The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1989, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
   13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
   14  *
   15  * Portions of this software were developed by Konstantin Belousov
   16  * under sponsorship from the FreeBSD Foundation.
   17  *
   18  * Redistribution and use in source and binary forms, with or without
   19  * modification, are permitted provided that the following conditions
   20  * are met:
   21  * 1. Redistributions of source code must retain the above copyright
   22  *    notice, this list of conditions and the following disclaimer.
   23  * 2. Redistributions in binary form must reproduce the above copyright
   24  *    notice, this list of conditions and the following disclaimer in the
   25  *    documentation and/or other materials provided with the distribution.
   26  * 3. Neither the name of the University nor the names of its contributors
   27  *    may be used to endorse or promote products derived from this software
   28  *    without specific prior written permission.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   40  * SUCH DAMAGE.
   41  *
   42  *      @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94
   43  */
   44 
   45 #include <sys/cdefs.h>
   46 __FBSDID("$FreeBSD$");
   47 
   48 #include "opt_hwpmc_hooks.h"
   49 
   50 #include <sys/param.h>
   51 #include <sys/systm.h>
   52 #include <sys/disk.h>
   53 #include <sys/fail.h>
   54 #include <sys/fcntl.h>
   55 #include <sys/file.h>
   56 #include <sys/kdb.h>
   57 #include <sys/stat.h>
   58 #include <sys/priv.h>
   59 #include <sys/proc.h>
   60 #include <sys/limits.h>
   61 #include <sys/lock.h>
   62 #include <sys/mman.h>
   63 #include <sys/mount.h>
   64 #include <sys/mutex.h>
   65 #include <sys/namei.h>
   66 #include <sys/vnode.h>
   67 #include <sys/bio.h>
   68 #include <sys/buf.h>
   69 #include <sys/filio.h>
   70 #include <sys/resourcevar.h>
   71 #include <sys/rwlock.h>
   72 #include <sys/sx.h>
   73 #include <sys/sysctl.h>
   74 #include <sys/ttycom.h>
   75 #include <sys/conf.h>
   76 #include <sys/syslog.h>
   77 #include <sys/unistd.h>
   78 #include <sys/user.h>
   79 
   80 #include <security/audit/audit.h>
   81 #include <security/mac/mac_framework.h>
   82 
   83 #include <vm/vm.h>
   84 #include <vm/vm_extern.h>
   85 #include <vm/pmap.h>
   86 #include <vm/vm_map.h>
   87 #include <vm/vm_object.h>
   88 #include <vm/vm_page.h>
   89 #include <vm/vm_pager.h>
   90 
   91 #ifdef HWPMC_HOOKS
   92 #include <sys/pmckern.h>
   93 #endif
   94 
   95 static fo_rdwr_t        vn_read;
   96 static fo_rdwr_t        vn_write;
   97 static fo_rdwr_t        vn_io_fault;
   98 static fo_truncate_t    vn_truncate;
   99 static fo_ioctl_t       vn_ioctl;
  100 static fo_poll_t        vn_poll;
  101 static fo_kqfilter_t    vn_kqfilter;
  102 static fo_stat_t        vn_statfile;
  103 static fo_close_t       vn_closefile;
  104 static fo_mmap_t        vn_mmap;
  105 
  106 struct  fileops vnops = {
  107         .fo_read = vn_io_fault,
  108         .fo_write = vn_io_fault,
  109         .fo_truncate = vn_truncate,
  110         .fo_ioctl = vn_ioctl,
  111         .fo_poll = vn_poll,
  112         .fo_kqfilter = vn_kqfilter,
  113         .fo_stat = vn_statfile,
  114         .fo_close = vn_closefile,
  115         .fo_chmod = vn_chmod,
  116         .fo_chown = vn_chown,
  117         .fo_sendfile = vn_sendfile,
  118         .fo_seek = vn_seek,
  119         .fo_fill_kinfo = vn_fill_kinfo,
  120         .fo_mmap = vn_mmap,
  121         .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
  122 };
  123 
  124 static const int io_hold_cnt = 16;
  125 static int vn_io_fault_enable = 1;
  126 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
  127     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
  128 static int vn_io_fault_prefault = 0;
  129 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
  130     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
  131 static u_long vn_io_faults_cnt;
  132 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
  133     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
  134 
  135 static int vfs_allow_read_dir = 0;
  136 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
  137     &vfs_allow_read_dir, 0,
  138     "Enable read(2) of directory for filesystems that support it");
  139 
  140 /*
  141  * Returns true if vn_io_fault mode of handling the i/o request should
  142  * be used.
  143  */
  144 static bool
  145 do_vn_io_fault(struct vnode *vp, struct uio *uio)
  146 {
  147         struct mount *mp;
  148 
  149         return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
  150             (mp = vp->v_mount) != NULL &&
  151             (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
  152 }
  153 
  154 /*
  155  * Structure used to pass arguments to vn_io_fault1(), to do either
  156  * file- or vnode-based I/O calls.
  157  */
  158 struct vn_io_fault_args {
  159         enum {
  160                 VN_IO_FAULT_FOP,
  161                 VN_IO_FAULT_VOP
  162         } kind;
  163         struct ucred *cred;
  164         int flags;
  165         union {
  166                 struct fop_args_tag {
  167                         struct file *fp;
  168                         fo_rdwr_t *doio;
  169                 } fop_args;
  170                 struct vop_args_tag {
  171                         struct vnode *vp;
  172                 } vop_args;
  173         } args;
  174 };
  175 
  176 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
  177     struct vn_io_fault_args *args, struct thread *td);
  178 
  179 int
  180 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
  181 {
  182         struct thread *td = ndp->ni_cnd.cn_thread;
  183 
  184         return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
  185 }
  186 
  187 static uint64_t
  188 open2nameif(int fmode, u_int vn_open_flags)
  189 {
  190         uint64_t res;
  191 
  192         res = ISOPEN | LOCKLEAF;
  193         if ((fmode & O_RESOLVE_BENEATH) != 0)
  194                 res |= RBENEATH;
  195         if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0)
  196                 res |= AUDITVNODE1;
  197         if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0)
  198                 res |= NOCAPCHECK;
  199         return (res);
  200 }
  201 
  202 /*
  203  * Common code for vnode open operations via a name lookup.
  204  * Lookup the vnode and invoke VOP_CREATE if needed.
  205  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
  206  * 
  207  * Note that this does NOT free nameidata for the successful case,
  208  * due to the NDINIT being done elsewhere.
  209  */
  210 int
  211 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
  212     struct ucred *cred, struct file *fp)
  213 {
  214         struct vnode *vp;
  215         struct mount *mp;
  216         struct thread *td = ndp->ni_cnd.cn_thread;
  217         struct vattr vat;
  218         struct vattr *vap = &vat;
  219         int fmode, error;
  220 
  221 restart:
  222         fmode = *flagp;
  223         if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
  224             O_EXCL | O_DIRECTORY))
  225                 return (EINVAL);
  226         else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
  227                 ndp->ni_cnd.cn_nameiop = CREATE;
  228                 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
  229                 /*
  230                  * Set NOCACHE to avoid flushing the cache when
  231                  * rolling in many files at once.
  232                 */
  233                 ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE;
  234                 if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
  235                         ndp->ni_cnd.cn_flags |= FOLLOW;
  236                 if ((vn_open_flags & VN_OPEN_INVFS) == 0)
  237                         bwillwrite();
  238                 if ((error = namei(ndp)) != 0)
  239                         return (error);
  240                 if (ndp->ni_vp == NULL) {
  241                         VATTR_NULL(vap);
  242                         vap->va_type = VREG;
  243                         vap->va_mode = cmode;
  244                         if (fmode & O_EXCL)
  245                                 vap->va_vaflags |= VA_EXCLUSIVE;
  246                         if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
  247                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  248                                 vput(ndp->ni_dvp);
  249                                 if ((error = vn_start_write(NULL, &mp,
  250                                     V_XSLEEP | PCATCH)) != 0)
  251                                         return (error);
  252                                 goto restart;
  253                         }
  254                         if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
  255                                 ndp->ni_cnd.cn_flags |= MAKEENTRY;
  256 #ifdef MAC
  257                         error = mac_vnode_check_create(cred, ndp->ni_dvp,
  258                             &ndp->ni_cnd, vap);
  259                         if (error == 0)
  260 #endif
  261                                 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
  262                                                    &ndp->ni_cnd, vap);
  263                         vput(ndp->ni_dvp);
  264                         vn_finished_write(mp);
  265                         if (error) {
  266                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  267                                 return (error);
  268                         }
  269                         fmode &= ~O_TRUNC;
  270                         vp = ndp->ni_vp;
  271                 } else {
  272                         if (ndp->ni_dvp == ndp->ni_vp)
  273                                 vrele(ndp->ni_dvp);
  274                         else
  275                                 vput(ndp->ni_dvp);
  276                         ndp->ni_dvp = NULL;
  277                         vp = ndp->ni_vp;
  278                         if (fmode & O_EXCL) {
  279                                 error = EEXIST;
  280                                 goto bad;
  281                         }
  282                         if (vp->v_type == VDIR) {
  283                                 error = EISDIR;
  284                                 goto bad;
  285                         }
  286                         fmode &= ~O_CREAT;
  287                 }
  288         } else {
  289                 ndp->ni_cnd.cn_nameiop = LOOKUP;
  290                 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
  291                 ndp->ni_cnd.cn_flags |= (fmode & O_NOFOLLOW) != 0 ? NOFOLLOW :
  292                     FOLLOW;
  293                 if ((fmode & FWRITE) == 0)
  294                         ndp->ni_cnd.cn_flags |= LOCKSHARED;
  295                 if ((error = namei(ndp)) != 0)
  296                         return (error);
  297                 vp = ndp->ni_vp;
  298         }
  299         error = vn_open_vnode(vp, fmode, cred, td, fp);
  300         if (error)
  301                 goto bad;
  302         *flagp = fmode;
  303         return (0);
  304 bad:
  305         NDFREE(ndp, NDF_ONLY_PNBUF);
  306         vput(vp);
  307         *flagp = fmode;
  308         ndp->ni_vp = NULL;
  309         return (error);
  310 }
  311 
  312 static int
  313 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
  314 {
  315         struct flock lf;
  316         int error, lock_flags, type;
  317 
  318         ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
  319         if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
  320                 return (0);
  321         KASSERT(fp != NULL, ("open with flock requires fp"));
  322         if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
  323                 return (EOPNOTSUPP);
  324 
  325         lock_flags = VOP_ISLOCKED(vp);
  326         VOP_UNLOCK(vp, 0);
  327 
  328         lf.l_whence = SEEK_SET;
  329         lf.l_start = 0;
  330         lf.l_len = 0;
  331         lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
  332         type = F_FLOCK;
  333         if ((fmode & FNONBLOCK) == 0)
  334                 type |= F_WAIT;
  335         error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
  336         if (error == 0)
  337                 fp->f_flag |= FHASLOCK;
  338 
  339         vn_lock(vp, lock_flags | LK_RETRY);
  340         if (error == 0 && (vp->v_iflag & VI_DOOMED) != 0)
  341                 error = ENOENT;
  342         return (error);
  343 }
  344 
  345 /*
  346  * Common code for vnode open operations once a vnode is located.
  347  * Check permissions, and call the VOP_OPEN routine.
  348  */
  349 int
  350 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
  351     struct thread *td, struct file *fp)
  352 {
  353         accmode_t accmode;
  354         int error;
  355 
  356         if (vp->v_type == VLNK)
  357                 return (EMLINK);
  358         if (vp->v_type == VSOCK)
  359                 return (EOPNOTSUPP);
  360         if (vp->v_type != VDIR && fmode & O_DIRECTORY)
  361                 return (ENOTDIR);
  362         accmode = 0;
  363         if (fmode & (FWRITE | O_TRUNC)) {
  364                 if (vp->v_type == VDIR)
  365                         return (EISDIR);
  366                 accmode |= VWRITE;
  367         }
  368         if (fmode & FREAD)
  369                 accmode |= VREAD;
  370         if (fmode & FEXEC)
  371                 accmode |= VEXEC;
  372         if ((fmode & O_APPEND) && (fmode & FWRITE))
  373                 accmode |= VAPPEND;
  374 #ifdef MAC
  375         if (fmode & O_CREAT)
  376                 accmode |= VCREAT;
  377         if (fmode & O_VERIFY)
  378                 accmode |= VVERIFY;
  379         error = mac_vnode_check_open(cred, vp, accmode);
  380         if (error)
  381                 return (error);
  382 
  383         accmode &= ~(VCREAT | VVERIFY);
  384 #endif
  385         if ((fmode & O_CREAT) == 0 && accmode != 0) {
  386                 error = VOP_ACCESS(vp, accmode, cred, td);
  387                 if (error != 0)
  388                         return (error);
  389         }
  390         if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
  391                 vn_lock(vp, LK_UPGRADE | LK_RETRY);
  392         error = VOP_OPEN(vp, fmode, cred, td, fp);
  393         if (error != 0)
  394                 return (error);
  395 
  396         error = vn_open_vnode_advlock(vp, fmode, fp);
  397         if (error == 0 && (fmode & FWRITE) != 0) {
  398                 error = VOP_ADD_WRITECOUNT(vp, 1);
  399                 if (error == 0) {
  400                         CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
  401                              __func__, vp, vp->v_writecount);
  402                 }
  403         }
  404 
  405         /*
  406          * Error from advlock or VOP_ADD_WRITECOUNT() still requires
  407          * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
  408          */
  409         if (error != 0) {
  410                 if (fp != NULL) {
  411                         /*
  412                          * Arrange the call by having fdrop() to use
  413                          * vn_closefile().  This is to satisfy
  414                          * filesystems like devfs or tmpfs, which
  415                          * override fo_close().
  416                          */
  417                         fp->f_flag |= FOPENFAILED;
  418                         fp->f_vnode = vp;
  419                         if (fp->f_ops == &badfileops) {
  420                                 fp->f_type = DTYPE_VNODE;
  421                                 fp->f_ops = &vnops;
  422                         }
  423                         vref(vp);
  424                 } else {
  425                         /*
  426                          * If there is no fp, due to kernel-mode open,
  427                          * we can call VOP_CLOSE() now.
  428                          */
  429                         if (vp->v_type != VFIFO && (fmode & FWRITE) != 0 &&
  430                             !MNT_EXTENDED_SHARED(vp->v_mount) &&
  431                             VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
  432                                 vn_lock(vp, LK_UPGRADE | LK_RETRY);
  433                         (void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC),
  434                             cred, td);
  435                 }
  436         }
  437 
  438         ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
  439         return (error);
  440 
  441 }
  442 
  443 /*
  444  * Check for write permissions on the specified vnode.
  445  * Prototype text segments cannot be written.
  446  * It is racy.
  447  */
  448 int
  449 vn_writechk(struct vnode *vp)
  450 {
  451 
  452         ASSERT_VOP_LOCKED(vp, "vn_writechk");
  453         /*
  454          * If there's shared text associated with
  455          * the vnode, try to free it up once.  If
  456          * we fail, we can't allow writing.
  457          */
  458         if (VOP_IS_TEXT(vp))
  459                 return (ETXTBSY);
  460 
  461         return (0);
  462 }
  463 
  464 /*
  465  * Vnode close call
  466  */
  467 static int
  468 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
  469     struct thread *td, bool keep_ref)
  470 {
  471         struct mount *mp;
  472         int error, lock_flags;
  473 
  474         if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
  475             MNT_EXTENDED_SHARED(vp->v_mount))
  476                 lock_flags = LK_SHARED;
  477         else
  478                 lock_flags = LK_EXCLUSIVE;
  479 
  480         vn_start_write(vp, &mp, V_WAIT);
  481         vn_lock(vp, lock_flags | LK_RETRY);
  482         AUDIT_ARG_VNODE1(vp);
  483         if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
  484                 VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
  485                 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
  486                     __func__, vp, vp->v_writecount);
  487         }
  488         error = VOP_CLOSE(vp, flags, file_cred, td);
  489         if (keep_ref)
  490                 VOP_UNLOCK(vp, 0);
  491         else
  492                 vput(vp);
  493         vn_finished_write(mp);
  494         return (error);
  495 }
  496 
  497 int
  498 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
  499     struct thread *td)
  500 {
  501 
  502         return (vn_close1(vp, flags, file_cred, td, false));
  503 }
  504 
  505 /*
  506  * Heuristic to detect sequential operation.
  507  */
  508 static int
  509 sequential_heuristic(struct uio *uio, struct file *fp)
  510 {
  511 
  512         ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
  513         if (fp->f_flag & FRDAHEAD)
  514                 return (fp->f_seqcount << IO_SEQSHIFT);
  515 
  516         /*
  517          * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
  518          * that the first I/O is normally considered to be slightly
  519          * sequential.  Seeking to offset 0 doesn't change sequentiality
  520          * unless previous seeks have reduced f_seqcount to 0, in which
  521          * case offset 0 is not special.
  522          */
  523         if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
  524             uio->uio_offset == fp->f_nextoff) {
  525                 /*
  526                  * f_seqcount is in units of fixed-size blocks so that it
  527                  * depends mainly on the amount of sequential I/O and not
  528                  * much on the number of sequential I/O's.  The fixed size
  529                  * of 16384 is hard-coded here since it is (not quite) just
  530                  * a magic size that works well here.  This size is more
  531                  * closely related to the best I/O size for real disks than
  532                  * to any block size used by software.
  533                  */
  534                 if (uio->uio_resid >= IO_SEQMAX * 16384)
  535                         fp->f_seqcount = IO_SEQMAX;
  536                 else {
  537                         fp->f_seqcount += howmany(uio->uio_resid, 16384);
  538                         if (fp->f_seqcount > IO_SEQMAX)
  539                                 fp->f_seqcount = IO_SEQMAX;
  540                 }
  541                 return (fp->f_seqcount << IO_SEQSHIFT);
  542         }
  543 
  544         /* Not sequential.  Quickly draw-down sequentiality. */
  545         if (fp->f_seqcount > 1)
  546                 fp->f_seqcount = 1;
  547         else
  548                 fp->f_seqcount = 0;
  549         return (0);
  550 }
  551 
  552 /*
  553  * Package up an I/O request on a vnode into a uio and do it.
  554  */
  555 int
  556 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
  557     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
  558     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
  559 {
  560         struct uio auio;
  561         struct iovec aiov;
  562         struct mount *mp;
  563         struct ucred *cred;
  564         void *rl_cookie;
  565         struct vn_io_fault_args args;
  566         int error, lock_flags;
  567 
  568         if (offset < 0 && vp->v_type != VCHR)
  569                 return (EINVAL);
  570         auio.uio_iov = &aiov;
  571         auio.uio_iovcnt = 1;
  572         aiov.iov_base = base;
  573         aiov.iov_len = len;
  574         auio.uio_resid = len;
  575         auio.uio_offset = offset;
  576         auio.uio_segflg = segflg;
  577         auio.uio_rw = rw;
  578         auio.uio_td = td;
  579         error = 0;
  580 
  581         if ((ioflg & IO_NODELOCKED) == 0) {
  582                 if ((ioflg & IO_RANGELOCKED) == 0) {
  583                         if (rw == UIO_READ) {
  584                                 rl_cookie = vn_rangelock_rlock(vp, offset,
  585                                     offset + len);
  586                         } else {
  587                                 rl_cookie = vn_rangelock_wlock(vp, offset,
  588                                     offset + len);
  589                         }
  590                 } else
  591                         rl_cookie = NULL;
  592                 mp = NULL;
  593                 if (rw == UIO_WRITE) { 
  594                         if (vp->v_type != VCHR &&
  595                             (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
  596                             != 0)
  597                                 goto out;
  598                         if (MNT_SHARED_WRITES(mp) ||
  599                             ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
  600                                 lock_flags = LK_SHARED;
  601                         else
  602                                 lock_flags = LK_EXCLUSIVE;
  603                 } else
  604                         lock_flags = LK_SHARED;
  605                 vn_lock(vp, lock_flags | LK_RETRY);
  606         } else
  607                 rl_cookie = NULL;
  608 
  609         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
  610 #ifdef MAC
  611         if ((ioflg & IO_NOMACCHECK) == 0) {
  612                 if (rw == UIO_READ)
  613                         error = mac_vnode_check_read(active_cred, file_cred,
  614                             vp);
  615                 else
  616                         error = mac_vnode_check_write(active_cred, file_cred,
  617                             vp);
  618         }
  619 #endif
  620         if (error == 0) {
  621                 if (file_cred != NULL)
  622                         cred = file_cred;
  623                 else
  624                         cred = active_cred;
  625                 if (do_vn_io_fault(vp, &auio)) {
  626                         args.kind = VN_IO_FAULT_VOP;
  627                         args.cred = cred;
  628                         args.flags = ioflg;
  629                         args.args.vop_args.vp = vp;
  630                         error = vn_io_fault1(vp, &auio, &args, td);
  631                 } else if (rw == UIO_READ) {
  632                         error = VOP_READ(vp, &auio, ioflg, cred);
  633                 } else /* if (rw == UIO_WRITE) */ {
  634                         error = VOP_WRITE(vp, &auio, ioflg, cred);
  635                 }
  636         }
  637         if (aresid)
  638                 *aresid = auio.uio_resid;
  639         else
  640                 if (auio.uio_resid && error == 0)
  641                         error = EIO;
  642         if ((ioflg & IO_NODELOCKED) == 0) {
  643                 VOP_UNLOCK(vp, 0);
  644                 if (mp != NULL)
  645                         vn_finished_write(mp);
  646         }
  647  out:
  648         if (rl_cookie != NULL)
  649                 vn_rangelock_unlock(vp, rl_cookie);
  650         return (error);
  651 }
  652 
  653 /*
  654  * Package up an I/O request on a vnode into a uio and do it.  The I/O
  655  * request is split up into smaller chunks and we try to avoid saturating
  656  * the buffer cache while potentially holding a vnode locked, so we 
  657  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
  658  * to give other processes a chance to lock the vnode (either other processes
  659  * core'ing the same binary, or unrelated processes scanning the directory).
  660  */
  661 int
  662 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
  663     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
  664     struct ucred *file_cred, size_t *aresid, struct thread *td)
  665 {
  666         int error = 0;
  667         ssize_t iaresid;
  668 
  669         do {
  670                 int chunk;
  671 
  672                 /*
  673                  * Force `offset' to a multiple of MAXBSIZE except possibly
  674                  * for the first chunk, so that filesystems only need to
  675                  * write full blocks except possibly for the first and last
  676                  * chunks.
  677                  */
  678                 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
  679 
  680                 if (chunk > len)
  681                         chunk = len;
  682                 if (rw != UIO_READ && vp->v_type == VREG)
  683                         bwillwrite();
  684                 iaresid = 0;
  685                 error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
  686                     ioflg, active_cred, file_cred, &iaresid, td);
  687                 len -= chunk;   /* aresid calc already includes length */
  688                 if (error)
  689                         break;
  690                 offset += chunk;
  691                 base = (char *)base + chunk;
  692                 kern_yield(PRI_USER);
  693         } while (len);
  694         if (aresid)
  695                 *aresid = len + iaresid;
  696         return (error);
  697 }
  698 
  699 off_t
  700 foffset_lock(struct file *fp, int flags)
  701 {
  702         struct mtx *mtxp;
  703         off_t res;
  704 
  705         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  706 
  707 #if OFF_MAX <= LONG_MAX
  708         /*
  709          * Caller only wants the current f_offset value.  Assume that
  710          * the long and shorter integer types reads are atomic.
  711          */
  712         if ((flags & FOF_NOLOCK) != 0)
  713                 return (fp->f_offset);
  714 #endif
  715 
  716         /*
  717          * According to McKusick the vn lock was protecting f_offset here.
  718          * It is now protected by the FOFFSET_LOCKED flag.
  719          */
  720         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  721         mtx_lock(mtxp);
  722         if ((flags & FOF_NOLOCK) == 0) {
  723                 while (fp->f_vnread_flags & FOFFSET_LOCKED) {
  724                         fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
  725                         msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
  726                             "vofflock", 0);
  727                 }
  728                 fp->f_vnread_flags |= FOFFSET_LOCKED;
  729         }
  730         res = fp->f_offset;
  731         mtx_unlock(mtxp);
  732         return (res);
  733 }
  734 
  735 void
  736 foffset_unlock(struct file *fp, off_t val, int flags)
  737 {
  738         struct mtx *mtxp;
  739 
  740         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  741 
  742 #if OFF_MAX <= LONG_MAX
  743         if ((flags & FOF_NOLOCK) != 0) {
  744                 if ((flags & FOF_NOUPDATE) == 0)
  745                         fp->f_offset = val;
  746                 if ((flags & FOF_NEXTOFF) != 0)
  747                         fp->f_nextoff = val;
  748                 return;
  749         }
  750 #endif
  751 
  752         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  753         mtx_lock(mtxp);
  754         if ((flags & FOF_NOUPDATE) == 0)
  755                 fp->f_offset = val;
  756         if ((flags & FOF_NEXTOFF) != 0)
  757                 fp->f_nextoff = val;
  758         if ((flags & FOF_NOLOCK) == 0) {
  759                 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
  760                     ("Lost FOFFSET_LOCKED"));
  761                 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
  762                         wakeup(&fp->f_vnread_flags);
  763                 fp->f_vnread_flags = 0;
  764         }
  765         mtx_unlock(mtxp);
  766 }
  767 
  768 void
  769 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
  770 {
  771 
  772         if ((flags & FOF_OFFSET) == 0)
  773                 uio->uio_offset = foffset_lock(fp, flags);
  774 }
  775 
  776 void
  777 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
  778 {
  779 
  780         if ((flags & FOF_OFFSET) == 0)
  781                 foffset_unlock(fp, uio->uio_offset, flags);
  782 }
  783 
  784 static int
  785 get_advice(struct file *fp, struct uio *uio)
  786 {
  787         struct mtx *mtxp;
  788         int ret;
  789 
  790         ret = POSIX_FADV_NORMAL;
  791         if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
  792                 return (ret);
  793 
  794         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  795         mtx_lock(mtxp);
  796         if (fp->f_advice != NULL &&
  797             uio->uio_offset >= fp->f_advice->fa_start &&
  798             uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
  799                 ret = fp->f_advice->fa_advice;
  800         mtx_unlock(mtxp);
  801         return (ret);
  802 }
  803 
  804 /*
  805  * File table vnode read routine.
  806  */
  807 static int
  808 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
  809     struct thread *td)
  810 {
  811         struct vnode *vp;
  812         off_t orig_offset;
  813         int error, ioflag;
  814         int advice;
  815 
  816         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
  817             uio->uio_td, td));
  818         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
  819         vp = fp->f_vnode;
  820         ioflag = 0;
  821         if (fp->f_flag & FNONBLOCK)
  822                 ioflag |= IO_NDELAY;
  823         if (fp->f_flag & O_DIRECT)
  824                 ioflag |= IO_DIRECT;
  825         advice = get_advice(fp, uio);
  826         vn_lock(vp, LK_SHARED | LK_RETRY);
  827 
  828         switch (advice) {
  829         case POSIX_FADV_NORMAL:
  830         case POSIX_FADV_SEQUENTIAL:
  831         case POSIX_FADV_NOREUSE:
  832                 ioflag |= sequential_heuristic(uio, fp);
  833                 break;
  834         case POSIX_FADV_RANDOM:
  835                 /* Disable read-ahead for random I/O. */
  836                 break;
  837         }
  838         orig_offset = uio->uio_offset;
  839 
  840 #ifdef MAC
  841         error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
  842         if (error == 0)
  843 #endif
  844                 error = VOP_READ(vp, uio, ioflag, fp->f_cred);
  845         fp->f_nextoff = uio->uio_offset;
  846         VOP_UNLOCK(vp, 0);
  847         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
  848             orig_offset != uio->uio_offset)
  849                 /*
  850                  * Use POSIX_FADV_DONTNEED to flush pages and buffers
  851                  * for the backing file after a POSIX_FADV_NOREUSE
  852                  * read(2).
  853                  */
  854                 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
  855                     POSIX_FADV_DONTNEED);
  856         return (error);
  857 }
  858 
  859 /*
  860  * File table vnode write routine.
  861  */
  862 static int
  863 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
  864     struct thread *td)
  865 {
  866         struct vnode *vp;
  867         struct mount *mp;
  868         off_t orig_offset;
  869         int error, ioflag, lock_flags;
  870         int advice;
  871 
  872         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
  873             uio->uio_td, td));
  874         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
  875         vp = fp->f_vnode;
  876         if (vp->v_type == VREG)
  877                 bwillwrite();
  878         ioflag = IO_UNIT;
  879         if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
  880                 ioflag |= IO_APPEND;
  881         if (fp->f_flag & FNONBLOCK)
  882                 ioflag |= IO_NDELAY;
  883         if (fp->f_flag & O_DIRECT)
  884                 ioflag |= IO_DIRECT;
  885         if ((fp->f_flag & O_FSYNC) ||
  886             (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
  887                 ioflag |= IO_SYNC;
  888         mp = NULL;
  889         if (vp->v_type != VCHR &&
  890             (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
  891                 goto unlock;
  892 
  893         advice = get_advice(fp, uio);
  894 
  895         if (MNT_SHARED_WRITES(mp) ||
  896             (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
  897                 lock_flags = LK_SHARED;
  898         } else {
  899                 lock_flags = LK_EXCLUSIVE;
  900         }
  901 
  902         vn_lock(vp, lock_flags | LK_RETRY);
  903         switch (advice) {
  904         case POSIX_FADV_NORMAL:
  905         case POSIX_FADV_SEQUENTIAL:
  906         case POSIX_FADV_NOREUSE:
  907                 ioflag |= sequential_heuristic(uio, fp);
  908                 break;
  909         case POSIX_FADV_RANDOM:
  910                 /* XXX: Is this correct? */
  911                 break;
  912         }
  913         orig_offset = uio->uio_offset;
  914 
  915 #ifdef MAC
  916         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
  917         if (error == 0)
  918 #endif
  919                 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
  920         fp->f_nextoff = uio->uio_offset;
  921         VOP_UNLOCK(vp, 0);
  922         if (vp->v_type != VCHR)
  923                 vn_finished_write(mp);
  924         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
  925             orig_offset != uio->uio_offset)
  926                 /*
  927                  * Use POSIX_FADV_DONTNEED to flush pages and buffers
  928                  * for the backing file after a POSIX_FADV_NOREUSE
  929                  * write(2).
  930                  */
  931                 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
  932                     POSIX_FADV_DONTNEED);
  933 unlock:
  934         return (error);
  935 }
  936 
  937 /*
  938  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
  939  * prevent the following deadlock:
  940  *
  941  * Assume that the thread A reads from the vnode vp1 into userspace
  942  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
  943  * currently not resident, then system ends up with the call chain
  944  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
  945  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
  946  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
  947  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
  948  * backed by the pages of vnode vp1, and some page in buf2 is not
  949  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
  950  *
  951  * To prevent the lock order reversal and deadlock, vn_io_fault() does
  952  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
  953  * Instead, it first tries to do the whole range i/o with pagefaults
  954  * disabled. If all pages in the i/o buffer are resident and mapped,
  955  * VOP will succeed (ignoring the genuine filesystem errors).
  956  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
  957  * i/o in chunks, with all pages in the chunk prefaulted and held
  958  * using vm_fault_quick_hold_pages().
  959  *
  960  * Filesystems using this deadlock avoidance scheme should use the
  961  * array of the held pages from uio, saved in the curthread->td_ma,
  962  * instead of doing uiomove().  A helper function
  963  * vn_io_fault_uiomove() converts uiomove request into
  964  * uiomove_fromphys() over td_ma array.
  965  *
  966  * Since vnode locks do not cover the whole i/o anymore, rangelocks
  967  * make the current i/o request atomic with respect to other i/os and
  968  * truncations.
  969  */
  970 
  971 /*
  972  * Decode vn_io_fault_args and perform the corresponding i/o.
  973  */
  974 static int
  975 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
  976     struct thread *td)
  977 {
  978         int error, save;
  979 
  980         error = 0;
  981         save = vm_fault_disable_pagefaults();
  982         switch (args->kind) {
  983         case VN_IO_FAULT_FOP:
  984                 error = (args->args.fop_args.doio)(args->args.fop_args.fp,
  985                     uio, args->cred, args->flags, td);
  986                 break;
  987         case VN_IO_FAULT_VOP:
  988                 if (uio->uio_rw == UIO_READ) {
  989                         error = VOP_READ(args->args.vop_args.vp, uio,
  990                             args->flags, args->cred);
  991                 } else if (uio->uio_rw == UIO_WRITE) {
  992                         error = VOP_WRITE(args->args.vop_args.vp, uio,
  993                             args->flags, args->cred);
  994                 }
  995                 break;
  996         default:
  997                 panic("vn_io_fault_doio: unknown kind of io %d %d",
  998                     args->kind, uio->uio_rw);
  999         }
 1000         vm_fault_enable_pagefaults(save);
 1001         return (error);
 1002 }
 1003 
 1004 static int
 1005 vn_io_fault_touch(char *base, const struct uio *uio)
 1006 {
 1007         int r;
 1008 
 1009         r = fubyte(base);
 1010         if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
 1011                 return (EFAULT);
 1012         return (0);
 1013 }
 1014 
 1015 static int
 1016 vn_io_fault_prefault_user(const struct uio *uio)
 1017 {
 1018         char *base;
 1019         const struct iovec *iov;
 1020         size_t len;
 1021         ssize_t resid;
 1022         int error, i;
 1023 
 1024         KASSERT(uio->uio_segflg == UIO_USERSPACE,
 1025             ("vn_io_fault_prefault userspace"));
 1026 
 1027         error = i = 0;
 1028         iov = uio->uio_iov;
 1029         resid = uio->uio_resid;
 1030         base = iov->iov_base;
 1031         len = iov->iov_len;
 1032         while (resid > 0) {
 1033                 error = vn_io_fault_touch(base, uio);
 1034                 if (error != 0)
 1035                         break;
 1036                 if (len < PAGE_SIZE) {
 1037                         if (len != 0) {
 1038                                 error = vn_io_fault_touch(base + len - 1, uio);
 1039                                 if (error != 0)
 1040                                         break;
 1041                                 resid -= len;
 1042                         }
 1043                         if (++i >= uio->uio_iovcnt)
 1044                                 break;
 1045                         iov = uio->uio_iov + i;
 1046                         base = iov->iov_base;
 1047                         len = iov->iov_len;
 1048                 } else {
 1049                         len -= PAGE_SIZE;
 1050                         base += PAGE_SIZE;
 1051                         resid -= PAGE_SIZE;
 1052                 }
 1053         }
 1054         return (error);
 1055 }
 1056 
 1057 /*
 1058  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
 1059  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
 1060  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
 1061  * into args and call vn_io_fault1() to handle faults during the user
 1062  * mode buffer accesses.
 1063  */
 1064 static int
 1065 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
 1066     struct thread *td)
 1067 {
 1068         vm_page_t ma[io_hold_cnt + 2];
 1069         struct uio *uio_clone, short_uio;
 1070         struct iovec short_iovec[1];
 1071         vm_page_t *prev_td_ma;
 1072         vm_prot_t prot;
 1073         vm_offset_t addr, end;
 1074         size_t len, resid;
 1075         ssize_t adv;
 1076         int error, cnt, saveheld, prev_td_ma_cnt;
 1077 
 1078         if (vn_io_fault_prefault) {
 1079                 error = vn_io_fault_prefault_user(uio);
 1080                 if (error != 0)
 1081                         return (error); /* Or ignore ? */
 1082         }
 1083 
 1084         prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
 1085 
 1086         /*
 1087          * The UFS follows IO_UNIT directive and replays back both
 1088          * uio_offset and uio_resid if an error is encountered during the
 1089          * operation.  But, since the iovec may be already advanced,
 1090          * uio is still in an inconsistent state.
 1091          *
 1092          * Cache a copy of the original uio, which is advanced to the redo
 1093          * point using UIO_NOCOPY below.
 1094          */
 1095         uio_clone = cloneuio(uio);
 1096         resid = uio->uio_resid;
 1097 
 1098         short_uio.uio_segflg = UIO_USERSPACE;
 1099         short_uio.uio_rw = uio->uio_rw;
 1100         short_uio.uio_td = uio->uio_td;
 1101 
 1102         error = vn_io_fault_doio(args, uio, td);
 1103         if (error != EFAULT)
 1104                 goto out;
 1105 
 1106         atomic_add_long(&vn_io_faults_cnt, 1);
 1107         uio_clone->uio_segflg = UIO_NOCOPY;
 1108         uiomove(NULL, resid - uio->uio_resid, uio_clone);
 1109         uio_clone->uio_segflg = uio->uio_segflg;
 1110 
 1111         saveheld = curthread_pflags_set(TDP_UIOHELD);
 1112         prev_td_ma = td->td_ma;
 1113         prev_td_ma_cnt = td->td_ma_cnt;
 1114 
 1115         while (uio_clone->uio_resid != 0) {
 1116                 len = uio_clone->uio_iov->iov_len;
 1117                 if (len == 0) {
 1118                         KASSERT(uio_clone->uio_iovcnt >= 1,
 1119                             ("iovcnt underflow"));
 1120                         uio_clone->uio_iov++;
 1121                         uio_clone->uio_iovcnt--;
 1122                         continue;
 1123                 }
 1124                 if (len > io_hold_cnt * PAGE_SIZE)
 1125                         len = io_hold_cnt * PAGE_SIZE;
 1126                 addr = (uintptr_t)uio_clone->uio_iov->iov_base;
 1127                 end = round_page(addr + len);
 1128                 if (end < addr) {
 1129                         error = EFAULT;
 1130                         break;
 1131                 }
 1132                 cnt = atop(end - trunc_page(addr));
 1133                 /*
 1134                  * A perfectly misaligned address and length could cause
 1135                  * both the start and the end of the chunk to use partial
 1136                  * page.  +2 accounts for such a situation.
 1137                  */
 1138                 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
 1139                     addr, len, prot, ma, io_hold_cnt + 2);
 1140                 if (cnt == -1) {
 1141                         error = EFAULT;
 1142                         break;
 1143                 }
 1144                 short_uio.uio_iov = &short_iovec[0];
 1145                 short_iovec[0].iov_base = (void *)addr;
 1146                 short_uio.uio_iovcnt = 1;
 1147                 short_uio.uio_resid = short_iovec[0].iov_len = len;
 1148                 short_uio.uio_offset = uio_clone->uio_offset;
 1149                 td->td_ma = ma;
 1150                 td->td_ma_cnt = cnt;
 1151 
 1152                 error = vn_io_fault_doio(args, &short_uio, td);
 1153                 vm_page_unhold_pages(ma, cnt);
 1154                 adv = len - short_uio.uio_resid;
 1155 
 1156                 uio_clone->uio_iov->iov_base =
 1157                     (char *)uio_clone->uio_iov->iov_base + adv;
 1158                 uio_clone->uio_iov->iov_len -= adv;
 1159                 uio_clone->uio_resid -= adv;
 1160                 uio_clone->uio_offset += adv;
 1161 
 1162                 uio->uio_resid -= adv;
 1163                 uio->uio_offset += adv;
 1164 
 1165                 if (error != 0 || adv == 0)
 1166                         break;
 1167         }
 1168         td->td_ma = prev_td_ma;
 1169         td->td_ma_cnt = prev_td_ma_cnt;
 1170         curthread_pflags_restore(saveheld);
 1171 out:
 1172         free(uio_clone, M_IOV);
 1173         return (error);
 1174 }
 1175 
 1176 static int
 1177 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1178     int flags, struct thread *td)
 1179 {
 1180         fo_rdwr_t *doio;
 1181         struct vnode *vp;
 1182         void *rl_cookie;
 1183         struct vn_io_fault_args args;
 1184         int error;
 1185 
 1186         doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
 1187         vp = fp->f_vnode;
 1188 
 1189         /*
 1190          * The ability to read(2) on a directory has historically been
 1191          * allowed for all users, but this can and has been the source of
 1192          * at least one security issue in the past.  As such, it is now hidden
 1193          * away behind a sysctl for those that actually need it to use it.
 1194          */
 1195         if (vp->v_type == VDIR) {
 1196                 KASSERT(uio->uio_rw == UIO_READ,
 1197                     ("illegal write attempted on a directory"));
 1198                 if (!vfs_allow_read_dir)
 1199                         return (EISDIR);
 1200         }
 1201 
 1202         foffset_lock_uio(fp, uio, flags);
 1203         if (do_vn_io_fault(vp, uio)) {
 1204                 args.kind = VN_IO_FAULT_FOP;
 1205                 args.args.fop_args.fp = fp;
 1206                 args.args.fop_args.doio = doio;
 1207                 args.cred = active_cred;
 1208                 args.flags = flags | FOF_OFFSET;
 1209                 if (uio->uio_rw == UIO_READ) {
 1210                         rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
 1211                             uio->uio_offset + uio->uio_resid);
 1212                 } else if ((fp->f_flag & O_APPEND) != 0 ||
 1213                     (flags & FOF_OFFSET) == 0) {
 1214                         /* For appenders, punt and lock the whole range. */
 1215                         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 1216                 } else {
 1217                         rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
 1218                             uio->uio_offset + uio->uio_resid);
 1219                 }
 1220                 error = vn_io_fault1(vp, uio, &args, td);
 1221                 vn_rangelock_unlock(vp, rl_cookie);
 1222         } else {
 1223                 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
 1224         }
 1225         foffset_unlock_uio(fp, uio, flags);
 1226         return (error);
 1227 }
 1228 
 1229 /*
 1230  * Helper function to perform the requested uiomove operation using
 1231  * the held pages for io->uio_iov[0].iov_base buffer instead of
 1232  * copyin/copyout.  Access to the pages with uiomove_fromphys()
 1233  * instead of iov_base prevents page faults that could occur due to
 1234  * pmap_collect() invalidating the mapping created by
 1235  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
 1236  * object cleanup revoking the write access from page mappings.
 1237  *
 1238  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
 1239  * instead of plain uiomove().
 1240  */
 1241 int
 1242 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
 1243 {
 1244         struct uio transp_uio;
 1245         struct iovec transp_iov[1];
 1246         struct thread *td;
 1247         size_t adv;
 1248         int error, pgadv;
 1249 
 1250         td = curthread;
 1251         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1252             uio->uio_segflg != UIO_USERSPACE)
 1253                 return (uiomove(data, xfersize, uio));
 1254 
 1255         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1256         transp_iov[0].iov_base = data;
 1257         transp_uio.uio_iov = &transp_iov[0];
 1258         transp_uio.uio_iovcnt = 1;
 1259         if (xfersize > uio->uio_resid)
 1260                 xfersize = uio->uio_resid;
 1261         transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
 1262         transp_uio.uio_offset = 0;
 1263         transp_uio.uio_segflg = UIO_SYSSPACE;
 1264         /*
 1265          * Since transp_iov points to data, and td_ma page array
 1266          * corresponds to original uio->uio_iov, we need to invert the
 1267          * direction of the i/o operation as passed to
 1268          * uiomove_fromphys().
 1269          */
 1270         switch (uio->uio_rw) {
 1271         case UIO_WRITE:
 1272                 transp_uio.uio_rw = UIO_READ;
 1273                 break;
 1274         case UIO_READ:
 1275                 transp_uio.uio_rw = UIO_WRITE;
 1276                 break;
 1277         }
 1278         transp_uio.uio_td = uio->uio_td;
 1279         error = uiomove_fromphys(td->td_ma,
 1280             ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
 1281             xfersize, &transp_uio);
 1282         adv = xfersize - transp_uio.uio_resid;
 1283         pgadv =
 1284             (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
 1285             (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
 1286         td->td_ma += pgadv;
 1287         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1288             pgadv));
 1289         td->td_ma_cnt -= pgadv;
 1290         uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
 1291         uio->uio_iov->iov_len -= adv;
 1292         uio->uio_resid -= adv;
 1293         uio->uio_offset += adv;
 1294         return (error);
 1295 }
 1296 
 1297 int
 1298 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
 1299     struct uio *uio)
 1300 {
 1301         struct thread *td;
 1302         vm_offset_t iov_base;
 1303         int cnt, pgadv;
 1304 
 1305         td = curthread;
 1306         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1307             uio->uio_segflg != UIO_USERSPACE)
 1308                 return (uiomove_fromphys(ma, offset, xfersize, uio));
 1309 
 1310         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1311         cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
 1312         iov_base = (vm_offset_t)uio->uio_iov->iov_base;
 1313         switch (uio->uio_rw) {
 1314         case UIO_WRITE:
 1315                 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
 1316                     offset, cnt);
 1317                 break;
 1318         case UIO_READ:
 1319                 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
 1320                     cnt);
 1321                 break;
 1322         }
 1323         pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
 1324         td->td_ma += pgadv;
 1325         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1326             pgadv));
 1327         td->td_ma_cnt -= pgadv;
 1328         uio->uio_iov->iov_base = (char *)(iov_base + cnt);
 1329         uio->uio_iov->iov_len -= cnt;
 1330         uio->uio_resid -= cnt;
 1331         uio->uio_offset += cnt;
 1332         return (0);
 1333 }
 1334 
 1335 
 1336 /*
 1337  * File table truncate routine.
 1338  */
 1339 static int
 1340 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
 1341     struct thread *td)
 1342 {
 1343         struct vattr vattr;
 1344         struct mount *mp;
 1345         struct vnode *vp;
 1346         void *rl_cookie;
 1347         int error;
 1348 
 1349         vp = fp->f_vnode;
 1350 
 1351         /*
 1352          * Lock the whole range for truncation.  Otherwise split i/o
 1353          * might happen partly before and partly after the truncation.
 1354          */
 1355         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 1356         error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
 1357         if (error)
 1358                 goto out1;
 1359         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1360         AUDIT_ARG_VNODE1(vp);
 1361         if (vp->v_type == VDIR) {
 1362                 error = EISDIR;
 1363                 goto out;
 1364         }
 1365 #ifdef MAC
 1366         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
 1367         if (error)
 1368                 goto out;
 1369 #endif
 1370         error = VOP_ADD_WRITECOUNT(vp, 1);
 1371         if (error == 0) {
 1372                 VATTR_NULL(&vattr);
 1373                 vattr.va_size = length;
 1374                 if ((fp->f_flag & O_FSYNC) != 0)
 1375                         vattr.va_vaflags |= VA_SYNC;
 1376                 error = VOP_SETATTR(vp, &vattr, fp->f_cred);
 1377                 VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
 1378         }
 1379 out:
 1380         VOP_UNLOCK(vp, 0);
 1381         vn_finished_write(mp);
 1382 out1:
 1383         vn_rangelock_unlock(vp, rl_cookie);
 1384         return (error);
 1385 }
 1386 
 1387 /*
 1388  * File table vnode stat routine.
 1389  */
 1390 static int
 1391 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred,
 1392     struct thread *td)
 1393 {
 1394         struct vnode *vp = fp->f_vnode;
 1395         int error;
 1396 
 1397         vn_lock(vp, LK_SHARED | LK_RETRY);
 1398         error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
 1399         VOP_UNLOCK(vp, 0);
 1400 
 1401         return (error);
 1402 }
 1403 
 1404 /*
 1405  * Stat a vnode; implementation for the stat syscall
 1406  */
 1407 int
 1408 vn_stat(struct vnode *vp, struct stat *sb, struct ucred *active_cred,
 1409     struct ucred *file_cred, struct thread *td)
 1410 {
 1411         struct vattr vattr;
 1412         struct vattr *vap;
 1413         int error;
 1414         u_short mode;
 1415 
 1416         AUDIT_ARG_VNODE1(vp);
 1417 #ifdef MAC
 1418         error = mac_vnode_check_stat(active_cred, file_cred, vp);
 1419         if (error)
 1420                 return (error);
 1421 #endif
 1422 
 1423         vap = &vattr;
 1424 
 1425         /*
 1426          * Initialize defaults for new and unusual fields, so that file
 1427          * systems which don't support these fields don't need to know
 1428          * about them.
 1429          */
 1430         vap->va_birthtime.tv_sec = -1;
 1431         vap->va_birthtime.tv_nsec = 0;
 1432         vap->va_fsid = VNOVAL;
 1433         vap->va_rdev = NODEV;
 1434 
 1435         error = VOP_GETATTR(vp, vap, active_cred);
 1436         if (error)
 1437                 return (error);
 1438 
 1439         /*
 1440          * Zero the spare stat fields
 1441          */
 1442         bzero(sb, sizeof *sb);
 1443 
 1444         /*
 1445          * Copy from vattr table
 1446          */
 1447         if (vap->va_fsid != VNOVAL)
 1448                 sb->st_dev = vap->va_fsid;
 1449         else
 1450                 sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
 1451         sb->st_ino = vap->va_fileid;
 1452         mode = vap->va_mode;
 1453         switch (vap->va_type) {
 1454         case VREG:
 1455                 mode |= S_IFREG;
 1456                 break;
 1457         case VDIR:
 1458                 mode |= S_IFDIR;
 1459                 break;
 1460         case VBLK:
 1461                 mode |= S_IFBLK;
 1462                 break;
 1463         case VCHR:
 1464                 mode |= S_IFCHR;
 1465                 break;
 1466         case VLNK:
 1467                 mode |= S_IFLNK;
 1468                 break;
 1469         case VSOCK:
 1470                 mode |= S_IFSOCK;
 1471                 break;
 1472         case VFIFO:
 1473                 mode |= S_IFIFO;
 1474                 break;
 1475         default:
 1476                 return (EBADF);
 1477         }
 1478         sb->st_mode = mode;
 1479         sb->st_nlink = vap->va_nlink;
 1480         sb->st_uid = vap->va_uid;
 1481         sb->st_gid = vap->va_gid;
 1482         sb->st_rdev = vap->va_rdev;
 1483         if (vap->va_size > OFF_MAX)
 1484                 return (EOVERFLOW);
 1485         sb->st_size = vap->va_size;
 1486         sb->st_atim = vap->va_atime;
 1487         sb->st_mtim = vap->va_mtime;
 1488         sb->st_ctim = vap->va_ctime;
 1489         sb->st_birthtim = vap->va_birthtime;
 1490 
 1491         /*
 1492          * According to www.opengroup.org, the meaning of st_blksize is 
 1493          *   "a filesystem-specific preferred I/O block size for this 
 1494          *    object.  In some filesystem types, this may vary from file
 1495          *    to file"
 1496          * Use minimum/default of PAGE_SIZE (e.g. for VCHR).
 1497          */
 1498 
 1499         sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
 1500         
 1501         sb->st_flags = vap->va_flags;
 1502         if (priv_check(td, PRIV_VFS_GENERATION))
 1503                 sb->st_gen = 0;
 1504         else
 1505                 sb->st_gen = vap->va_gen;
 1506 
 1507         sb->st_blocks = vap->va_bytes / S_BLKSIZE;
 1508         return (0);
 1509 }
 1510 
 1511 /*
 1512  * File table vnode ioctl routine.
 1513  */
 1514 static int
 1515 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
 1516     struct thread *td)
 1517 {
 1518         struct vattr vattr;
 1519         struct vnode *vp;
 1520         struct fiobmap2_arg *bmarg;
 1521         int error;
 1522 
 1523         vp = fp->f_vnode;
 1524         switch (vp->v_type) {
 1525         case VDIR:
 1526         case VREG:
 1527                 switch (com) {
 1528                 case FIONREAD:
 1529                         vn_lock(vp, LK_SHARED | LK_RETRY);
 1530                         error = VOP_GETATTR(vp, &vattr, active_cred);
 1531                         VOP_UNLOCK(vp, 0);
 1532                         if (error == 0)
 1533                                 *(int *)data = vattr.va_size - fp->f_offset;
 1534                         return (error);
 1535                 case FIOBMAP2:
 1536                         bmarg = (struct fiobmap2_arg *)data;
 1537                         vn_lock(vp, LK_SHARED | LK_RETRY);
 1538 #ifdef MAC
 1539                         error = mac_vnode_check_read(active_cred, fp->f_cred,
 1540                             vp);
 1541                         if (error == 0)
 1542 #endif
 1543                                 error = VOP_BMAP(vp, bmarg->bn, NULL,
 1544                                     &bmarg->bn, &bmarg->runp, &bmarg->runb);
 1545                         VOP_UNLOCK(vp, 0);
 1546                         return (error);
 1547                 case FIONBIO:
 1548                 case FIOASYNC:
 1549                         return (0);
 1550                 default:
 1551                         return (VOP_IOCTL(vp, com, data, fp->f_flag,
 1552                             active_cred, td));
 1553                 }
 1554                 break;
 1555         case VCHR:
 1556                 return (VOP_IOCTL(vp, com, data, fp->f_flag,
 1557                     active_cred, td));
 1558         default:
 1559                 return (ENOTTY);
 1560         }
 1561 }
 1562 
 1563 /*
 1564  * File table vnode poll routine.
 1565  */
 1566 static int
 1567 vn_poll(struct file *fp, int events, struct ucred *active_cred,
 1568     struct thread *td)
 1569 {
 1570         struct vnode *vp;
 1571         int error;
 1572 
 1573         vp = fp->f_vnode;
 1574 #ifdef MAC
 1575         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1576         AUDIT_ARG_VNODE1(vp);
 1577         error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
 1578         VOP_UNLOCK(vp, 0);
 1579         if (!error)
 1580 #endif
 1581 
 1582         error = VOP_POLL(vp, events, fp->f_cred, td);
 1583         return (error);
 1584 }
 1585 
 1586 /*
 1587  * Acquire the requested lock and then check for validity.  LK_RETRY
 1588  * permits vn_lock to return doomed vnodes.
 1589  */
 1590 int
 1591 _vn_lock(struct vnode *vp, int flags, char *file, int line)
 1592 {
 1593         int error;
 1594 
 1595         VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
 1596             ("vn_lock: no locktype"));
 1597         VNASSERT(vp->v_holdcnt != 0, vp, ("vn_lock: zero hold count"));
 1598 retry:
 1599         error = VOP_LOCK1(vp, flags, file, line);
 1600         flags &= ~LK_INTERLOCK; /* Interlock is always dropped. */
 1601         KASSERT((flags & LK_RETRY) == 0 || error == 0,
 1602             ("vn_lock: error %d incompatible with flags %#x", error, flags));
 1603 
 1604         if ((flags & LK_RETRY) == 0) {
 1605                 if (error == 0 && (vp->v_iflag & VI_DOOMED) != 0) {
 1606                         VOP_UNLOCK(vp, 0);
 1607                         error = ENOENT;
 1608                 }
 1609         } else if (error != 0)
 1610                 goto retry;
 1611         return (error);
 1612 }
 1613 
 1614 /*
 1615  * File table vnode close routine.
 1616  */
 1617 static int
 1618 vn_closefile(struct file *fp, struct thread *td)
 1619 {
 1620         struct vnode *vp;
 1621         struct flock lf;
 1622         int error;
 1623         bool ref;
 1624 
 1625         vp = fp->f_vnode;
 1626         fp->f_ops = &badfileops;
 1627         ref = (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
 1628 
 1629         error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
 1630 
 1631         if (__predict_false(ref)) {
 1632                 lf.l_whence = SEEK_SET;
 1633                 lf.l_start = 0;
 1634                 lf.l_len = 0;
 1635                 lf.l_type = F_UNLCK;
 1636                 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
 1637                 vrele(vp);
 1638         }
 1639         return (error);
 1640 }
 1641 
 1642 static bool
 1643 vn_suspendable(struct mount *mp)
 1644 {
 1645 
 1646         return (mp->mnt_op->vfs_susp_clean != NULL);
 1647 }
 1648 
 1649 /*
 1650  * Preparing to start a filesystem write operation. If the operation is
 1651  * permitted, then we bump the count of operations in progress and
 1652  * proceed. If a suspend request is in progress, we wait until the
 1653  * suspension is over, and then proceed.
 1654  */
 1655 static int
 1656 vn_start_write_locked(struct mount *mp, int flags)
 1657 {
 1658         int error, mflags;
 1659 
 1660         mtx_assert(MNT_MTX(mp), MA_OWNED);
 1661         error = 0;
 1662 
 1663         /*
 1664          * Check on status of suspension.
 1665          */
 1666         if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
 1667             mp->mnt_susp_owner != curthread) {
 1668                 mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
 1669                     (flags & PCATCH) : 0) | (PUSER - 1);
 1670                 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 1671                         if (flags & V_NOWAIT) {
 1672                                 error = EWOULDBLOCK;
 1673                                 goto unlock;
 1674                         }
 1675                         error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
 1676                             "suspfs", 0);
 1677                         if (error)
 1678                                 goto unlock;
 1679                 }
 1680         }
 1681         if (flags & V_XSLEEP)
 1682                 goto unlock;
 1683         mp->mnt_writeopcount++;
 1684 unlock:
 1685         if (error != 0 || (flags & V_XSLEEP) != 0)
 1686                 MNT_REL(mp);
 1687         MNT_IUNLOCK(mp);
 1688         return (error);
 1689 }
 1690 
 1691 int
 1692 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
 1693 {
 1694         struct mount *mp;
 1695         int error;
 1696 
 1697         KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
 1698             ("V_MNTREF requires mp"));
 1699 
 1700         error = 0;
 1701         /*
 1702          * If a vnode is provided, get and return the mount point that
 1703          * to which it will write.
 1704          */
 1705         if (vp != NULL) {
 1706                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1707                         *mpp = NULL;
 1708                         if (error != EOPNOTSUPP)
 1709                                 return (error);
 1710                         return (0);
 1711                 }
 1712         }
 1713         if ((mp = *mpp) == NULL)
 1714                 return (0);
 1715 
 1716         if (!vn_suspendable(mp)) {
 1717                 if (vp != NULL || (flags & V_MNTREF) != 0)
 1718                         vfs_rel(mp);
 1719                 return (0);
 1720         }
 1721 
 1722         /*
 1723          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1724          * a vfs_ref().
 1725          * As long as a vnode is not provided we need to acquire a
 1726          * refcount for the provided mountpoint too, in order to
 1727          * emulate a vfs_ref().
 1728          */
 1729         MNT_ILOCK(mp);
 1730         if (vp == NULL && (flags & V_MNTREF) == 0)
 1731                 MNT_REF(mp);
 1732 
 1733         return (vn_start_write_locked(mp, flags));
 1734 }
 1735 
 1736 /*
 1737  * Secondary suspension. Used by operations such as vop_inactive
 1738  * routines that are needed by the higher level functions. These
 1739  * are allowed to proceed until all the higher level functions have
 1740  * completed (indicated by mnt_writeopcount dropping to zero). At that
 1741  * time, these operations are halted until the suspension is over.
 1742  */
 1743 int
 1744 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
 1745 {
 1746         struct mount *mp;
 1747         int error;
 1748 
 1749         KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
 1750             ("V_MNTREF requires mp"));
 1751 
 1752  retry:
 1753         if (vp != NULL) {
 1754                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1755                         *mpp = NULL;
 1756                         if (error != EOPNOTSUPP)
 1757                                 return (error);
 1758                         return (0);
 1759                 }
 1760         }
 1761         /*
 1762          * If we are not suspended or have not yet reached suspended
 1763          * mode, then let the operation proceed.
 1764          */
 1765         if ((mp = *mpp) == NULL)
 1766                 return (0);
 1767 
 1768         if (!vn_suspendable(mp)) {
 1769                 if (vp != NULL || (flags & V_MNTREF) != 0)
 1770                         vfs_rel(mp);
 1771                 return (0);
 1772         }
 1773 
 1774         /*
 1775          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1776          * a vfs_ref().
 1777          * As long as a vnode is not provided we need to acquire a
 1778          * refcount for the provided mountpoint too, in order to
 1779          * emulate a vfs_ref().
 1780          */
 1781         MNT_ILOCK(mp);
 1782         if (vp == NULL && (flags & V_MNTREF) == 0)
 1783                 MNT_REF(mp);
 1784         if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
 1785                 mp->mnt_secondary_writes++;
 1786                 mp->mnt_secondary_accwrites++;
 1787                 MNT_IUNLOCK(mp);
 1788                 return (0);
 1789         }
 1790         if (flags & V_NOWAIT) {
 1791                 MNT_REL(mp);
 1792                 MNT_IUNLOCK(mp);
 1793                 return (EWOULDBLOCK);
 1794         }
 1795         /*
 1796          * Wait for the suspension to finish.
 1797          */
 1798         error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
 1799             ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
 1800             "suspfs", 0);
 1801         vfs_rel(mp);
 1802         if (error == 0)
 1803                 goto retry;
 1804         return (error);
 1805 }
 1806 
 1807 /*
 1808  * Filesystem write operation has completed. If we are suspending and this
 1809  * operation is the last one, notify the suspender that the suspension is
 1810  * now in effect.
 1811  */
 1812 void
 1813 vn_finished_write(struct mount *mp)
 1814 {
 1815         if (mp == NULL || !vn_suspendable(mp))
 1816                 return;
 1817         MNT_ILOCK(mp);
 1818         MNT_REL(mp);
 1819         mp->mnt_writeopcount--;
 1820         if (mp->mnt_writeopcount < 0)
 1821                 panic("vn_finished_write: neg cnt");
 1822         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
 1823             mp->mnt_writeopcount <= 0)
 1824                 wakeup(&mp->mnt_writeopcount);
 1825         MNT_IUNLOCK(mp);
 1826 }
 1827 
 1828 
 1829 /*
 1830  * Filesystem secondary write operation has completed. If we are
 1831  * suspending and this operation is the last one, notify the suspender
 1832  * that the suspension is now in effect.
 1833  */
 1834 void
 1835 vn_finished_secondary_write(struct mount *mp)
 1836 {
 1837         if (mp == NULL || !vn_suspendable(mp))
 1838                 return;
 1839         MNT_ILOCK(mp);
 1840         MNT_REL(mp);
 1841         mp->mnt_secondary_writes--;
 1842         if (mp->mnt_secondary_writes < 0)
 1843                 panic("vn_finished_secondary_write: neg cnt");
 1844         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
 1845             mp->mnt_secondary_writes <= 0)
 1846                 wakeup(&mp->mnt_secondary_writes);
 1847         MNT_IUNLOCK(mp);
 1848 }
 1849 
 1850 
 1851 
 1852 /*
 1853  * Request a filesystem to suspend write operations.
 1854  */
 1855 int
 1856 vfs_write_suspend(struct mount *mp, int flags)
 1857 {
 1858         int error;
 1859 
 1860         MPASS(vn_suspendable(mp));
 1861 
 1862         MNT_ILOCK(mp);
 1863         if (mp->mnt_susp_owner == curthread) {
 1864                 MNT_IUNLOCK(mp);
 1865                 return (EALREADY);
 1866         }
 1867         while (mp->mnt_kern_flag & MNTK_SUSPEND)
 1868                 msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
 1869 
 1870         /*
 1871          * Unmount holds a write reference on the mount point.  If we
 1872          * own busy reference and drain for writers, we deadlock with
 1873          * the reference draining in the unmount path.  Callers of
 1874          * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
 1875          * vfs_busy() reference is owned and caller is not in the
 1876          * unmount context.
 1877          */
 1878         if ((flags & VS_SKIP_UNMOUNT) != 0 &&
 1879             (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
 1880                 MNT_IUNLOCK(mp);
 1881                 return (EBUSY);
 1882         }
 1883 
 1884         mp->mnt_kern_flag |= MNTK_SUSPEND;
 1885         mp->mnt_susp_owner = curthread;
 1886         if (mp->mnt_writeopcount > 0)
 1887                 (void) msleep(&mp->mnt_writeopcount, 
 1888                     MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
 1889         else
 1890                 MNT_IUNLOCK(mp);
 1891         if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
 1892                 vfs_write_resume(mp, 0);
 1893         return (error);
 1894 }
 1895 
 1896 /*
 1897  * Request a filesystem to resume write operations.
 1898  */
 1899 void
 1900 vfs_write_resume(struct mount *mp, int flags)
 1901 {
 1902 
 1903         MPASS(vn_suspendable(mp));
 1904 
 1905         MNT_ILOCK(mp);
 1906         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 1907                 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
 1908                 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
 1909                                        MNTK_SUSPENDED);
 1910                 mp->mnt_susp_owner = NULL;
 1911                 wakeup(&mp->mnt_writeopcount);
 1912                 wakeup(&mp->mnt_flag);
 1913                 curthread->td_pflags &= ~TDP_IGNSUSP;
 1914                 if ((flags & VR_START_WRITE) != 0) {
 1915                         MNT_REF(mp);
 1916                         mp->mnt_writeopcount++;
 1917                 }
 1918                 MNT_IUNLOCK(mp);
 1919                 if ((flags & VR_NO_SUSPCLR) == 0)
 1920                         VFS_SUSP_CLEAN(mp);
 1921         } else if ((flags & VR_START_WRITE) != 0) {
 1922                 MNT_REF(mp);
 1923                 vn_start_write_locked(mp, 0);
 1924         } else {
 1925                 MNT_IUNLOCK(mp);
 1926         }
 1927 }
 1928 
 1929 /*
 1930  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
 1931  * methods.
 1932  */
 1933 int
 1934 vfs_write_suspend_umnt(struct mount *mp)
 1935 {
 1936         int error;
 1937 
 1938         MPASS(vn_suspendable(mp));
 1939         KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
 1940             ("vfs_write_suspend_umnt: recursed"));
 1941 
 1942         /* dounmount() already called vn_start_write(). */
 1943         for (;;) {
 1944                 vn_finished_write(mp);
 1945                 error = vfs_write_suspend(mp, 0);
 1946                 if (error != 0) {
 1947                         vn_start_write(NULL, &mp, V_WAIT);
 1948                         return (error);
 1949                 }
 1950                 MNT_ILOCK(mp);
 1951                 if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
 1952                         break;
 1953                 MNT_IUNLOCK(mp);
 1954                 vn_start_write(NULL, &mp, V_WAIT);
 1955         }
 1956         mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
 1957         wakeup(&mp->mnt_flag);
 1958         MNT_IUNLOCK(mp);
 1959         curthread->td_pflags |= TDP_IGNSUSP;
 1960         return (0);
 1961 }
 1962 
 1963 /*
 1964  * Implement kqueues for files by translating it to vnode operation.
 1965  */
 1966 static int
 1967 vn_kqfilter(struct file *fp, struct knote *kn)
 1968 {
 1969 
 1970         return (VOP_KQFILTER(fp->f_vnode, kn));
 1971 }
 1972 
 1973 /*
 1974  * Simplified in-kernel wrapper calls for extended attribute access.
 1975  * Both calls pass in a NULL credential, authorizing as "kernel" access.
 1976  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
 1977  */
 1978 int
 1979 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
 1980     const char *attrname, int *buflen, char *buf, struct thread *td)
 1981 {
 1982         struct uio      auio;
 1983         struct iovec    iov;
 1984         int     error;
 1985 
 1986         iov.iov_len = *buflen;
 1987         iov.iov_base = buf;
 1988 
 1989         auio.uio_iov = &iov;
 1990         auio.uio_iovcnt = 1;
 1991         auio.uio_rw = UIO_READ;
 1992         auio.uio_segflg = UIO_SYSSPACE;
 1993         auio.uio_td = td;
 1994         auio.uio_offset = 0;
 1995         auio.uio_resid = *buflen;
 1996 
 1997         if ((ioflg & IO_NODELOCKED) == 0)
 1998                 vn_lock(vp, LK_SHARED | LK_RETRY);
 1999 
 2000         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 2001 
 2002         /* authorize attribute retrieval as kernel */
 2003         error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
 2004             td);
 2005 
 2006         if ((ioflg & IO_NODELOCKED) == 0)
 2007                 VOP_UNLOCK(vp, 0);
 2008 
 2009         if (error == 0) {
 2010                 *buflen = *buflen - auio.uio_resid;
 2011         }
 2012 
 2013         return (error);
 2014 }
 2015 
 2016 /*
 2017  * XXX failure mode if partially written?
 2018  */
 2019 int
 2020 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
 2021     const char *attrname, int buflen, char *buf, struct thread *td)
 2022 {
 2023         struct uio      auio;
 2024         struct iovec    iov;
 2025         struct mount    *mp;
 2026         int     error;
 2027 
 2028         iov.iov_len = buflen;
 2029         iov.iov_base = buf;
 2030 
 2031         auio.uio_iov = &iov;
 2032         auio.uio_iovcnt = 1;
 2033         auio.uio_rw = UIO_WRITE;
 2034         auio.uio_segflg = UIO_SYSSPACE;
 2035         auio.uio_td = td;
 2036         auio.uio_offset = 0;
 2037         auio.uio_resid = buflen;
 2038 
 2039         if ((ioflg & IO_NODELOCKED) == 0) {
 2040                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 2041                         return (error);
 2042                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2043         }
 2044 
 2045         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 2046 
 2047         /* authorize attribute setting as kernel */
 2048         error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
 2049 
 2050         if ((ioflg & IO_NODELOCKED) == 0) {
 2051                 vn_finished_write(mp);
 2052                 VOP_UNLOCK(vp, 0);
 2053         }
 2054 
 2055         return (error);
 2056 }
 2057 
 2058 int
 2059 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
 2060     const char *attrname, struct thread *td)
 2061 {
 2062         struct mount    *mp;
 2063         int     error;
 2064 
 2065         if ((ioflg & IO_NODELOCKED) == 0) {
 2066                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 2067                         return (error);
 2068                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2069         }
 2070 
 2071         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 2072 
 2073         /* authorize attribute removal as kernel */
 2074         error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
 2075         if (error == EOPNOTSUPP)
 2076                 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
 2077                     NULL, td);
 2078 
 2079         if ((ioflg & IO_NODELOCKED) == 0) {
 2080                 vn_finished_write(mp);
 2081                 VOP_UNLOCK(vp, 0);
 2082         }
 2083 
 2084         return (error);
 2085 }
 2086 
 2087 static int
 2088 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
 2089     struct vnode **rvp)
 2090 {
 2091 
 2092         return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
 2093 }
 2094 
 2095 int
 2096 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
 2097 {
 2098 
 2099         return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
 2100             lkflags, rvp));
 2101 }
 2102 
 2103 int
 2104 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
 2105     int lkflags, struct vnode **rvp)
 2106 {
 2107         struct mount *mp;
 2108         int ltype, error;
 2109 
 2110         ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
 2111         mp = vp->v_mount;
 2112         ltype = VOP_ISLOCKED(vp);
 2113         KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
 2114             ("vn_vget_ino: vp not locked"));
 2115         error = vfs_busy(mp, MBF_NOWAIT);
 2116         if (error != 0) {
 2117                 vfs_ref(mp);
 2118                 VOP_UNLOCK(vp, 0);
 2119                 error = vfs_busy(mp, 0);
 2120                 vn_lock(vp, ltype | LK_RETRY);
 2121                 vfs_rel(mp);
 2122                 if (error != 0)
 2123                         return (ENOENT);
 2124                 if (vp->v_iflag & VI_DOOMED) {
 2125                         vfs_unbusy(mp);
 2126                         return (ENOENT);
 2127                 }
 2128         }
 2129         VOP_UNLOCK(vp, 0);
 2130         error = alloc(mp, alloc_arg, lkflags, rvp);
 2131         vfs_unbusy(mp);
 2132         if (error != 0 || *rvp != vp)
 2133                 vn_lock(vp, ltype | LK_RETRY);
 2134         if (vp->v_iflag & VI_DOOMED) {
 2135                 if (error == 0) {
 2136                         if (*rvp == vp)
 2137                                 vunref(vp);
 2138                         else
 2139                                 vput(*rvp);
 2140                 }
 2141                 error = ENOENT;
 2142         }
 2143         return (error);
 2144 }
 2145 
 2146 int
 2147 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
 2148     struct thread *td)
 2149 {
 2150 
 2151         if (vp->v_type != VREG || td == NULL)
 2152                 return (0);
 2153         if ((uoff_t)uio->uio_offset + uio->uio_resid >
 2154             lim_cur(td, RLIMIT_FSIZE)) {
 2155                 PROC_LOCK(td->td_proc);
 2156                 kern_psignal(td->td_proc, SIGXFSZ);
 2157                 PROC_UNLOCK(td->td_proc);
 2158                 return (EFBIG);
 2159         }
 2160         return (0);
 2161 }
 2162 
 2163 int
 2164 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
 2165     struct thread *td)
 2166 {
 2167         struct vnode *vp;
 2168 
 2169         vp = fp->f_vnode;
 2170 #ifdef AUDIT
 2171         vn_lock(vp, LK_SHARED | LK_RETRY);
 2172         AUDIT_ARG_VNODE1(vp);
 2173         VOP_UNLOCK(vp, 0);
 2174 #endif
 2175         return (setfmode(td, active_cred, vp, mode));
 2176 }
 2177 
 2178 int
 2179 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
 2180     struct thread *td)
 2181 {
 2182         struct vnode *vp;
 2183 
 2184         vp = fp->f_vnode;
 2185 #ifdef AUDIT
 2186         vn_lock(vp, LK_SHARED | LK_RETRY);
 2187         AUDIT_ARG_VNODE1(vp);
 2188         VOP_UNLOCK(vp, 0);
 2189 #endif
 2190         return (setfown(td, active_cred, vp, uid, gid));
 2191 }
 2192 
 2193 void
 2194 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
 2195 {
 2196         vm_object_t object;
 2197 
 2198         if ((object = vp->v_object) == NULL)
 2199                 return;
 2200         VM_OBJECT_WLOCK(object);
 2201         vm_object_page_remove(object, start, end, 0);
 2202         VM_OBJECT_WUNLOCK(object);
 2203 }
 2204 
 2205 int
 2206 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
 2207 {
 2208         struct vattr va;
 2209         daddr_t bn, bnp;
 2210         uint64_t bsize;
 2211         off_t noff;
 2212         int error;
 2213 
 2214         KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
 2215             ("Wrong command %lu", cmd));
 2216 
 2217         if (vn_lock(vp, LK_SHARED) != 0)
 2218                 return (EBADF);
 2219         if (vp->v_type != VREG) {
 2220                 error = ENOTTY;
 2221                 goto unlock;
 2222         }
 2223         error = VOP_GETATTR(vp, &va, cred);
 2224         if (error != 0)
 2225                 goto unlock;
 2226         noff = *off;
 2227         if (noff >= va.va_size) {
 2228                 error = ENXIO;
 2229                 goto unlock;
 2230         }
 2231         bsize = vp->v_mount->mnt_stat.f_iosize;
 2232         for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize -
 2233             noff % bsize) {
 2234                 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
 2235                 if (error == EOPNOTSUPP) {
 2236                         error = ENOTTY;
 2237                         goto unlock;
 2238                 }
 2239                 if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
 2240                     (bnp != -1 && cmd == FIOSEEKDATA)) {
 2241                         noff = bn * bsize;
 2242                         if (noff < *off)
 2243                                 noff = *off;
 2244                         goto unlock;
 2245                 }
 2246         }
 2247         if (noff > va.va_size)
 2248                 noff = va.va_size;
 2249         /* noff == va.va_size. There is an implicit hole at the end of file. */
 2250         if (cmd == FIOSEEKDATA)
 2251                 error = ENXIO;
 2252 unlock:
 2253         VOP_UNLOCK(vp, 0);
 2254         if (error == 0)
 2255                 *off = noff;
 2256         return (error);
 2257 }
 2258 
 2259 int
 2260 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
 2261 {
 2262         struct ucred *cred;
 2263         struct vnode *vp;
 2264         struct vattr vattr;
 2265         off_t foffset, size;
 2266         int error, noneg;
 2267 
 2268         cred = td->td_ucred;
 2269         vp = fp->f_vnode;
 2270         foffset = foffset_lock(fp, 0);
 2271         noneg = (vp->v_type != VCHR);
 2272         error = 0;
 2273         switch (whence) {
 2274         case L_INCR:
 2275                 if (noneg &&
 2276                     (foffset < 0 ||
 2277                     (offset > 0 && foffset > OFF_MAX - offset))) {
 2278                         error = EOVERFLOW;
 2279                         break;
 2280                 }
 2281                 offset += foffset;
 2282                 break;
 2283         case L_XTND:
 2284                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2285                 error = VOP_GETATTR(vp, &vattr, cred);
 2286                 VOP_UNLOCK(vp, 0);
 2287                 if (error)
 2288                         break;
 2289 
 2290                 /*
 2291                  * If the file references a disk device, then fetch
 2292                  * the media size and use that to determine the ending
 2293                  * offset.
 2294                  */
 2295                 if (vattr.va_size == 0 && vp->v_type == VCHR &&
 2296                     fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
 2297                         vattr.va_size = size;
 2298                 if (noneg &&
 2299                     (vattr.va_size > OFF_MAX ||
 2300                     (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
 2301                         error = EOVERFLOW;
 2302                         break;
 2303                 }
 2304                 offset += vattr.va_size;
 2305                 break;
 2306         case L_SET:
 2307                 break;
 2308         case SEEK_DATA:
 2309                 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
 2310                 break;
 2311         case SEEK_HOLE:
 2312                 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
 2313                 break;
 2314         default:
 2315                 error = EINVAL;
 2316         }
 2317         if (error == 0 && noneg && offset < 0)
 2318                 error = EINVAL;
 2319         if (error != 0)
 2320                 goto drop;
 2321         VFS_KNOTE_UNLOCKED(vp, 0);
 2322         td->td_uretoff.tdu_off = offset;
 2323 drop:
 2324         foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
 2325         return (error);
 2326 }
 2327 
 2328 int
 2329 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
 2330     struct thread *td)
 2331 {
 2332         int error;
 2333 
 2334         /*
 2335          * Grant permission if the caller is the owner of the file, or
 2336          * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
 2337          * on the file.  If the time pointer is null, then write
 2338          * permission on the file is also sufficient.
 2339          *
 2340          * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
 2341          * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
 2342          * will be allowed to set the times [..] to the current
 2343          * server time.
 2344          */
 2345         error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
 2346         if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
 2347                 error = VOP_ACCESS(vp, VWRITE, cred, td);
 2348         return (error);
 2349 }
 2350 
 2351 int
 2352 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
 2353 {
 2354         struct vnode *vp;
 2355         int error;
 2356 
 2357         if (fp->f_type == DTYPE_FIFO)
 2358                 kif->kf_type = KF_TYPE_FIFO;
 2359         else
 2360                 kif->kf_type = KF_TYPE_VNODE;
 2361         vp = fp->f_vnode;
 2362         vref(vp);
 2363         FILEDESC_SUNLOCK(fdp);
 2364         error = vn_fill_kinfo_vnode(vp, kif);
 2365         vrele(vp);
 2366         FILEDESC_SLOCK(fdp);
 2367         return (error);
 2368 }
 2369 
 2370 static inline void
 2371 vn_fill_junk(struct kinfo_file *kif)
 2372 {
 2373         size_t len, olen;
 2374 
 2375         /*
 2376          * Simulate vn_fullpath returning changing values for a given
 2377          * vp during e.g. coredump.
 2378          */
 2379         len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
 2380         olen = strlen(kif->kf_path);
 2381         if (len < olen)
 2382                 strcpy(&kif->kf_path[len - 1], "$");
 2383         else
 2384                 for (; olen < len; olen++)
 2385                         strcpy(&kif->kf_path[olen], "A");
 2386 }
 2387 
 2388 int
 2389 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
 2390 {
 2391         struct vattr va;
 2392         char *fullpath, *freepath;
 2393         int error;
 2394 
 2395         kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
 2396         freepath = NULL;
 2397         fullpath = "-";
 2398         error = vn_fullpath(curthread, vp, &fullpath, &freepath);
 2399         if (error == 0) {
 2400                 strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
 2401         }
 2402         if (freepath != NULL)
 2403                 free(freepath, M_TEMP);
 2404 
 2405         KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
 2406                 vn_fill_junk(kif);
 2407         );
 2408 
 2409         /*
 2410          * Retrieve vnode attributes.
 2411          */
 2412         va.va_fsid = VNOVAL;
 2413         va.va_rdev = NODEV;
 2414         vn_lock(vp, LK_SHARED | LK_RETRY);
 2415         error = VOP_GETATTR(vp, &va, curthread->td_ucred);
 2416         VOP_UNLOCK(vp, 0);
 2417         if (error != 0)
 2418                 return (error);
 2419         if (va.va_fsid != VNOVAL)
 2420                 kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
 2421         else
 2422                 kif->kf_un.kf_file.kf_file_fsid =
 2423                     vp->v_mount->mnt_stat.f_fsid.val[0];
 2424         kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
 2425             kif->kf_un.kf_file.kf_file_fsid; /* truncate */
 2426         kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
 2427         kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
 2428         kif->kf_un.kf_file.kf_file_size = va.va_size;
 2429         kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
 2430         kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
 2431             kif->kf_un.kf_file.kf_file_rdev; /* truncate */
 2432         return (0);
 2433 }
 2434 
 2435 int
 2436 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
 2437     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
 2438     struct thread *td)
 2439 {
 2440 #ifdef HWPMC_HOOKS
 2441         struct pmckern_map_in pkm;
 2442 #endif
 2443         struct mount *mp;
 2444         struct vnode *vp;
 2445         vm_object_t object;
 2446         vm_prot_t maxprot;
 2447         boolean_t writecounted;
 2448         int error;
 2449 
 2450 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
 2451     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
 2452         /*
 2453          * POSIX shared-memory objects are defined to have
 2454          * kernel persistence, and are not defined to support
 2455          * read(2)/write(2) -- or even open(2).  Thus, we can
 2456          * use MAP_ASYNC to trade on-disk coherence for speed.
 2457          * The shm_open(3) library routine turns on the FPOSIXSHM
 2458          * flag to request this behavior.
 2459          */
 2460         if ((fp->f_flag & FPOSIXSHM) != 0)
 2461                 flags |= MAP_NOSYNC;
 2462 #endif
 2463         vp = fp->f_vnode;
 2464 
 2465         /*
 2466          * Ensure that file and memory protections are
 2467          * compatible.  Note that we only worry about
 2468          * writability if mapping is shared; in this case,
 2469          * current and max prot are dictated by the open file.
 2470          * XXX use the vnode instead?  Problem is: what
 2471          * credentials do we use for determination? What if
 2472          * proc does a setuid?
 2473          */
 2474         mp = vp->v_mount;
 2475         if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
 2476                 maxprot = VM_PROT_NONE;
 2477                 if ((prot & VM_PROT_EXECUTE) != 0)
 2478                         return (EACCES);
 2479         } else
 2480                 maxprot = VM_PROT_EXECUTE;
 2481         if ((fp->f_flag & FREAD) != 0)
 2482                 maxprot |= VM_PROT_READ;
 2483         else if ((prot & VM_PROT_READ) != 0)
 2484                 return (EACCES);
 2485 
 2486         /*
 2487          * If we are sharing potential changes via MAP_SHARED and we
 2488          * are trying to get write permission although we opened it
 2489          * without asking for it, bail out.
 2490          */
 2491         if ((flags & MAP_SHARED) != 0) {
 2492                 if ((fp->f_flag & FWRITE) != 0)
 2493                         maxprot |= VM_PROT_WRITE;
 2494                 else if ((prot & VM_PROT_WRITE) != 0)
 2495                         return (EACCES);
 2496         } else {
 2497                 maxprot |= VM_PROT_WRITE;
 2498                 cap_maxprot |= VM_PROT_WRITE;
 2499         }
 2500         maxprot &= cap_maxprot;
 2501 
 2502         /*
 2503          * For regular files and shared memory, POSIX requires that
 2504          * the value of foff be a legitimate offset within the data
 2505          * object.  In particular, negative offsets are invalid.
 2506          * Blocking negative offsets and overflows here avoids
 2507          * possible wraparound or user-level access into reserved
 2508          * ranges of the data object later.  In contrast, POSIX does
 2509          * not dictate how offsets are used by device drivers, so in
 2510          * the case of a device mapping a negative offset is passed
 2511          * on.
 2512          */
 2513         if (
 2514 #ifdef _LP64
 2515             size > OFF_MAX ||
 2516 #endif
 2517             foff < 0 || foff > OFF_MAX - size)
 2518                 return (EINVAL);
 2519 
 2520         writecounted = FALSE;
 2521         error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
 2522             &foff, &object, &writecounted);
 2523         if (error != 0)
 2524                 return (error);
 2525         error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
 2526             foff, writecounted, td);
 2527         if (error != 0) {
 2528                 /*
 2529                  * If this mapping was accounted for in the vnode's
 2530                  * writecount, then undo that now.
 2531                  */
 2532                 if (writecounted)
 2533                         vm_pager_release_writecount(object, 0, size);
 2534                 vm_object_deallocate(object);
 2535         }
 2536 #ifdef HWPMC_HOOKS
 2537         /* Inform hwpmc(4) if an executable is being mapped. */
 2538         if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
 2539                 if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
 2540                         pkm.pm_file = vp;
 2541                         pkm.pm_address = (uintptr_t) *addr;
 2542                         PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
 2543                 }
 2544         }
 2545 #endif
 2546         return (error);
 2547 }
 2548 
 2549 void
 2550 vn_fsid(struct vnode *vp, struct vattr *va)
 2551 {
 2552         fsid_t *f;
 2553 
 2554         f = &vp->v_mount->mnt_stat.f_fsid;
 2555         va->va_fsid = (uint32_t)f->val[1];
 2556         va->va_fsid <<= sizeof(f->val[1]) * NBBY;
 2557         va->va_fsid += (uint32_t)f->val[0];
 2558 }
 2559 
 2560 int
 2561 vn_fsync_buf(struct vnode *vp, int waitfor)
 2562 {
 2563         struct buf *bp, *nbp;
 2564         struct bufobj *bo;
 2565         struct mount *mp;
 2566         int error, maxretry;
 2567 
 2568         error = 0;
 2569         maxretry = 10000;     /* large, arbitrarily chosen */
 2570         mp = NULL;
 2571         if (vp->v_type == VCHR) {
 2572                 VI_LOCK(vp);
 2573                 mp = vp->v_rdev->si_mountpt;
 2574                 VI_UNLOCK(vp);
 2575         }
 2576         bo = &vp->v_bufobj;
 2577         BO_LOCK(bo);
 2578 loop1:
 2579         /*
 2580          * MARK/SCAN initialization to avoid infinite loops.
 2581          */
 2582         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
 2583                 bp->b_vflags &= ~BV_SCANNED;
 2584                 bp->b_error = 0;
 2585         }
 2586 
 2587         /*
 2588          * Flush all dirty buffers associated with a vnode.
 2589          */
 2590 loop2:
 2591         TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
 2592                 if ((bp->b_vflags & BV_SCANNED) != 0)
 2593                         continue;
 2594                 bp->b_vflags |= BV_SCANNED;
 2595                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
 2596                         if (waitfor != MNT_WAIT)
 2597                                 continue;
 2598                         if (BUF_LOCK(bp,
 2599                             LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
 2600                             BO_LOCKPTR(bo)) != 0) {
 2601                                 BO_LOCK(bo);
 2602                                 goto loop1;
 2603                         }
 2604                         BO_LOCK(bo);
 2605                 }
 2606                 BO_UNLOCK(bo);
 2607                 KASSERT(bp->b_bufobj == bo,
 2608                     ("bp %p wrong b_bufobj %p should be %p",
 2609                     bp, bp->b_bufobj, bo));
 2610                 if ((bp->b_flags & B_DELWRI) == 0)
 2611                         panic("fsync: not dirty");
 2612                 if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
 2613                         vfs_bio_awrite(bp);
 2614                 } else {
 2615                         bremfree(bp);
 2616                         bawrite(bp);
 2617                 }
 2618                 if (maxretry < 1000)
 2619                         pause("dirty", hz < 1000 ? 1 : hz / 1000);
 2620                 BO_LOCK(bo);
 2621                 goto loop2;
 2622         }
 2623 
 2624         /*
 2625          * If synchronous the caller expects us to completely resolve all
 2626          * dirty buffers in the system.  Wait for in-progress I/O to
 2627          * complete (which could include background bitmap writes), then
 2628          * retry if dirty blocks still exist.
 2629          */
 2630         if (waitfor == MNT_WAIT) {
 2631                 bufobj_wwait(bo, 0, 0);
 2632                 if (bo->bo_dirty.bv_cnt > 0) {
 2633                         /*
 2634                          * If we are unable to write any of these buffers
 2635                          * then we fail now rather than trying endlessly
 2636                          * to write them out.
 2637                          */
 2638                         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
 2639                                 if ((error = bp->b_error) != 0)
 2640                                         break;
 2641                         if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
 2642                             (error == 0 && --maxretry >= 0))
 2643                                 goto loop1;
 2644                         if (error == 0)
 2645                                 error = EAGAIN;
 2646                 }
 2647         }
 2648         BO_UNLOCK(bo);
 2649         if (error != 0)
 2650                 vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
 2651 
 2652         return (error);
 2653 }

Cache object: 9b2cd3a53db1117202b9083e31d60f58


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.