    documentation and/or other materials provided with the distribution.
   26  * 3. Neither the name of the University nor the names of its contributors
   27  *    may be used to endorse or promote products derived from this software
   28  *    without specific prior written permission.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   40  * SUCH DAMAGE.
   41  *
   42  *      @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94
   43  */
   44 
   45 #include <sys/cdefs.h>
   46 __FBSDID("$FreeBSD: releng/12.0/sys/kern/vfs_vnops.c 338603 2018-09-12 04:57:34Z gordon $");
   47 
   48 #include "opt_hwpmc_hooks.h"
   49 
   50 #include <sys/param.h>
   51 #include <sys/systm.h>
   52 #include <sys/disk.h>
   53 #include <sys/fail.h>
   54 #include <sys/fcntl.h>
   55 #include <sys/file.h>
   56 #include <sys/kdb.h>
   57 #include <sys/stat.h>
   58 #include <sys/priv.h>
   59 #include <sys/proc.h>
   60 #include <sys/limits.h>
   61 #include <sys/lock.h>
   62 #include <sys/mman.h>
   63 #include <sys/mount.h>
   64 #include <sys/mutex.h>
   65 #include <sys/namei.h>
   66 #include <sys/vnode.h>
   67 #include <sys/bio.h>
   68 #include <sys/buf.h>
   69 #include <sys/filio.h>
   70 #include <sys/resourcevar.h>
   71 #include <sys/rwlock.h>
   72 #include <sys/sx.h>
   73 #include <sys/sysctl.h>
   74 #include <sys/ttycom.h>
   75 #include <sys/conf.h>
   76 #include <sys/syslog.h>
   77 #include <sys/unistd.h>
   78 #include <sys/user.h>
   79 
   80 #include <security/audit/audit.h>
   81 #include <security/mac/mac_framework.h>
   82 
   83 #include <vm/vm.h>
   84 #include <vm/vm_extern.h>
   85 #include <vm/pmap.h>
   86 #include <vm/vm_map.h>
   87 #include <vm/vm_object.h>
   88 #include <vm/vm_page.h>
   89 #include <vm/vnode_pager.h>
   90 
   91 #ifdef HWPMC_HOOKS
   92 #include <sys/pmckern.h>
   93 #endif
   94 
   95 static fo_rdwr_t        vn_read;
   96 static fo_rdwr_t        vn_write;
   97 static fo_rdwr_t        vn_io_fault;
   98 static fo_truncate_t    vn_truncate;
   99 static fo_ioctl_t       vn_ioctl;
  100 static fo_poll_t        vn_poll;
  101 static fo_kqfilter_t    vn_kqfilter;
  102 static fo_stat_t        vn_statfile;
  103 static fo_close_t       vn_closefile;
  104 static fo_mmap_t        vn_mmap;
  105 
  106 struct  fileops vnops = {
  107         .fo_read = vn_io_fault,
  108         .fo_write = vn_io_fault,
  109         .fo_truncate = vn_truncate,
  110         .fo_ioctl = vn_ioctl,
  111         .fo_poll = vn_poll,
  112         .fo_kqfilter = vn_kqfilter,
  113         .fo_stat = vn_statfile,
  114         .fo_close = vn_closefile,
  115         .fo_chmod = vn_chmod,
  116         .fo_chown = vn_chown,
  117         .fo_sendfile = vn_sendfile,
  118         .fo_seek = vn_seek,
  119         .fo_fill_kinfo = vn_fill_kinfo,
  120         .fo_mmap = vn_mmap,
  121         .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
  122 };
  123 
  124 static const int io_hold_cnt = 16;
  125 static int vn_io_fault_enable = 1;
  126 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
  127     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
  128 static int vn_io_fault_prefault = 0;
  129 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
  130     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
  131 static u_long vn_io_faults_cnt;
  132 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
  133     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
  134 
  135 /*
  136  * Returns true if vn_io_fault mode of handling the i/o request should
  137  * be used.
  138  */
  139 static bool
  140 do_vn_io_fault(struct vnode *vp, struct uio *uio)
  141 {
  142         struct mount *mp;
  143 
  144         return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
  145             (mp = vp->v_mount) != NULL &&
  146             (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
  147 }
  148 
  149 /*
  150  * Structure used to pass arguments to vn_io_fault1(), to do either
  151  * file- or vnode-based I/O calls.
  152  */
  153 struct vn_io_fault_args {
  154         enum {
  155                 VN_IO_FAULT_FOP,
  156                 VN_IO_FAULT_VOP
  157         } kind;
  158         struct ucred *cred;
  159         int flags;
  160         union {
  161                 struct fop_args_tag {
  162                         struct file *fp;
  163                         fo_rdwr_t *doio;
  164                 } fop_args;
  165                 struct vop_args_tag {
  166                         struct vnode *vp;
  167                 } vop_args;
  168         } args;
  169 };
  170 
  171 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
  172     struct vn_io_fault_args *args, struct thread *td);
  173 
  174 int
  175 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
  176 {
  177         struct thread *td = ndp->ni_cnd.cn_thread;
  178 
  179         return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
  180 }
  181 
  182 /*
  183  * Common code for vnode open operations via a name lookup.
  184  * Lookup the vnode and invoke VOP_CREATE if needed.
  185  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
  186  * 
  187  * Note that this does NOT free nameidata for the successful case,
  188  * due to the NDINIT being done elsewhere.
  189  */
  190 int
  191 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
  192     struct ucred *cred, struct file *fp)
  193 {
  194         struct vnode *vp;
  195         struct mount *mp;
  196         struct thread *td = ndp->ni_cnd.cn_thread;
  197         struct vattr vat;
  198         struct vattr *vap = &vat;
  199         int fmode, error;
  200 
  201 restart:
  202         fmode = *flagp;
  203         if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
  204             O_EXCL | O_DIRECTORY))
  205                 return (EINVAL);
  206         else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
  207                 ndp->ni_cnd.cn_nameiop = CREATE;
  208                 /*
  209                  * Set NOCACHE to avoid flushing the cache when
  210                  * rolling in many files at once.
  211                 */
  212                 ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
  213                 if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
  214                         ndp->ni_cnd.cn_flags |= FOLLOW;
  215                 if (!(vn_open_flags & VN_OPEN_NOAUDIT))
  216                         ndp->ni_cnd.cn_flags |= AUDITVNODE1;
  217                 if (vn_open_flags & VN_OPEN_NOCAPCHECK)
  218                         ndp->ni_cnd.cn_flags |= NOCAPCHECK;
  219                 bwillwrite();
  220                 if ((error = namei(ndp)) != 0)
  221                         return (error);
  222                 if (ndp->ni_vp == NULL) {
  223                         VATTR_NULL(vap);
  224                         vap->va_type = VREG;
  225                         vap->va_mode = cmode;
  226                         if (fmode & O_EXCL)
  227                                 vap->va_vaflags |= VA_EXCLUSIVE;
  228                         if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
  229                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  230                                 vput(ndp->ni_dvp);
  231                                 if ((error = vn_start_write(NULL, &mp,
  232                                     V_XSLEEP | PCATCH)) != 0)
  233                                         return (error);
  234                                 goto restart;
  235                         }
  236                         if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
  237                                 ndp->ni_cnd.cn_flags |= MAKEENTRY;
  238 #ifdef MAC
  239                         error = mac_vnode_check_create(cred, ndp->ni_dvp,
  240                             &ndp->ni_cnd, vap);
  241                         if (error == 0)
  242 #endif
  243                                 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
  244                                                    &ndp->ni_cnd, vap);
  245                         vput(ndp->ni_dvp);
  246                         vn_finished_write(mp);
  247                         if (error) {
  248                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  249                                 return (error);
  250                         }
  251                         fmode &= ~O_TRUNC;
  252                         vp = ndp->ni_vp;
  253                 } else {
  254                         if (ndp->ni_dvp == ndp->ni_vp)
  255                                 vrele(ndp->ni_dvp);
  256                         else
  257                                 vput(ndp->ni_dvp);
  258                         ndp->ni_dvp = NULL;
  259                         vp = ndp->ni_vp;
  260                         if (fmode & O_EXCL) {
  261                                 error = EEXIST;
  262                                 goto bad;
  263                         }
  264                         fmode &= ~O_CREAT;
  265                 }
  266         } else {
  267                 ndp->ni_cnd.cn_nameiop = LOOKUP;
  268                 ndp->ni_cnd.cn_flags = ISOPEN |
  269                     ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
  270                 if (!(fmode & FWRITE))
  271                         ndp->ni_cnd.cn_flags |= LOCKSHARED;
  272                 if (!(vn_open_flags & VN_OPEN_NOAUDIT))
  273                         ndp->ni_cnd.cn_flags |= AUDITVNODE1;
  274                 if (vn_open_flags & VN_OPEN_NOCAPCHECK)
  275                         ndp->ni_cnd.cn_flags |= NOCAPCHECK;
  276                 if ((error = namei(ndp)) != 0)
  277                         return (error);
  278                 vp = ndp->ni_vp;
  279         }
  280         error = vn_open_vnode(vp, fmode, cred, td, fp);
  281         if (error)
  282                 goto bad;
  283         *flagp = fmode;
  284         return (0);
  285 bad:
  286         NDFREE(ndp, NDF_ONLY_PNBUF);
  287         vput(vp);
  288         *flagp = fmode;
  289         ndp->ni_vp = NULL;
  290         return (error);
  291 }
  292 
  293 /*
  294  * Common code for vnode open operations once a vnode is located.
  295  * Check permissions, and call the VOP_OPEN routine.
  296  */
  297 int
  298 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
  299     struct thread *td, struct file *fp)
  300 {
  301         accmode_t accmode;
  302         struct flock lf;
  303         int error, lock_flags, type;
  304 
  305         if (vp->v_type == VLNK)
  306                 return (EMLINK);
  307         if (vp->v_type == VSOCK)
  308                 return (EOPNOTSUPP);
  309         if (vp->v_type != VDIR && fmode & O_DIRECTORY)
  310                 return (ENOTDIR);
  311         accmode = 0;
  312         if (fmode & (FWRITE | O_TRUNC)) {
  313                 if (vp->v_type == VDIR)
  314                         return (EISDIR);
  315                 accmode |= VWRITE;
  316         }
  317         if (fmode & FREAD)
  318                 accmode |= VREAD;
  319         if (fmode & FEXEC)
  320                 accmode |= VEXEC;
  321         if ((fmode & O_APPEND) && (fmode & FWRITE))
  322                 accmode |= VAPPEND;
  323 #ifdef MAC
  324         if (fmode & O_CREAT)
  325                 accmode |= VCREAT;
  326         if (fmode & O_VERIFY)
  327                 accmode |= VVERIFY;
  328         error = mac_vnode_check_open(cred, vp, accmode);
  329         if (error)
  330                 return (error);
  331 
  332         accmode &= ~(VCREAT | VVERIFY);
  333 #endif
  334         if ((fmode & O_CREAT) == 0) {
  335                 if (accmode & VWRITE) {
  336                         error = vn_writechk(vp);
  337                         if (error)
  338                                 return (error);
  339                 }
  340                 if (accmode) {
  341                         error = VOP_ACCESS(vp, accmode, cred, td);
  342                         if (error)
  343                                 return (error);
  344                 }
  345         }
  346         if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
  347                 vn_lock(vp, LK_UPGRADE | LK_RETRY);
  348         if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
  349                 return (error);
  350 
  351         while ((fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
  352                 KASSERT(fp != NULL, ("open with flock requires fp"));
  353                 if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE) {
  354                         error = EOPNOTSUPP;
  355                         break;
  356                 }
  357                 lock_flags = VOP_ISLOCKED(vp);
  358                 VOP_UNLOCK(vp, 0);
  359                 lf.l_whence = SEEK_SET;
  360                 lf.l_start = 0;
  361                 lf.l_len = 0;
  362                 if (fmode & O_EXLOCK)
  363                         lf.l_type = F_WRLCK;
  364                 else
  365                         lf.l_type = F_RDLCK;
  366                 type = F_FLOCK;
  367                 if ((fmode & FNONBLOCK) == 0)
  368                         type |= F_WAIT;
  369                 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
  370                 if (error == 0)
  371                         fp->f_flag |= FHASLOCK;
  372                 vn_lock(vp, lock_flags | LK_RETRY);
  373                 if (error != 0)
  374                         break;
  375                 if ((vp->v_iflag & VI_DOOMED) != 0) {
  376                         error = ENOENT;
  377                         break;
  378                 }
  379 
  380                 /*
  381                  * Another thread might have used this vnode as an
  382                  * executable while the vnode lock was dropped.
  383                  * Ensure the vnode is still able to be opened for
  384                  * writing after the lock has been obtained.
  385                  */
  386                 if ((accmode & VWRITE) != 0)
  387                         error = vn_writechk(vp);
  388                 break;
  389         }
  390 
  391         if (error != 0) {
  392                 fp->f_flag |= FOPENFAILED;
  393                 fp->f_vnode = vp;
  394                 if (fp->f_ops == &badfileops) {
  395                         fp->f_type = DTYPE_VNODE;
  396                         fp->f_ops = &vnops;
  397                 }
  398                 vref(vp);
  399         } else if  ((fmode & FWRITE) != 0) {
  400                 VOP_ADD_WRITECOUNT(vp, 1);
  401                 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
  402                     __func__, vp, vp->v_writecount);
  403         }
  404         ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
  405         return (error);
  406 }
  407 
  408 /*
  409  * Check for write permissions on the specified vnode.
  410  * Prototype text segments cannot be written.
  411  */
  412 int
  413 vn_writechk(struct vnode *vp)
  414 {
  415 
  416         ASSERT_VOP_LOCKED(vp, "vn_writechk");
  417         /*
  418          * If there's shared text associated with
  419          * the vnode, try to free it up once.  If
  420          * we fail, we can't allow writing.
  421          */
  422         if (VOP_IS_TEXT(vp))
  423                 return (ETXTBSY);
  424 
  425         return (0);
  426 }
  427 
  428 /*
  429  * Vnode close call
  430  */
  431 static int
  432 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
  433     struct thread *td, bool keep_ref)
  434 {
  435         struct mount *mp;
  436         int error, lock_flags;
  437 
  438         if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
  439             MNT_EXTENDED_SHARED(vp->v_mount))
  440                 lock_flags = LK_SHARED;
  441         else
  442                 lock_flags = LK_EXCLUSIVE;
  443 
  444         vn_start_write(vp, &mp, V_WAIT);
  445         vn_lock(vp, lock_flags | LK_RETRY);
  446         AUDIT_ARG_VNODE1(vp);
  447         if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
  448                 VNASSERT(vp->v_writecount > 0, vp, 
  449                     ("vn_close: negative writecount"));
  450                 VOP_ADD_WRITECOUNT(vp, -1);
  451                 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
  452                     __func__, vp, vp->v_writecount);
  453         }
  454         error = VOP_CLOSE(vp, flags, file_cred, td);
  455         if (keep_ref)
  456                 VOP_UNLOCK(vp, 0);
  457         else
  458                 vput(vp);
  459         vn_finished_write(mp);
  460         return (error);
  461 }
  462 
  463 int
  464 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
  465     struct thread *td)
  466 {
  467 
  468         return (vn_close1(vp, flags, file_cred, td, false));
  469 }
  470 
  471 /*
  472  * Heuristic to detect sequential operation.
  473  */
  474 static int
  475 sequential_heuristic(struct uio *uio, struct file *fp)
  476 {
  477 
  478         ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
  479         if (fp->f_flag & FRDAHEAD)
  480                 return (fp->f_seqcount << IO_SEQSHIFT);
  481 
  482         /*
  483          * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
  484          * that the first I/O is normally considered to be slightly
  485          * sequential.  Seeking to offset 0 doesn't change sequentiality
  486          * unless previous seeks have reduced f_seqcount to 0, in which
  487          * case offset 0 is not special.
  488          */
  489         if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
  490             uio->uio_offset == fp->f_nextoff) {
  491                 /*
  492                  * f_seqcount is in units of fixed-size blocks so that it
  493                  * depends mainly on the amount of sequential I/O and not
  494                  * much on the number of sequential I/O's.  The fixed size
  495                  * of 16384 is hard-coded here since it is (not quite) just
  496                  * a magic size that works well here.  This size is more
  497                  * closely related to the best I/O size for real disks than
  498                  * to any block size used by software.
  499                  */
  500                 fp->f_seqcount += howmany(uio->uio_resid, 16384);
  501                 if (fp->f_seqcount > IO_SEQMAX)
  502                         fp->f_seqcount = IO_SEQMAX;
  503                 return (fp->f_seqcount << IO_SEQSHIFT);
  504         }
  505 
  506         /* Not sequential.  Quickly draw-down sequentiality. */
  507         if (fp->f_seqcount > 1)
  508                 fp->f_seqcount = 1;
  509         else
  510                 fp->f_seqcount = 0;
  511         return (0);
  512 }
  513 
  514 /*
  515  * Package up an I/O request on a vnode into a uio and do it.
  516  */
  517 int
  518 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
  519     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
  520     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
  521 {
  522         struct uio auio;
  523         struct iovec aiov;
  524         struct mount *mp;
  525         struct ucred *cred;
  526         void *rl_cookie;
  527         struct vn_io_fault_args args;
  528         int error, lock_flags;
  529 
  530         if (offset < 0 && vp->v_type != VCHR)
  531                 return (EINVAL);
  532         auio.uio_iov = &aiov;
  533         auio.uio_iovcnt = 1;
  534         aiov.iov_base = base;
  535         aiov.iov_len = len;
  536         auio.uio_resid = len;
  537         auio.uio_offset = offset;
  538         auio.uio_segflg = segflg;
  539         auio.uio_rw = rw;
  540         auio.uio_td = td;
  541         error = 0;
  542 
  543         if ((ioflg & IO_NODELOCKED) == 0) {
  544                 if ((ioflg & IO_RANGELOCKED) == 0) {
  545                         if (rw == UIO_READ) {
  546                                 rl_cookie = vn_rangelock_rlock(vp, offset,
  547                                     offset + len);
  548                         } else {
  549                                 rl_cookie = vn_rangelock_wlock(vp, offset,
  550                                     offset + len);
  551                         }
  552                 } else
  553                         rl_cookie = NULL;
  554                 mp = NULL;
  555                 if (rw == UIO_WRITE) { 
  556                         if (vp->v_type != VCHR &&
  557                             (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
  558                             != 0)
  559                                 goto out;
  560                         if (MNT_SHARED_WRITES(mp) ||
  561                             ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
  562                                 lock_flags = LK_SHARED;
  563                         else
  564                                 lock_flags = LK_EXCLUSIVE;
  565                 } else
  566                         lock_flags = LK_SHARED;
  567                 vn_lock(vp, lock_flags | LK_RETRY);
  568         } else
  569                 rl_cookie = NULL;
  570 
  571         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
  572 #ifdef MAC
  573         if ((ioflg & IO_NOMACCHECK) == 0) {
  574                 if (rw == UIO_READ)
  575                         error = mac_vnode_check_read(active_cred, file_cred,
  576                             vp);
  577                 else
  578                         error = mac_vnode_check_write(active_cred, file_cred,
  579                             vp);
  580         }
  581 #endif
  582         if (error == 0) {
  583                 if (file_cred != NULL)
  584                         cred = file_cred;
  585                 else
  586                         cred = active_cred;
  587                 if (do_vn_io_fault(vp, &auio)) {
  588                         args.kind = VN_IO_FAULT_VOP;
  589                         args.cred = cred;
  590                         args.flags = ioflg;
  591                         args.args.vop_args.vp = vp;
  592                         error = vn_io_fault1(vp, &auio, &args, td);
  593                 } else if (rw == UIO_READ) {
  594                         error = VOP_READ(vp, &auio, ioflg, cred);
  595                 } else /* if (rw == UIO_WRITE) */ {
  596                         error = VOP_WRITE(vp, &auio, ioflg, cred);
  597                 }
  598         }
  599         if (aresid)
  600                 *aresid = auio.uio_resid;
  601         else
  602                 if (auio.uio_resid && error == 0)
  603                         error = EIO;
  604         if ((ioflg & IO_NODELOCKED) == 0) {
  605                 VOP_UNLOCK(vp, 0);
  606                 if (mp != NULL)
  607                         vn_finished_write(mp);
  608         }
  609  out:
  610         if (rl_cookie != NULL)
  611                 vn_rangelock_unlock(vp, rl_cookie);
  612         return (error);
  613 }
  614 
  615 /*
  616  * Package up an I/O request on a vnode into a uio and do it.  The I/O
  617  * request is split up into smaller chunks and we try to avoid saturating
  618  * the buffer cache while potentially holding a vnode locked, so we 
  619  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
  620  * to give other processes a chance to lock the vnode (either other processes
  621  * core'ing the same binary, or unrelated processes scanning the directory).
  622  */
  623 int
  624 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
  625     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
  626     struct ucred *file_cred, size_t *aresid, struct thread *td)
  627 {
  628         int error = 0;
  629         ssize_t iaresid;
  630 
  631         do {
  632                 int chunk;
  633 
  634                 /*
  635                  * Force `offset' to a multiple of MAXBSIZE except possibly
  636                  * for the first chunk, so that filesystems only need to
  637                  * write full blocks except possibly for the first and last
  638                  * chunks.
  639                  */
  640                 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
  641 
  642                 if (chunk > len)
  643                         chunk = len;
  644                 if (rw != UIO_READ && vp->v_type == VREG)
  645                         bwillwrite();
  646                 iaresid = 0;
  647                 error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
  648                     ioflg, active_cred, file_cred, &iaresid, td);
  649                 len -= chunk;   /* aresid calc already includes length */
  650                 if (error)
  651                         break;
  652                 offset += chunk;
  653                 base = (char *)base + chunk;
  654                 kern_yield(PRI_USER);
  655         } while (len);
  656         if (aresid)
  657                 *aresid = len + iaresid;
  658         return (error);
  659 }
  660 
  661 off_t
  662 foffset_lock(struct file *fp, int flags)
  663 {
  664         struct mtx *mtxp;
  665         off_t res;
  666 
  667         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  668 
  669 #if OFF_MAX <= LONG_MAX
  670         /*
  671          * Caller only wants the current f_offset value.  Assume that
  672          * the long and shorter integer types reads are atomic.
  673          */
  674         if ((flags & FOF_NOLOCK) != 0)
  675                 return (fp->f_offset);
  676 #endif
  677 
  678         /*
  679          * According to McKusick the vn lock was protecting f_offset here.
  680          * It is now protected by the FOFFSET_LOCKED flag.
  681          */
  682         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  683         mtx_lock(mtxp);
  684         if ((flags & FOF_NOLOCK) == 0) {
  685                 while (fp->f_vnread_flags & FOFFSET_LOCKED) {
  686                         fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
  687                         msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
  688                             "vofflock", 0);
  689                 }
  690                 fp->f_vnread_flags |= FOFFSET_LOCKED;
  691         }
  692         res = fp->f_offset;
  693         mtx_unlock(mtxp);
  694         return (res);
  695 }
  696 
  697 void
  698 foffset_unlock(struct file *fp, off_t val, int flags)
  699 {
  700         struct mtx *mtxp;
  701 
  702         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  703 
  704 #if OFF_MAX <= LONG_MAX
  705         if ((flags & FOF_NOLOCK) != 0) {
  706                 if ((flags & FOF_NOUPDATE) == 0)
  707                         fp->f_offset = val;
  708                 if ((flags & FOF_NEXTOFF) != 0)
  709                         fp->f_nextoff = val;
  710                 return;
  711         }
  712 #endif
  713 
  714         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  715         mtx_lock(mtxp);
  716         if ((flags & FOF_NOUPDATE) == 0)
  717                 fp->f_offset = val;
  718         if ((flags & FOF_NEXTOFF) != 0)
  719                 fp->f_nextoff = val;
  720         if ((flags & FOF_NOLOCK) == 0) {
  721                 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
  722                     ("Lost FOFFSET_LOCKED"));
  723                 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
  724                         wakeup(&fp->f_vnread_flags);
  725                 fp->f_vnread_flags = 0;
  726         }
  727         mtx_unlock(mtxp);
  728 }
  729 
  730 void
  731 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
  732 {
  733 
  734         if ((flags & FOF_OFFSET) == 0)
  735                 uio->uio_offset = foffset_lock(fp, flags);
  736 }
  737 
  738 void
  739 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
  740 {
  741 
  742         if ((flags & FOF_OFFSET) == 0)
  743                 foffset_unlock(fp, uio->uio_offset, flags);
  744 }
  745 
  746 static int
  747 get_advice(struct file *fp, struct uio *uio)
  748 {
  749         struct mtx *mtxp;
  750         int ret;
  751 
  752         ret = POSIX_FADV_NORMAL;
  753         if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
  754                 return (ret);
  755 
  756         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  757         mtx_lock(mtxp);
  758         if (fp->f_advice != NULL &&
  759             uio->uio_offset >= fp->f_advice->fa_start &&
  760             uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
  761                 ret = fp->f_advice->fa_advice;
  762         mtx_unlock(mtxp);
  763         return (ret);
  764 }
  765 
  766 /*
  767  * File table vnode read routine.
  768  */
  769 static int
  770 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
  771     struct thread *td)
  772 {
  773         struct vnode *vp;
  774         off_t orig_offset;
  775         int error, ioflag;
  776         int advice;
  777 
  778         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
  779             uio->uio_td, td));
  780         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
  781         vp = fp->f_vnode;
  782         ioflag = 0;
  783         if (fp->f_flag & FNONBLOCK)
  784                 ioflag |= IO_NDELAY;
  785         if (fp->f_flag & O_DIRECT)
  786                 ioflag |= IO_DIRECT;
  787         advice = get_advice(fp, uio);
  788         vn_lock(vp, LK_SHARED | LK_RETRY);
  789 
  790         switch (advice) {
  791         case POSIX_FADV_NORMAL:
  792         case POSIX_FADV_SEQUENTIAL:
  793         case POSIX_FADV_NOREUSE:
  794                 ioflag |= sequential_heuristic(uio, fp);
  795                 break;
  796         case POSIX_FADV_RANDOM:
  797                 /* Disable read-ahead for random I/O. */
  798                 break;
  799         }
  800         orig_offset = uio->uio_offset;
  801 
  802 #ifdef MAC
  803         error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
  804         if (error == 0)
  805 #endif
  806                 error = VOP_READ(vp, uio, ioflag, fp->f_cred);
  807         fp->f_nextoff = uio->uio_offset;
  808         VOP_UNLOCK(vp, 0);
  809         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
  810             orig_offset != uio->uio_offset)
  811                 /*
  812                  * Use POSIX_FADV_DONTNEED to flush pages and buffers
  813                  * for the backing file after a POSIX_FADV_NOREUSE
  814                  * read(2).
  815                  */
  816                 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
  817                     POSIX_FADV_DONTNEED);
  818         return (error);
  819 }
  820 
  821 /*
  822  * File table vnode write routine.
  823  */
  824 static int
  825 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
  826     struct thread *td)
  827 {
  828         struct vnode *vp;
  829         struct mount *mp;
  830         off_t orig_offset;
  831         int error, ioflag, lock_flags;
  832         int advice;
  833 
  834         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
  835             uio->uio_td, td));
  836         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
  837         vp = fp->f_vnode;
  838         if (vp->v_type == VREG)
  839                 bwillwrite();
  840         ioflag = IO_UNIT;
  841         if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
  842                 ioflag |= IO_APPEND;
  843         if (fp->f_flag & FNONBLOCK)
  844                 ioflag |= IO_NDELAY;
  845         if (fp->f_flag & O_DIRECT)
  846                 ioflag |= IO_DIRECT;
  847         if ((fp->f_flag & O_FSYNC) ||
  848             (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
  849                 ioflag |= IO_SYNC;
  850         mp = NULL;
  851         if (vp->v_type != VCHR &&
  852             (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
  853                 goto unlock;
  854 
  855         advice = get_advice(fp, uio);
  856 
  857         if (MNT_SHARED_WRITES(mp) ||
  858             (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
  859                 lock_flags = LK_SHARED;
  860         } else {
  861                 lock_flags = LK_EXCLUSIVE;
  862         }
  863 
  864         vn_lock(vp, lock_flags | LK_RETRY);
  865         switch (advice) {
  866         case POSIX_FADV_NORMAL:
  867         case POSIX_FADV_SEQUENTIAL:
  868         case POSIX_FADV_NOREUSE:
  869                 ioflag |= sequential_heuristic(uio, fp);
  870                 break;
  871         case POSIX_FADV_RANDOM:
  872                 /* XXX: Is this correct? */
  873                 break;
  874         }
  875         orig_offset = uio->uio_offset;
  876 
  877 #ifdef MAC
  878         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
  879         if (error == 0)
  880 #endif
  881                 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
  882         fp->f_nextoff = uio->uio_offset;
  883         VOP_UNLOCK(vp, 0);
  884         if (vp->v_type != VCHR)
  885                 vn_finished_write(mp);
  886         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
  887             orig_offset != uio->uio_offset)
  888                 /*
  889                  * Use POSIX_FADV_DONTNEED to flush pages and buffers
  890                  * for the backing file after a POSIX_FADV_NOREUSE
  891                  * write(2).
  892                  */
  893                 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
  894                     POSIX_FADV_DONTNEED);
  895 unlock:
  896         return (error);
  897 }
  898 
  899 /*
  900  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
  901  * prevent the following deadlock:
  902  *
  903  * Assume that the thread A reads from the vnode vp1 into userspace
  904  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
  905  * currently not resident, then system ends up with the call chain
  906  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
  907  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
  908  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
  909  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
  910  * backed by the pages of vnode vp1, and some page in buf2 is not
  911  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
  912  *
  913  * To prevent the lock order reversal and deadlock, vn_io_fault() does
  914  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
  915  * Instead, it first tries to do the whole range i/o with pagefaults
  916  * disabled. If all pages in the i/o buffer are resident and mapped,
  917  * VOP will succeed (ignoring the genuine filesystem errors).
  918  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
  919  * i/o in chunks, with all pages in the chunk prefaulted and held
  920  * using vm_fault_quick_hold_pages().
  921  *
  922  * Filesystems using this deadlock avoidance scheme should use the
  923  * array of the held pages from uio, saved in the curthread->td_ma,
  924  * instead of doing uiomove().  A helper function
  925  * vn_io_fault_uiomove() converts uiomove request into
  926  * uiomove_fromphys() over td_ma array.
  927  *
  928  * Since vnode locks do not cover the whole i/o anymore, rangelocks
  929  * make the current i/o request atomic with respect to other i/os and
  930  * truncations.
  931  */
  932 
  933 /*
  934  * Decode vn_io_fault_args and perform the corresponding i/o.
  935  */
  936 static int
  937 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
  938     struct thread *td)
  939 {
  940         int error, save;
  941 
  942         error = 0;
  943         save = vm_fault_disable_pagefaults();
  944         switch (args->kind) {
  945         case VN_IO_FAULT_FOP:
  946                 error = (args->args.fop_args.doio)(args->args.fop_args.fp,
  947                     uio, args->cred, args->flags, td);
  948                 break;
  949         case VN_IO_FAULT_VOP:
  950                 if (uio->uio_rw == UIO_READ) {
  951                         error = VOP_READ(args->args.vop_args.vp, uio,
  952                             args->flags, args->cred);
  953                 } else if (uio->uio_rw == UIO_WRITE) {
  954                         error = VOP_WRITE(args->args.vop_args.vp, uio,
  955                             args->flags, args->cred);
  956                 }
  957                 break;
  958         default:
  959                 panic("vn_io_fault_doio: unknown kind of io %d %d",
  960                     args->kind, uio->uio_rw);
  961         }
  962         vm_fault_enable_pagefaults(save);
  963         return (error);
  964 }
  965 
  966 static int
  967 vn_io_fault_touch(char *base, const struct uio *uio)
  968 {
  969         int r;
  970 
  971         r = fubyte(base);
  972         if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
  973                 return (EFAULT);
  974         return (0);
  975 }
  976 
  977 static int
  978 vn_io_fault_prefault_user(const struct uio *uio)
  979 {
  980         char *base;
  981         const struct iovec *iov;
  982         size_t len;
  983         ssize_t resid;
  984         int error, i;
  985 
  986         KASSERT(uio->uio_segflg == UIO_USERSPACE,
  987             ("vn_io_fault_prefault userspace"));
  988 
  989         error = i = 0;
  990         iov = uio->uio_iov;
  991         resid = uio->uio_resid;
  992         base = iov->iov_base;
  993         len = iov->iov_len;
  994         while (resid > 0) {
  995                 error = vn_io_fault_touch(base, uio);
  996                 if (error != 0)
  997                         break;
  998                 if (len < PAGE_SIZE) {
  999                         if (len != 0) {
 1000                                 error = vn_io_fault_touch(base + len - 1, uio);
 1001                                 if (error != 0)
 1002                                         break;
 1003                                 resid -= len;
 1004                         }
 1005                         if (++i >= uio->uio_iovcnt)
 1006                                 break;
 1007                         iov = uio->uio_iov + i;
 1008                         base = iov->iov_base;
 1009                         len = iov->iov_len;
 1010                 } else {
 1011                         len -= PAGE_SIZE;
 1012                         base += PAGE_SIZE;
 1013                         resid -= PAGE_SIZE;
 1014                 }
 1015         }
 1016         return (error);
 1017 }
 1018 
 1019 /*
 1020  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
 1021  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
 1022  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
 1023  * into args and call vn_io_fault1() to handle faults during the user
 1024  * mode buffer accesses.
 1025  */
 1026 static int
 1027 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
 1028     struct thread *td)
 1029 {
 1030         vm_page_t ma[io_hold_cnt + 2];
 1031         struct uio *uio_clone, short_uio;
 1032         struct iovec short_iovec[1];
 1033         vm_page_t *prev_td_ma;
 1034         vm_prot_t prot;
 1035         vm_offset_t addr, end;
 1036         size_t len, resid;
 1037         ssize_t adv;
 1038         int error, cnt, saveheld, prev_td_ma_cnt;
 1039 
 1040         if (vn_io_fault_prefault) {
 1041                 error = vn_io_fault_prefault_user(uio);
 1042                 if (error != 0)
 1043                         return (error); /* Or ignore ? */
 1044         }
 1045 
 1046         prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
 1047 
 1048         /*
 1049          * The UFS follows IO_UNIT directive and replays back both
 1050          * uio_offset and uio_resid if an error is encountered during the
 1051          * operation.  But, since the iovec may be already advanced,
 1052          * uio is still in an inconsistent state.
 1053          *
 1054          * Cache a copy of the original uio, which is advanced to the redo
 1055          * point using UIO_NOCOPY below.
 1056          */
 1057         uio_clone = cloneuio(uio);
 1058         resid = uio->uio_resid;
 1059 
 1060         short_uio.uio_segflg = UIO_USERSPACE;
 1061         short_uio.uio_rw = uio->uio_rw;
 1062         short_uio.uio_td = uio->uio_td;
 1063 
 1064         error = vn_io_fault_doio(args, uio, td);
 1065         if (error != EFAULT)
 1066                 goto out;
 1067 
 1068         atomic_add_long(&vn_io_faults_cnt, 1);
 1069         uio_clone->uio_segflg = UIO_NOCOPY;
 1070         uiomove(NULL, resid - uio->uio_resid, uio_clone);
 1071         uio_clone->uio_segflg = uio->uio_segflg;
 1072 
 1073         saveheld = curthread_pflags_set(TDP_UIOHELD);
 1074         prev_td_ma = td->td_ma;
 1075         prev_td_ma_cnt = td->td_ma_cnt;
 1076 
 1077         while (uio_clone->uio_resid != 0) {
 1078                 len = uio_clone->uio_iov->iov_len;
 1079                 if (len == 0) {
 1080                         KASSERT(uio_clone->uio_iovcnt >= 1,
 1081                             ("iovcnt underflow"));
 1082                         uio_clone->uio_iov++;
 1083                         uio_clone->uio_iovcnt--;
 1084                         continue;
 1085                 }
 1086                 if (len > io_hold_cnt * PAGE_SIZE)
 1087                         len = io_hold_cnt * PAGE_SIZE;
 1088                 addr = (uintptr_t)uio_clone->uio_iov->iov_base;
 1089                 end = round_page(addr + len);
 1090                 if (end < addr) {
 1091                         error = EFAULT;
 1092                         break;
 1093                 }
 1094                 cnt = atop(end - trunc_page(addr));
 1095                 /*
 1096                  * A perfectly misaligned address and length could cause
 1097                  * both the start and the end of the chunk to use partial
 1098                  * page.  +2 accounts for such a situation.
 1099                  */
 1100                 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
 1101                     addr, len, prot, ma, io_hold_cnt + 2);
 1102                 if (cnt == -1) {
 1103                         error = EFAULT;
 1104                         break;
 1105                 }
 1106                 short_uio.uio_iov = &short_iovec[0];
 1107                 short_iovec[0].iov_base = (void *)addr;
 1108                 short_uio.uio_iovcnt = 1;
 1109                 short_uio.uio_resid = short_iovec[0].iov_len = len;
 1110                 short_uio.uio_offset = uio_clone->uio_offset;
 1111                 td->td_ma = ma;
 1112                 td->td_ma_cnt = cnt;
 1113 
 1114                 error = vn_io_fault_doio(args, &short_uio, td);
 1115                 vm_page_unhold_pages(ma, cnt);
 1116                 adv = len - short_uio.uio_resid;
 1117 
 1118                 uio_clone->uio_iov->iov_base =
 1119                     (char *)uio_clone->uio_iov->iov_base + adv;
 1120                 uio_clone->uio_iov->iov_len -= adv;
 1121                 uio_clone->uio_resid -= adv;
 1122                 uio_clone->uio_offset += adv;
 1123 
 1124                 uio->uio_resid -= adv;
 1125                 uio->uio_offset += adv;
 1126 
 1127                 if (error != 0 || adv == 0)
 1128                         break;
 1129         }
 1130         td->td_ma = prev_td_ma;
 1131         td->td_ma_cnt = prev_td_ma_cnt;
 1132         curthread_pflags_restore(saveheld);
 1133 out:
 1134         free(uio_clone, M_IOV);
 1135         return (error);
 1136 }
 1137 
 1138 static int
 1139 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1140     int flags, struct thread *td)
 1141 {
 1142         fo_rdwr_t *doio;
 1143         struct vnode *vp;
 1144         void *rl_cookie;
 1145         struct vn_io_fault_args args;
 1146         int error;
 1147 
 1148         doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
 1149         vp = fp->f_vnode;
 1150         foffset_lock_uio(fp, uio, flags);
 1151         if (do_vn_io_fault(vp, uio)) {
 1152                 args.kind = VN_IO_FAULT_FOP;
 1153                 args.args.fop_args.fp = fp;
 1154                 args.args.fop_args.doio = doio;
 1155                 args.cred = active_cred;
 1156                 args.flags = flags | FOF_OFFSET;
 1157                 if (uio->uio_rw == UIO_READ) {
 1158                         rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
 1159                             uio->uio_offset + uio->uio_resid);
 1160                 } else if ((fp->f_flag & O_APPEND) != 0 ||
 1161                     (flags & FOF_OFFSET) == 0) {
 1162                         /* For appenders, punt and lock the whole range. */
 1163                         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 1164                 } else {
 1165                         rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
 1166                             uio->uio_offset + uio->uio_resid);
 1167                 }
 1168                 error = vn_io_fault1(vp, uio, &args, td);
 1169                 vn_rangelock_unlock(vp, rl_cookie);
 1170         } else {
 1171                 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
 1172         }
 1173         foffset_unlock_uio(fp, uio, flags);
 1174         return (error);
 1175 }
 1176 
 1177 /*
 1178  * Helper function to perform the requested uiomove operation using
 1179  * the held pages for io->uio_iov[0].iov_base buffer instead of
 1180  * copyin/copyout.  Access to the pages with uiomove_fromphys()
 1181  * instead of iov_base prevents page faults that could occur due to
 1182  * pmap_collect() invalidating the mapping created by
 1183  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
 1184  * object cleanup revoking the write access from page mappings.
 1185  *
 1186  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
 1187  * instead of plain uiomove().
 1188  */
 1189 int
 1190 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
 1191 {
 1192         struct uio transp_uio;
 1193         struct iovec transp_iov[1];
 1194         struct thread *td;
 1195         size_t adv;
 1196         int error, pgadv;
 1197 
 1198         td = curthread;
 1199         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1200             uio->uio_segflg != UIO_USERSPACE)
 1201                 return (uiomove(data, xfersize, uio));
 1202 
 1203         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1204         transp_iov[0].iov_base = data;
 1205         transp_uio.uio_iov = &transp_iov[0];
 1206         transp_uio.uio_iovcnt = 1;
 1207         if (xfersize > uio->uio_resid)
 1208                 xfersize = uio->uio_resid;
 1209         transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
 1210         transp_uio.uio_offset = 0;
 1211         transp_uio.uio_segflg = UIO_SYSSPACE;
 1212         /*
 1213          * Since transp_iov points to data, and td_ma page array
 1214          * corresponds to original uio->uio_iov, we need to invert the
 1215          * direction of the i/o operation as passed to
 1216          * uiomove_fromphys().
 1217          */
 1218         switch (uio->uio_rw) {
 1219         case UIO_WRITE:
 1220                 transp_uio.uio_rw = UIO_READ;
 1221                 break;
 1222         case UIO_READ:
 1223                 transp_uio.uio_rw = UIO_WRITE;
 1224                 break;
 1225         }
 1226         transp_uio.uio_td = uio->uio_td;
 1227         error = uiomove_fromphys(td->td_ma,
 1228             ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
 1229             xfersize, &transp_uio);
 1230         adv = xfersize - transp_uio.uio_resid;
 1231         pgadv =
 1232             (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
 1233             (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
 1234         td->td_ma += pgadv;
 1235         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1236             pgadv));
 1237         td->td_ma_cnt -= pgadv;
 1238         uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
 1239         uio->uio_iov->iov_len -= adv;
 1240         uio->uio_resid -= adv;
 1241         uio->uio_offset += adv;
 1242         return (error);
 1243 }
 1244 
 1245 int
 1246 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
 1247     struct uio *uio)
 1248 {
 1249         struct thread *td;
 1250         vm_offset_t iov_base;
 1251         int cnt, pgadv;
 1252 
 1253         td = curthread;
 1254         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1255             uio->uio_segflg != UIO_USERSPACE)
 1256                 return (uiomove_fromphys(ma, offset, xfersize, uio));
 1257 
 1258         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1259         cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
 1260         iov_base = (vm_offset_t)uio->uio_iov->iov_base;
 1261         switch (uio->uio_rw) {
 1262         case UIO_WRITE:
 1263                 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
 1264                     offset, cnt);
 1265                 break;
 1266         case UIO_READ:
 1267                 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
 1268                     cnt);
 1269                 break;
 1270         }
 1271         pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
 1272         td->td_ma += pgadv;
 1273         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1274             pgadv));
 1275         td->td_ma_cnt -= pgadv;
 1276         uio->uio_iov->iov_base = (char *)(iov_base + cnt);
 1277         uio->uio_iov->iov_len -= cnt;
 1278         uio->uio_resid -= cnt;
 1279         uio->uio_offset += cnt;
 1280         return (0);
 1281 }
 1282 
 1283 
 1284 /*
 1285  * File table truncate routine.
 1286  */
 1287 static int
 1288 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
 1289     struct thread *td)
 1290 {
 1291         struct vattr vattr;
 1292         struct mount *mp;
 1293         struct vnode *vp;
 1294         void *rl_cookie;
 1295         int error;
 1296 
 1297         vp = fp->f_vnode;
 1298 
 1299         /*
 1300          * Lock the whole range for truncation.  Otherwise split i/o
 1301          * might happen partly before and partly after the truncation.
 1302          */
 1303         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 1304         error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
 1305         if (error)
 1306                 goto out1;
 1307         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1308         AUDIT_ARG_VNODE1(vp);
 1309         if (vp->v_type == VDIR) {
 1310                 error = EISDIR;
 1311                 goto out;
 1312         }
 1313 #ifdef MAC
 1314         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
 1315         if (error)
 1316                 goto out;
 1317 #endif
 1318         error = vn_writechk(vp);
 1319         if (error == 0) {
 1320                 VATTR_NULL(&vattr);
 1321                 vattr.va_size = length;
 1322                 if ((fp->f_flag & O_FSYNC) != 0)
 1323                         vattr.va_vaflags |= VA_SYNC;
 1324                 error = VOP_SETATTR(vp, &vattr, fp->f_cred);
 1325         }
 1326 out:
 1327         VOP_UNLOCK(vp, 0);
 1328         vn_finished_write(mp);
 1329 out1:
 1330         vn_rangelock_unlock(vp, rl_cookie);
 1331         return (error);
 1332 }
 1333 
 1334 /*
 1335  * File table vnode stat routine.
 1336  */
 1337 static int
 1338 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred,
 1339     struct thread *td)
 1340 {
 1341         struct vnode *vp = fp->f_vnode;
 1342         int error;
 1343 
 1344         vn_lock(vp, LK_SHARED | LK_RETRY);
 1345         error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
 1346         VOP_UNLOCK(vp, 0);
 1347 
 1348         return (error);
 1349 }
 1350 
 1351 /*
 1352  * Stat a vnode; implementation for the stat syscall
 1353  */
 1354 int
 1355 vn_stat(struct vnode *vp, struct stat *sb, struct ucred *active_cred,
 1356     struct ucred *file_cred, struct thread *td)
 1357 {
 1358         struct vattr vattr;
 1359         struct vattr *vap;
 1360         int error;
 1361         u_short mode;
 1362 
 1363         AUDIT_ARG_VNODE1(vp);
 1364 #ifdef MAC
 1365         error = mac_vnode_check_stat(active_cred, file_cred, vp);
 1366         if (error)
 1367                 return (error);
 1368 #endif
 1369 
 1370         vap = &vattr;
 1371 
 1372         /*
 1373          * Initialize defaults for new and unusual fields, so that file
 1374          * systems which don't support these fields don't need to know
 1375          * about them.
 1376          */
 1377         vap->va_birthtime.tv_sec = -1;
 1378         vap->va_birthtime.tv_nsec = 0;
 1379         vap->va_fsid = VNOVAL;
 1380         vap->va_rdev = NODEV;
 1381 
 1382         error = VOP_GETATTR(vp, vap, active_cred);
 1383         if (error)
 1384                 return (error);
 1385 
 1386         /*
 1387          * Zero the spare stat fields
 1388          */
 1389         bzero(sb, sizeof *sb);
 1390 
 1391         /*
 1392          * Copy from vattr table
 1393          */
 1394         if (vap->va_fsid != VNOVAL)
 1395                 sb->st_dev = vap->va_fsid;
 1396         else
 1397                 sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
 1398         sb->st_ino = vap->va_fileid;
 1399         mode = vap->va_mode;
 1400         switch (vap->va_type) {
 1401         case VREG:
 1402                 mode |= S_IFREG;
 1403                 break;
 1404         case VDIR:
 1405                 mode |= S_IFDIR;
 1406                 break;
 1407         case VBLK:
 1408                 mode |= S_IFBLK;
 1409                 break;
 1410         case VCHR:
 1411                 mode |= S_IFCHR;
 1412                 break;
 1413         case VLNK:
 1414                 mode |= S_IFLNK;
 1415                 break;
 1416         case VSOCK:
 1417                 mode |= S_IFSOCK;
 1418                 break;
 1419         case VFIFO:
 1420                 mode |= S_IFIFO;
 1421                 break;
 1422         default:
 1423                 return (EBADF);
 1424         }
 1425         sb->st_mode = mode;
 1426         sb->st_nlink = vap->va_nlink;
 1427         sb->st_uid = vap->va_uid;
 1428         sb->st_gid = vap->va_gid;
 1429         sb->st_rdev = vap->va_rdev;
 1430         if (vap->va_size > OFF_MAX)
 1431                 return (EOVERFLOW);
 1432         sb->st_size = vap->va_size;
 1433         sb->st_atim = vap->va_atime;
 1434         sb->st_mtim = vap->va_mtime;
 1435         sb->st_ctim = vap->va_ctime;
 1436         sb->st_birthtim = vap->va_birthtime;
 1437 
 1438         /*
 1439          * According to www.opengroup.org, the meaning of st_blksize is 
 1440          *   "a filesystem-specific preferred I/O block size for this 
 1441          *    object.  In some filesystem types, this may vary from file
 1442          *    to file"
 1443          * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
 1444          */
 1445 
 1446         sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
 1447         
 1448         sb->st_flags = vap->va_flags;
 1449         if (priv_check(td, PRIV_VFS_GENERATION))
 1450                 sb->st_gen = 0;
 1451         else
 1452                 sb->st_gen = vap->va_gen;
 1453 
 1454         sb->st_blocks = vap->va_bytes / S_BLKSIZE;
 1455         return (0);
 1456 }
 1457 
 1458 /*
 1459  * File table vnode ioctl routine.
 1460  */
 1461 static int
 1462 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
 1463     struct thread *td)
 1464 {
 1465         struct vattr vattr;
 1466         struct vnode *vp;
 1467         int error;
 1468 
 1469         vp = fp->f_vnode;
 1470         switch (vp->v_type) {
 1471         case VDIR:
 1472         case VREG:
 1473                 switch (com) {
 1474                 case FIONREAD:
 1475                         vn_lock(vp, LK_SHARED | LK_RETRY);
 1476                         error = VOP_GETATTR(vp, &vattr, active_cred);
 1477                         VOP_UNLOCK(vp, 0);
 1478                         if (error == 0)
 1479                                 *(int *)data = vattr.va_size - fp->f_offset;
 1480                         return (error);
 1481                 case FIONBIO:
 1482                 case FIOASYNC:
 1483                         return (0);
 1484                 default:
 1485                         return (VOP_IOCTL(vp, com, data, fp->f_flag,
 1486                             active_cred, td));
 1487                 }
 1488                 break;
 1489         case VCHR:
 1490                 return (VOP_IOCTL(vp, com, data, fp->f_flag,
 1491                     active_cred, td));
 1492         default:
 1493                 return (ENOTTY);
 1494         }
 1495 }
 1496 
 1497 /*
 1498  * File table vnode poll routine.
 1499  */
 1500 static int
 1501 vn_poll(struct file *fp, int events, struct ucred *active_cred,
 1502     struct thread *td)
 1503 {
 1504         struct vnode *vp;
 1505         int error;
 1506 
 1507         vp = fp->f_vnode;
 1508 #ifdef MAC
 1509         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1510         AUDIT_ARG_VNODE1(vp);
 1511         error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
 1512         VOP_UNLOCK(vp, 0);
 1513         if (!error)
 1514 #endif
 1515 
 1516         error = VOP_POLL(vp, events, fp->f_cred, td);
 1517         return (error);
 1518 }
 1519 
 1520 /*
 1521  * Acquire the requested lock and then check for validity.  LK_RETRY
 1522  * permits vn_lock to return doomed vnodes.
 1523  */
 1524 int
 1525 _vn_lock(struct vnode *vp, int flags, char *file, int line)
 1526 {
 1527         int error;
 1528 
 1529         VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
 1530             ("vn_lock: no locktype"));
 1531         VNASSERT(vp->v_holdcnt != 0, vp, ("vn_lock: zero hold count"));
 1532 retry:
 1533         error = VOP_LOCK1(vp, flags, file, line);
 1534         flags &= ~LK_INTERLOCK; /* Interlock is always dropped. */
 1535         KASSERT((flags & LK_RETRY) == 0 || error == 0,
 1536             ("vn_lock: error %d incompatible with flags %#x", error, flags));
 1537 
 1538         if ((flags & LK_RETRY) == 0) {
 1539                 if (error == 0 && (vp->v_iflag & VI_DOOMED) != 0) {
 1540                         VOP_UNLOCK(vp, 0);
 1541                         error = ENOENT;
 1542                 }
 1543         } else if (error != 0)
 1544                 goto retry;
 1545         return (error);
 1546 }
 1547 
 1548 /*
 1549  * File table vnode close routine.
 1550  */
 1551 static int
 1552 vn_closefile(struct file *fp, struct thread *td)
 1553 {
 1554         struct vnode *vp;
 1555         struct flock lf;
 1556         int error;
 1557         bool ref;
 1558 
 1559         vp = fp->f_vnode;
 1560         fp->f_ops = &badfileops;
 1561         ref= (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
 1562 
 1563         error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
 1564 
 1565         if (__predict_false(ref)) {
 1566                 lf.l_whence = SEEK_SET;
 1567                 lf.l_start = 0;
 1568                 lf.l_len = 0;
 1569                 lf.l_type = F_UNLCK;
 1570                 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
 1571                 vrele(vp);
 1572         }
 1573         return (error);
 1574 }
 1575 
 1576 static bool
 1577 vn_suspendable(struct mount *mp)
 1578 {
 1579 
 1580         return (mp->mnt_op->vfs_susp_clean != NULL);
 1581 }
 1582 
 1583 /*
 1584  * Preparing to start a filesystem write operation. If the operation is
 1585  * permitted, then we bump the count of operations in progress and
 1586  * proceed. If a suspend request is in progress, we wait until the
 1587  * suspension is over, and then proceed.
 1588  */
 1589 static int
 1590 vn_start_write_locked(struct mount *mp, int flags)
 1591 {
 1592         int error, mflags;
 1593 
 1594         mtx_assert(MNT_MTX(mp), MA_OWNED);
 1595         error = 0;
 1596 
 1597         /*
 1598          * Check on status of suspension.
 1599          */
 1600         if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
 1601             mp->mnt_susp_owner != curthread) {
 1602                 mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
 1603                     (flags & PCATCH) : 0) | (PUSER - 1);
 1604                 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 1605                         if (flags & V_NOWAIT) {
 1606                                 error = EWOULDBLOCK;
 1607                                 goto unlock;
 1608                         }
 1609                         error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
 1610                             "suspfs", 0);
 1611                         if (error)
 1612                                 goto unlock;
 1613                 }
 1614         }
 1615         if (flags & V_XSLEEP)
 1616                 goto unlock;
 1617         mp->mnt_writeopcount++;
 1618 unlock:
 1619         if (error != 0 || (flags & V_XSLEEP) != 0)
 1620                 MNT_REL(mp);
 1621         MNT_IUNLOCK(mp);
 1622         return (error);
 1623 }
 1624 
 1625 int
 1626 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
 1627 {
 1628         struct mount *mp;
 1629         int error;
 1630 
 1631         KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
 1632             ("V_MNTREF requires mp"));
 1633 
 1634         error = 0;
 1635         /*
 1636          * If a vnode is provided, get and return the mount point that
 1637          * to which it will write.
 1638          */
 1639         if (vp != NULL) {
 1640                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1641                         *mpp = NULL;
 1642                         if (error != EOPNOTSUPP)
 1643                                 return (error);
 1644                         return (0);
 1645                 }
 1646         }
 1647         if ((mp = *mpp) == NULL)
 1648                 return (0);
 1649 
 1650         if (!vn_suspendable(mp)) {
 1651                 if (vp != NULL || (flags & V_MNTREF) != 0)
 1652                         vfs_rel(mp);
 1653                 return (0);
 1654         }
 1655 
 1656         /*
 1657          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1658          * a vfs_ref().
 1659          * As long as a vnode is not provided we need to acquire a
 1660          * refcount for the provided mountpoint too, in order to
 1661          * emulate a vfs_ref().
 1662          */
 1663         MNT_ILOCK(mp);
 1664         if (vp == NULL && (flags & V_MNTREF) == 0)
 1665                 MNT_REF(mp);
 1666 
 1667         return (vn_start_write_locked(mp, flags));
 1668 }
 1669 
 1670 /*
 1671  * Secondary suspension. Used by operations such as vop_inactive
 1672  * routines that are needed by the higher level functions. These
 1673  * are allowed to proceed until all the higher level functions have
 1674  * completed (indicated by mnt_writeopcount dropping to zero). At that
 1675  * time, these operations are halted until the suspension is over.
 1676  */
 1677 int
 1678 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
 1679 {
 1680         struct mount *mp;
 1681         int error;
 1682 
 1683         KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
 1684             ("V_MNTREF requires mp"));
 1685 
 1686  retry:
 1687         if (vp != NULL) {
 1688                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1689                         *mpp = NULL;
 1690                         if (error != EOPNOTSUPP)
 1691                                 return (error);
 1692                         return (0);
 1693                 }
 1694         }
 1695         /*
 1696          * If we are not suspended or have not yet reached suspended
 1697          * mode, then let the operation proceed.
 1698          */
 1699         if ((mp = *mpp) == NULL)
 1700                 return (0);
 1701 
 1702         if (!vn_suspendable(mp)) {
 1703                 if (vp != NULL || (flags & V_MNTREF) != 0)
 1704                         vfs_rel(mp);
 1705                 return (0);
 1706         }
 1707 
 1708         /*
 1709          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1710          * a vfs_ref().
 1711          * As long as a vnode is not provided we need to acquire a
 1712          * refcount for the provided mountpoint too, in order to
 1713          * emulate a vfs_ref().
 1714          */
 1715         MNT_ILOCK(mp);
 1716         if (vp == NULL && (flags & V_MNTREF) == 0)
 1717                 MNT_REF(mp);
 1718         if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
 1719                 mp->mnt_secondary_writes++;
 1720                 mp->mnt_secondary_accwrites++;
 1721                 MNT_IUNLOCK(mp);
 1722                 return (0);
 1723         }
 1724         if (flags & V_NOWAIT) {
 1725                 MNT_REL(mp);
 1726                 MNT_IUNLOCK(mp);
 1727                 return (EWOULDBLOCK);
 1728         }
 1729         /*
 1730          * Wait for the suspension to finish.
 1731          */
 1732         error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
 1733             ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
 1734             "suspfs", 0);
 1735         vfs_rel(mp);
 1736         if (error == 0)
 1737                 goto retry;
 1738         return (error);
 1739 }
 1740 
 1741 /*
 1742  * Filesystem write operation has completed. If we are suspending and this
 1743  * operation is the last one, notify the suspender that the suspension is
 1744  * now in effect.
 1745  */
 1746 void
 1747 vn_finished_write(struct mount *mp)
 1748 {
 1749         if (mp == NULL || !vn_suspendable(mp))
 1750                 return;
 1751         MNT_ILOCK(mp);
 1752         MNT_REL(mp);
 1753         mp->mnt_writeopcount--;
 1754         if (mp->mnt_writeopcount < 0)
 1755                 panic("vn_finished_write: neg cnt");
 1756         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
 1757             mp->mnt_writeopcount <= 0)
 1758                 wakeup(&mp->mnt_writeopcount);
 1759         MNT_IUNLOCK(mp);
 1760 }
 1761 
 1762 
 1763 /*
 1764  * Filesystem secondary write operation has completed. If we are
 1765  * suspending and this operation is the last one, notify the suspender
 1766  * that the suspension is now in effect.
 1767  */
 1768 void
 1769 vn_finished_secondary_write(struct mount *mp)
 1770 {
 1771         if (mp == NULL || !vn_suspendable(mp))
 1772                 return;
 1773         MNT_ILOCK(mp);
 1774         MNT_REL(mp);
 1775         mp->mnt_secondary_writes--;
 1776         if (mp->mnt_secondary_writes < 0)
 1777                 panic("vn_finished_secondary_write: neg cnt");
 1778         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
 1779             mp->mnt_secondary_writes <= 0)
 1780                 wakeup(&mp->mnt_secondary_writes);
 1781         MNT_IUNLOCK(mp);
 1782 }
 1783 
 1784 
 1785 
 1786 /*
 1787  * Request a filesystem to suspend write operations.
 1788  */
 1789 int
 1790 vfs_write_suspend(struct mount *mp, int flags)
 1791 {
 1792         int error;
 1793 
 1794         MPASS(vn_suspendable(mp));
 1795 
 1796         MNT_ILOCK(mp);
 1797         if (mp->mnt_susp_owner == curthread) {
 1798                 MNT_IUNLOCK(mp);
 1799                 return (EALREADY);
 1800         }
 1801         while (mp->mnt_kern_flag & MNTK_SUSPEND)
 1802                 msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
 1803 
 1804         /*
 1805          * Unmount holds a write reference on the mount point.  If we
 1806          * own busy reference and drain for writers, we deadlock with
 1807          * the reference draining in the unmount path.  Callers of
 1808          * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
 1809          * vfs_busy() reference is owned and caller is not in the
 1810          * unmount context.
 1811          */
 1812         if ((flags & VS_SKIP_UNMOUNT) != 0 &&
 1813             (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
 1814                 MNT_IUNLOCK(mp);
 1815                 return (EBUSY);
 1816         }
 1817 
 1818         mp->mnt_kern_flag |= MNTK_SUSPEND;
 1819         mp->mnt_susp_owner = curthread;
 1820         if (mp->mnt_writeopcount > 0)
 1821                 (void) msleep(&mp->mnt_writeopcount, 
 1822                     MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
 1823         else
 1824                 MNT_IUNLOCK(mp);
 1825         if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
 1826                 vfs_write_resume(mp, 0);
 1827         return (error);
 1828 }
 1829 
 1830 /*
 1831  * Request a filesystem to resume write operations.
 1832  */
 1833 void
 1834 vfs_write_resume(struct mount *mp, int flags)
 1835 {
 1836 
 1837         MPASS(vn_suspendable(mp));
 1838 
 1839         MNT_ILOCK(mp);
 1840         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 1841                 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
 1842                 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
 1843                                        MNTK_SUSPENDED);
 1844                 mp->mnt_susp_owner = NULL;
 1845                 wakeup(&mp->mnt_writeopcount);
 1846                 wakeup(&mp->mnt_flag);
 1847                 curthread->td_pflags &= ~TDP_IGNSUSP;
 1848                 if ((flags & VR_START_WRITE) != 0) {
 1849                         MNT_REF(mp);
 1850                         mp->mnt_writeopcount++;
 1851                 }
 1852                 MNT_IUNLOCK(mp);
 1853                 if ((flags & VR_NO_SUSPCLR) == 0)
 1854                         VFS_SUSP_CLEAN(mp);
 1855         } else if ((flags & VR_START_WRITE) != 0) {
 1856                 MNT_REF(mp);
 1857                 vn_start_write_locked(mp, 0);
 1858         } else {
 1859                 MNT_IUNLOCK(mp);
 1860         }
 1861 }
 1862 
 1863 /*
 1864  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
 1865  * methods.
 1866  */
 1867 int
 1868 vfs_write_suspend_umnt(struct mount *mp)
 1869 {
 1870         int error;
 1871 
 1872         MPASS(vn_suspendable(mp));
 1873         KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
 1874             ("vfs_write_suspend_umnt: recursed"));
 1875 
 1876         /* dounmount() already called vn_start_write(). */
 1877         for (;;) {
 1878                 vn_finished_write(mp);
 1879                 error = vfs_write_suspend(mp, 0);
 1880                 if (error != 0) {
 1881                         vn_start_write(NULL, &mp, V_WAIT);
 1882                         return (error);
 1883                 }
 1884                 MNT_ILOCK(mp);
 1885                 if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
 1886                         break;
 1887                 MNT_IUNLOCK(mp);
 1888                 vn_start_write(NULL, &mp, V_WAIT);
 1889         }
 1890         mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
 1891         wakeup(&mp->mnt_flag);
 1892         MNT_IUNLOCK(mp);
 1893         curthread->td_pflags |= TDP_IGNSUSP;
 1894         return (0);
 1895 }
 1896 
 1897 /*
 1898  * Implement kqueues for files by translating it to vnode operation.
 1899  */
 1900 static int
 1901 vn_kqfilter(struct file *fp, struct knote *kn)
 1902 {
 1903 
 1904         return (VOP_KQFILTER(fp->f_vnode, kn));
 1905 }
 1906 
 1907 /*
 1908  * Simplified in-kernel wrapper calls for extended attribute access.
 1909  * Both calls pass in a NULL credential, authorizing as "kernel" access.
 1910  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
 1911  */
 1912 int
 1913 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
 1914     const char *attrname, int *buflen, char *buf, struct thread *td)
 1915 {
 1916         struct uio      auio;
 1917         struct iovec    iov;
 1918         int     error;
 1919 
 1920         iov.iov_len = *buflen;
 1921         iov.iov_base = buf;
 1922 
 1923         auio.uio_iov = &iov;
 1924         auio.uio_iovcnt = 1;
 1925         auio.uio_rw = UIO_READ;
 1926         auio.uio_segflg = UIO_SYSSPACE;
 1927         auio.uio_td = td;
 1928         auio.uio_offset = 0;
 1929         auio.uio_resid = *buflen;
 1930 
 1931         if ((ioflg & IO_NODELOCKED) == 0)
 1932                 vn_lock(vp, LK_SHARED | LK_RETRY);
 1933 
 1934         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 1935 
 1936         /* authorize attribute retrieval as kernel */
 1937         error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
 1938             td);
 1939 
 1940         if ((ioflg & IO_NODELOCKED) == 0)
 1941                 VOP_UNLOCK(vp, 0);
 1942 
 1943         if (error == 0) {
 1944                 *buflen = *buflen - auio.uio_resid;
 1945         }
 1946 
 1947         return (error);
 1948 }
 1949 
 1950 /*
 1951  * XXX failure mode if partially written?
 1952  */
 1953 int
 1954 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
 1955     const char *attrname, int buflen, char *buf, struct thread *td)
 1956 {
 1957         struct uio      auio;
 1958         struct iovec    iov;
 1959         struct mount    *mp;
 1960         int     error;
 1961 
 1962         iov.iov_len = buflen;
 1963         iov.iov_base = buf;
 1964 
 1965         auio.uio_iov = &iov;
 1966         auio.uio_iovcnt = 1;
 1967         auio.uio_rw = UIO_WRITE;
 1968         auio.uio_segflg = UIO_SYSSPACE;
 1969         auio.uio_td = td;
 1970         auio.uio_offset = 0;
 1971         auio.uio_resid = buflen;
 1972 
 1973         if ((ioflg & IO_NODELOCKED) == 0) {
 1974                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 1975                         return (error);
 1976                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1977         }
 1978 
 1979         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 1980 
 1981         /* authorize attribute setting as kernel */
 1982         error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
 1983 
 1984         if ((ioflg & IO_NODELOCKED) == 0) {
 1985                 vn_finished_write(mp);
 1986                 VOP_UNLOCK(vp, 0);
 1987         }
 1988 
 1989         return (error);
 1990 }
 1991 
 1992 int
 1993 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
 1994     const char *attrname, struct thread *td)
 1995 {
 1996         struct mount    *mp;
 1997         int     error;
 1998 
 1999         if ((ioflg & IO_NODELOCKED) == 0) {
 2000                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 2001                         return (error);
 2002                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2003         }
 2004 
 2005         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 2006 
 2007         /* authorize attribute removal as kernel */
 2008         error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
 2009         if (error == EOPNOTSUPP)
 2010                 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
 2011                     NULL, td);
 2012 
 2013         if ((ioflg & IO_NODELOCKED) == 0) {
 2014                 vn_finished_write(mp);
 2015                 VOP_UNLOCK(vp, 0);
 2016         }
 2017 
 2018         return (error);
 2019 }
 2020 
 2021 static int
 2022 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
 2023     struct vnode **rvp)
 2024 {
 2025 
 2026         return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
 2027 }
 2028 
 2029 int
 2030 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
 2031 {
 2032 
 2033         return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
 2034             lkflags, rvp));
 2035 }
 2036 
 2037 int
 2038 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
 2039     int lkflags, struct vnode **rvp)
 2040 {
 2041         struct mount *mp;
 2042         int ltype, error;
 2043 
 2044         ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
 2045         mp = vp->v_mount;
 2046         ltype = VOP_ISLOCKED(vp);
 2047         KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
 2048             ("vn_vget_ino: vp not locked"));
 2049         error = vfs_busy(mp, MBF_NOWAIT);
 2050         if (error != 0) {
 2051                 vfs_ref(mp);
 2052                 VOP_UNLOCK(vp, 0);
 2053                 error = vfs_busy(mp, 0);
 2054                 vn_lock(vp, ltype | LK_RETRY);
 2055                 vfs_rel(mp);
 2056                 if (error != 0)
 2057                         return (ENOENT);
 2058                 if (vp->v_iflag & VI_DOOMED) {
 2059                         vfs_unbusy(mp);
 2060                         return (ENOENT);
 2061                 }
 2062         }
 2063         VOP_UNLOCK(vp, 0);
 2064         error = alloc(mp, alloc_arg, lkflags, rvp);
 2065         vfs_unbusy(mp);
 2066         if (*rvp != vp)
 2067                 vn_lock(vp, ltype | LK_RETRY);
 2068         if (vp->v_iflag & VI_DOOMED) {
 2069                 if (error == 0) {
 2070                         if (*rvp == vp)
 2071                                 vunref(vp);
 2072                         else
 2073                                 vput(*rvp);
 2074                 }
 2075                 error = ENOENT;
 2076         }
 2077         return (error);
 2078 }
 2079 
 2080 int
 2081 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
 2082     struct thread *td)
 2083 {
 2084 
 2085         if (vp->v_type != VREG || td == NULL)
 2086                 return (0);
 2087         if ((uoff_t)uio->uio_offset + uio->uio_resid >
 2088             lim_cur(td, RLIMIT_FSIZE)) {
 2089                 PROC_LOCK(td->td_proc);
 2090                 kern_psignal(td->td_proc, SIGXFSZ);
 2091                 PROC_UNLOCK(td->td_proc);
 2092                 return (EFBIG);
 2093         }
 2094         return (0);
 2095 }
 2096 
 2097 int
 2098 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
 2099     struct thread *td)
 2100 {
 2101         struct vnode *vp;
 2102 
 2103         vp = fp->f_vnode;
 2104 #ifdef AUDIT
 2105         vn_lock(vp, LK_SHARED | LK_RETRY);
 2106         AUDIT_ARG_VNODE1(vp);
 2107         VOP_UNLOCK(vp, 0);
 2108 #endif
 2109         return (setfmode(td, active_cred, vp, mode));
 2110 }
 2111 
 2112 int
 2113 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
 2114     struct thread *td)
 2115 {
 2116         struct vnode *vp;
 2117 
 2118         vp = fp->f_vnode;
 2119 #ifdef AUDIT
 2120         vn_lock(vp, LK_SHARED | LK_RETRY);
 2121         AUDIT_ARG_VNODE1(vp);
 2122         VOP_UNLOCK(vp, 0);
 2123 #endif
 2124         return (setfown(td, active_cred, vp, uid, gid));
 2125 }
 2126 
 2127 void
 2128 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
 2129 {
 2130         vm_object_t object;
 2131 
 2132         if ((object = vp->v_object) == NULL)
 2133                 return;
 2134         VM_OBJECT_WLOCK(object);
 2135         vm_object_page_remove(object, start, end, 0);
 2136         VM_OBJECT_WUNLOCK(object);
 2137 }
 2138 
 2139 int
 2140 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
 2141 {
 2142         struct vattr va;
 2143         daddr_t bn, bnp;
 2144         uint64_t bsize;
 2145         off_t noff;
 2146         int error;
 2147 
 2148         KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
 2149             ("Wrong command %lu", cmd));
 2150 
 2151         if (vn_lock(vp, LK_SHARED) != 0)
 2152                 return (EBADF);
 2153         if (vp->v_type != VREG) {
 2154                 error = ENOTTY;
 2155                 goto unlock;
 2156         }
 2157         error = VOP_GETATTR(vp, &va, cred);
 2158         if (error != 0)
 2159                 goto unlock;
 2160         noff = *off;
 2161         if (noff >= va.va_size) {
 2162                 error = ENXIO;
 2163                 goto unlock;
 2164         }
 2165         bsize = vp->v_mount->mnt_stat.f_iosize;
 2166         for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
 2167                 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
 2168                 if (error == EOPNOTSUPP) {
 2169                         error = ENOTTY;
 2170                         goto unlock;
 2171                 }
 2172                 if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
 2173                     (bnp != -1 && cmd == FIOSEEKDATA)) {
 2174                         noff = bn * bsize;
 2175                         if (noff < *off)
 2176                                 noff = *off;
 2177                         goto unlock;
 2178                 }
 2179         }
 2180         if (noff > va.va_size)
 2181                 noff = va.va_size;
 2182         /* noff == va.va_size. There is an implicit hole at the end of file. */
 2183         if (cmd == FIOSEEKDATA)
 2184                 error = ENXIO;
 2185 unlock:
 2186         VOP_UNLOCK(vp, 0);
 2187         if (error == 0)
 2188                 *off = noff;
 2189         return (error);
 2190 }
 2191 
 2192 int
 2193 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
 2194 {
 2195         struct ucred *cred;
 2196         struct vnode *vp;
 2197         struct vattr vattr;
 2198         off_t foffset, size;
 2199         int error, noneg;
 2200 
 2201         cred = td->td_ucred;
 2202         vp = fp->f_vnode;
 2203         foffset = foffset_lock(fp, 0);
 2204         noneg = (vp->v_type != VCHR);
 2205         error = 0;
 2206         switch (whence) {
 2207         case L_INCR:
 2208                 if (noneg &&
 2209                     (foffset < 0 ||
 2210                     (offset > 0 && foffset > OFF_MAX - offset))) {
 2211                         error = EOVERFLOW;
 2212                         break;
 2213                 }
 2214                 offset += foffset;
 2215                 break;
 2216         case L_XTND:
 2217                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2218                 error = VOP_GETATTR(vp, &vattr, cred);
 2219                 VOP_UNLOCK(vp, 0);
 2220                 if (error)
 2221                         break;
 2222 
 2223                 /*
 2224                  * If the file references a disk device, then fetch
 2225                  * the media size and use that to determine the ending
 2226                  * offset.
 2227                  */
 2228                 if (vattr.va_size == 0 && vp->v_type == VCHR &&
 2229                     fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
 2230                         vattr.va_size = size;
 2231                 if (noneg &&
 2232                     (vattr.va_size > OFF_MAX ||
 2233                     (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
 2234                         error = EOVERFLOW;
 2235                         break;
 2236                 }
 2237                 offset += vattr.va_size;
 2238                 break;
 2239         case L_SET:
 2240                 break;
 2241         case SEEK_DATA:
 2242                 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
 2243                 break;
 2244         case SEEK_HOLE:
 2245                 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
 2246                 break;
 2247         default:
 2248                 error = EINVAL;
 2249         }
 2250         if (error == 0 && noneg && offset < 0)
 2251                 error = EINVAL;
 2252         if (error != 0)
 2253                 goto drop;
 2254         VFS_KNOTE_UNLOCKED(vp, 0);
 2255         td->td_uretoff.tdu_off = offset;
 2256 drop:
 2257         foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
 2258         return (error);
 2259 }
 2260 
 2261 int
 2262 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
 2263     struct thread *td)
 2264 {
 2265         int error;
 2266 
 2267         /*
 2268          * Grant permission if the caller is the owner of the file, or
 2269          * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
 2270          * on the file.  If the time pointer is null, then write
 2271          * permission on the file is also sufficient.
 2272          *
 2273          * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
 2274          * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
 2275          * will be allowed to set the times [..] to the current
 2276          * server time.
 2277          */
 2278         error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
 2279         if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
 2280                 error = VOP_ACCESS(vp, VWRITE, cred, td);
 2281         return (error);
 2282 }
 2283 
 2284 int
 2285 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
 2286 {
 2287         struct vnode *vp;
 2288         int error;
 2289 
 2290         if (fp->f_type == DTYPE_FIFO)
 2291                 kif->kf_type = KF_TYPE_FIFO;
 2292         else
 2293                 kif->kf_type = KF_TYPE_VNODE;
 2294         vp = fp->f_vnode;
 2295         vref(vp);
 2296         FILEDESC_SUNLOCK(fdp);
 2297         error = vn_fill_kinfo_vnode(vp, kif);
 2298         vrele(vp);
 2299         FILEDESC_SLOCK(fdp);
 2300         return (error);
 2301 }
 2302 
 2303 static inline void
 2304 vn_fill_junk(struct kinfo_file *kif)
 2305 {
 2306         size_t len, olen;
 2307 
 2308         /*
 2309          * Simulate vn_fullpath returning changing values for a given
 2310          * vp during e.g. coredump.
 2311          */
 2312         len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
 2313         olen = strlen(kif->kf_path);
 2314         if (len < olen)
 2315                 strcpy(&kif->kf_path[len - 1], "$");
 2316         else
 2317                 for (; olen < len; olen++)
 2318                         strcpy(&kif->kf_path[olen], "A");
 2319 }
 2320 
 2321 int
 2322 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
 2323 {
 2324         struct vattr va;
 2325         char *fullpath, *freepath;
 2326         int error;
 2327 
 2328         kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
 2329         freepath = NULL;
 2330         fullpath = "-";
 2331         error = vn_fullpath(curthread, vp, &fullpath, &freepath);
 2332         if (error == 0) {
 2333                 strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
 2334         }
 2335         if (freepath != NULL)
 2336                 free(freepath, M_TEMP);
 2337 
 2338         KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
 2339                 vn_fill_junk(kif);
 2340         );
 2341 
 2342         /*
 2343          * Retrieve vnode attributes.
 2344          */
 2345         va.va_fsid = VNOVAL;
 2346         va.va_rdev = NODEV;
 2347         vn_lock(vp, LK_SHARED | LK_RETRY);
 2348         error = VOP_GETATTR(vp, &va, curthread->td_ucred);
 2349         VOP_UNLOCK(vp, 0);
 2350         if (error != 0)
 2351                 return (error);
 2352         if (va.va_fsid != VNOVAL)
 2353                 kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
 2354         else
 2355                 kif->kf_un.kf_file.kf_file_fsid =
 2356                     vp->v_mount->mnt_stat.f_fsid.val[0];
 2357         kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
 2358             kif->kf_un.kf_file.kf_file_fsid; /* truncate */
 2359         kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
 2360         kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
 2361         kif->kf_un.kf_file.kf_file_size = va.va_size;
 2362         kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
 2363         kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
 2364             kif->kf_un.kf_file.kf_file_rdev; /* truncate */
 2365         return (0);
 2366 }
 2367 
 2368 int
 2369 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
 2370     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
 2371     struct thread *td)
 2372 {
 2373 #ifdef HWPMC_HOOKS
 2374         struct pmckern_map_in pkm;
 2375 #endif
 2376         struct mount *mp;
 2377         struct vnode *vp;
 2378         vm_object_t object;
 2379         vm_prot_t maxprot;
 2380         boolean_t writecounted;
 2381         int error;
 2382 
 2383 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
 2384     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
 2385         /*
 2386          * POSIX shared-memory objects are defined to have
 2387          * kernel persistence, and are not defined to support
 2388          * read(2)/write(2) -- or even open(2).  Thus, we can
 2389          * use MAP_ASYNC to trade on-disk coherence for speed.
 2390          * The shm_open(3) library routine turns on the FPOSIXSHM
 2391          * flag to request this behavior.
 2392          */
 2393         if ((fp->f_flag & FPOSIXSHM) != 0)
 2394                 flags |= MAP_NOSYNC;
 2395 #endif
 2396         vp = fp->f_vnode;
 2397 
 2398         /*
 2399          * Ensure that file and memory protections are
 2400          * compatible.  Note that we only worry about
 2401          * writability if mapping is shared; in this case,
 2402          * current and max prot are dictated by the open file.
 2403          * XXX use the vnode instead?  Problem is: what
 2404          * credentials do we use for determination? What if
 2405          * proc does a setuid?
 2406          */
 2407         mp = vp->v_mount;
 2408         if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
 2409                 maxprot = VM_PROT_NONE;
 2410                 if ((prot & VM_PROT_EXECUTE) != 0)
 2411                         return (EACCES);
 2412         } else
 2413                 maxprot = VM_PROT_EXECUTE;
 2414         if ((fp->f_flag & FREAD) != 0)
 2415                 maxprot |= VM_PROT_READ;
 2416         else if ((prot & VM_PROT_READ) != 0)
 2417                 return (EACCES);
 2418 
 2419         /*
 2420          * If we are sharing potential changes via MAP_SHARED and we
 2421          * are trying to get write permission although we opened it
 2422          * without asking for it, bail out.
 2423          */
 2424         if ((flags & MAP_SHARED) != 0) {
 2425                 if ((fp->f_flag & FWRITE) != 0)
 2426                         maxprot |= VM_PROT_WRITE;
 2427                 else if ((prot & VM_PROT_WRITE) != 0)
 2428                         return (EACCES);
 2429         } else {
 2430                 maxprot |= VM_PROT_WRITE;
 2431                 cap_maxprot |= VM_PROT_WRITE;
 2432         }
 2433         maxprot &= cap_maxprot;
 2434 
 2435         /*
 2436          * For regular files and shared memory, POSIX requires that
 2437          * the value of foff be a legitimate offset within the data
 2438          * object.  In particular, negative offsets are invalid.
 2439          * Blocking negative offsets and overflows here avoids
 2440          * possible wraparound or user-level access into reserved
 2441          * ranges of the data object later.  In contrast, POSIX does
 2442          * not dictate how offsets are used by device drivers, so in
 2443          * the case of a device mapping a negative offset is passed
 2444          * on.
 2445          */
 2446         if (
 2447 #ifdef _LP64
 2448             size > OFF_MAX ||
 2449 #endif
 2450             foff < 0 || foff > OFF_MAX - size)
 2451                 return (EINVAL);
 2452 
 2453         writecounted = FALSE;
 2454         error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
 2455             &foff, &object, &writecounted);
 2456         if (error != 0)
 2457                 return (error);
 2458         error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
 2459             foff, writecounted, td);
 2460         if (error != 0) {
 2461                 /*
 2462                  * If this mapping was accounted for in the vnode's
 2463                  * writecount, then undo that now.
 2464                  */
 2465                 if (writecounted)
 2466                         vnode_pager_release_writecount(object, 0, size);
 2467                 vm_object_deallocate(object);
 2468         }
 2469 #ifdef HWPMC_HOOKS
 2470         /* Inform hwpmc(4) if an executable is being mapped. */
 2471         if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
 2472                 if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
 2473                         pkm.pm_file = vp;
 2474                         pkm.pm_address = (uintptr_t) *addr;
 2475                         PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
 2476                 }
 2477         }
 2478 #endif
 2479         return (error);
 2480 }
 2481 
 2482 void
 2483 vn_fsid(struct vnode *vp, struct vattr *va)
 2484 {
 2485         fsid_t *f;
 2486 
 2487         f = &vp->v_mount->mnt_stat.f_fsid;
 2488         va->va_fsid = (uint32_t)f->val[1];
 2489         va->va_fsid <<= sizeof(f->val[1]) * NBBY;
 2490         va->va_fsid += (uint32_t)f->val[0];
 2491 }

Cache object: ddcc30c600e748af423b1dccd37c7536


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.