The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1989, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
   13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
   14  *
   15  * Portions of this software were developed by Konstantin Belousov
   16  * under sponsorship from the FreeBSD Foundation.
   17  *
   18  * Redistribution and use in source and binary forms, with or without
   19  * modification, are permitted provided that the following conditions
   20  * are met:
   21  * 1. Redistributions of source code must retain the above copyright
   22  *    notice, this list of conditions and the following disclaimer.
   23  * 2. Redistributions in binary form must reproduce the above copyright
   24  *    notice, this list of conditions and the following disclaimer in the
   25  *    documentation and/or other materials provided with the distribution.
   26  * 3. Neither the name of the University nor the names of its contributors
   27  *    may be used to endorse or promote products derived from this software
   28  *    without specific prior written permission.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   40  * SUCH DAMAGE.
   41  *
   42  *      @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94
   43  */
   44 
   45 #include <sys/cdefs.h>
   46 __FBSDID("$FreeBSD$");
   47 
   48 #include "opt_hwpmc_hooks.h"
   49 
   50 #include <sys/param.h>
   51 #include <sys/systm.h>
   52 #include <sys/disk.h>
   53 #include <sys/fail.h>
   54 #include <sys/fcntl.h>
   55 #include <sys/file.h>
   56 #include <sys/kdb.h>
   57 #include <sys/ktr.h>
   58 #include <sys/stat.h>
   59 #include <sys/priv.h>
   60 #include <sys/proc.h>
   61 #include <sys/limits.h>
   62 #include <sys/lock.h>
   63 #include <sys/mman.h>
   64 #include <sys/mount.h>
   65 #include <sys/mutex.h>
   66 #include <sys/namei.h>
   67 #include <sys/vnode.h>
   68 #include <sys/bio.h>
   69 #include <sys/buf.h>
   70 #include <sys/filio.h>
   71 #include <sys/resourcevar.h>
   72 #include <sys/rwlock.h>
   73 #include <sys/prng.h>
   74 #include <sys/sx.h>
   75 #include <sys/sleepqueue.h>
   76 #include <sys/sysctl.h>
   77 #include <sys/ttycom.h>
   78 #include <sys/conf.h>
   79 #include <sys/syslog.h>
   80 #include <sys/unistd.h>
   81 #include <sys/user.h>
   82 #include <sys/ktrace.h>
   83 
   84 #include <security/audit/audit.h>
   85 #include <security/mac/mac_framework.h>
   86 
   87 #include <vm/vm.h>
   88 #include <vm/vm_extern.h>
   89 #include <vm/pmap.h>
   90 #include <vm/vm_map.h>
   91 #include <vm/vm_object.h>
   92 #include <vm/vm_page.h>
   93 #include <vm/vm_pager.h>
   94 
   95 #ifdef HWPMC_HOOKS
   96 #include <sys/pmckern.h>
   97 #endif
   98 
   99 static fo_rdwr_t        vn_read;
  100 static fo_rdwr_t        vn_write;
  101 static fo_rdwr_t        vn_io_fault;
  102 static fo_truncate_t    vn_truncate;
  103 static fo_ioctl_t       vn_ioctl;
  104 static fo_poll_t        vn_poll;
  105 static fo_kqfilter_t    vn_kqfilter;
  106 static fo_close_t       vn_closefile;
  107 static fo_mmap_t        vn_mmap;
  108 static fo_fallocate_t   vn_fallocate;
  109 
  110 struct  fileops vnops = {
  111         .fo_read = vn_io_fault,
  112         .fo_write = vn_io_fault,
  113         .fo_truncate = vn_truncate,
  114         .fo_ioctl = vn_ioctl,
  115         .fo_poll = vn_poll,
  116         .fo_kqfilter = vn_kqfilter,
  117         .fo_stat = vn_statfile,
  118         .fo_close = vn_closefile,
  119         .fo_chmod = vn_chmod,
  120         .fo_chown = vn_chown,
  121         .fo_sendfile = vn_sendfile,
  122         .fo_seek = vn_seek,
  123         .fo_fill_kinfo = vn_fill_kinfo,
  124         .fo_mmap = vn_mmap,
  125         .fo_fallocate = vn_fallocate,
  126         .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
  127 };
  128 
  129 const u_int io_hold_cnt = 16;
  130 static int vn_io_fault_enable = 1;
  131 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN,
  132     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
  133 static int vn_io_fault_prefault = 0;
  134 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN,
  135     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
  136 static int vn_io_pgcache_read_enable = 1;
  137 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN,
  138     &vn_io_pgcache_read_enable, 0,
  139     "Enable copying from page cache for reads, avoiding fs");
  140 static u_long vn_io_faults_cnt;
  141 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
  142     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
  143 
  144 static int vfs_allow_read_dir = 0;
  145 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
  146     &vfs_allow_read_dir, 0,
  147     "Enable read(2) of directory by root for filesystems that support it");
  148 
  149 /*
  150  * Returns true if vn_io_fault mode of handling the i/o request should
  151  * be used.
  152  */
  153 static bool
  154 do_vn_io_fault(struct vnode *vp, struct uio *uio)
  155 {
  156         struct mount *mp;
  157 
  158         return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
  159             (mp = vp->v_mount) != NULL &&
  160             (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
  161 }
  162 
  163 /*
  164  * Structure used to pass arguments to vn_io_fault1(), to do either
  165  * file- or vnode-based I/O calls.
  166  */
  167 struct vn_io_fault_args {
  168         enum {
  169                 VN_IO_FAULT_FOP,
  170                 VN_IO_FAULT_VOP
  171         } kind;
  172         struct ucred *cred;
  173         int flags;
  174         union {
  175                 struct fop_args_tag {
  176                         struct file *fp;
  177                         fo_rdwr_t *doio;
  178                 } fop_args;
  179                 struct vop_args_tag {
  180                         struct vnode *vp;
  181                 } vop_args;
  182         } args;
  183 };
  184 
  185 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
  186     struct vn_io_fault_args *args, struct thread *td);
  187 
  188 int
  189 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
  190 {
  191         struct thread *td = ndp->ni_cnd.cn_thread;
  192 
  193         return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
  194 }
  195 
  196 static uint64_t
  197 open2nameif(int fmode, u_int vn_open_flags)
  198 {
  199         uint64_t res;
  200 
  201         res = ISOPEN | LOCKLEAF;
  202         if ((fmode & O_RESOLVE_BENEATH) != 0)
  203                 res |= RBENEATH;
  204         if ((fmode & O_EMPTY_PATH) != 0)
  205                 res |= EMPTYPATH;
  206         if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0)
  207                 res |= AUDITVNODE1;
  208         if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0)
  209                 res |= NOCAPCHECK;
  210         if ((vn_open_flags & VN_OPEN_WANTIOCTLCAPS) != 0)
  211                 res |= WANTIOCTLCAPS;
  212         return (res);
  213 }
  214 
  215 /*
  216  * Common code for vnode open operations via a name lookup.
  217  * Lookup the vnode and invoke VOP_CREATE if needed.
  218  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
  219  *
  220  * Note that this does NOT free nameidata for the successful case,
  221  * due to the NDINIT being done elsewhere.
  222  */
  223 int
  224 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
  225     struct ucred *cred, struct file *fp)
  226 {
  227         struct vnode *vp;
  228         struct mount *mp;
  229         struct thread *td = ndp->ni_cnd.cn_thread;
  230         struct vattr vat;
  231         struct vattr *vap = &vat;
  232         int fmode, error;
  233         bool first_open;
  234 
  235 restart:
  236         first_open = false;
  237         fmode = *flagp;
  238         if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
  239             O_EXCL | O_DIRECTORY) ||
  240             (fmode & (O_CREAT | O_EMPTY_PATH)) == (O_CREAT | O_EMPTY_PATH))
  241                 return (EINVAL);
  242         else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
  243                 ndp->ni_cnd.cn_nameiop = CREATE;
  244                 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
  245                 /*
  246                  * Set NOCACHE to avoid flushing the cache when
  247                  * rolling in many files at once.
  248                  *
  249                  * Set NC_KEEPPOSENTRY to keep positive entries if they already
  250                  * exist despite NOCACHE.
  251                  */
  252                 ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY;
  253                 if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
  254                         ndp->ni_cnd.cn_flags |= FOLLOW;
  255                 if ((vn_open_flags & VN_OPEN_INVFS) == 0)
  256                         bwillwrite();
  257                 if ((error = namei(ndp)) != 0)
  258                         return (error);
  259                 if (ndp->ni_vp == NULL) {
  260                         VATTR_NULL(vap);
  261                         vap->va_type = VREG;
  262                         vap->va_mode = cmode;
  263                         if (fmode & O_EXCL)
  264                                 vap->va_vaflags |= VA_EXCLUSIVE;
  265                         if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
  266                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  267                                 vput(ndp->ni_dvp);
  268                                 if ((error = vn_start_write(NULL, &mp,
  269                                     V_XSLEEP | PCATCH)) != 0)
  270                                         return (error);
  271                                 NDREINIT(ndp);
  272                                 goto restart;
  273                         }
  274                         if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
  275                                 ndp->ni_cnd.cn_flags |= MAKEENTRY;
  276 #ifdef MAC
  277                         error = mac_vnode_check_create(cred, ndp->ni_dvp,
  278                             &ndp->ni_cnd, vap);
  279                         if (error == 0)
  280 #endif
  281                                 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
  282                                     &ndp->ni_cnd, vap);
  283                         vp = ndp->ni_vp;
  284                         if (error == 0 && (fmode & O_EXCL) != 0 &&
  285                             (fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
  286                                 VI_LOCK(vp);
  287                                 vp->v_iflag |= VI_FOPENING;
  288                                 VI_UNLOCK(vp);
  289                                 first_open = true;
  290                         }
  291                         VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL,
  292                             false);
  293                         vn_finished_write(mp);
  294                         if (error) {
  295                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  296                                 if (error == ERELOOKUP) {
  297                                         NDREINIT(ndp);
  298                                         goto restart;
  299                                 }
  300                                 return (error);
  301                         }
  302                         fmode &= ~O_TRUNC;
  303                 } else {
  304                         if (ndp->ni_dvp == ndp->ni_vp)
  305                                 vrele(ndp->ni_dvp);
  306                         else
  307                                 vput(ndp->ni_dvp);
  308                         ndp->ni_dvp = NULL;
  309                         vp = ndp->ni_vp;
  310                         if (fmode & O_EXCL) {
  311                                 error = EEXIST;
  312                                 goto bad;
  313                         }
  314                         if (vp->v_type == VDIR) {
  315                                 error = EISDIR;
  316                                 goto bad;
  317                         }
  318                         fmode &= ~O_CREAT;
  319                 }
  320         } else {
  321                 ndp->ni_cnd.cn_nameiop = LOOKUP;
  322                 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
  323                 ndp->ni_cnd.cn_flags |= (fmode & O_NOFOLLOW) != 0 ? NOFOLLOW :
  324                     FOLLOW;
  325                 if ((fmode & FWRITE) == 0)
  326                         ndp->ni_cnd.cn_flags |= LOCKSHARED;
  327                 if ((error = namei(ndp)) != 0)
  328                         return (error);
  329                 vp = ndp->ni_vp;
  330         }
  331         error = vn_open_vnode(vp, fmode, cred, td, fp);
  332         if (first_open) {
  333                 VI_LOCK(vp);
  334                 vp->v_iflag &= ~VI_FOPENING;
  335                 wakeup(vp);
  336                 VI_UNLOCK(vp);
  337         }
  338         if (error)
  339                 goto bad;
  340         *flagp = fmode;
  341         return (0);
  342 bad:
  343         NDFREE(ndp, NDF_ONLY_PNBUF);
  344         vput(vp);
  345         *flagp = fmode;
  346         ndp->ni_vp = NULL;
  347         return (error);
  348 }
  349 
  350 static int
  351 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
  352 {
  353         struct flock lf;
  354         int error, lock_flags, type;
  355 
  356         ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
  357         if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
  358                 return (0);
  359         KASSERT(fp != NULL, ("open with flock requires fp"));
  360         if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
  361                 return (EOPNOTSUPP);
  362 
  363         lock_flags = VOP_ISLOCKED(vp);
  364         VOP_UNLOCK(vp);
  365 
  366         lf.l_whence = SEEK_SET;
  367         lf.l_start = 0;
  368         lf.l_len = 0;
  369         lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
  370         type = F_FLOCK;
  371         if ((fmode & FNONBLOCK) == 0)
  372                 type |= F_WAIT;
  373         if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
  374                 type |= F_FIRSTOPEN;
  375         error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
  376         if (error == 0)
  377                 fp->f_flag |= FHASLOCK;
  378 
  379         vn_lock(vp, lock_flags | LK_RETRY);
  380         return (error);
  381 }
  382 
  383 /*
  384  * Common code for vnode open operations once a vnode is located.
  385  * Check permissions, and call the VOP_OPEN routine.
  386  */
  387 int
  388 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
  389     struct thread *td, struct file *fp)
  390 {
  391         accmode_t accmode;
  392         int error;
  393 
  394         if (vp->v_type == VLNK) {
  395                 if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0)
  396                         return (EMLINK);
  397         }
  398         if (vp->v_type != VDIR && fmode & O_DIRECTORY)
  399                 return (ENOTDIR);
  400 
  401         accmode = 0;
  402         if ((fmode & O_PATH) == 0) {
  403                 if (vp->v_type == VSOCK)
  404                         return (EOPNOTSUPP);
  405                 if ((fmode & (FWRITE | O_TRUNC)) != 0) {
  406                         if (vp->v_type == VDIR)
  407                                 return (EISDIR);
  408                         accmode |= VWRITE;
  409                 }
  410                 if ((fmode & FREAD) != 0)
  411                         accmode |= VREAD;
  412                 if ((fmode & O_APPEND) && (fmode & FWRITE))
  413                         accmode |= VAPPEND;
  414 #ifdef MAC
  415                 if ((fmode & O_CREAT) != 0)
  416                         accmode |= VCREAT;
  417 #endif
  418         }
  419         if ((fmode & FEXEC) != 0)
  420                 accmode |= VEXEC;
  421 #ifdef MAC
  422         if ((fmode & O_VERIFY) != 0)
  423                 accmode |= VVERIFY;
  424         error = mac_vnode_check_open(cred, vp, accmode);
  425         if (error != 0)
  426                 return (error);
  427 
  428         accmode &= ~(VCREAT | VVERIFY);
  429 #endif
  430         if ((fmode & O_CREAT) == 0 && accmode != 0) {
  431                 error = VOP_ACCESS(vp, accmode, cred, td);
  432                 if (error != 0)
  433                         return (error);
  434         }
  435         if ((fmode & O_PATH) != 0) {
  436                 if (vp->v_type != VFIFO && vp->v_type != VSOCK &&
  437                     VOP_ACCESS(vp, VREAD, cred, td) == 0)
  438                         fp->f_flag |= FKQALLOWED;
  439                 return (0);
  440         }
  441 
  442         if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
  443                 vn_lock(vp, LK_UPGRADE | LK_RETRY);
  444         error = VOP_OPEN(vp, fmode, cred, td, fp);
  445         if (error != 0)
  446                 return (error);
  447 
  448         error = vn_open_vnode_advlock(vp, fmode, fp);
  449         if (error == 0 && (fmode & FWRITE) != 0) {
  450                 error = VOP_ADD_WRITECOUNT(vp, 1);
  451                 if (error == 0) {
  452                         CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
  453                              __func__, vp, vp->v_writecount);
  454                 }
  455         }
  456 
  457         /*
  458          * Error from advlock or VOP_ADD_WRITECOUNT() still requires
  459          * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
  460          */
  461         if (error != 0) {
  462                 if (fp != NULL) {
  463                         /*
  464                          * Arrange the call by having fdrop() to use
  465                          * vn_closefile().  This is to satisfy
  466                          * filesystems like devfs or tmpfs, which
  467                          * override fo_close().
  468                          */
  469                         fp->f_flag |= FOPENFAILED;
  470                         fp->f_vnode = vp;
  471                         if (fp->f_ops == &badfileops) {
  472                                 fp->f_type = DTYPE_VNODE;
  473                                 fp->f_ops = &vnops;
  474                         }
  475                         vref(vp);
  476                 } else {
  477                         /*
  478                          * If there is no fp, due to kernel-mode open,
  479                          * we can call VOP_CLOSE() now.
  480                          */
  481                         if (vp->v_type != VFIFO && (fmode & FWRITE) != 0 &&
  482                             !MNT_EXTENDED_SHARED(vp->v_mount) &&
  483                             VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
  484                                 vn_lock(vp, LK_UPGRADE | LK_RETRY);
  485                         (void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC),
  486                             cred, td);
  487                 }
  488         }
  489 
  490         ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
  491         return (error);
  492 
  493 }
  494 
  495 /*
  496  * Check for write permissions on the specified vnode.
  497  * Prototype text segments cannot be written.
  498  * It is racy.
  499  */
  500 int
  501 vn_writechk(struct vnode *vp)
  502 {
  503 
  504         ASSERT_VOP_LOCKED(vp, "vn_writechk");
  505         /*
  506          * If there's shared text associated with
  507          * the vnode, try to free it up once.  If
  508          * we fail, we can't allow writing.
  509          */
  510         if (VOP_IS_TEXT(vp))
  511                 return (ETXTBSY);
  512 
  513         return (0);
  514 }
  515 
  516 /*
  517  * Vnode close call
  518  */
  519 static int
  520 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
  521     struct thread *td, bool keep_ref)
  522 {
  523         struct mount *mp;
  524         int error, lock_flags;
  525 
  526         if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
  527             MNT_EXTENDED_SHARED(vp->v_mount))
  528                 lock_flags = LK_SHARED;
  529         else
  530                 lock_flags = LK_EXCLUSIVE;
  531 
  532         vn_start_write(vp, &mp, V_WAIT);
  533         vn_lock(vp, lock_flags | LK_RETRY);
  534         AUDIT_ARG_VNODE1(vp);
  535         if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
  536                 VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
  537                 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
  538                     __func__, vp, vp->v_writecount);
  539         }
  540         error = VOP_CLOSE(vp, flags, file_cred, td);
  541         if (keep_ref)
  542                 VOP_UNLOCK(vp);
  543         else
  544                 vput(vp);
  545         vn_finished_write(mp);
  546         return (error);
  547 }
  548 
  549 int
  550 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
  551     struct thread *td)
  552 {
  553 
  554         return (vn_close1(vp, flags, file_cred, td, false));
  555 }
  556 
  557 /*
  558  * Heuristic to detect sequential operation.
  559  */
  560 static int
  561 sequential_heuristic(struct uio *uio, struct file *fp)
  562 {
  563         enum uio_rw rw;
  564 
  565         ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
  566 
  567         rw = uio->uio_rw;
  568         if (fp->f_flag & FRDAHEAD)
  569                 return (fp->f_seqcount[rw] << IO_SEQSHIFT);
  570 
  571         /*
  572          * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
  573          * that the first I/O is normally considered to be slightly
  574          * sequential.  Seeking to offset 0 doesn't change sequentiality
  575          * unless previous seeks have reduced f_seqcount to 0, in which
  576          * case offset 0 is not special.
  577          */
  578         if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) ||
  579             uio->uio_offset == fp->f_nextoff[rw]) {
  580                 /*
  581                  * f_seqcount is in units of fixed-size blocks so that it
  582                  * depends mainly on the amount of sequential I/O and not
  583                  * much on the number of sequential I/O's.  The fixed size
  584                  * of 16384 is hard-coded here since it is (not quite) just
  585                  * a magic size that works well here.  This size is more
  586                  * closely related to the best I/O size for real disks than
  587                  * to any block size used by software.
  588                  */
  589                 if (uio->uio_resid >= IO_SEQMAX * 16384)
  590                         fp->f_seqcount[rw] = IO_SEQMAX;
  591                 else {
  592                         fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384);
  593                         if (fp->f_seqcount[rw] > IO_SEQMAX)
  594                                 fp->f_seqcount[rw] = IO_SEQMAX;
  595                 }
  596                 return (fp->f_seqcount[rw] << IO_SEQSHIFT);
  597         }
  598 
  599         /* Not sequential.  Quickly draw-down sequentiality. */
  600         if (fp->f_seqcount[rw] > 1)
  601                 fp->f_seqcount[rw] = 1;
  602         else
  603                 fp->f_seqcount[rw] = 0;
  604         return (0);
  605 }
  606 
  607 /*
  608  * Package up an I/O request on a vnode into a uio and do it.
  609  */
  610 int
  611 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
  612     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
  613     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
  614 {
  615         struct uio auio;
  616         struct iovec aiov;
  617         struct mount *mp;
  618         struct ucred *cred;
  619         void *rl_cookie;
  620         struct vn_io_fault_args args;
  621         int error, lock_flags;
  622 
  623         if (offset < 0 && vp->v_type != VCHR)
  624                 return (EINVAL);
  625         auio.uio_iov = &aiov;
  626         auio.uio_iovcnt = 1;
  627         aiov.iov_base = base;
  628         aiov.iov_len = len;
  629         auio.uio_resid = len;
  630         auio.uio_offset = offset;
  631         auio.uio_segflg = segflg;
  632         auio.uio_rw = rw;
  633         auio.uio_td = td;
  634         error = 0;
  635 
  636         if ((ioflg & IO_NODELOCKED) == 0) {
  637                 if ((ioflg & IO_RANGELOCKED) == 0) {
  638                         if (rw == UIO_READ) {
  639                                 rl_cookie = vn_rangelock_rlock(vp, offset,
  640                                     offset + len);
  641                         } else if ((ioflg & IO_APPEND) != 0) {
  642                                 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
  643                         } else {
  644                                 rl_cookie = vn_rangelock_wlock(vp, offset,
  645                                     offset + len);
  646                         }
  647                 } else
  648                         rl_cookie = NULL;
  649                 mp = NULL;
  650                 if (rw == UIO_WRITE) { 
  651                         if (vp->v_type != VCHR &&
  652                             (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
  653                             != 0)
  654                                 goto out;
  655                         lock_flags = vn_lktype_write(mp, vp);
  656                 } else
  657                         lock_flags = LK_SHARED;
  658                 vn_lock(vp, lock_flags | LK_RETRY);
  659         } else
  660                 rl_cookie = NULL;
  661 
  662         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
  663 #ifdef MAC
  664         if ((ioflg & IO_NOMACCHECK) == 0) {
  665                 if (rw == UIO_READ)
  666                         error = mac_vnode_check_read(active_cred, file_cred,
  667                             vp);
  668                 else
  669                         error = mac_vnode_check_write(active_cred, file_cred,
  670                             vp);
  671         }
  672 #endif
  673         if (error == 0) {
  674                 if (file_cred != NULL)
  675                         cred = file_cred;
  676                 else
  677                         cred = active_cred;
  678                 if (do_vn_io_fault(vp, &auio)) {
  679                         args.kind = VN_IO_FAULT_VOP;
  680                         args.cred = cred;
  681                         args.flags = ioflg;
  682                         args.args.vop_args.vp = vp;
  683                         error = vn_io_fault1(vp, &auio, &args, td);
  684                 } else if (rw == UIO_READ) {
  685                         error = VOP_READ(vp, &auio, ioflg, cred);
  686                 } else /* if (rw == UIO_WRITE) */ {
  687                         error = VOP_WRITE(vp, &auio, ioflg, cred);
  688                 }
  689         }
  690         if (aresid)
  691                 *aresid = auio.uio_resid;
  692         else
  693                 if (auio.uio_resid && error == 0)
  694                         error = EIO;
  695         if ((ioflg & IO_NODELOCKED) == 0) {
  696                 VOP_UNLOCK(vp);
  697                 if (mp != NULL)
  698                         vn_finished_write(mp);
  699         }
  700  out:
  701         if (rl_cookie != NULL)
  702                 vn_rangelock_unlock(vp, rl_cookie);
  703         return (error);
  704 }
  705 
  706 /*
  707  * Package up an I/O request on a vnode into a uio and do it.  The I/O
  708  * request is split up into smaller chunks and we try to avoid saturating
  709  * the buffer cache while potentially holding a vnode locked, so we 
  710  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
  711  * to give other processes a chance to lock the vnode (either other processes
  712  * core'ing the same binary, or unrelated processes scanning the directory).
  713  */
  714 int
  715 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
  716     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
  717     struct ucred *file_cred, size_t *aresid, struct thread *td)
  718 {
  719         int error = 0;
  720         ssize_t iaresid;
  721 
  722         do {
  723                 int chunk;
  724 
  725                 /*
  726                  * Force `offset' to a multiple of MAXBSIZE except possibly
  727                  * for the first chunk, so that filesystems only need to
  728                  * write full blocks except possibly for the first and last
  729                  * chunks.
  730                  */
  731                 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
  732 
  733                 if (chunk > len)
  734                         chunk = len;
  735                 if (rw != UIO_READ && vp->v_type == VREG)
  736                         bwillwrite();
  737                 iaresid = 0;
  738                 error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
  739                     ioflg, active_cred, file_cred, &iaresid, td);
  740                 len -= chunk;   /* aresid calc already includes length */
  741                 if (error)
  742                         break;
  743                 offset += chunk;
  744                 base = (char *)base + chunk;
  745                 kern_yield(PRI_USER);
  746         } while (len);
  747         if (aresid)
  748                 *aresid = len + iaresid;
  749         return (error);
  750 }
  751 
  752 #if OFF_MAX <= LONG_MAX
  753 off_t
  754 foffset_lock(struct file *fp, int flags)
  755 {
  756         volatile short *flagsp;
  757         off_t res;
  758         short state;
  759 
  760         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  761 
  762         if ((flags & FOF_NOLOCK) != 0)
  763                 return (atomic_load_long(&fp->f_offset));
  764 
  765         /*
  766          * According to McKusick the vn lock was protecting f_offset here.
  767          * It is now protected by the FOFFSET_LOCKED flag.
  768          */
  769         flagsp = &fp->f_vnread_flags;
  770         if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED))
  771                 return (atomic_load_long(&fp->f_offset));
  772 
  773         sleepq_lock(&fp->f_vnread_flags);
  774         state = atomic_load_16(flagsp);
  775         for (;;) {
  776                 if ((state & FOFFSET_LOCKED) == 0) {
  777                         if (!atomic_fcmpset_acq_16(flagsp, &state,
  778                             FOFFSET_LOCKED))
  779                                 continue;
  780                         break;
  781                 }
  782                 if ((state & FOFFSET_LOCK_WAITING) == 0) {
  783                         if (!atomic_fcmpset_acq_16(flagsp, &state,
  784                             state | FOFFSET_LOCK_WAITING))
  785                                 continue;
  786                 }
  787                 DROP_GIANT();
  788                 sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0);
  789                 sleepq_wait(&fp->f_vnread_flags, PUSER -1);
  790                 PICKUP_GIANT();
  791                 sleepq_lock(&fp->f_vnread_flags);
  792                 state = atomic_load_16(flagsp);
  793         }
  794         res = atomic_load_long(&fp->f_offset);
  795         sleepq_release(&fp->f_vnread_flags);
  796         return (res);
  797 }
  798 
  799 void
  800 foffset_unlock(struct file *fp, off_t val, int flags)
  801 {
  802         volatile short *flagsp;
  803         short state;
  804 
  805         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  806 
  807         if ((flags & FOF_NOUPDATE) == 0)
  808                 atomic_store_long(&fp->f_offset, val);
  809         if ((flags & FOF_NEXTOFF_R) != 0)
  810                 fp->f_nextoff[UIO_READ] = val;
  811         if ((flags & FOF_NEXTOFF_W) != 0)
  812                 fp->f_nextoff[UIO_WRITE] = val;
  813 
  814         if ((flags & FOF_NOLOCK) != 0)
  815                 return;
  816 
  817         flagsp = &fp->f_vnread_flags;
  818         state = atomic_load_16(flagsp);
  819         if ((state & FOFFSET_LOCK_WAITING) == 0 &&
  820             atomic_cmpset_rel_16(flagsp, state, 0))
  821                 return;
  822 
  823         sleepq_lock(&fp->f_vnread_flags);
  824         MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0);
  825         MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0);
  826         fp->f_vnread_flags = 0;
  827         sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0);
  828         sleepq_release(&fp->f_vnread_flags);
  829 }
  830 #else
  831 off_t
  832 foffset_lock(struct file *fp, int flags)
  833 {
  834         struct mtx *mtxp;
  835         off_t res;
  836 
  837         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  838 
  839         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  840         mtx_lock(mtxp);
  841         if ((flags & FOF_NOLOCK) == 0) {
  842                 while (fp->f_vnread_flags & FOFFSET_LOCKED) {
  843                         fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
  844                         msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
  845                             "vofflock", 0);
  846                 }
  847                 fp->f_vnread_flags |= FOFFSET_LOCKED;
  848         }
  849         res = fp->f_offset;
  850         mtx_unlock(mtxp);
  851         return (res);
  852 }
  853 
  854 void
  855 foffset_unlock(struct file *fp, off_t val, int flags)
  856 {
  857         struct mtx *mtxp;
  858 
  859         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  860 
  861         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  862         mtx_lock(mtxp);
  863         if ((flags & FOF_NOUPDATE) == 0)
  864                 fp->f_offset = val;
  865         if ((flags & FOF_NEXTOFF_R) != 0)
  866                 fp->f_nextoff[UIO_READ] = val;
  867         if ((flags & FOF_NEXTOFF_W) != 0)
  868                 fp->f_nextoff[UIO_WRITE] = val;
  869         if ((flags & FOF_NOLOCK) == 0) {
  870                 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
  871                     ("Lost FOFFSET_LOCKED"));
  872                 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
  873                         wakeup(&fp->f_vnread_flags);
  874                 fp->f_vnread_flags = 0;
  875         }
  876         mtx_unlock(mtxp);
  877 }
  878 #endif
  879 
  880 void
  881 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
  882 {
  883 
  884         if ((flags & FOF_OFFSET) == 0)
  885                 uio->uio_offset = foffset_lock(fp, flags);
  886 }
  887 
  888 void
  889 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
  890 {
  891 
  892         if ((flags & FOF_OFFSET) == 0)
  893                 foffset_unlock(fp, uio->uio_offset, flags);
  894 }
  895 
  896 static int
  897 get_advice(struct file *fp, struct uio *uio)
  898 {
  899         struct mtx *mtxp;
  900         int ret;
  901 
  902         ret = POSIX_FADV_NORMAL;
  903         if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
  904                 return (ret);
  905 
  906         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  907         mtx_lock(mtxp);
  908         if (fp->f_advice != NULL &&
  909             uio->uio_offset >= fp->f_advice->fa_start &&
  910             uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
  911                 ret = fp->f_advice->fa_advice;
  912         mtx_unlock(mtxp);
  913         return (ret);
  914 }
  915 
  916 static int
  917 get_write_ioflag(struct file *fp)
  918 {
  919         int ioflag;
  920         struct mount *mp;
  921         struct vnode *vp;
  922 
  923         ioflag = 0;
  924         vp = fp->f_vnode;
  925         mp = atomic_load_ptr(&vp->v_mount);
  926 
  927         if ((fp->f_flag & O_DIRECT) != 0)
  928                 ioflag |= IO_DIRECT;
  929 
  930         if ((fp->f_flag & O_FSYNC) != 0 ||
  931             (mp != NULL && (mp->mnt_flag & MNT_SYNCHRONOUS) != 0))
  932                 ioflag |= IO_SYNC;
  933 
  934         /*
  935          * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE()
  936          * or VOP_DEALLOCATE() implementations that don't understand IO_DATASYNC
  937          * fall back to full O_SYNC behavior.
  938          */
  939         if ((fp->f_flag & O_DSYNC) != 0)
  940                 ioflag |= IO_SYNC | IO_DATASYNC;
  941 
  942         return (ioflag);
  943 }
  944 
  945 int
  946 vn_read_from_obj(struct vnode *vp, struct uio *uio)
  947 {
  948         vm_object_t obj;
  949         vm_page_t ma[io_hold_cnt + 2];
  950         off_t off, vsz;
  951         ssize_t resid;
  952         int error, i, j;
  953 
  954         MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2));
  955         obj = atomic_load_ptr(&vp->v_object);
  956         if (obj == NULL)
  957                 return (EJUSTRETURN);
  958 
  959         /*
  960          * Depends on type stability of vm_objects.
  961          */
  962         vm_object_pip_add(obj, 1);
  963         if ((obj->flags & OBJ_DEAD) != 0) {
  964                 /*
  965                  * Note that object might be already reused from the
  966                  * vnode, and the OBJ_DEAD flag cleared.  This is fine,
  967                  * we recheck for DOOMED vnode state after all pages
  968                  * are busied, and retract then.
  969                  *
  970                  * But we check for OBJ_DEAD to ensure that we do not
  971                  * busy pages while vm_object_terminate_pages()
  972                  * processes the queue.
  973                  */
  974                 error = EJUSTRETURN;
  975                 goto out_pip;
  976         }
  977 
  978         resid = uio->uio_resid;
  979         off = uio->uio_offset;
  980         for (i = 0; resid > 0; i++) {
  981                 MPASS(i < io_hold_cnt + 2);
  982                 ma[i] = vm_page_grab_unlocked(obj, atop(off),
  983                     VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY |
  984                     VM_ALLOC_NOWAIT);
  985                 if (ma[i] == NULL)
  986                         break;
  987 
  988                 /*
  989                  * Skip invalid pages.  Valid mask can be partial only
  990                  * at EOF, and we clip later.
  991                  */
  992                 if (vm_page_none_valid(ma[i])) {
  993                         vm_page_sunbusy(ma[i]);
  994                         break;
  995                 }
  996 
  997                 resid -= PAGE_SIZE;
  998                 off += PAGE_SIZE;
  999         }
 1000         if (i == 0) {
 1001                 error = EJUSTRETURN;
 1002                 goto out_pip;
 1003         }
 1004 
 1005         /*
 1006          * Check VIRF_DOOMED after we busied our pages.  Since
 1007          * vgonel() terminates the vnode' vm_object, it cannot
 1008          * process past pages busied by us.
 1009          */
 1010         if (VN_IS_DOOMED(vp)) {
 1011                 error = EJUSTRETURN;
 1012                 goto out;
 1013         }
 1014 
 1015         resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1);
 1016         if (resid > uio->uio_resid)
 1017                 resid = uio->uio_resid;
 1018 
 1019         /*
 1020          * Unlocked read of vnp_size is safe because truncation cannot
 1021          * pass busied page.  But we load vnp_size into a local
 1022          * variable so that possible concurrent extension does not
 1023          * break calculation.
 1024          */
 1025 #if defined(__powerpc__) && !defined(__powerpc64__)
 1026         vsz = obj->un_pager.vnp.vnp_size;
 1027 #else
 1028         vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size);
 1029 #endif
 1030         if (uio->uio_offset >= vsz) {
 1031                 error = EJUSTRETURN;
 1032                 goto out;
 1033         }
 1034         if (uio->uio_offset + resid > vsz)
 1035                 resid = vsz - uio->uio_offset;
 1036 
 1037         error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio);
 1038 
 1039 out:
 1040         for (j = 0; j < i; j++) {
 1041                 if (error == 0)
 1042                         vm_page_reference(ma[j]);
 1043                 vm_page_sunbusy(ma[j]);
 1044         }
 1045 out_pip:
 1046         vm_object_pip_wakeup(obj);
 1047         if (error != 0)
 1048                 return (error);
 1049         return (uio->uio_resid == 0 ? 0 : EJUSTRETURN);
 1050 }
 1051 
 1052 /*
 1053  * File table vnode read routine.
 1054  */
 1055 static int
 1056 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
 1057     struct thread *td)
 1058 {
 1059         struct vnode *vp;
 1060         off_t orig_offset;
 1061         int error, ioflag;
 1062         int advice;
 1063 
 1064         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
 1065             uio->uio_td, td));
 1066         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
 1067         vp = fp->f_vnode;
 1068         ioflag = 0;
 1069         if (fp->f_flag & FNONBLOCK)
 1070                 ioflag |= IO_NDELAY;
 1071         if (fp->f_flag & O_DIRECT)
 1072                 ioflag |= IO_DIRECT;
 1073 
 1074         /*
 1075          * Try to read from page cache.  VIRF_DOOMED check is racy but
 1076          * allows us to avoid unneeded work outright.
 1077          */
 1078         if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() &&
 1079             (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) {
 1080                 error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred);
 1081                 if (error == 0) {
 1082                         fp->f_nextoff[UIO_READ] = uio->uio_offset;
 1083                         return (0);
 1084                 }
 1085                 if (error != EJUSTRETURN)
 1086                         return (error);
 1087         }
 1088 
 1089         advice = get_advice(fp, uio);
 1090         vn_lock(vp, LK_SHARED | LK_RETRY);
 1091 
 1092         switch (advice) {
 1093         case POSIX_FADV_NORMAL:
 1094         case POSIX_FADV_SEQUENTIAL:
 1095         case POSIX_FADV_NOREUSE:
 1096                 ioflag |= sequential_heuristic(uio, fp);
 1097                 break;
 1098         case POSIX_FADV_RANDOM:
 1099                 /* Disable read-ahead for random I/O. */
 1100                 break;
 1101         }
 1102         orig_offset = uio->uio_offset;
 1103 
 1104 #ifdef MAC
 1105         error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
 1106         if (error == 0)
 1107 #endif
 1108                 error = VOP_READ(vp, uio, ioflag, fp->f_cred);
 1109         fp->f_nextoff[UIO_READ] = uio->uio_offset;
 1110         VOP_UNLOCK(vp);
 1111         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
 1112             orig_offset != uio->uio_offset)
 1113                 /*
 1114                  * Use POSIX_FADV_DONTNEED to flush pages and buffers
 1115                  * for the backing file after a POSIX_FADV_NOREUSE
 1116                  * read(2).
 1117                  */
 1118                 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
 1119                     POSIX_FADV_DONTNEED);
 1120         return (error);
 1121 }
 1122 
 1123 /*
 1124  * File table vnode write routine.
 1125  */
 1126 static int
 1127 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
 1128     struct thread *td)
 1129 {
 1130         struct vnode *vp;
 1131         struct mount *mp;
 1132         off_t orig_offset;
 1133         int error, ioflag;
 1134         int advice;
 1135         bool need_finished_write;
 1136 
 1137         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
 1138             uio->uio_td, td));
 1139         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
 1140         vp = fp->f_vnode;
 1141         if (vp->v_type == VREG)
 1142                 bwillwrite();
 1143         ioflag = IO_UNIT;
 1144         if (vp->v_type == VREG && (fp->f_flag & O_APPEND) != 0)
 1145                 ioflag |= IO_APPEND;
 1146         if ((fp->f_flag & FNONBLOCK) != 0)
 1147                 ioflag |= IO_NDELAY;
 1148         ioflag |= get_write_ioflag(fp);
 1149 
 1150         mp = NULL;
 1151         need_finished_write = false;
 1152         if (vp->v_type != VCHR) {
 1153                 error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
 1154                 if (error != 0)
 1155                         goto unlock;
 1156                 need_finished_write = true;
 1157         }
 1158 
 1159         advice = get_advice(fp, uio);
 1160 
 1161         vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
 1162         switch (advice) {
 1163         case POSIX_FADV_NORMAL:
 1164         case POSIX_FADV_SEQUENTIAL:
 1165         case POSIX_FADV_NOREUSE:
 1166                 ioflag |= sequential_heuristic(uio, fp);
 1167                 break;
 1168         case POSIX_FADV_RANDOM:
 1169                 /* XXX: Is this correct? */
 1170                 break;
 1171         }
 1172         orig_offset = uio->uio_offset;
 1173 
 1174 #ifdef MAC
 1175         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
 1176         if (error == 0)
 1177 #endif
 1178                 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
 1179         fp->f_nextoff[UIO_WRITE] = uio->uio_offset;
 1180         VOP_UNLOCK(vp);
 1181         if (need_finished_write)
 1182                 vn_finished_write(mp);
 1183         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
 1184             orig_offset != uio->uio_offset)
 1185                 /*
 1186                  * Use POSIX_FADV_DONTNEED to flush pages and buffers
 1187                  * for the backing file after a POSIX_FADV_NOREUSE
 1188                  * write(2).
 1189                  */
 1190                 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
 1191                     POSIX_FADV_DONTNEED);
 1192 unlock:
 1193         return (error);
 1194 }
 1195 
 1196 /*
 1197  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
 1198  * prevent the following deadlock:
 1199  *
 1200  * Assume that the thread A reads from the vnode vp1 into userspace
 1201  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
 1202  * currently not resident, then system ends up with the call chain
 1203  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
 1204  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
 1205  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
 1206  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
 1207  * backed by the pages of vnode vp1, and some page in buf2 is not
 1208  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
 1209  *
 1210  * To prevent the lock order reversal and deadlock, vn_io_fault() does
 1211  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
 1212  * Instead, it first tries to do the whole range i/o with pagefaults
 1213  * disabled. If all pages in the i/o buffer are resident and mapped,
 1214  * VOP will succeed (ignoring the genuine filesystem errors).
 1215  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
 1216  * i/o in chunks, with all pages in the chunk prefaulted and held
 1217  * using vm_fault_quick_hold_pages().
 1218  *
 1219  * Filesystems using this deadlock avoidance scheme should use the
 1220  * array of the held pages from uio, saved in the curthread->td_ma,
 1221  * instead of doing uiomove().  A helper function
 1222  * vn_io_fault_uiomove() converts uiomove request into
 1223  * uiomove_fromphys() over td_ma array.
 1224  *
 1225  * Since vnode locks do not cover the whole i/o anymore, rangelocks
 1226  * make the current i/o request atomic with respect to other i/os and
 1227  * truncations.
 1228  */
 1229 
 1230 /*
 1231  * Decode vn_io_fault_args and perform the corresponding i/o.
 1232  */
 1233 static int
 1234 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
 1235     struct thread *td)
 1236 {
 1237         int error, save;
 1238 
 1239         error = 0;
 1240         save = vm_fault_disable_pagefaults();
 1241         switch (args->kind) {
 1242         case VN_IO_FAULT_FOP:
 1243                 error = (args->args.fop_args.doio)(args->args.fop_args.fp,
 1244                     uio, args->cred, args->flags, td);
 1245                 break;
 1246         case VN_IO_FAULT_VOP:
 1247                 if (uio->uio_rw == UIO_READ) {
 1248                         error = VOP_READ(args->args.vop_args.vp, uio,
 1249                             args->flags, args->cred);
 1250                 } else if (uio->uio_rw == UIO_WRITE) {
 1251                         error = VOP_WRITE(args->args.vop_args.vp, uio,
 1252                             args->flags, args->cred);
 1253                 }
 1254                 break;
 1255         default:
 1256                 panic("vn_io_fault_doio: unknown kind of io %d %d",
 1257                     args->kind, uio->uio_rw);
 1258         }
 1259         vm_fault_enable_pagefaults(save);
 1260         return (error);
 1261 }
 1262 
 1263 static int
 1264 vn_io_fault_touch(char *base, const struct uio *uio)
 1265 {
 1266         int r;
 1267 
 1268         r = fubyte(base);
 1269         if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
 1270                 return (EFAULT);
 1271         return (0);
 1272 }
 1273 
 1274 static int
 1275 vn_io_fault_prefault_user(const struct uio *uio)
 1276 {
 1277         char *base;
 1278         const struct iovec *iov;
 1279         size_t len;
 1280         ssize_t resid;
 1281         int error, i;
 1282 
 1283         KASSERT(uio->uio_segflg == UIO_USERSPACE,
 1284             ("vn_io_fault_prefault userspace"));
 1285 
 1286         error = i = 0;
 1287         iov = uio->uio_iov;
 1288         resid = uio->uio_resid;
 1289         base = iov->iov_base;
 1290         len = iov->iov_len;
 1291         while (resid > 0) {
 1292                 error = vn_io_fault_touch(base, uio);
 1293                 if (error != 0)
 1294                         break;
 1295                 if (len < PAGE_SIZE) {
 1296                         if (len != 0) {
 1297                                 error = vn_io_fault_touch(base + len - 1, uio);
 1298                                 if (error != 0)
 1299                                         break;
 1300                                 resid -= len;
 1301                         }
 1302                         if (++i >= uio->uio_iovcnt)
 1303                                 break;
 1304                         iov = uio->uio_iov + i;
 1305                         base = iov->iov_base;
 1306                         len = iov->iov_len;
 1307                 } else {
 1308                         len -= PAGE_SIZE;
 1309                         base += PAGE_SIZE;
 1310                         resid -= PAGE_SIZE;
 1311                 }
 1312         }
 1313         return (error);
 1314 }
 1315 
 1316 /*
 1317  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
 1318  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
 1319  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
 1320  * into args and call vn_io_fault1() to handle faults during the user
 1321  * mode buffer accesses.
 1322  */
 1323 static int
 1324 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
 1325     struct thread *td)
 1326 {
 1327         vm_page_t ma[io_hold_cnt + 2];
 1328         struct uio *uio_clone, short_uio;
 1329         struct iovec short_iovec[1];
 1330         vm_page_t *prev_td_ma;
 1331         vm_prot_t prot;
 1332         vm_offset_t addr, end;
 1333         size_t len, resid;
 1334         ssize_t adv;
 1335         int error, cnt, saveheld, prev_td_ma_cnt;
 1336 
 1337         if (vn_io_fault_prefault) {
 1338                 error = vn_io_fault_prefault_user(uio);
 1339                 if (error != 0)
 1340                         return (error); /* Or ignore ? */
 1341         }
 1342 
 1343         prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
 1344 
 1345         /*
 1346          * The UFS follows IO_UNIT directive and replays back both
 1347          * uio_offset and uio_resid if an error is encountered during the
 1348          * operation.  But, since the iovec may be already advanced,
 1349          * uio is still in an inconsistent state.
 1350          *
 1351          * Cache a copy of the original uio, which is advanced to the redo
 1352          * point using UIO_NOCOPY below.
 1353          */
 1354         uio_clone = cloneuio(uio);
 1355         resid = uio->uio_resid;
 1356 
 1357         short_uio.uio_segflg = UIO_USERSPACE;
 1358         short_uio.uio_rw = uio->uio_rw;
 1359         short_uio.uio_td = uio->uio_td;
 1360 
 1361         error = vn_io_fault_doio(args, uio, td);
 1362         if (error != EFAULT)
 1363                 goto out;
 1364 
 1365         atomic_add_long(&vn_io_faults_cnt, 1);
 1366         uio_clone->uio_segflg = UIO_NOCOPY;
 1367         uiomove(NULL, resid - uio->uio_resid, uio_clone);
 1368         uio_clone->uio_segflg = uio->uio_segflg;
 1369 
 1370         saveheld = curthread_pflags_set(TDP_UIOHELD);
 1371         prev_td_ma = td->td_ma;
 1372         prev_td_ma_cnt = td->td_ma_cnt;
 1373 
 1374         while (uio_clone->uio_resid != 0) {
 1375                 len = uio_clone->uio_iov->iov_len;
 1376                 if (len == 0) {
 1377                         KASSERT(uio_clone->uio_iovcnt >= 1,
 1378                             ("iovcnt underflow"));
 1379                         uio_clone->uio_iov++;
 1380                         uio_clone->uio_iovcnt--;
 1381                         continue;
 1382                 }
 1383                 if (len > ptoa(io_hold_cnt))
 1384                         len = ptoa(io_hold_cnt);
 1385                 addr = (uintptr_t)uio_clone->uio_iov->iov_base;
 1386                 end = round_page(addr + len);
 1387                 if (end < addr) {
 1388                         error = EFAULT;
 1389                         break;
 1390                 }
 1391                 cnt = atop(end - trunc_page(addr));
 1392                 /*
 1393                  * A perfectly misaligned address and length could cause
 1394                  * both the start and the end of the chunk to use partial
 1395                  * page.  +2 accounts for such a situation.
 1396                  */
 1397                 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
 1398                     addr, len, prot, ma, io_hold_cnt + 2);
 1399                 if (cnt == -1) {
 1400                         error = EFAULT;
 1401                         break;
 1402                 }
 1403                 short_uio.uio_iov = &short_iovec[0];
 1404                 short_iovec[0].iov_base = (void *)addr;
 1405                 short_uio.uio_iovcnt = 1;
 1406                 short_uio.uio_resid = short_iovec[0].iov_len = len;
 1407                 short_uio.uio_offset = uio_clone->uio_offset;
 1408                 td->td_ma = ma;
 1409                 td->td_ma_cnt = cnt;
 1410 
 1411                 error = vn_io_fault_doio(args, &short_uio, td);
 1412                 vm_page_unhold_pages(ma, cnt);
 1413                 adv = len - short_uio.uio_resid;
 1414 
 1415                 uio_clone->uio_iov->iov_base =
 1416                     (char *)uio_clone->uio_iov->iov_base + adv;
 1417                 uio_clone->uio_iov->iov_len -= adv;
 1418                 uio_clone->uio_resid -= adv;
 1419                 uio_clone->uio_offset += adv;
 1420 
 1421                 uio->uio_resid -= adv;
 1422                 uio->uio_offset += adv;
 1423 
 1424                 if (error != 0 || adv == 0)
 1425                         break;
 1426         }
 1427         td->td_ma = prev_td_ma;
 1428         td->td_ma_cnt = prev_td_ma_cnt;
 1429         curthread_pflags_restore(saveheld);
 1430 out:
 1431         free(uio_clone, M_IOV);
 1432         return (error);
 1433 }
 1434 
 1435 static int
 1436 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1437     int flags, struct thread *td)
 1438 {
 1439         fo_rdwr_t *doio;
 1440         struct vnode *vp;
 1441         void *rl_cookie;
 1442         struct vn_io_fault_args args;
 1443         int error;
 1444 
 1445         doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
 1446         vp = fp->f_vnode;
 1447 
 1448         /*
 1449          * The ability to read(2) on a directory has historically been
 1450          * allowed for all users, but this can and has been the source of
 1451          * at least one security issue in the past.  As such, it is now hidden
 1452          * away behind a sysctl for those that actually need it to use it, and
 1453          * restricted to root when it's turned on to make it relatively safe to
 1454          * leave on for longer sessions of need.
 1455          */
 1456         if (vp->v_type == VDIR) {
 1457                 KASSERT(uio->uio_rw == UIO_READ,
 1458                     ("illegal write attempted on a directory"));
 1459                 if (!vfs_allow_read_dir)
 1460                         return (EISDIR);
 1461                 if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
 1462                         return (EISDIR);
 1463         }
 1464 
 1465         foffset_lock_uio(fp, uio, flags);
 1466         if (do_vn_io_fault(vp, uio)) {
 1467                 args.kind = VN_IO_FAULT_FOP;
 1468                 args.args.fop_args.fp = fp;
 1469                 args.args.fop_args.doio = doio;
 1470                 args.cred = active_cred;
 1471                 args.flags = flags | FOF_OFFSET;
 1472                 if (uio->uio_rw == UIO_READ) {
 1473                         rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
 1474                             uio->uio_offset + uio->uio_resid);
 1475                 } else if ((fp->f_flag & O_APPEND) != 0 ||
 1476                     (flags & FOF_OFFSET) == 0) {
 1477                         /* For appenders, punt and lock the whole range. */
 1478                         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 1479                 } else {
 1480                         rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
 1481                             uio->uio_offset + uio->uio_resid);
 1482                 }
 1483                 error = vn_io_fault1(vp, uio, &args, td);
 1484                 vn_rangelock_unlock(vp, rl_cookie);
 1485         } else {
 1486                 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
 1487         }
 1488         foffset_unlock_uio(fp, uio, flags);
 1489         return (error);
 1490 }
 1491 
 1492 /*
 1493  * Helper function to perform the requested uiomove operation using
 1494  * the held pages for io->uio_iov[0].iov_base buffer instead of
 1495  * copyin/copyout.  Access to the pages with uiomove_fromphys()
 1496  * instead of iov_base prevents page faults that could occur due to
 1497  * pmap_collect() invalidating the mapping created by
 1498  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
 1499  * object cleanup revoking the write access from page mappings.
 1500  *
 1501  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
 1502  * instead of plain uiomove().
 1503  */
 1504 int
 1505 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
 1506 {
 1507         struct uio transp_uio;
 1508         struct iovec transp_iov[1];
 1509         struct thread *td;
 1510         size_t adv;
 1511         int error, pgadv;
 1512 
 1513         td = curthread;
 1514         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1515             uio->uio_segflg != UIO_USERSPACE)
 1516                 return (uiomove(data, xfersize, uio));
 1517 
 1518         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1519         transp_iov[0].iov_base = data;
 1520         transp_uio.uio_iov = &transp_iov[0];
 1521         transp_uio.uio_iovcnt = 1;
 1522         if (xfersize > uio->uio_resid)
 1523                 xfersize = uio->uio_resid;
 1524         transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
 1525         transp_uio.uio_offset = 0;
 1526         transp_uio.uio_segflg = UIO_SYSSPACE;
 1527         /*
 1528          * Since transp_iov points to data, and td_ma page array
 1529          * corresponds to original uio->uio_iov, we need to invert the
 1530          * direction of the i/o operation as passed to
 1531          * uiomove_fromphys().
 1532          */
 1533         switch (uio->uio_rw) {
 1534         case UIO_WRITE:
 1535                 transp_uio.uio_rw = UIO_READ;
 1536                 break;
 1537         case UIO_READ:
 1538                 transp_uio.uio_rw = UIO_WRITE;
 1539                 break;
 1540         }
 1541         transp_uio.uio_td = uio->uio_td;
 1542         error = uiomove_fromphys(td->td_ma,
 1543             ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
 1544             xfersize, &transp_uio);
 1545         adv = xfersize - transp_uio.uio_resid;
 1546         pgadv =
 1547             (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
 1548             (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
 1549         td->td_ma += pgadv;
 1550         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1551             pgadv));
 1552         td->td_ma_cnt -= pgadv;
 1553         uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
 1554         uio->uio_iov->iov_len -= adv;
 1555         uio->uio_resid -= adv;
 1556         uio->uio_offset += adv;
 1557         return (error);
 1558 }
 1559 
 1560 int
 1561 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
 1562     struct uio *uio)
 1563 {
 1564         struct thread *td;
 1565         vm_offset_t iov_base;
 1566         int cnt, pgadv;
 1567 
 1568         td = curthread;
 1569         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1570             uio->uio_segflg != UIO_USERSPACE)
 1571                 return (uiomove_fromphys(ma, offset, xfersize, uio));
 1572 
 1573         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1574         cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
 1575         iov_base = (vm_offset_t)uio->uio_iov->iov_base;
 1576         switch (uio->uio_rw) {
 1577         case UIO_WRITE:
 1578                 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
 1579                     offset, cnt);
 1580                 break;
 1581         case UIO_READ:
 1582                 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
 1583                     cnt);
 1584                 break;
 1585         }
 1586         pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
 1587         td->td_ma += pgadv;
 1588         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1589             pgadv));
 1590         td->td_ma_cnt -= pgadv;
 1591         uio->uio_iov->iov_base = (char *)(iov_base + cnt);
 1592         uio->uio_iov->iov_len -= cnt;
 1593         uio->uio_resid -= cnt;
 1594         uio->uio_offset += cnt;
 1595         return (0);
 1596 }
 1597 
 1598 /*
 1599  * File table truncate routine.
 1600  */
 1601 static int
 1602 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
 1603     struct thread *td)
 1604 {
 1605         struct mount *mp;
 1606         struct vnode *vp;
 1607         void *rl_cookie;
 1608         int error;
 1609 
 1610         vp = fp->f_vnode;
 1611 
 1612 retry:
 1613         /*
 1614          * Lock the whole range for truncation.  Otherwise split i/o
 1615          * might happen partly before and partly after the truncation.
 1616          */
 1617         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 1618         error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
 1619         if (error)
 1620                 goto out1;
 1621         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1622         AUDIT_ARG_VNODE1(vp);
 1623         if (vp->v_type == VDIR) {
 1624                 error = EISDIR;
 1625                 goto out;
 1626         }
 1627 #ifdef MAC
 1628         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
 1629         if (error)
 1630                 goto out;
 1631 #endif
 1632         error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
 1633             fp->f_cred);
 1634 out:
 1635         VOP_UNLOCK(vp);
 1636         vn_finished_write(mp);
 1637 out1:
 1638         vn_rangelock_unlock(vp, rl_cookie);
 1639         if (error == ERELOOKUP)
 1640                 goto retry;
 1641         return (error);
 1642 }
 1643 
 1644 /*
 1645  * Truncate a file that is already locked.
 1646  */
 1647 int
 1648 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
 1649     struct ucred *cred)
 1650 {
 1651         struct vattr vattr;
 1652         int error;
 1653 
 1654         error = VOP_ADD_WRITECOUNT(vp, 1);
 1655         if (error == 0) {
 1656                 VATTR_NULL(&vattr);
 1657                 vattr.va_size = length;
 1658                 if (sync)
 1659                         vattr.va_vaflags |= VA_SYNC;
 1660                 error = VOP_SETATTR(vp, &vattr, cred);
 1661                 VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
 1662         }
 1663         return (error);
 1664 }
 1665 
 1666 /*
 1667  * File table vnode stat routine.
 1668  */
 1669 int
 1670 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred,
 1671     struct thread *td)
 1672 {
 1673         struct vnode *vp = fp->f_vnode;
 1674         int error;
 1675 
 1676         vn_lock(vp, LK_SHARED | LK_RETRY);
 1677         error = VOP_STAT(vp, sb, active_cred, fp->f_cred, td);
 1678         VOP_UNLOCK(vp);
 1679 
 1680         return (error);
 1681 }
 1682 
 1683 /*
 1684  * File table vnode ioctl routine.
 1685  */
 1686 static int
 1687 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
 1688     struct thread *td)
 1689 {
 1690         struct vattr vattr;
 1691         struct vnode *vp;
 1692         struct fiobmap2_arg *bmarg;
 1693         int error;
 1694 
 1695         vp = fp->f_vnode;
 1696         switch (vp->v_type) {
 1697         case VDIR:
 1698         case VREG:
 1699                 switch (com) {
 1700                 case FIONREAD:
 1701                         vn_lock(vp, LK_SHARED | LK_RETRY);
 1702                         error = VOP_GETATTR(vp, &vattr, active_cred);
 1703                         VOP_UNLOCK(vp);
 1704                         if (error == 0)
 1705                                 *(int *)data = vattr.va_size - fp->f_offset;
 1706                         return (error);
 1707                 case FIOBMAP2:
 1708                         bmarg = (struct fiobmap2_arg *)data;
 1709                         vn_lock(vp, LK_SHARED | LK_RETRY);
 1710 #ifdef MAC
 1711                         error = mac_vnode_check_read(active_cred, fp->f_cred,
 1712                             vp);
 1713                         if (error == 0)
 1714 #endif
 1715                                 error = VOP_BMAP(vp, bmarg->bn, NULL,
 1716                                     &bmarg->bn, &bmarg->runp, &bmarg->runb);
 1717                         VOP_UNLOCK(vp);
 1718                         return (error);
 1719                 case FIONBIO:
 1720                 case FIOASYNC:
 1721                         return (0);
 1722                 default:
 1723                         return (VOP_IOCTL(vp, com, data, fp->f_flag,
 1724                             active_cred, td));
 1725                 }
 1726                 break;
 1727         case VCHR:
 1728                 return (VOP_IOCTL(vp, com, data, fp->f_flag,
 1729                     active_cred, td));
 1730         default:
 1731                 return (ENOTTY);
 1732         }
 1733 }
 1734 
 1735 /*
 1736  * File table vnode poll routine.
 1737  */
 1738 static int
 1739 vn_poll(struct file *fp, int events, struct ucred *active_cred,
 1740     struct thread *td)
 1741 {
 1742         struct vnode *vp;
 1743         int error;
 1744 
 1745         vp = fp->f_vnode;
 1746 #if defined(MAC) || defined(AUDIT)
 1747         if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) {
 1748                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1749                 AUDIT_ARG_VNODE1(vp);
 1750                 error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
 1751                 VOP_UNLOCK(vp);
 1752                 if (error != 0)
 1753                         return (error);
 1754         }
 1755 #endif
 1756         error = VOP_POLL(vp, events, fp->f_cred, td);
 1757         return (error);
 1758 }
 1759 
 1760 /*
 1761  * Acquire the requested lock and then check for validity.  LK_RETRY
 1762  * permits vn_lock to return doomed vnodes.
 1763  */
 1764 static int __noinline
 1765 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
 1766     int error)
 1767 {
 1768 
 1769         KASSERT((flags & LK_RETRY) == 0 || error == 0,
 1770             ("vn_lock: error %d incompatible with flags %#x", error, flags));
 1771 
 1772         if (error == 0)
 1773                 VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
 1774 
 1775         if ((flags & LK_RETRY) == 0) {
 1776                 if (error == 0) {
 1777                         VOP_UNLOCK(vp);
 1778                         error = ENOENT;
 1779                 }
 1780                 return (error);
 1781         }
 1782 
 1783         /*
 1784          * LK_RETRY case.
 1785          *
 1786          * Nothing to do if we got the lock.
 1787          */
 1788         if (error == 0)
 1789                 return (0);
 1790 
 1791         /*
 1792          * Interlock was dropped by the call in _vn_lock.
 1793          */
 1794         flags &= ~LK_INTERLOCK;
 1795         do {
 1796                 error = VOP_LOCK1(vp, flags, file, line);
 1797         } while (error != 0);
 1798         return (0);
 1799 }
 1800 
 1801 int
 1802 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
 1803 {
 1804         int error;
 1805 
 1806         VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
 1807             ("vn_lock: no locktype (%d passed)", flags));
 1808         VNPASS(vp->v_holdcnt > 0, vp);
 1809         error = VOP_LOCK1(vp, flags, file, line);
 1810         if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
 1811                 return (_vn_lock_fallback(vp, flags, file, line, error));
 1812         return (0);
 1813 }
 1814 
 1815 /*
 1816  * File table vnode close routine.
 1817  */
 1818 static int
 1819 vn_closefile(struct file *fp, struct thread *td)
 1820 {
 1821         struct vnode *vp;
 1822         struct flock lf;
 1823         int error;
 1824         bool ref;
 1825 
 1826         vp = fp->f_vnode;
 1827         fp->f_ops = &badfileops;
 1828         ref = (fp->f_flag & FHASLOCK) != 0;
 1829 
 1830         error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
 1831 
 1832         if (__predict_false(ref)) {
 1833                 lf.l_whence = SEEK_SET;
 1834                 lf.l_start = 0;
 1835                 lf.l_len = 0;
 1836                 lf.l_type = F_UNLCK;
 1837                 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
 1838                 vrele(vp);
 1839         }
 1840         return (error);
 1841 }
 1842 
 1843 /*
 1844  * Preparing to start a filesystem write operation. If the operation is
 1845  * permitted, then we bump the count of operations in progress and
 1846  * proceed. If a suspend request is in progress, we wait until the
 1847  * suspension is over, and then proceed.
 1848  */
 1849 static int
 1850 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
 1851 {
 1852         struct mount_pcpu *mpcpu;
 1853         int error, mflags;
 1854 
 1855         if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
 1856             vfs_op_thread_enter(mp, mpcpu)) {
 1857                 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
 1858                 vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1);
 1859                 vfs_op_thread_exit(mp, mpcpu);
 1860                 return (0);
 1861         }
 1862 
 1863         if (mplocked)
 1864                 mtx_assert(MNT_MTX(mp), MA_OWNED);
 1865         else
 1866                 MNT_ILOCK(mp);
 1867 
 1868         error = 0;
 1869 
 1870         /*
 1871          * Check on status of suspension.
 1872          */
 1873         if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
 1874             mp->mnt_susp_owner != curthread) {
 1875                 mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
 1876                     (flags & PCATCH) : 0) | (PUSER - 1);
 1877                 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 1878                         if (flags & V_NOWAIT) {
 1879                                 error = EWOULDBLOCK;
 1880                                 goto unlock;
 1881                         }
 1882                         error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
 1883                             "suspfs", 0);
 1884                         if (error)
 1885                                 goto unlock;
 1886                 }
 1887         }
 1888         if (flags & V_XSLEEP)
 1889                 goto unlock;
 1890         mp->mnt_writeopcount++;
 1891 unlock:
 1892         if (error != 0 || (flags & V_XSLEEP) != 0)
 1893                 MNT_REL(mp);
 1894         MNT_IUNLOCK(mp);
 1895         return (error);
 1896 }
 1897 
 1898 int
 1899 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
 1900 {
 1901         struct mount *mp;
 1902         int error;
 1903 
 1904         KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
 1905             ("V_MNTREF requires mp"));
 1906 
 1907         error = 0;
 1908         /*
 1909          * If a vnode is provided, get and return the mount point that
 1910          * to which it will write.
 1911          */
 1912         if (vp != NULL) {
 1913                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1914                         *mpp = NULL;
 1915                         if (error != EOPNOTSUPP)
 1916                                 return (error);
 1917                         return (0);
 1918                 }
 1919         }
 1920         if ((mp = *mpp) == NULL)
 1921                 return (0);
 1922 
 1923         /*
 1924          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1925          * a vfs_ref().
 1926          * As long as a vnode is not provided we need to acquire a
 1927          * refcount for the provided mountpoint too, in order to
 1928          * emulate a vfs_ref().
 1929          */
 1930         if (vp == NULL && (flags & V_MNTREF) == 0)
 1931                 vfs_ref(mp);
 1932 
 1933         return (vn_start_write_refed(mp, flags, false));
 1934 }
 1935 
 1936 /*
 1937  * Secondary suspension. Used by operations such as vop_inactive
 1938  * routines that are needed by the higher level functions. These
 1939  * are allowed to proceed until all the higher level functions have
 1940  * completed (indicated by mnt_writeopcount dropping to zero). At that
 1941  * time, these operations are halted until the suspension is over.
 1942  */
 1943 int
 1944 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
 1945 {
 1946         struct mount *mp;
 1947         int error;
 1948 
 1949         KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
 1950             ("V_MNTREF requires mp"));
 1951 
 1952  retry:
 1953         if (vp != NULL) {
 1954                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1955                         *mpp = NULL;
 1956                         if (error != EOPNOTSUPP)
 1957                                 return (error);
 1958                         return (0);
 1959                 }
 1960         }
 1961         /*
 1962          * If we are not suspended or have not yet reached suspended
 1963          * mode, then let the operation proceed.
 1964          */
 1965         if ((mp = *mpp) == NULL)
 1966                 return (0);
 1967 
 1968         /*
 1969          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1970          * a vfs_ref().
 1971          * As long as a vnode is not provided we need to acquire a
 1972          * refcount for the provided mountpoint too, in order to
 1973          * emulate a vfs_ref().
 1974          */
 1975         MNT_ILOCK(mp);
 1976         if (vp == NULL && (flags & V_MNTREF) == 0)
 1977                 MNT_REF(mp);
 1978         if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
 1979                 mp->mnt_secondary_writes++;
 1980                 mp->mnt_secondary_accwrites++;
 1981                 MNT_IUNLOCK(mp);
 1982                 return (0);
 1983         }
 1984         if (flags & V_NOWAIT) {
 1985                 MNT_REL(mp);
 1986                 MNT_IUNLOCK(mp);
 1987                 return (EWOULDBLOCK);
 1988         }
 1989         /*
 1990          * Wait for the suspension to finish.
 1991          */
 1992         error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
 1993             ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
 1994             "suspfs", 0);
 1995         vfs_rel(mp);
 1996         if (error == 0)
 1997                 goto retry;
 1998         return (error);
 1999 }
 2000 
 2001 /*
 2002  * Filesystem write operation has completed. If we are suspending and this
 2003  * operation is the last one, notify the suspender that the suspension is
 2004  * now in effect.
 2005  */
 2006 void
 2007 vn_finished_write(struct mount *mp)
 2008 {
 2009         struct mount_pcpu *mpcpu;
 2010         int c;
 2011 
 2012         if (mp == NULL)
 2013                 return;
 2014 
 2015         if (vfs_op_thread_enter(mp, mpcpu)) {
 2016                 vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1);
 2017                 vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
 2018                 vfs_op_thread_exit(mp, mpcpu);
 2019                 return;
 2020         }
 2021 
 2022         MNT_ILOCK(mp);
 2023         vfs_assert_mount_counters(mp);
 2024         MNT_REL(mp);
 2025         c = --mp->mnt_writeopcount;
 2026         if (mp->mnt_vfs_ops == 0) {
 2027                 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
 2028                 MNT_IUNLOCK(mp);
 2029                 return;
 2030         }
 2031         if (c < 0)
 2032                 vfs_dump_mount_counters(mp);
 2033         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
 2034                 wakeup(&mp->mnt_writeopcount);
 2035         MNT_IUNLOCK(mp);
 2036 }
 2037 
 2038 /*
 2039  * Filesystem secondary write operation has completed. If we are
 2040  * suspending and this operation is the last one, notify the suspender
 2041  * that the suspension is now in effect.
 2042  */
 2043 void
 2044 vn_finished_secondary_write(struct mount *mp)
 2045 {
 2046         if (mp == NULL)
 2047                 return;
 2048         MNT_ILOCK(mp);
 2049         MNT_REL(mp);
 2050         mp->mnt_secondary_writes--;
 2051         if (mp->mnt_secondary_writes < 0)
 2052                 panic("vn_finished_secondary_write: neg cnt");
 2053         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
 2054             mp->mnt_secondary_writes <= 0)
 2055                 wakeup(&mp->mnt_secondary_writes);
 2056         MNT_IUNLOCK(mp);
 2057 }
 2058 
 2059 /*
 2060  * Request a filesystem to suspend write operations.
 2061  */
 2062 int
 2063 vfs_write_suspend(struct mount *mp, int flags)
 2064 {
 2065         int error;
 2066 
 2067         vfs_op_enter(mp);
 2068 
 2069         MNT_ILOCK(mp);
 2070         vfs_assert_mount_counters(mp);
 2071         if (mp->mnt_susp_owner == curthread) {
 2072                 vfs_op_exit_locked(mp);
 2073                 MNT_IUNLOCK(mp);
 2074                 return (EALREADY);
 2075         }
 2076         while (mp->mnt_kern_flag & MNTK_SUSPEND)
 2077                 msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
 2078 
 2079         /*
 2080          * Unmount holds a write reference on the mount point.  If we
 2081          * own busy reference and drain for writers, we deadlock with
 2082          * the reference draining in the unmount path.  Callers of
 2083          * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
 2084          * vfs_busy() reference is owned and caller is not in the
 2085          * unmount context.
 2086          */
 2087         if ((flags & VS_SKIP_UNMOUNT) != 0 &&
 2088             (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
 2089                 vfs_op_exit_locked(mp);
 2090                 MNT_IUNLOCK(mp);
 2091                 return (EBUSY);
 2092         }
 2093 
 2094         mp->mnt_kern_flag |= MNTK_SUSPEND;
 2095         mp->mnt_susp_owner = curthread;
 2096         if (mp->mnt_writeopcount > 0)
 2097                 (void) msleep(&mp->mnt_writeopcount, 
 2098                     MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
 2099         else
 2100                 MNT_IUNLOCK(mp);
 2101         if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
 2102                 vfs_write_resume(mp, 0);
 2103                 /* vfs_write_resume does vfs_op_exit() for us */
 2104         }
 2105         return (error);
 2106 }
 2107 
 2108 /*
 2109  * Request a filesystem to resume write operations.
 2110  */
 2111 void
 2112 vfs_write_resume(struct mount *mp, int flags)
 2113 {
 2114 
 2115         MNT_ILOCK(mp);
 2116         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 2117                 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
 2118                 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
 2119                                        MNTK_SUSPENDED);
 2120                 mp->mnt_susp_owner = NULL;
 2121                 wakeup(&mp->mnt_writeopcount);
 2122                 wakeup(&mp->mnt_flag);
 2123                 curthread->td_pflags &= ~TDP_IGNSUSP;
 2124                 if ((flags & VR_START_WRITE) != 0) {
 2125                         MNT_REF(mp);
 2126                         mp->mnt_writeopcount++;
 2127                 }
 2128                 MNT_IUNLOCK(mp);
 2129                 if ((flags & VR_NO_SUSPCLR) == 0)
 2130                         VFS_SUSP_CLEAN(mp);
 2131                 vfs_op_exit(mp);
 2132         } else if ((flags & VR_START_WRITE) != 0) {
 2133                 MNT_REF(mp);
 2134                 vn_start_write_refed(mp, 0, true);
 2135         } else {
 2136                 MNT_IUNLOCK(mp);
 2137         }
 2138 }
 2139 
 2140 /*
 2141  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
 2142  * methods.
 2143  */
 2144 int
 2145 vfs_write_suspend_umnt(struct mount *mp)
 2146 {
 2147         int error;
 2148 
 2149         KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
 2150             ("vfs_write_suspend_umnt: recursed"));
 2151 
 2152         /* dounmount() already called vn_start_write(). */
 2153         for (;;) {
 2154                 vn_finished_write(mp);
 2155                 error = vfs_write_suspend(mp, 0);
 2156                 if (error != 0) {
 2157                         vn_start_write(NULL, &mp, V_WAIT);
 2158                         return (error);
 2159                 }
 2160                 MNT_ILOCK(mp);
 2161                 if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
 2162                         break;
 2163                 MNT_IUNLOCK(mp);
 2164                 vn_start_write(NULL, &mp, V_WAIT);
 2165         }
 2166         mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
 2167         wakeup(&mp->mnt_flag);
 2168         MNT_IUNLOCK(mp);
 2169         curthread->td_pflags |= TDP_IGNSUSP;
 2170         return (0);
 2171 }
 2172 
 2173 /*
 2174  * Implement kqueues for files by translating it to vnode operation.
 2175  */
 2176 static int
 2177 vn_kqfilter(struct file *fp, struct knote *kn)
 2178 {
 2179 
 2180         return (VOP_KQFILTER(fp->f_vnode, kn));
 2181 }
 2182 
 2183 int
 2184 vn_kqfilter_opath(struct file *fp, struct knote *kn)
 2185 {
 2186         if ((fp->f_flag & FKQALLOWED) == 0)
 2187                 return (EBADF);
 2188         return (vn_kqfilter(fp, kn));
 2189 }
 2190 
 2191 /*
 2192  * Simplified in-kernel wrapper calls for extended attribute access.
 2193  * Both calls pass in a NULL credential, authorizing as "kernel" access.
 2194  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
 2195  */
 2196 int
 2197 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
 2198     const char *attrname, int *buflen, char *buf, struct thread *td)
 2199 {
 2200         struct uio      auio;
 2201         struct iovec    iov;
 2202         int     error;
 2203 
 2204         iov.iov_len = *buflen;
 2205         iov.iov_base = buf;
 2206 
 2207         auio.uio_iov = &iov;
 2208         auio.uio_iovcnt = 1;
 2209         auio.uio_rw = UIO_READ;
 2210         auio.uio_segflg = UIO_SYSSPACE;
 2211         auio.uio_td = td;
 2212         auio.uio_offset = 0;
 2213         auio.uio_resid = *buflen;
 2214 
 2215         if ((ioflg & IO_NODELOCKED) == 0)
 2216                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2217 
 2218         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 2219 
 2220         /* authorize attribute retrieval as kernel */
 2221         error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
 2222             td);
 2223 
 2224         if ((ioflg & IO_NODELOCKED) == 0)
 2225                 VOP_UNLOCK(vp);
 2226 
 2227         if (error == 0) {
 2228                 *buflen = *buflen - auio.uio_resid;
 2229         }
 2230 
 2231         return (error);
 2232 }
 2233 
 2234 /*
 2235  * XXX failure mode if partially written?
 2236  */
 2237 int
 2238 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
 2239     const char *attrname, int buflen, char *buf, struct thread *td)
 2240 {
 2241         struct uio      auio;
 2242         struct iovec    iov;
 2243         struct mount    *mp;
 2244         int     error;
 2245 
 2246         iov.iov_len = buflen;
 2247         iov.iov_base = buf;
 2248 
 2249         auio.uio_iov = &iov;
 2250         auio.uio_iovcnt = 1;
 2251         auio.uio_rw = UIO_WRITE;
 2252         auio.uio_segflg = UIO_SYSSPACE;
 2253         auio.uio_td = td;
 2254         auio.uio_offset = 0;
 2255         auio.uio_resid = buflen;
 2256 
 2257         if ((ioflg & IO_NODELOCKED) == 0) {
 2258                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 2259                         return (error);
 2260                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2261         }
 2262 
 2263         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 2264 
 2265         /* authorize attribute setting as kernel */
 2266         error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
 2267 
 2268         if ((ioflg & IO_NODELOCKED) == 0) {
 2269                 vn_finished_write(mp);
 2270                 VOP_UNLOCK(vp);
 2271         }
 2272 
 2273         return (error);
 2274 }
 2275 
 2276 int
 2277 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
 2278     const char *attrname, struct thread *td)
 2279 {
 2280         struct mount    *mp;
 2281         int     error;
 2282 
 2283         if ((ioflg & IO_NODELOCKED) == 0) {
 2284                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 2285                         return (error);
 2286                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2287         }
 2288 
 2289         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 2290 
 2291         /* authorize attribute removal as kernel */
 2292         error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
 2293         if (error == EOPNOTSUPP)
 2294                 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
 2295                     NULL, td);
 2296 
 2297         if ((ioflg & IO_NODELOCKED) == 0) {
 2298                 vn_finished_write(mp);
 2299                 VOP_UNLOCK(vp);
 2300         }
 2301 
 2302         return (error);
 2303 }
 2304 
 2305 static int
 2306 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
 2307     struct vnode **rvp)
 2308 {
 2309 
 2310         return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
 2311 }
 2312 
 2313 int
 2314 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
 2315 {
 2316 
 2317         return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
 2318             lkflags, rvp));
 2319 }
 2320 
 2321 int
 2322 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
 2323     int lkflags, struct vnode **rvp)
 2324 {
 2325         struct mount *mp;
 2326         int ltype, error;
 2327 
 2328         ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
 2329         mp = vp->v_mount;
 2330         ltype = VOP_ISLOCKED(vp);
 2331         KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
 2332             ("vn_vget_ino: vp not locked"));
 2333         error = vfs_busy(mp, MBF_NOWAIT);
 2334         if (error != 0) {
 2335                 vfs_ref(mp);
 2336                 VOP_UNLOCK(vp);
 2337                 error = vfs_busy(mp, 0);
 2338                 vn_lock(vp, ltype | LK_RETRY);
 2339                 vfs_rel(mp);
 2340                 if (error != 0)
 2341                         return (ENOENT);
 2342                 if (VN_IS_DOOMED(vp)) {
 2343                         vfs_unbusy(mp);
 2344                         return (ENOENT);
 2345                 }
 2346         }
 2347         VOP_UNLOCK(vp);
 2348         error = alloc(mp, alloc_arg, lkflags, rvp);
 2349         vfs_unbusy(mp);
 2350         if (error != 0 || *rvp != vp)
 2351                 vn_lock(vp, ltype | LK_RETRY);
 2352         if (VN_IS_DOOMED(vp)) {
 2353                 if (error == 0) {
 2354                         if (*rvp == vp)
 2355                                 vunref(vp);
 2356                         else
 2357                                 vput(*rvp);
 2358                 }
 2359                 error = ENOENT;
 2360         }
 2361         return (error);
 2362 }
 2363 
 2364 static void
 2365 vn_send_sigxfsz(struct proc *p)
 2366 {
 2367         PROC_LOCK(p);
 2368         kern_psignal(p, SIGXFSZ);
 2369         PROC_UNLOCK(p);
 2370 }
 2371 
 2372 int
 2373 vn_rlimit_trunc(u_quad_t size, struct thread *td)
 2374 {
 2375         if (size <= lim_cur(td, RLIMIT_FSIZE))
 2376                 return (0);
 2377         vn_send_sigxfsz(td->td_proc);
 2378         return (EFBIG);
 2379 }
 2380 
 2381 static int
 2382 vn_rlimit_fsizex1(const struct vnode *vp, struct uio *uio, off_t maxfsz,
 2383     bool adj, struct thread *td)
 2384 {
 2385         off_t lim;
 2386         bool ktr_write;
 2387 
 2388         if (vp->v_type != VREG)
 2389                 return (0);
 2390 
 2391         /*
 2392          * Handle file system maximum file size.
 2393          */
 2394         if (maxfsz != 0 && uio->uio_offset + uio->uio_resid > maxfsz) {
 2395                 if (!adj || uio->uio_offset >= maxfsz)
 2396                         return (EFBIG);
 2397                 uio->uio_resid = maxfsz - uio->uio_offset;
 2398         }
 2399 
 2400         /*
 2401          * This is kernel write (e.g. vnode_pager) or accounting
 2402          * write, ignore limit.
 2403          */
 2404         if (td == NULL || (td->td_pflags2 & TDP2_ACCT) != 0)
 2405                 return (0);
 2406 
 2407         /*
 2408          * Calculate file size limit.
 2409          */
 2410         ktr_write = (td->td_pflags & TDP_INKTRACE) != 0;
 2411         lim = __predict_false(ktr_write) ? td->td_ktr_io_lim :
 2412             lim_cur(td, RLIMIT_FSIZE);
 2413 
 2414         /*
 2415          * Is the limit reached?
 2416          */
 2417         if (__predict_true((uoff_t)uio->uio_offset + uio->uio_resid <= lim))
 2418                 return (0);
 2419 
 2420         /*
 2421          * Prepared filesystems can handle writes truncated to the
 2422          * file size limit.
 2423          */
 2424         if (adj && (uoff_t)uio->uio_offset < lim) {
 2425                 uio->uio_resid = lim - (uoff_t)uio->uio_offset;
 2426                 return (0);
 2427         }
 2428 
 2429         if (!ktr_write || ktr_filesize_limit_signal)
 2430                 vn_send_sigxfsz(td->td_proc);
 2431         return (EFBIG);
 2432 }
 2433 
 2434 /*
 2435  * Helper for VOP_WRITE() implementations, the common code to
 2436  * handle maximum supported file size on the filesystem, and
 2437  * RLIMIT_FSIZE, except for special writes from accounting subsystem
 2438  * and ktrace.
 2439  *
 2440  * For maximum file size (maxfsz argument):
 2441  * - return EFBIG if uio_offset is beyond it
 2442  * - otherwise, clamp uio_resid if write would extend file beyond maxfsz.
 2443  *
 2444  * For RLIMIT_FSIZE:
 2445  * - return EFBIG and send SIGXFSZ if uio_offset is beyond the limit
 2446  * - otherwise, clamp uio_resid if write would extend file beyond limit.
 2447  *
 2448  * If clamping occured, the adjustment for uio_resid is stored in
 2449  * *resid_adj, to be re-applied by vn_rlimit_fsizex_res() on return
 2450  * from the VOP.
 2451  */
 2452 int
 2453 vn_rlimit_fsizex(const struct vnode *vp, struct uio *uio, off_t maxfsz,
 2454     ssize_t *resid_adj, struct thread *td)
 2455 {
 2456         ssize_t resid_orig;
 2457         int error;
 2458         bool adj;
 2459 
 2460         resid_orig = uio->uio_resid;
 2461         adj = resid_adj != NULL;
 2462         error = vn_rlimit_fsizex1(vp, uio, maxfsz, adj, td);
 2463         if (adj)
 2464                 *resid_adj = resid_orig - uio->uio_resid;
 2465         return (error);
 2466 }
 2467 
 2468 void
 2469 vn_rlimit_fsizex_res(struct uio *uio, ssize_t resid_adj)
 2470 {
 2471         uio->uio_resid += resid_adj;
 2472 }
 2473 
 2474 int
 2475 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
 2476     struct thread *td)
 2477 {
 2478         return (vn_rlimit_fsizex(vp, __DECONST(struct uio *, uio), 0, NULL,
 2479             td));
 2480 }
 2481 
 2482 int
 2483 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
 2484     struct thread *td)
 2485 {
 2486         struct vnode *vp;
 2487 
 2488         vp = fp->f_vnode;
 2489 #ifdef AUDIT
 2490         vn_lock(vp, LK_SHARED | LK_RETRY);
 2491         AUDIT_ARG_VNODE1(vp);
 2492         VOP_UNLOCK(vp);
 2493 #endif
 2494         return (setfmode(td, active_cred, vp, mode));
 2495 }
 2496 
 2497 int
 2498 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
 2499     struct thread *td)
 2500 {
 2501         struct vnode *vp;
 2502 
 2503         vp = fp->f_vnode;
 2504 #ifdef AUDIT
 2505         vn_lock(vp, LK_SHARED | LK_RETRY);
 2506         AUDIT_ARG_VNODE1(vp);
 2507         VOP_UNLOCK(vp);
 2508 #endif
 2509         return (setfown(td, active_cred, vp, uid, gid));
 2510 }
 2511 
 2512 /*
 2513  * Remove pages in the range ["start", "end") from the vnode's VM object.  If
 2514  * "end" is 0, then the range extends to the end of the object.
 2515  */
 2516 void
 2517 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
 2518 {
 2519         vm_object_t object;
 2520 
 2521         if ((object = vp->v_object) == NULL)
 2522                 return;
 2523         VM_OBJECT_WLOCK(object);
 2524         vm_object_page_remove(object, start, end, 0);
 2525         VM_OBJECT_WUNLOCK(object);
 2526 }
 2527 
 2528 /*
 2529  * Like vn_pages_remove(), but skips invalid pages, which by definition are not
 2530  * mapped into any process' address space.  Filesystems may use this in
 2531  * preference to vn_pages_remove() to avoid blocking on pages busied in
 2532  * preparation for a VOP_GETPAGES.
 2533  */
 2534 void
 2535 vn_pages_remove_valid(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
 2536 {
 2537         vm_object_t object;
 2538 
 2539         if ((object = vp->v_object) == NULL)
 2540                 return;
 2541         VM_OBJECT_WLOCK(object);
 2542         vm_object_page_remove(object, start, end, OBJPR_VALIDONLY);
 2543         VM_OBJECT_WUNLOCK(object);
 2544 }
 2545 
 2546 int
 2547 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
 2548 {
 2549         struct vattr va;
 2550         daddr_t bn, bnp;
 2551         uint64_t bsize;
 2552         off_t noff;
 2553         int error;
 2554 
 2555         KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
 2556             ("Wrong command %lu", cmd));
 2557 
 2558         if (vn_lock(vp, LK_SHARED) != 0)
 2559                 return (EBADF);
 2560         if (vp->v_type != VREG) {
 2561                 error = ENOTTY;
 2562                 goto unlock;
 2563         }
 2564         error = VOP_GETATTR(vp, &va, cred);
 2565         if (error != 0)
 2566                 goto unlock;
 2567         noff = *off;
 2568         if (noff < 0 || noff >= va.va_size) {
 2569                 error = ENXIO;
 2570                 goto unlock;
 2571         }
 2572         bsize = vp->v_mount->mnt_stat.f_iosize;
 2573         for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize -
 2574             noff % bsize) {
 2575                 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
 2576                 if (error == EOPNOTSUPP) {
 2577                         error = ENOTTY;
 2578                         goto unlock;
 2579                 }
 2580                 if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
 2581                     (bnp != -1 && cmd == FIOSEEKDATA)) {
 2582                         noff = bn * bsize;
 2583                         if (noff < *off)
 2584                                 noff = *off;
 2585                         goto unlock;
 2586                 }
 2587         }
 2588         if (noff > va.va_size)
 2589                 noff = va.va_size;
 2590         /* noff == va.va_size. There is an implicit hole at the end of file. */
 2591         if (cmd == FIOSEEKDATA)
 2592                 error = ENXIO;
 2593 unlock:
 2594         VOP_UNLOCK(vp);
 2595         if (error == 0)
 2596                 *off = noff;
 2597         return (error);
 2598 }
 2599 
 2600 int
 2601 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
 2602 {
 2603         struct ucred *cred;
 2604         struct vnode *vp;
 2605         struct vattr vattr;
 2606         off_t foffset, size;
 2607         int error, noneg;
 2608 
 2609         cred = td->td_ucred;
 2610         vp = fp->f_vnode;
 2611         foffset = foffset_lock(fp, 0);
 2612         noneg = (vp->v_type != VCHR);
 2613         error = 0;
 2614         switch (whence) {
 2615         case L_INCR:
 2616                 if (noneg &&
 2617                     (foffset < 0 ||
 2618                     (offset > 0 && foffset > OFF_MAX - offset))) {
 2619                         error = EOVERFLOW;
 2620                         break;
 2621                 }
 2622                 offset += foffset;
 2623                 break;
 2624         case L_XTND:
 2625                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2626                 error = VOP_GETATTR(vp, &vattr, cred);
 2627                 VOP_UNLOCK(vp);
 2628                 if (error)
 2629                         break;
 2630 
 2631                 /*
 2632                  * If the file references a disk device, then fetch
 2633                  * the media size and use that to determine the ending
 2634                  * offset.
 2635                  */
 2636                 if (vattr.va_size == 0 && vp->v_type == VCHR &&
 2637                     fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
 2638                         vattr.va_size = size;
 2639                 if (noneg &&
 2640                     (vattr.va_size > OFF_MAX ||
 2641                     (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
 2642                         error = EOVERFLOW;
 2643                         break;
 2644                 }
 2645                 offset += vattr.va_size;
 2646                 break;
 2647         case L_SET:
 2648                 break;
 2649         case SEEK_DATA:
 2650                 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
 2651                 if (error == ENOTTY)
 2652                         error = EINVAL;
 2653                 break;
 2654         case SEEK_HOLE:
 2655                 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
 2656                 if (error == ENOTTY)
 2657                         error = EINVAL;
 2658                 break;
 2659         default:
 2660                 error = EINVAL;
 2661         }
 2662         if (error == 0 && noneg && offset < 0)
 2663                 error = EINVAL;
 2664         if (error != 0)
 2665                 goto drop;
 2666         VFS_KNOTE_UNLOCKED(vp, 0);
 2667         td->td_uretoff.tdu_off = offset;
 2668 drop:
 2669         foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
 2670         return (error);
 2671 }
 2672 
 2673 int
 2674 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
 2675     struct thread *td)
 2676 {
 2677         int error;
 2678 
 2679         /*
 2680          * Grant permission if the caller is the owner of the file, or
 2681          * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
 2682          * on the file.  If the time pointer is null, then write
 2683          * permission on the file is also sufficient.
 2684          *
 2685          * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
 2686          * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
 2687          * will be allowed to set the times [..] to the current
 2688          * server time.
 2689          */
 2690         error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
 2691         if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
 2692                 error = VOP_ACCESS(vp, VWRITE, cred, td);
 2693         return (error);
 2694 }
 2695 
 2696 int
 2697 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
 2698 {
 2699         struct vnode *vp;
 2700         int error;
 2701 
 2702         if (fp->f_type == DTYPE_FIFO)
 2703                 kif->kf_type = KF_TYPE_FIFO;
 2704         else
 2705                 kif->kf_type = KF_TYPE_VNODE;
 2706         vp = fp->f_vnode;
 2707         vref(vp);
 2708         FILEDESC_SUNLOCK(fdp);
 2709         error = vn_fill_kinfo_vnode(vp, kif);
 2710         vrele(vp);
 2711         FILEDESC_SLOCK(fdp);
 2712         return (error);
 2713 }
 2714 
 2715 static inline void
 2716 vn_fill_junk(struct kinfo_file *kif)
 2717 {
 2718         size_t len, olen;
 2719 
 2720         /*
 2721          * Simulate vn_fullpath returning changing values for a given
 2722          * vp during e.g. coredump.
 2723          */
 2724         len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
 2725         olen = strlen(kif->kf_path);
 2726         if (len < olen)
 2727                 strcpy(&kif->kf_path[len - 1], "$");
 2728         else
 2729                 for (; olen < len; olen++)
 2730                         strcpy(&kif->kf_path[olen], "A");
 2731 }
 2732 
 2733 int
 2734 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
 2735 {
 2736         struct vattr va;
 2737         char *fullpath, *freepath;
 2738         int error;
 2739 
 2740         kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
 2741         freepath = NULL;
 2742         fullpath = "-";
 2743         error = vn_fullpath(vp, &fullpath, &freepath);
 2744         if (error == 0) {
 2745                 strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
 2746         }
 2747         if (freepath != NULL)
 2748                 free(freepath, M_TEMP);
 2749 
 2750         KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
 2751                 vn_fill_junk(kif);
 2752         );
 2753 
 2754         /*
 2755          * Retrieve vnode attributes.
 2756          */
 2757         va.va_fsid = VNOVAL;
 2758         va.va_rdev = NODEV;
 2759         vn_lock(vp, LK_SHARED | LK_RETRY);
 2760         error = VOP_GETATTR(vp, &va, curthread->td_ucred);
 2761         VOP_UNLOCK(vp);
 2762         if (error != 0)
 2763                 return (error);
 2764         if (va.va_fsid != VNOVAL)
 2765                 kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
 2766         else
 2767                 kif->kf_un.kf_file.kf_file_fsid =
 2768                     vp->v_mount->mnt_stat.f_fsid.val[0];
 2769         kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
 2770             kif->kf_un.kf_file.kf_file_fsid; /* truncate */
 2771         kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
 2772         kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
 2773         kif->kf_un.kf_file.kf_file_size = va.va_size;
 2774         kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
 2775         kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
 2776             kif->kf_un.kf_file.kf_file_rdev; /* truncate */
 2777         return (0);
 2778 }
 2779 
 2780 int
 2781 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
 2782     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
 2783     struct thread *td)
 2784 {
 2785 #ifdef HWPMC_HOOKS
 2786         struct pmckern_map_in pkm;
 2787 #endif
 2788         struct mount *mp;
 2789         struct vnode *vp;
 2790         vm_object_t object;
 2791         vm_prot_t maxprot;
 2792         boolean_t writecounted;
 2793         int error;
 2794 
 2795 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
 2796     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
 2797         /*
 2798          * POSIX shared-memory objects are defined to have
 2799          * kernel persistence, and are not defined to support
 2800          * read(2)/write(2) -- or even open(2).  Thus, we can
 2801          * use MAP_ASYNC to trade on-disk coherence for speed.
 2802          * The shm_open(3) library routine turns on the FPOSIXSHM
 2803          * flag to request this behavior.
 2804          */
 2805         if ((fp->f_flag & FPOSIXSHM) != 0)
 2806                 flags |= MAP_NOSYNC;
 2807 #endif
 2808         vp = fp->f_vnode;
 2809 
 2810         /*
 2811          * Ensure that file and memory protections are
 2812          * compatible.  Note that we only worry about
 2813          * writability if mapping is shared; in this case,
 2814          * current and max prot are dictated by the open file.
 2815          * XXX use the vnode instead?  Problem is: what
 2816          * credentials do we use for determination? What if
 2817          * proc does a setuid?
 2818          */
 2819         mp = vp->v_mount;
 2820         if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
 2821                 maxprot = VM_PROT_NONE;
 2822                 if ((prot & VM_PROT_EXECUTE) != 0)
 2823                         return (EACCES);
 2824         } else
 2825                 maxprot = VM_PROT_EXECUTE;
 2826         if ((fp->f_flag & FREAD) != 0)
 2827                 maxprot |= VM_PROT_READ;
 2828         else if ((prot & VM_PROT_READ) != 0)
 2829                 return (EACCES);
 2830 
 2831         /*
 2832          * If we are sharing potential changes via MAP_SHARED and we
 2833          * are trying to get write permission although we opened it
 2834          * without asking for it, bail out.
 2835          */
 2836         if ((flags & MAP_SHARED) != 0) {
 2837                 if ((fp->f_flag & FWRITE) != 0)
 2838                         maxprot |= VM_PROT_WRITE;
 2839                 else if ((prot & VM_PROT_WRITE) != 0)
 2840                         return (EACCES);
 2841         } else {
 2842                 maxprot |= VM_PROT_WRITE;
 2843                 cap_maxprot |= VM_PROT_WRITE;
 2844         }
 2845         maxprot &= cap_maxprot;
 2846 
 2847         /*
 2848          * For regular files and shared memory, POSIX requires that
 2849          * the value of foff be a legitimate offset within the data
 2850          * object.  In particular, negative offsets are invalid.
 2851          * Blocking negative offsets and overflows here avoids
 2852          * possible wraparound or user-level access into reserved
 2853          * ranges of the data object later.  In contrast, POSIX does
 2854          * not dictate how offsets are used by device drivers, so in
 2855          * the case of a device mapping a negative offset is passed
 2856          * on.
 2857          */
 2858         if (
 2859 #ifdef _LP64
 2860             size > OFF_MAX ||
 2861 #endif
 2862             foff > OFF_MAX - size)
 2863                 return (EINVAL);
 2864 
 2865         writecounted = FALSE;
 2866         error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
 2867             &foff, &object, &writecounted);
 2868         if (error != 0)
 2869                 return (error);
 2870         error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
 2871             foff, writecounted, td);
 2872         if (error != 0) {
 2873                 /*
 2874                  * If this mapping was accounted for in the vnode's
 2875                  * writecount, then undo that now.
 2876                  */
 2877                 if (writecounted)
 2878                         vm_pager_release_writecount(object, 0, size);
 2879                 vm_object_deallocate(object);
 2880         }
 2881 #ifdef HWPMC_HOOKS
 2882         /* Inform hwpmc(4) if an executable is being mapped. */
 2883         if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
 2884                 if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
 2885                         pkm.pm_file = vp;
 2886                         pkm.pm_address = (uintptr_t) *addr;
 2887                         PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
 2888                 }
 2889         }
 2890 #endif
 2891         return (error);
 2892 }
 2893 
 2894 void
 2895 vn_fsid(struct vnode *vp, struct vattr *va)
 2896 {
 2897         fsid_t *f;
 2898 
 2899         f = &vp->v_mount->mnt_stat.f_fsid;
 2900         va->va_fsid = (uint32_t)f->val[1];
 2901         va->va_fsid <<= sizeof(f->val[1]) * NBBY;
 2902         va->va_fsid += (uint32_t)f->val[0];
 2903 }
 2904 
 2905 int
 2906 vn_fsync_buf(struct vnode *vp, int waitfor)
 2907 {
 2908         struct buf *bp, *nbp;
 2909         struct bufobj *bo;
 2910         struct mount *mp;
 2911         int error, maxretry;
 2912 
 2913         error = 0;
 2914         maxretry = 10000;     /* large, arbitrarily chosen */
 2915         mp = NULL;
 2916         if (vp->v_type == VCHR) {
 2917                 VI_LOCK(vp);
 2918                 mp = vp->v_rdev->si_mountpt;
 2919                 VI_UNLOCK(vp);
 2920         }
 2921         bo = &vp->v_bufobj;
 2922         BO_LOCK(bo);
 2923 loop1:
 2924         /*
 2925          * MARK/SCAN initialization to avoid infinite loops.
 2926          */
 2927         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
 2928                 bp->b_vflags &= ~BV_SCANNED;
 2929                 bp->b_error = 0;
 2930         }
 2931 
 2932         /*
 2933          * Flush all dirty buffers associated with a vnode.
 2934          */
 2935 loop2:
 2936         TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
 2937                 if ((bp->b_vflags & BV_SCANNED) != 0)
 2938                         continue;
 2939                 bp->b_vflags |= BV_SCANNED;
 2940                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
 2941                         if (waitfor != MNT_WAIT)
 2942                                 continue;
 2943                         if (BUF_LOCK(bp,
 2944                             LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
 2945                             BO_LOCKPTR(bo)) != 0) {
 2946                                 BO_LOCK(bo);
 2947                                 goto loop1;
 2948                         }
 2949                         BO_LOCK(bo);
 2950                 }
 2951                 BO_UNLOCK(bo);
 2952                 KASSERT(bp->b_bufobj == bo,
 2953                     ("bp %p wrong b_bufobj %p should be %p",
 2954                     bp, bp->b_bufobj, bo));
 2955                 if ((bp->b_flags & B_DELWRI) == 0)
 2956                         panic("fsync: not dirty");
 2957                 if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
 2958                         vfs_bio_awrite(bp);
 2959                 } else {
 2960                         bremfree(bp);
 2961                         bawrite(bp);
 2962                 }
 2963                 if (maxretry < 1000)
 2964                         pause("dirty", hz < 1000 ? 1 : hz / 1000);
 2965                 BO_LOCK(bo);
 2966                 goto loop2;
 2967         }
 2968 
 2969         /*
 2970          * If synchronous the caller expects us to completely resolve all
 2971          * dirty buffers in the system.  Wait for in-progress I/O to
 2972          * complete (which could include background bitmap writes), then
 2973          * retry if dirty blocks still exist.
 2974          */
 2975         if (waitfor == MNT_WAIT) {
 2976                 bufobj_wwait(bo, 0, 0);
 2977                 if (bo->bo_dirty.bv_cnt > 0) {
 2978                         /*
 2979                          * If we are unable to write any of these buffers
 2980                          * then we fail now rather than trying endlessly
 2981                          * to write them out.
 2982                          */
 2983                         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
 2984                                 if ((error = bp->b_error) != 0)
 2985                                         break;
 2986                         if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
 2987                             (error == 0 && --maxretry >= 0))
 2988                                 goto loop1;
 2989                         if (error == 0)
 2990                                 error = EAGAIN;
 2991                 }
 2992         }
 2993         BO_UNLOCK(bo);
 2994         if (error != 0)
 2995                 vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
 2996 
 2997         return (error);
 2998 }
 2999 
 3000 /*
 3001  * Copies a byte range from invp to outvp.  Calls VOP_COPY_FILE_RANGE()
 3002  * or vn_generic_copy_file_range() after rangelocking the byte ranges,
 3003  * to do the actual copy.
 3004  * vn_generic_copy_file_range() is factored out, so it can be called
 3005  * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
 3006  * different file systems.
 3007  */
 3008 int
 3009 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
 3010     off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
 3011     struct ucred *outcred, struct thread *fsize_td)
 3012 {
 3013         int error;
 3014         size_t len;
 3015         uint64_t uval;
 3016 
 3017         len = *lenp;
 3018         *lenp = 0;              /* For error returns. */
 3019         error = 0;
 3020 
 3021         /* Do some sanity checks on the arguments. */
 3022         if (invp->v_type == VDIR || outvp->v_type == VDIR)
 3023                 error = EISDIR;
 3024         else if (*inoffp < 0 || *outoffp < 0 ||
 3025             invp->v_type != VREG || outvp->v_type != VREG)
 3026                 error = EINVAL;
 3027         if (error != 0)
 3028                 goto out;
 3029 
 3030         /* Ensure offset + len does not wrap around. */
 3031         uval = *inoffp;
 3032         uval += len;
 3033         if (uval > INT64_MAX)
 3034                 len = INT64_MAX - *inoffp;
 3035         uval = *outoffp;
 3036         uval += len;
 3037         if (uval > INT64_MAX)
 3038                 len = INT64_MAX - *outoffp;
 3039         if (len == 0)
 3040                 goto out;
 3041 
 3042         /*
 3043          * If the two vnode are for the same file system, call
 3044          * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
 3045          * which can handle copies across multiple file systems.
 3046          */
 3047         *lenp = len;
 3048         if (invp->v_mount == outvp->v_mount)
 3049                 error = VOP_COPY_FILE_RANGE(invp, inoffp, outvp, outoffp,
 3050                     lenp, flags, incred, outcred, fsize_td);
 3051         else
 3052                 error = vn_generic_copy_file_range(invp, inoffp, outvp,
 3053                     outoffp, lenp, flags, incred, outcred, fsize_td);
 3054 out:
 3055         return (error);
 3056 }
 3057 
 3058 /*
 3059  * Test len bytes of data starting at dat for all bytes == 0.
 3060  * Return true if all bytes are zero, false otherwise.
 3061  * Expects dat to be well aligned.
 3062  */
 3063 static bool
 3064 mem_iszero(void *dat, int len)
 3065 {
 3066         int i;
 3067         const u_int *p;
 3068         const char *cp;
 3069 
 3070         for (p = dat; len > 0; len -= sizeof(*p), p++) {
 3071                 if (len >= sizeof(*p)) {
 3072                         if (*p != 0)
 3073                                 return (false);
 3074                 } else {
 3075                         cp = (const char *)p;
 3076                         for (i = 0; i < len; i++, cp++)
 3077                                 if (*cp != '\0')
 3078                                         return (false);
 3079                 }
 3080         }
 3081         return (true);
 3082 }
 3083 
 3084 /*
 3085  * Look for a hole in the output file and, if found, adjust *outoffp
 3086  * and *xferp to skip past the hole.
 3087  * *xferp is the entire hole length to be written and xfer2 is how many bytes
 3088  * to be written as 0's upon return.
 3089  */
 3090 static off_t
 3091 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
 3092     off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
 3093 {
 3094         int error;
 3095         off_t delta;
 3096 
 3097         if (*holeoffp == 0 || *holeoffp <= *outoffp) {
 3098                 *dataoffp = *outoffp;
 3099                 error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
 3100                     curthread);
 3101                 if (error == 0) {
 3102                         *holeoffp = *dataoffp;
 3103                         error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
 3104                             curthread);
 3105                 }
 3106                 if (error != 0 || *holeoffp == *dataoffp) {
 3107                         /*
 3108                          * Since outvp is unlocked, it may be possible for
 3109                          * another thread to do a truncate(), lseek(), write()
 3110                          * creating a hole at startoff between the above
 3111                          * VOP_IOCTL() calls, if the other thread does not do
 3112                          * rangelocking.
 3113                          * If that happens, *holeoffp == *dataoffp and finding
 3114                          * the hole has failed, so disable vn_skip_hole().
 3115                          */
 3116                         *holeoffp = -1; /* Disable use of vn_skip_hole(). */
 3117                         return (xfer2);
 3118                 }
 3119                 KASSERT(*dataoffp >= *outoffp,
 3120                     ("vn_skip_hole: dataoff=%jd < outoff=%jd",
 3121                     (intmax_t)*dataoffp, (intmax_t)*outoffp));
 3122                 KASSERT(*holeoffp > *dataoffp,
 3123                     ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
 3124                     (intmax_t)*holeoffp, (intmax_t)*dataoffp));
 3125         }
 3126 
 3127         /*
 3128          * If there is a hole before the data starts, advance *outoffp and
 3129          * *xferp past the hole.
 3130          */
 3131         if (*dataoffp > *outoffp) {
 3132                 delta = *dataoffp - *outoffp;
 3133                 if (delta >= *xferp) {
 3134                         /* Entire *xferp is a hole. */
 3135                         *outoffp += *xferp;
 3136                         *xferp = 0;
 3137                         return (0);
 3138                 }
 3139                 *xferp -= delta;
 3140                 *outoffp += delta;
 3141                 xfer2 = MIN(xfer2, *xferp);
 3142         }
 3143 
 3144         /*
 3145          * If a hole starts before the end of this xfer2, reduce this xfer2 so
 3146          * that the write ends at the start of the hole.
 3147          * *holeoffp should always be greater than *outoffp, but for the
 3148          * non-INVARIANTS case, check this to make sure xfer2 remains a sane
 3149          * value.
 3150          */
 3151         if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
 3152                 xfer2 = *holeoffp - *outoffp;
 3153         return (xfer2);
 3154 }
 3155 
 3156 /*
 3157  * Write an xfer sized chunk to outvp in blksize blocks from dat.
 3158  * dat is a maximum of blksize in length and can be written repeatedly in
 3159  * the chunk.
 3160  * If growfile == true, just grow the file via vn_truncate_locked() instead
 3161  * of doing actual writes.
 3162  * If checkhole == true, a hole is being punched, so skip over any hole
 3163  * already in the output file.
 3164  */
 3165 static int
 3166 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
 3167     u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
 3168 {
 3169         struct mount *mp;
 3170         off_t dataoff, holeoff, xfer2;
 3171         int error;
 3172 
 3173         /*
 3174          * Loop around doing writes of blksize until write has been completed.
 3175          * Lock/unlock on each loop iteration so that a bwillwrite() can be
 3176          * done for each iteration, since the xfer argument can be very
 3177          * large if there is a large hole to punch in the output file.
 3178          */
 3179         error = 0;
 3180         holeoff = 0;
 3181         do {
 3182                 xfer2 = MIN(xfer, blksize);
 3183                 if (checkhole) {
 3184                         /*
 3185                          * Punching a hole.  Skip writing if there is
 3186                          * already a hole in the output file.
 3187                          */
 3188                         xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
 3189                             &dataoff, &holeoff, cred);
 3190                         if (xfer == 0)
 3191                                 break;
 3192                         if (holeoff < 0)
 3193                                 checkhole = false;
 3194                         KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
 3195                             (intmax_t)xfer2));
 3196                 }
 3197                 bwillwrite();
 3198                 mp = NULL;
 3199                 error = vn_start_write(outvp, &mp, V_WAIT);
 3200                 if (error != 0)
 3201                         break;
 3202                 if (growfile) {
 3203                         error = vn_lock(outvp, LK_EXCLUSIVE);
 3204                         if (error == 0) {
 3205                                 error = vn_truncate_locked(outvp, outoff + xfer,
 3206                                     false, cred);
 3207                                 VOP_UNLOCK(outvp);
 3208                         }
 3209                 } else {
 3210                         error = vn_lock(outvp, vn_lktype_write(mp, outvp));
 3211                         if (error == 0) {
 3212                                 error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
 3213                                     outoff, UIO_SYSSPACE, IO_NODELOCKED,
 3214                                     curthread->td_ucred, cred, NULL, curthread);
 3215                                 outoff += xfer2;
 3216                                 xfer -= xfer2;
 3217                                 VOP_UNLOCK(outvp);
 3218                         }
 3219                 }
 3220                 if (mp != NULL)
 3221                         vn_finished_write(mp);
 3222         } while (!growfile && xfer > 0 && error == 0);
 3223         return (error);
 3224 }
 3225 
 3226 /*
 3227  * Copy a byte range of one file to another.  This function can handle the
 3228  * case where invp and outvp are on different file systems.
 3229  * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
 3230  * is no better file system specific way to do it.
 3231  */
 3232 int
 3233 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
 3234     struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
 3235     struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
 3236 {
 3237         struct vattr va, inva;
 3238         struct mount *mp;
 3239         off_t startoff, endoff, xfer, xfer2;
 3240         u_long blksize;
 3241         int error, interrupted;
 3242         bool cantseek, readzeros, eof, lastblock, holetoeof;
 3243         ssize_t aresid, r = 0;
 3244         size_t copylen, len, savlen;
 3245         char *dat;
 3246         long holein, holeout;
 3247         struct timespec curts, endts;
 3248 
 3249         holein = holeout = 0;
 3250         savlen = len = *lenp;
 3251         error = 0;
 3252         interrupted = 0;
 3253         dat = NULL;
 3254 
 3255         error = vn_lock(invp, LK_SHARED);
 3256         if (error != 0)
 3257                 goto out;
 3258         if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
 3259                 holein = 0;
 3260         if (holein > 0)
 3261                 error = VOP_GETATTR(invp, &inva, incred);
 3262         VOP_UNLOCK(invp);
 3263         if (error != 0)
 3264                 goto out;
 3265 
 3266         mp = NULL;
 3267         error = vn_start_write(outvp, &mp, V_WAIT);
 3268         if (error == 0)
 3269                 error = vn_lock(outvp, LK_EXCLUSIVE);
 3270         if (error == 0) {
 3271                 /*
 3272                  * If fsize_td != NULL, do a vn_rlimit_fsizex() call,
 3273                  * now that outvp is locked.
 3274                  */
 3275                 if (fsize_td != NULL) {
 3276                         struct uio io;
 3277 
 3278                         io.uio_offset = *outoffp;
 3279                         io.uio_resid = len;
 3280                         error = vn_rlimit_fsizex(outvp, &io, 0, &r, fsize_td);
 3281                         len = savlen = io.uio_resid;
 3282                         /*
 3283                          * No need to call vn_rlimit_fsizex_res before return,
 3284                          * since the uio is local.
 3285                          */
 3286                 }
 3287                 if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
 3288                         holeout = 0;
 3289                 /*
 3290                  * Holes that are past EOF do not need to be written as a block
 3291                  * of zero bytes.  So, truncate the output file as far as
 3292                  * possible and then use va.va_size to decide if writing 0
 3293                  * bytes is necessary in the loop below.
 3294                  */
 3295                 if (error == 0)
 3296                         error = VOP_GETATTR(outvp, &va, outcred);
 3297                 if (error == 0 && va.va_size > *outoffp && va.va_size <=
 3298                     *outoffp + len) {
 3299 #ifdef MAC
 3300                         error = mac_vnode_check_write(curthread->td_ucred,
 3301                             outcred, outvp);
 3302                         if (error == 0)
 3303 #endif
 3304                                 error = vn_truncate_locked(outvp, *outoffp,
 3305                                     false, outcred);
 3306                         if (error == 0)
 3307                                 va.va_size = *outoffp;
 3308                 }
 3309                 VOP_UNLOCK(outvp);
 3310         }
 3311         if (mp != NULL)
 3312                 vn_finished_write(mp);
 3313         if (error != 0)
 3314                 goto out;
 3315 
 3316         if (holein == 0 && holeout > 0) {
 3317                 /*
 3318                  * For this special case, the input data will be scanned
 3319                  * for blocks of all 0 bytes.  For these blocks, the
 3320                  * write can be skipped for the output file to create
 3321                  * an unallocated region.
 3322                  * Therefore, use the appropriate size for the output file.
 3323                  */
 3324                 blksize = holeout;
 3325                 if (blksize <= 512) {
 3326                         /*
 3327                          * Use f_iosize, since ZFS reports a _PC_MIN_HOLE_SIZE
 3328                          * of 512, although it actually only creates
 3329                          * unallocated regions for blocks >= f_iosize.
 3330                          */
 3331                         blksize = outvp->v_mount->mnt_stat.f_iosize;
 3332                 }
 3333         } else {
 3334                 /*
 3335                  * Use the larger of the two f_iosize values.  If they are
 3336                  * not the same size, one will normally be an exact multiple of
 3337                  * the other, since they are both likely to be a power of 2.
 3338                  */
 3339                 blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
 3340                     outvp->v_mount->mnt_stat.f_iosize);
 3341         }
 3342 
 3343         /* Clip to sane limits. */
 3344         if (blksize < 4096)
 3345                 blksize = 4096;
 3346         else if (blksize > maxphys)
 3347                 blksize = maxphys;
 3348         dat = malloc(blksize, M_TEMP, M_WAITOK);
 3349 
 3350         /*
 3351          * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
 3352          * to find holes.  Otherwise, just scan the read block for all 0s
 3353          * in the inner loop where the data copying is done.
 3354          * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
 3355          * support holes on the server, but do not support FIOSEEKHOLE.
 3356          * The kernel flag COPY_FILE_RANGE_TIMEO1SEC is used to indicate
 3357          * that this function should return after 1second with a partial
 3358          * completion.
 3359          */
 3360         if ((flags & COPY_FILE_RANGE_TIMEO1SEC) != 0) {
 3361                 getnanouptime(&endts);
 3362                 endts.tv_sec++;
 3363         } else
 3364                 timespecclear(&endts);
 3365         holetoeof = eof = false;
 3366         while (len > 0 && error == 0 && !eof && interrupted == 0) {
 3367                 endoff = 0;                     /* To shut up compilers. */
 3368                 cantseek = true;
 3369                 startoff = *inoffp;
 3370                 copylen = len;
 3371 
 3372                 /*
 3373                  * Find the next data area.  If there is just a hole to EOF,
 3374                  * FIOSEEKDATA should fail with ENXIO.
 3375                  * (I do not know if any file system will report a hole to
 3376                  *  EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
 3377                  *  will fail for those file systems.)
 3378                  *
 3379                  * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
 3380                  * the code just falls through to the inner copy loop.
 3381                  */
 3382                 error = EINVAL;
 3383                 if (holein > 0) {
 3384                         error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
 3385                             incred, curthread);
 3386                         if (error == ENXIO) {
 3387                                 startoff = endoff = inva.va_size;
 3388                                 eof = holetoeof = true;
 3389                                 error = 0;
 3390                         }
 3391                 }
 3392                 if (error == 0 && !holetoeof) {
 3393                         endoff = startoff;
 3394                         error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
 3395                             incred, curthread);
 3396                         /*
 3397                          * Since invp is unlocked, it may be possible for
 3398                          * another thread to do a truncate(), lseek(), write()
 3399                          * creating a hole at startoff between the above
 3400                          * VOP_IOCTL() calls, if the other thread does not do
 3401                          * rangelocking.
 3402                          * If that happens, startoff == endoff and finding
 3403                          * the hole has failed, so set an error.
 3404                          */
 3405                         if (error == 0 && startoff == endoff)
 3406                                 error = EINVAL; /* Any error. Reset to 0. */
 3407                 }
 3408                 if (error == 0) {
 3409                         if (startoff > *inoffp) {
 3410                                 /* Found hole before data block. */
 3411                                 xfer = MIN(startoff - *inoffp, len);
 3412                                 if (*outoffp < va.va_size) {
 3413                                         /* Must write 0s to punch hole. */
 3414                                         xfer2 = MIN(va.va_size - *outoffp,
 3415                                             xfer);
 3416                                         memset(dat, 0, MIN(xfer2, blksize));
 3417                                         error = vn_write_outvp(outvp, dat,
 3418                                             *outoffp, xfer2, blksize, false,
 3419                                             holeout > 0, outcred);
 3420                                 }
 3421 
 3422                                 if (error == 0 && *outoffp + xfer >
 3423                                     va.va_size && (xfer == len || holetoeof)) {
 3424                                         /* Grow output file (hole at end). */
 3425                                         error = vn_write_outvp(outvp, dat,
 3426                                             *outoffp, xfer, blksize, true,
 3427                                             false, outcred);
 3428                                 }
 3429                                 if (error == 0) {
 3430                                         *inoffp += xfer;
 3431                                         *outoffp += xfer;
 3432                                         len -= xfer;
 3433                                         if (len < savlen) {
 3434                                                 interrupted = sig_intr();
 3435                                                 if (timespecisset(&endts) &&
 3436                                                     interrupted == 0) {
 3437                                                         getnanouptime(&curts);
 3438                                                         if (timespeccmp(&curts,
 3439                                                             &endts, >=))
 3440                                                                 interrupted =
 3441                                                                     EINTR;
 3442                                                 }
 3443                                         }
 3444                                 }
 3445                         }
 3446                         copylen = MIN(len, endoff - startoff);
 3447                         cantseek = false;
 3448                 } else {
 3449                         cantseek = true;
 3450                         startoff = *inoffp;
 3451                         copylen = len;
 3452                         error = 0;
 3453                 }
 3454 
 3455                 xfer = blksize;
 3456                 if (cantseek) {
 3457                         /*
 3458                          * Set first xfer to end at a block boundary, so that
 3459                          * holes are more likely detected in the loop below via
 3460                          * the for all bytes 0 method.
 3461                          */
 3462                         xfer -= (*inoffp % blksize);
 3463                 }
 3464                 /* Loop copying the data block. */
 3465                 while (copylen > 0 && error == 0 && !eof && interrupted == 0) {
 3466                         if (copylen < xfer)
 3467                                 xfer = copylen;
 3468                         error = vn_lock(invp, LK_SHARED);
 3469                         if (error != 0)
 3470                                 goto out;
 3471                         error = vn_rdwr(UIO_READ, invp, dat, xfer,
 3472                             startoff, UIO_SYSSPACE, IO_NODELOCKED,
 3473                             curthread->td_ucred, incred, &aresid,
 3474                             curthread);
 3475                         VOP_UNLOCK(invp);
 3476                         lastblock = false;
 3477                         if (error == 0 && aresid > 0) {
 3478                                 /* Stop the copy at EOF on the input file. */
 3479                                 xfer -= aresid;
 3480                                 eof = true;
 3481                                 lastblock = true;
 3482                         }
 3483                         if (error == 0) {
 3484                                 /*
 3485                                  * Skip the write for holes past the initial EOF
 3486                                  * of the output file, unless this is the last
 3487                                  * write of the output file at EOF.
 3488                                  */
 3489                                 readzeros = cantseek ? mem_iszero(dat, xfer) :
 3490                                     false;
 3491                                 if (xfer == len)
 3492                                         lastblock = true;
 3493                                 if (!cantseek || *outoffp < va.va_size ||
 3494                                     lastblock || !readzeros)
 3495                                         error = vn_write_outvp(outvp, dat,
 3496                                             *outoffp, xfer, blksize,
 3497                                             readzeros && lastblock &&
 3498                                             *outoffp >= va.va_size, false,
 3499                                             outcred);
 3500                                 if (error == 0) {
 3501                                         *inoffp += xfer;
 3502                                         startoff += xfer;
 3503                                         *outoffp += xfer;
 3504                                         copylen -= xfer;
 3505                                         len -= xfer;
 3506                                         if (len < savlen) {
 3507                                                 interrupted = sig_intr();
 3508                                                 if (timespecisset(&endts) &&
 3509                                                     interrupted == 0) {
 3510                                                         getnanouptime(&curts);
 3511                                                         if (timespeccmp(&curts,
 3512                                                             &endts, >=))
 3513                                                                 interrupted =
 3514                                                                     EINTR;
 3515                                                 }
 3516                                         }
 3517                                 }
 3518                         }
 3519                         xfer = blksize;
 3520                 }
 3521         }
 3522 out:
 3523         *lenp = savlen - len;
 3524         free(dat, M_TEMP);
 3525         return (error);
 3526 }
 3527 
 3528 static int
 3529 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
 3530 {
 3531         struct mount *mp;
 3532         struct vnode *vp;
 3533         off_t olen, ooffset;
 3534         int error;
 3535 #ifdef AUDIT
 3536         int audited_vnode1 = 0;
 3537 #endif
 3538 
 3539         vp = fp->f_vnode;
 3540         if (vp->v_type != VREG)
 3541                 return (ENODEV);
 3542 
 3543         /* Allocating blocks may take a long time, so iterate. */
 3544         for (;;) {
 3545                 olen = len;
 3546                 ooffset = offset;
 3547 
 3548                 bwillwrite();
 3549                 mp = NULL;
 3550                 error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
 3551                 if (error != 0)
 3552                         break;
 3553                 error = vn_lock(vp, LK_EXCLUSIVE);
 3554                 if (error != 0) {
 3555                         vn_finished_write(mp);
 3556                         break;
 3557                 }
 3558 #ifdef AUDIT
 3559                 if (!audited_vnode1) {
 3560                         AUDIT_ARG_VNODE1(vp);
 3561                         audited_vnode1 = 1;
 3562                 }
 3563 #endif
 3564 #ifdef MAC
 3565                 error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
 3566                 if (error == 0)
 3567 #endif
 3568                         error = VOP_ALLOCATE(vp, &offset, &len, 0,
 3569                             td->td_ucred);
 3570                 VOP_UNLOCK(vp);
 3571                 vn_finished_write(mp);
 3572 
 3573                 if (olen + ooffset != offset + len) {
 3574                         panic("offset + len changed from %jx/%jx to %jx/%jx",
 3575                             ooffset, olen, offset, len);
 3576                 }
 3577                 if (error != 0 || len == 0)
 3578                         break;
 3579                 KASSERT(olen > len, ("Iteration did not make progress?"));
 3580                 maybe_yield();
 3581         }
 3582 
 3583         return (error);
 3584 }
 3585 
 3586 static u_long vn_lock_pair_pause_cnt;
 3587 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD,
 3588     &vn_lock_pair_pause_cnt, 0,
 3589     "Count of vn_lock_pair deadlocks");
 3590 
 3591 u_int vn_lock_pair_pause_max;
 3592 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW,
 3593     &vn_lock_pair_pause_max, 0,
 3594     "Max ticks for vn_lock_pair deadlock avoidance sleep");
 3595 
 3596 static void
 3597 vn_lock_pair_pause(const char *wmesg)
 3598 {
 3599         atomic_add_long(&vn_lock_pair_pause_cnt, 1);
 3600         pause(wmesg, prng32_bounded(vn_lock_pair_pause_max));
 3601 }
 3602 
 3603 /*
 3604  * Lock pair of vnodes vp1, vp2, avoiding lock order reversal.
 3605  * vp1_locked indicates whether vp1 is exclusively locked; if not, vp1
 3606  * must be unlocked.  Same for vp2 and vp2_locked.  One of the vnodes
 3607  * can be NULL.
 3608  *
 3609  * The function returns with both vnodes exclusively locked, and
 3610  * guarantees that it does not create lock order reversal with other
 3611  * threads during its execution.  Both vnodes could be unlocked
 3612  * temporary (and reclaimed).
 3613  */
 3614 void
 3615 vn_lock_pair(struct vnode *vp1, bool vp1_locked, struct vnode *vp2,
 3616     bool vp2_locked)
 3617 {
 3618         int error;
 3619 
 3620         if (vp1 == NULL && vp2 == NULL)
 3621                 return;
 3622         if (vp1 != NULL) {
 3623                 if (vp1_locked)
 3624                         ASSERT_VOP_ELOCKED(vp1, "vp1");
 3625                 else
 3626                         ASSERT_VOP_UNLOCKED(vp1, "vp1");
 3627         } else {
 3628                 vp1_locked = true;
 3629         }
 3630         if (vp2 != NULL) {
 3631                 if (vp2_locked)
 3632                         ASSERT_VOP_ELOCKED(vp2, "vp2");
 3633                 else
 3634                         ASSERT_VOP_UNLOCKED(vp2, "vp2");
 3635         } else {
 3636                 vp2_locked = true;
 3637         }
 3638         if (!vp1_locked && !vp2_locked) {
 3639                 vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY);
 3640                 vp1_locked = true;
 3641         }
 3642 
 3643         for (;;) {
 3644                 if (vp1_locked && vp2_locked)
 3645                         break;
 3646                 if (vp1_locked && vp2 != NULL) {
 3647                         if (vp1 != NULL) {
 3648                                 error = VOP_LOCK1(vp2, LK_EXCLUSIVE | LK_NOWAIT,
 3649                                     __FILE__, __LINE__);
 3650                                 if (error == 0)
 3651                                         break;
 3652                                 VOP_UNLOCK(vp1);
 3653                                 vp1_locked = false;
 3654                                 vn_lock_pair_pause("vlp1");
 3655                         }
 3656                         vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY);
 3657                         vp2_locked = true;
 3658                 }
 3659                 if (vp2_locked && vp1 != NULL) {
 3660                         if (vp2 != NULL) {
 3661                                 error = VOP_LOCK1(vp1, LK_EXCLUSIVE | LK_NOWAIT,
 3662                                     __FILE__, __LINE__);
 3663                                 if (error == 0)
 3664                                         break;
 3665                                 VOP_UNLOCK(vp2);
 3666                                 vp2_locked = false;
 3667                                 vn_lock_pair_pause("vlp2");
 3668                         }
 3669                         vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY);
 3670                         vp1_locked = true;
 3671                 }
 3672         }
 3673         if (vp1 != NULL)
 3674                 ASSERT_VOP_ELOCKED(vp1, "vp1 ret");
 3675         if (vp2 != NULL)
 3676                 ASSERT_VOP_ELOCKED(vp2, "vp2 ret");
 3677 }
 3678 
 3679 int
 3680 vn_lktype_write(struct mount *mp, struct vnode *vp)
 3681 {
 3682         if (MNT_SHARED_WRITES(mp) ||
 3683             (mp == NULL && MNT_SHARED_WRITES(vp->v_mount)))
 3684                 return (LK_SHARED);
 3685         return (LK_EXCLUSIVE);
 3686 }

Cache object: 2f5efc3c06f105b1fb30f8a21e773892


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.