The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
   11  * Copyright (c) 2013 The FreeBSD Foundation
   12  *
   13  * Portions of this software were developed by Konstantin Belousov
   14  * under sponsorship from the FreeBSD Foundation.
   15  *
   16  * Redistribution and use in source and binary forms, with or without
   17  * modification, are permitted provided that the following conditions
   18  * are met:
   19  * 1. Redistributions of source code must retain the above copyright
   20  *    notice, this list of conditions and the following disclaimer.
   21  * 2. Redistributions in binary form must reproduce the above copyright
   22  *    notice, this list of conditions and the following disclaimer in the
   23  *    documentation and/or other materials provided with the distribution.
   24  * 4. Neither the name of the University nor the names of its contributors
   25  *    may be used to endorse or promote products derived from this software
   26  *    without specific prior written permission.
   27  *
   28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   38  * SUCH DAMAGE.
   39  *
   40  *      @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94
   41  */
   42 
   43 #include <sys/cdefs.h>
   44 __FBSDID("$FreeBSD: releng/9.2/sys/kern/vfs_vnops.c 251762 2013-06-14 21:56:10Z jhb $");
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/fcntl.h>
   49 #include <sys/file.h>
   50 #include <sys/kdb.h>
   51 #include <sys/stat.h>
   52 #include <sys/priv.h>
   53 #include <sys/proc.h>
   54 #include <sys/limits.h>
   55 #include <sys/lock.h>
   56 #include <sys/mount.h>
   57 #include <sys/mutex.h>
   58 #include <sys/namei.h>
   59 #include <sys/vnode.h>
   60 #include <sys/bio.h>
   61 #include <sys/buf.h>
   62 #include <sys/filio.h>
   63 #include <sys/resourcevar.h>
   64 #include <sys/sx.h>
   65 #include <sys/sysctl.h>
   66 #include <sys/ttycom.h>
   67 #include <sys/conf.h>
   68 #include <sys/syslog.h>
   69 #include <sys/unistd.h>
   70 
   71 #include <security/audit/audit.h>
   72 #include <security/mac/mac_framework.h>
   73 
   74 #include <vm/vm.h>
   75 #include <vm/vm_extern.h>
   76 #include <vm/pmap.h>
   77 #include <vm/vm_map.h>
   78 #include <vm/vm_object.h>
   79 #include <vm/vm_page.h>
   80 
   81 static fo_rdwr_t        vn_read;
   82 static fo_rdwr_t        vn_write;
   83 static fo_rdwr_t        vn_io_fault;
   84 static fo_truncate_t    vn_truncate;
   85 static fo_ioctl_t       vn_ioctl;
   86 static fo_poll_t        vn_poll;
   87 static fo_kqfilter_t    vn_kqfilter;
   88 static fo_stat_t        vn_statfile;
   89 static fo_close_t       vn_closefile;
   90 
   91 struct  fileops vnops = {
   92         .fo_read = vn_io_fault,
   93         .fo_write = vn_io_fault,
   94         .fo_truncate = vn_truncate,
   95         .fo_ioctl = vn_ioctl,
   96         .fo_poll = vn_poll,
   97         .fo_kqfilter = vn_kqfilter,
   98         .fo_stat = vn_statfile,
   99         .fo_close = vn_closefile,
  100         .fo_chmod = vn_chmod,
  101         .fo_chown = vn_chown,
  102         .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
  103 };
  104 
  105 int
  106 vn_open(ndp, flagp, cmode, fp)
  107         struct nameidata *ndp;
  108         int *flagp, cmode;
  109         struct file *fp;
  110 {
  111         struct thread *td = ndp->ni_cnd.cn_thread;
  112 
  113         return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
  114 }
  115 
  116 /*
  117  * Common code for vnode open operations.
  118  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
  119  * 
  120  * Note that this does NOT free nameidata for the successful case,
  121  * due to the NDINIT being done elsewhere.
  122  */
  123 int
  124 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
  125     struct ucred *cred, struct file *fp)
  126 {
  127         struct vnode *vp;
  128         struct mount *mp;
  129         struct thread *td = ndp->ni_cnd.cn_thread;
  130         struct vattr vat;
  131         struct vattr *vap = &vat;
  132         int fmode, error;
  133         accmode_t accmode;
  134         int vfslocked, mpsafe;
  135 
  136         mpsafe = ndp->ni_cnd.cn_flags & MPSAFE;
  137 restart:
  138         vfslocked = 0;
  139         fmode = *flagp;
  140         if (fmode & O_CREAT) {
  141                 ndp->ni_cnd.cn_nameiop = CREATE;
  142                 ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF |
  143                     MPSAFE;
  144                 if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
  145                         ndp->ni_cnd.cn_flags |= FOLLOW;
  146                 if (!(vn_open_flags & VN_OPEN_NOAUDIT))
  147                         ndp->ni_cnd.cn_flags |= AUDITVNODE1;
  148                 bwillwrite();
  149                 if ((error = namei(ndp)) != 0)
  150                         return (error);
  151                 vfslocked = NDHASGIANT(ndp);
  152                 if (!mpsafe)
  153                         ndp->ni_cnd.cn_flags &= ~MPSAFE;
  154                 if (ndp->ni_vp == NULL) {
  155                         VATTR_NULL(vap);
  156                         vap->va_type = VREG;
  157                         vap->va_mode = cmode;
  158                         if (fmode & O_EXCL)
  159                                 vap->va_vaflags |= VA_EXCLUSIVE;
  160                         if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
  161                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  162                                 vput(ndp->ni_dvp);
  163                                 VFS_UNLOCK_GIANT(vfslocked);
  164                                 if ((error = vn_start_write(NULL, &mp,
  165                                     V_XSLEEP | PCATCH)) != 0)
  166                                         return (error);
  167                                 goto restart;
  168                         }
  169 #ifdef MAC
  170                         error = mac_vnode_check_create(cred, ndp->ni_dvp,
  171                             &ndp->ni_cnd, vap);
  172                         if (error == 0)
  173 #endif
  174                                 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
  175                                                    &ndp->ni_cnd, vap);
  176                         vput(ndp->ni_dvp);
  177                         vn_finished_write(mp);
  178                         if (error) {
  179                                 VFS_UNLOCK_GIANT(vfslocked);
  180                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  181                                 return (error);
  182                         }
  183                         fmode &= ~O_TRUNC;
  184                         vp = ndp->ni_vp;
  185                 } else {
  186                         if (ndp->ni_dvp == ndp->ni_vp)
  187                                 vrele(ndp->ni_dvp);
  188                         else
  189                                 vput(ndp->ni_dvp);
  190                         ndp->ni_dvp = NULL;
  191                         vp = ndp->ni_vp;
  192                         if (fmode & O_EXCL) {
  193                                 error = EEXIST;
  194                                 goto bad;
  195                         }
  196                         fmode &= ~O_CREAT;
  197                 }
  198         } else {
  199                 ndp->ni_cnd.cn_nameiop = LOOKUP;
  200                 ndp->ni_cnd.cn_flags = ISOPEN |
  201                     ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) |
  202                     LOCKLEAF | MPSAFE;
  203                 if (!(fmode & FWRITE))
  204                         ndp->ni_cnd.cn_flags |= LOCKSHARED;
  205                 if (!(vn_open_flags & VN_OPEN_NOAUDIT))
  206                         ndp->ni_cnd.cn_flags |= AUDITVNODE1;
  207                 if ((error = namei(ndp)) != 0)
  208                         return (error);
  209                 if (!mpsafe)
  210                         ndp->ni_cnd.cn_flags &= ~MPSAFE;
  211                 vfslocked = NDHASGIANT(ndp);
  212                 vp = ndp->ni_vp;
  213         }
  214         if (vp->v_type == VLNK) {
  215                 error = EMLINK;
  216                 goto bad;
  217         }
  218         if (vp->v_type == VSOCK) {
  219                 error = EOPNOTSUPP;
  220                 goto bad;
  221         }
  222         if (vp->v_type != VDIR && fmode & O_DIRECTORY) {
  223                 error = ENOTDIR;
  224                 goto bad;
  225         }
  226         accmode = 0;
  227         if (fmode & (FWRITE | O_TRUNC)) {
  228                 if (vp->v_type == VDIR) {
  229                         error = EISDIR;
  230                         goto bad;
  231                 }
  232                 accmode |= VWRITE;
  233         }
  234         if (fmode & FREAD)
  235                 accmode |= VREAD;
  236         if (fmode & FEXEC)
  237                 accmode |= VEXEC;
  238         if ((fmode & O_APPEND) && (fmode & FWRITE))
  239                 accmode |= VAPPEND;
  240 #ifdef MAC
  241         error = mac_vnode_check_open(cred, vp, accmode);
  242         if (error)
  243                 goto bad;
  244 #endif
  245         if ((fmode & O_CREAT) == 0) {
  246                 if (accmode & VWRITE) {
  247                         error = vn_writechk(vp);
  248                         if (error)
  249                                 goto bad;
  250                 }
  251                 if (accmode) {
  252                         error = VOP_ACCESS(vp, accmode, cred, td);
  253                         if (error)
  254                                 goto bad;
  255                 }
  256         }
  257         if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
  258                 goto bad;
  259 
  260         if (fmode & FWRITE)
  261                 VOP_ADD_WRITECOUNT(vp, 1);
  262         *flagp = fmode;
  263         ASSERT_VOP_LOCKED(vp, "vn_open_cred");
  264         if (!mpsafe)
  265                 VFS_UNLOCK_GIANT(vfslocked);
  266         return (0);
  267 bad:
  268         NDFREE(ndp, NDF_ONLY_PNBUF);
  269         vput(vp);
  270         VFS_UNLOCK_GIANT(vfslocked);
  271         *flagp = fmode;
  272         ndp->ni_vp = NULL;
  273         return (error);
  274 }
  275 
  276 /*
  277  * Check for write permissions on the specified vnode.
  278  * Prototype text segments cannot be written.
  279  */
  280 int
  281 vn_writechk(vp)
  282         register struct vnode *vp;
  283 {
  284 
  285         ASSERT_VOP_LOCKED(vp, "vn_writechk");
  286         /*
  287          * If there's shared text associated with
  288          * the vnode, try to free it up once.  If
  289          * we fail, we can't allow writing.
  290          */
  291         if (VOP_IS_TEXT(vp))
  292                 return (ETXTBSY);
  293 
  294         return (0);
  295 }
  296 
  297 /*
  298  * Vnode close call
  299  */
  300 int
  301 vn_close(vp, flags, file_cred, td)
  302         register struct vnode *vp;
  303         int flags;
  304         struct ucred *file_cred;
  305         struct thread *td;
  306 {
  307         struct mount *mp;
  308         int error, lock_flags;
  309 
  310         if (!(flags & FWRITE) && vp->v_mount != NULL &&
  311             vp->v_mount->mnt_kern_flag & MNTK_EXTENDED_SHARED)
  312                 lock_flags = LK_SHARED;
  313         else
  314                 lock_flags = LK_EXCLUSIVE;
  315 
  316         VFS_ASSERT_GIANT(vp->v_mount);
  317 
  318         vn_start_write(vp, &mp, V_WAIT);
  319         vn_lock(vp, lock_flags | LK_RETRY);
  320         if (flags & FWRITE) {
  321                 VNASSERT(vp->v_writecount > 0, vp, 
  322                     ("vn_close: negative writecount"));
  323                 VOP_ADD_WRITECOUNT(vp, -1);
  324         }
  325         error = VOP_CLOSE(vp, flags, file_cred, td);
  326         vput(vp);
  327         vn_finished_write(mp);
  328         return (error);
  329 }
  330 
  331 /*
  332  * Heuristic to detect sequential operation.
  333  */
  334 static int
  335 sequential_heuristic(struct uio *uio, struct file *fp)
  336 {
  337 
  338         if (atomic_load_acq_int(&(fp->f_flag)) & FRDAHEAD)
  339                 return (fp->f_seqcount << IO_SEQSHIFT);
  340 
  341         /*
  342          * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
  343          * that the first I/O is normally considered to be slightly
  344          * sequential.  Seeking to offset 0 doesn't change sequentiality
  345          * unless previous seeks have reduced f_seqcount to 0, in which
  346          * case offset 0 is not special.
  347          */
  348         if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
  349             uio->uio_offset == fp->f_nextoff) {
  350                 /*
  351                  * f_seqcount is in units of fixed-size blocks so that it
  352                  * depends mainly on the amount of sequential I/O and not
  353                  * much on the number of sequential I/O's.  The fixed size
  354                  * of 16384 is hard-coded here since it is (not quite) just
  355                  * a magic size that works well here.  This size is more
  356                  * closely related to the best I/O size for real disks than
  357                  * to any block size used by software.
  358                  */
  359                 fp->f_seqcount += howmany(uio->uio_resid, 16384);
  360                 if (fp->f_seqcount > IO_SEQMAX)
  361                         fp->f_seqcount = IO_SEQMAX;
  362                 return (fp->f_seqcount << IO_SEQSHIFT);
  363         }
  364 
  365         /* Not sequential.  Quickly draw-down sequentiality. */
  366         if (fp->f_seqcount > 1)
  367                 fp->f_seqcount = 1;
  368         else
  369                 fp->f_seqcount = 0;
  370         return (0);
  371 }
  372 
  373 /*
  374  * Package up an I/O request on a vnode into a uio and do it.
  375  */
  376 int
  377 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
  378     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
  379     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
  380 {
  381         struct uio auio;
  382         struct iovec aiov;
  383         struct mount *mp;
  384         struct ucred *cred;
  385         void *rl_cookie;
  386         int error, lock_flags;
  387 
  388         VFS_ASSERT_GIANT(vp->v_mount);
  389 
  390         auio.uio_iov = &aiov;
  391         auio.uio_iovcnt = 1;
  392         aiov.iov_base = base;
  393         aiov.iov_len = len;
  394         auio.uio_resid = len;
  395         auio.uio_offset = offset;
  396         auio.uio_segflg = segflg;
  397         auio.uio_rw = rw;
  398         auio.uio_td = td;
  399         error = 0;
  400 
  401         if ((ioflg & IO_NODELOCKED) == 0) {
  402                 if (rw == UIO_READ) {
  403                         rl_cookie = vn_rangelock_rlock(vp, offset,
  404                             offset + len);
  405                 } else {
  406                         rl_cookie = vn_rangelock_wlock(vp, offset,
  407                             offset + len);
  408                 }
  409                 mp = NULL;
  410                 if (rw == UIO_WRITE) { 
  411                         if (vp->v_type != VCHR &&
  412                             (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
  413                             != 0)
  414                                 goto out;
  415                         if (MNT_SHARED_WRITES(mp) ||
  416                             ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
  417                                 lock_flags = LK_SHARED;
  418                         else
  419                                 lock_flags = LK_EXCLUSIVE;
  420                 } else
  421                         lock_flags = LK_SHARED;
  422                 vn_lock(vp, lock_flags | LK_RETRY);
  423         } else
  424                 rl_cookie = NULL;
  425 
  426         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
  427 #ifdef MAC
  428         if ((ioflg & IO_NOMACCHECK) == 0) {
  429                 if (rw == UIO_READ)
  430                         error = mac_vnode_check_read(active_cred, file_cred,
  431                             vp);
  432                 else
  433                         error = mac_vnode_check_write(active_cred, file_cred,
  434                             vp);
  435         }
  436 #endif
  437         if (error == 0) {
  438                 if (file_cred != NULL)
  439                         cred = file_cred;
  440                 else
  441                         cred = active_cred;
  442                 if (rw == UIO_READ)
  443                         error = VOP_READ(vp, &auio, ioflg, cred);
  444                 else
  445                         error = VOP_WRITE(vp, &auio, ioflg, cred);
  446         }
  447         if (aresid)
  448                 *aresid = auio.uio_resid;
  449         else
  450                 if (auio.uio_resid && error == 0)
  451                         error = EIO;
  452         if ((ioflg & IO_NODELOCKED) == 0) {
  453                 VOP_UNLOCK(vp, 0);
  454                 if (mp != NULL)
  455                         vn_finished_write(mp);
  456         }
  457  out:
  458         if (rl_cookie != NULL)
  459                 vn_rangelock_unlock(vp, rl_cookie);
  460         return (error);
  461 }
  462 
  463 /*
  464  * Package up an I/O request on a vnode into a uio and do it.  The I/O
  465  * request is split up into smaller chunks and we try to avoid saturating
  466  * the buffer cache while potentially holding a vnode locked, so we 
  467  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
  468  * to give other processes a chance to lock the vnode (either other processes
  469  * core'ing the same binary, or unrelated processes scanning the directory).
  470  */
  471 int
  472 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
  473     file_cred, aresid, td)
  474         enum uio_rw rw;
  475         struct vnode *vp;
  476         void *base;
  477         size_t len;
  478         off_t offset;
  479         enum uio_seg segflg;
  480         int ioflg;
  481         struct ucred *active_cred;
  482         struct ucred *file_cred;
  483         size_t *aresid;
  484         struct thread *td;
  485 {
  486         int error = 0;
  487         ssize_t iaresid;
  488 
  489         VFS_ASSERT_GIANT(vp->v_mount);
  490 
  491         do {
  492                 int chunk;
  493 
  494                 /*
  495                  * Force `offset' to a multiple of MAXBSIZE except possibly
  496                  * for the first chunk, so that filesystems only need to
  497                  * write full blocks except possibly for the first and last
  498                  * chunks.
  499                  */
  500                 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
  501 
  502                 if (chunk > len)
  503                         chunk = len;
  504                 if (rw != UIO_READ && vp->v_type == VREG)
  505                         bwillwrite();
  506                 iaresid = 0;
  507                 error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
  508                     ioflg, active_cred, file_cred, &iaresid, td);
  509                 len -= chunk;   /* aresid calc already includes length */
  510                 if (error)
  511                         break;
  512                 offset += chunk;
  513                 base = (char *)base + chunk;
  514                 kern_yield(PRI_USER);
  515         } while (len);
  516         if (aresid)
  517                 *aresid = len + iaresid;
  518         return (error);
  519 }
  520 
  521 off_t
  522 foffset_lock(struct file *fp, int flags)
  523 {
  524         struct mtx *mtxp;
  525         off_t res;
  526 
  527         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  528 
  529 #if OFF_MAX <= LONG_MAX
  530         /*
  531          * Caller only wants the current f_offset value.  Assume that
  532          * the long and shorter integer types reads are atomic.
  533          */
  534         if ((flags & FOF_NOLOCK) != 0)
  535                 return (fp->f_offset);
  536 #endif
  537 
  538         /*
  539          * According to McKusick the vn lock was protecting f_offset here.
  540          * It is now protected by the FOFFSET_LOCKED flag.
  541          */
  542         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  543         mtx_lock(mtxp);
  544         if ((flags & FOF_NOLOCK) == 0) {
  545                 while (fp->f_vnread_flags & FOFFSET_LOCKED) {
  546                         fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
  547                         msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
  548                             "vofflock", 0);
  549                 }
  550                 fp->f_vnread_flags |= FOFFSET_LOCKED;
  551         }
  552         res = fp->f_offset;
  553         mtx_unlock(mtxp);
  554         return (res);
  555 }
  556 
  557 void
  558 foffset_unlock(struct file *fp, off_t val, int flags)
  559 {
  560         struct mtx *mtxp;
  561 
  562         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  563 
  564 #if OFF_MAX <= LONG_MAX
  565         if ((flags & FOF_NOLOCK) != 0) {
  566                 if ((flags & FOF_NOUPDATE) == 0)
  567                         fp->f_offset = val;
  568                 if ((flags & FOF_NEXTOFF) != 0)
  569                         fp->f_nextoff = val;
  570                 return;
  571         }
  572 #endif
  573 
  574         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  575         mtx_lock(mtxp);
  576         if ((flags & FOF_NOUPDATE) == 0)
  577                 fp->f_offset = val;
  578         if ((flags & FOF_NEXTOFF) != 0)
  579                 fp->f_nextoff = val;
  580         if ((flags & FOF_NOLOCK) == 0) {
  581                 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
  582                     ("Lost FOFFSET_LOCKED"));
  583                 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
  584                         wakeup(&fp->f_vnread_flags);
  585                 fp->f_vnread_flags = 0;
  586         }
  587         mtx_unlock(mtxp);
  588 }
  589 
  590 void
  591 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
  592 {
  593 
  594         if ((flags & FOF_OFFSET) == 0)
  595                 uio->uio_offset = foffset_lock(fp, flags);
  596 }
  597 
  598 void
  599 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
  600 {
  601 
  602         if ((flags & FOF_OFFSET) == 0)
  603                 foffset_unlock(fp, uio->uio_offset, flags);
  604 }
  605 
  606 static int
  607 get_advice(struct file *fp, struct uio *uio)
  608 {
  609         struct mtx *mtxp;
  610         int ret;
  611 
  612         ret = POSIX_FADV_NORMAL;
  613         if (fp->f_advice == NULL)
  614                 return (ret);
  615 
  616         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  617         mtx_lock(mtxp);
  618         if (uio->uio_offset >= fp->f_advice->fa_start &&
  619             uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
  620                 ret = fp->f_advice->fa_advice;
  621         mtx_unlock(mtxp);
  622         return (ret);
  623 }
  624 
  625 /*
  626  * File table vnode read routine.
  627  */
  628 static int
  629 vn_read(fp, uio, active_cred, flags, td)
  630         struct file *fp;
  631         struct uio *uio;
  632         struct ucred *active_cred;
  633         int flags;
  634         struct thread *td;
  635 {
  636         struct vnode *vp;
  637         struct mtx *mtxp;
  638         int error, ioflag;
  639         int advice, vfslocked;
  640         off_t offset, start, end;
  641 
  642         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
  643             uio->uio_td, td));
  644         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
  645         vp = fp->f_vnode;
  646         ioflag = 0;
  647         if (fp->f_flag & FNONBLOCK)
  648                 ioflag |= IO_NDELAY;
  649         if (fp->f_flag & O_DIRECT)
  650                 ioflag |= IO_DIRECT;
  651         advice = get_advice(fp, uio);
  652         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  653         vn_lock(vp, LK_SHARED | LK_RETRY);
  654 
  655         switch (advice) {
  656         case POSIX_FADV_NORMAL:
  657         case POSIX_FADV_SEQUENTIAL:
  658         case POSIX_FADV_NOREUSE:
  659                 ioflag |= sequential_heuristic(uio, fp);
  660                 break;
  661         case POSIX_FADV_RANDOM:
  662                 /* Disable read-ahead for random I/O. */
  663                 break;
  664         }
  665         offset = uio->uio_offset;
  666 
  667 #ifdef MAC
  668         error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
  669         if (error == 0)
  670 #endif
  671                 error = VOP_READ(vp, uio, ioflag, fp->f_cred);
  672         fp->f_nextoff = uio->uio_offset;
  673         VOP_UNLOCK(vp, 0);
  674         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
  675             offset != uio->uio_offset) {
  676                 /*
  677                  * Use POSIX_FADV_DONTNEED to flush clean pages and
  678                  * buffers for the backing file after a
  679                  * POSIX_FADV_NOREUSE read(2).  To optimize the common
  680                  * case of using POSIX_FADV_NOREUSE with sequential
  681                  * access, track the previous implicit DONTNEED
  682                  * request and grow this request to include the
  683                  * current read(2) in addition to the previous
  684                  * DONTNEED.  With purely sequential access this will
  685                  * cause the DONTNEED requests to continously grow to
  686                  * cover all of the previously read regions of the
  687                  * file.  This allows filesystem blocks that are
  688                  * accessed by multiple calls to read(2) to be flushed
  689                  * once the last read(2) finishes.
  690                  */
  691                 start = offset;
  692                 end = uio->uio_offset - 1;
  693                 mtxp = mtx_pool_find(mtxpool_sleep, fp);
  694                 mtx_lock(mtxp);
  695                 if (fp->f_advice != NULL &&
  696                     fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
  697                         if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
  698                                 start = fp->f_advice->fa_prevstart;
  699                         else if (fp->f_advice->fa_prevstart != 0 &&
  700                             fp->f_advice->fa_prevstart == end + 1)
  701                                 end = fp->f_advice->fa_prevend;
  702                         fp->f_advice->fa_prevstart = start;
  703                         fp->f_advice->fa_prevend = end;
  704                 }
  705                 mtx_unlock(mtxp);
  706                 error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
  707         }
  708         VFS_UNLOCK_GIANT(vfslocked);
  709         return (error);
  710 }
  711 
  712 /*
  713  * File table vnode write routine.
  714  */
  715 static int
  716 vn_write(fp, uio, active_cred, flags, td)
  717         struct file *fp;
  718         struct uio *uio;
  719         struct ucred *active_cred;
  720         int flags;
  721         struct thread *td;
  722 {
  723         struct vnode *vp;
  724         struct mount *mp;
  725         struct mtx *mtxp;
  726         int error, ioflag, lock_flags;
  727         int advice, vfslocked;
  728         off_t offset, start, end;
  729 
  730         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
  731             uio->uio_td, td));
  732         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
  733         vp = fp->f_vnode;
  734         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  735         if (vp->v_type == VREG)
  736                 bwillwrite();
  737         ioflag = IO_UNIT;
  738         if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
  739                 ioflag |= IO_APPEND;
  740         if (fp->f_flag & FNONBLOCK)
  741                 ioflag |= IO_NDELAY;
  742         if (fp->f_flag & O_DIRECT)
  743                 ioflag |= IO_DIRECT;
  744         if ((fp->f_flag & O_FSYNC) ||
  745             (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
  746                 ioflag |= IO_SYNC;
  747         mp = NULL;
  748         if (vp->v_type != VCHR &&
  749             (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
  750                 goto unlock;
  751 
  752         advice = get_advice(fp, uio);
  753  
  754         if ((MNT_SHARED_WRITES(mp) ||
  755             ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount))) &&
  756             (flags & FOF_OFFSET) != 0) {
  757                 lock_flags = LK_SHARED;
  758         } else {
  759                 lock_flags = LK_EXCLUSIVE;
  760         }
  761 
  762         vn_lock(vp, lock_flags | LK_RETRY);
  763         switch (advice) {
  764         case POSIX_FADV_NORMAL:
  765         case POSIX_FADV_SEQUENTIAL:
  766         case POSIX_FADV_NOREUSE:
  767                 ioflag |= sequential_heuristic(uio, fp);
  768                 break;
  769         case POSIX_FADV_RANDOM:
  770                 /* XXX: Is this correct? */
  771                 break;
  772         }
  773         offset = uio->uio_offset;
  774 
  775 #ifdef MAC
  776         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
  777         if (error == 0)
  778 #endif
  779                 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
  780         fp->f_nextoff = uio->uio_offset;
  781         VOP_UNLOCK(vp, 0);
  782         if (vp->v_type != VCHR)
  783                 vn_finished_write(mp);
  784         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
  785             offset != uio->uio_offset) {
  786                 /*
  787                  * Use POSIX_FADV_DONTNEED to flush clean pages and
  788                  * buffers for the backing file after a
  789                  * POSIX_FADV_NOREUSE write(2).  To optimize the
  790                  * common case of using POSIX_FADV_NOREUSE with
  791                  * sequential access, track the previous implicit
  792                  * DONTNEED request and grow this request to include
  793                  * the current write(2) in addition to the previous
  794                  * DONTNEED.  With purely sequential access this will
  795                  * cause the DONTNEED requests to continously grow to
  796                  * cover all of the previously written regions of the
  797                  * file.
  798                  *
  799                  * Note that the blocks just written are almost
  800                  * certainly still dirty, so this only works when
  801                  * VOP_ADVISE() calls from subsequent writes push out
  802                  * the data written by this write(2) once the backing
  803                  * buffers are clean.  However, as compared to forcing
  804                  * IO_DIRECT, this gives much saner behavior.  Write
  805                  * clustering is still allowed, and clean pages are
  806                  * merely moved to the cache page queue rather than
  807                  * outright thrown away.  This means a subsequent
  808                  * read(2) can still avoid hitting the disk if the
  809                  * pages have not been reclaimed.
  810                  *
  811                  * This does make POSIX_FADV_NOREUSE largely useless
  812                  * with non-sequential access.  However, sequential
  813                  * access is the more common use case and the flag is
  814                  * merely advisory.
  815                  */
  816                 start = offset;
  817                 end = uio->uio_offset - 1;
  818                 mtxp = mtx_pool_find(mtxpool_sleep, fp);
  819                 mtx_lock(mtxp);
  820                 if (fp->f_advice != NULL &&
  821                     fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
  822                         if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
  823                                 start = fp->f_advice->fa_prevstart;
  824                         else if (fp->f_advice->fa_prevstart != 0 &&
  825                             fp->f_advice->fa_prevstart == end + 1)
  826                                 end = fp->f_advice->fa_prevend;
  827                         fp->f_advice->fa_prevstart = start;
  828                         fp->f_advice->fa_prevend = end;
  829                 }
  830                 mtx_unlock(mtxp);
  831                 error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
  832         }
  833         
  834 unlock:
  835         VFS_UNLOCK_GIANT(vfslocked);
  836         return (error);
  837 }
  838 
  839 static const int io_hold_cnt = 16;
  840 static int vn_io_fault_enable = 0;
  841 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
  842     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
  843 static u_long vn_io_faults_cnt;
  844 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
  845     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
  846 
  847 /*
  848  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
  849  * prevent the following deadlock:
  850  *
  851  * Assume that the thread A reads from the vnode vp1 into userspace
  852  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
  853  * currently not resident, then system ends up with the call chain
  854  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
  855  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
  856  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
  857  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
  858  * backed by the pages of vnode vp1, and some page in buf2 is not
  859  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
  860  *
  861  * To prevent the lock order reversal and deadlock, vn_io_fault() does
  862  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
  863  * Instead, it first tries to do the whole range i/o with pagefaults
  864  * disabled. If all pages in the i/o buffer are resident and mapped,
  865  * VOP will succeed (ignoring the genuine filesystem errors).
  866  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
  867  * i/o in chunks, with all pages in the chunk prefaulted and held
  868  * using vm_fault_quick_hold_pages().
  869  *
  870  * Filesystems using this deadlock avoidance scheme should use the
  871  * array of the held pages from uio, saved in the curthread->td_ma,
  872  * instead of doing uiomove().  A helper function
  873  * vn_io_fault_uiomove() converts uiomove request into
  874  * uiomove_fromphys() over td_ma array.
  875  *
  876  * Since vnode locks do not cover the whole i/o anymore, rangelocks
  877  * make the current i/o request atomic with respect to other i/os and
  878  * truncations.
  879  */
  880 static int
  881 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
  882     int flags, struct thread *td)
  883 {
  884         vm_page_t ma[io_hold_cnt + 2];
  885         struct uio *uio_clone, short_uio;
  886         struct iovec short_iovec[1];
  887         fo_rdwr_t *doio;
  888         struct vnode *vp;
  889         void *rl_cookie;
  890         struct mount *mp;
  891         vm_page_t *prev_td_ma;
  892         int cnt, error, save, saveheld, prev_td_ma_cnt;
  893         vm_offset_t addr, end;
  894         vm_prot_t prot;
  895         size_t len, resid;
  896         ssize_t adv;
  897 
  898         if (uio->uio_rw == UIO_READ)
  899                 doio = vn_read;
  900         else
  901                 doio = vn_write;
  902         vp = fp->f_vnode;
  903         foffset_lock_uio(fp, uio, flags);
  904 
  905         if (uio->uio_segflg != UIO_USERSPACE || vp->v_type != VREG ||
  906             ((mp = vp->v_mount) != NULL &&
  907             (mp->mnt_kern_flag & MNTK_NO_IOPF) == 0) ||
  908             !vn_io_fault_enable) {
  909                 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
  910                 goto out_last;
  911         }
  912 
  913         /*
  914          * The UFS follows IO_UNIT directive and replays back both
  915          * uio_offset and uio_resid if an error is encountered during the
  916          * operation.  But, since the iovec may be already advanced,
  917          * uio is still in an inconsistent state.
  918          *
  919          * Cache a copy of the original uio, which is advanced to the redo
  920          * point using UIO_NOCOPY below.
  921          */
  922         uio_clone = cloneuio(uio);
  923         resid = uio->uio_resid;
  924 
  925         short_uio.uio_segflg = UIO_USERSPACE;
  926         short_uio.uio_rw = uio->uio_rw;
  927         short_uio.uio_td = uio->uio_td;
  928 
  929         if (uio->uio_rw == UIO_READ) {
  930                 prot = VM_PROT_WRITE;
  931                 rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
  932                     uio->uio_offset + uio->uio_resid);
  933         } else {
  934                 prot = VM_PROT_READ;
  935                 if ((fp->f_flag & O_APPEND) != 0 || (flags & FOF_OFFSET) == 0)
  936                         /* For appenders, punt and lock the whole range. */
  937                         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
  938                 else
  939                         rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
  940                             uio->uio_offset + uio->uio_resid);
  941         }
  942 
  943         save = vm_fault_disable_pagefaults();
  944         error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
  945         if (error != EFAULT)
  946                 goto out;
  947 
  948         atomic_add_long(&vn_io_faults_cnt, 1);
  949         uio_clone->uio_segflg = UIO_NOCOPY;
  950         uiomove(NULL, resid - uio->uio_resid, uio_clone);
  951         uio_clone->uio_segflg = uio->uio_segflg;
  952 
  953         saveheld = curthread_pflags_set(TDP_UIOHELD);
  954         prev_td_ma = td->td_ma;
  955         prev_td_ma_cnt = td->td_ma_cnt;
  956 
  957         while (uio_clone->uio_resid != 0) {
  958                 len = uio_clone->uio_iov->iov_len;
  959                 if (len == 0) {
  960                         KASSERT(uio_clone->uio_iovcnt >= 1,
  961                             ("iovcnt underflow"));
  962                         uio_clone->uio_iov++;
  963                         uio_clone->uio_iovcnt--;
  964                         continue;
  965                 }
  966 
  967                 addr = (vm_offset_t)uio_clone->uio_iov->iov_base;
  968                 end = round_page(addr + len);
  969                 cnt = howmany(end - trunc_page(addr), PAGE_SIZE);
  970                 /*
  971                  * A perfectly misaligned address and length could cause
  972                  * both the start and the end of the chunk to use partial
  973                  * page.  +2 accounts for such a situation.
  974                  */
  975                 if (cnt > io_hold_cnt + 2) {
  976                         len = io_hold_cnt * PAGE_SIZE;
  977                         KASSERT(howmany(round_page(addr + len) -
  978                             trunc_page(addr), PAGE_SIZE) <= io_hold_cnt + 2,
  979                             ("cnt overflow"));
  980                 }
  981                 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
  982                     addr, len, prot, ma, io_hold_cnt + 2);
  983                 if (cnt == -1) {
  984                         error = EFAULT;
  985                         break;
  986                 }
  987                 short_uio.uio_iov = &short_iovec[0];
  988                 short_iovec[0].iov_base = (void *)addr;
  989                 short_uio.uio_iovcnt = 1;
  990                 short_uio.uio_resid = short_iovec[0].iov_len = len;
  991                 short_uio.uio_offset = uio_clone->uio_offset;
  992                 td->td_ma = ma;
  993                 td->td_ma_cnt = cnt;
  994 
  995                 error = doio(fp, &short_uio, active_cred, flags | FOF_OFFSET,
  996                     td);
  997                 vm_page_unhold_pages(ma, cnt);
  998                 adv = len - short_uio.uio_resid;
  999 
 1000                 uio_clone->uio_iov->iov_base =
 1001                     (char *)uio_clone->uio_iov->iov_base + adv;
 1002                 uio_clone->uio_iov->iov_len -= adv;
 1003                 uio_clone->uio_resid -= adv;
 1004                 uio_clone->uio_offset += adv;
 1005 
 1006                 uio->uio_resid -= adv;
 1007                 uio->uio_offset += adv;
 1008 
 1009                 if (error != 0 || adv == 0)
 1010                         break;
 1011         }
 1012         td->td_ma = prev_td_ma;
 1013         td->td_ma_cnt = prev_td_ma_cnt;
 1014         curthread_pflags_restore(saveheld);
 1015 out:
 1016         vm_fault_enable_pagefaults(save);
 1017         vn_rangelock_unlock(vp, rl_cookie);
 1018         free(uio_clone, M_IOV);
 1019 out_last:
 1020         foffset_unlock_uio(fp, uio, flags);
 1021         return (error);
 1022 }
 1023 
 1024 /*
 1025  * Helper function to perform the requested uiomove operation using
 1026  * the held pages for io->uio_iov[0].iov_base buffer instead of
 1027  * copyin/copyout.  Access to the pages with uiomove_fromphys()
 1028  * instead of iov_base prevents page faults that could occur due to
 1029  * pmap_collect() invalidating the mapping created by
 1030  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
 1031  * object cleanup revoking the write access from page mappings.
 1032  *
 1033  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
 1034  * instead of plain uiomove().
 1035  */
 1036 int
 1037 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
 1038 {
 1039         struct uio transp_uio;
 1040         struct iovec transp_iov[1];
 1041         struct thread *td;
 1042         size_t adv;
 1043         int error, pgadv;
 1044 
 1045         td = curthread;
 1046         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1047             uio->uio_segflg != UIO_USERSPACE)
 1048                 return (uiomove(data, xfersize, uio));
 1049 
 1050         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1051         transp_iov[0].iov_base = data;
 1052         transp_uio.uio_iov = &transp_iov[0];
 1053         transp_uio.uio_iovcnt = 1;
 1054         if (xfersize > uio->uio_resid)
 1055                 xfersize = uio->uio_resid;
 1056         transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
 1057         transp_uio.uio_offset = 0;
 1058         transp_uio.uio_segflg = UIO_SYSSPACE;
 1059         /*
 1060          * Since transp_iov points to data, and td_ma page array
 1061          * corresponds to original uio->uio_iov, we need to invert the
 1062          * direction of the i/o operation as passed to
 1063          * uiomove_fromphys().
 1064          */
 1065         switch (uio->uio_rw) {
 1066         case UIO_WRITE:
 1067                 transp_uio.uio_rw = UIO_READ;
 1068                 break;
 1069         case UIO_READ:
 1070                 transp_uio.uio_rw = UIO_WRITE;
 1071                 break;
 1072         }
 1073         transp_uio.uio_td = uio->uio_td;
 1074         error = uiomove_fromphys(td->td_ma,
 1075             ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
 1076             xfersize, &transp_uio);
 1077         adv = xfersize - transp_uio.uio_resid;
 1078         pgadv =
 1079             (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
 1080             (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
 1081         td->td_ma += pgadv;
 1082         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1083             pgadv));
 1084         td->td_ma_cnt -= pgadv;
 1085         uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
 1086         uio->uio_iov->iov_len -= adv;
 1087         uio->uio_resid -= adv;
 1088         uio->uio_offset += adv;
 1089         return (error);
 1090 }
 1091 
 1092 int
 1093 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
 1094     struct uio *uio)
 1095 {
 1096         struct thread *td;
 1097         vm_offset_t iov_base;
 1098         int cnt, pgadv;
 1099 
 1100         td = curthread;
 1101         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1102             uio->uio_segflg != UIO_USERSPACE)
 1103                 return (uiomove_fromphys(ma, offset, xfersize, uio));
 1104 
 1105         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1106         cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
 1107         iov_base = (vm_offset_t)uio->uio_iov->iov_base;
 1108         switch (uio->uio_rw) {
 1109         case UIO_WRITE:
 1110                 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
 1111                     offset, cnt);
 1112                 break;
 1113         case UIO_READ:
 1114                 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
 1115                     cnt);
 1116                 break;
 1117         }
 1118         pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
 1119         td->td_ma += pgadv;
 1120         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1121             pgadv));
 1122         td->td_ma_cnt -= pgadv;
 1123         uio->uio_iov->iov_base = (char *)(iov_base + cnt);
 1124         uio->uio_iov->iov_len -= cnt;
 1125         uio->uio_resid -= cnt;
 1126         uio->uio_offset += cnt;
 1127         return (0);
 1128 }
 1129 
 1130 
 1131 /*
 1132  * File table truncate routine.
 1133  */
 1134 static int
 1135 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
 1136     struct thread *td)
 1137 {
 1138         struct vattr vattr;
 1139         struct mount *mp;
 1140         struct vnode *vp;
 1141         void *rl_cookie;
 1142         int vfslocked;
 1143         int error;
 1144 
 1145         vp = fp->f_vnode;
 1146 
 1147         /*
 1148          * Lock the whole range for truncation.  Otherwise split i/o
 1149          * might happen partly before and partly after the truncation.
 1150          */
 1151         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 1152         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 1153         error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
 1154         if (error)
 1155                 goto out1;
 1156         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1157         if (vp->v_type == VDIR) {
 1158                 error = EISDIR;
 1159                 goto out;
 1160         }
 1161 #ifdef MAC
 1162         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
 1163         if (error)
 1164                 goto out;
 1165 #endif
 1166         error = vn_writechk(vp);
 1167         if (error == 0) {
 1168                 VATTR_NULL(&vattr);
 1169                 vattr.va_size = length;
 1170                 error = VOP_SETATTR(vp, &vattr, fp->f_cred);
 1171         }
 1172 out:
 1173         VOP_UNLOCK(vp, 0);
 1174         vn_finished_write(mp);
 1175 out1:
 1176         VFS_UNLOCK_GIANT(vfslocked);
 1177         vn_rangelock_unlock(vp, rl_cookie);
 1178         return (error);
 1179 }
 1180 
 1181 /*
 1182  * File table vnode stat routine.
 1183  */
 1184 static int
 1185 vn_statfile(fp, sb, active_cred, td)
 1186         struct file *fp;
 1187         struct stat *sb;
 1188         struct ucred *active_cred;
 1189         struct thread *td;
 1190 {
 1191         struct vnode *vp = fp->f_vnode;
 1192         int vfslocked;
 1193         int error;
 1194 
 1195         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 1196         vn_lock(vp, LK_SHARED | LK_RETRY);
 1197         error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
 1198         VOP_UNLOCK(vp, 0);
 1199         VFS_UNLOCK_GIANT(vfslocked);
 1200 
 1201         return (error);
 1202 }
 1203 
 1204 /*
 1205  * Stat a vnode; implementation for the stat syscall
 1206  */
 1207 int
 1208 vn_stat(vp, sb, active_cred, file_cred, td)
 1209         struct vnode *vp;
 1210         register struct stat *sb;
 1211         struct ucred *active_cred;
 1212         struct ucred *file_cred;
 1213         struct thread *td;
 1214 {
 1215         struct vattr vattr;
 1216         register struct vattr *vap;
 1217         int error;
 1218         u_short mode;
 1219 
 1220 #ifdef MAC
 1221         error = mac_vnode_check_stat(active_cred, file_cred, vp);
 1222         if (error)
 1223                 return (error);
 1224 #endif
 1225 
 1226         vap = &vattr;
 1227 
 1228         /*
 1229          * Initialize defaults for new and unusual fields, so that file
 1230          * systems which don't support these fields don't need to know
 1231          * about them.
 1232          */
 1233         vap->va_birthtime.tv_sec = -1;
 1234         vap->va_birthtime.tv_nsec = 0;
 1235         vap->va_fsid = VNOVAL;
 1236         vap->va_rdev = NODEV;
 1237 
 1238         error = VOP_GETATTR(vp, vap, active_cred);
 1239         if (error)
 1240                 return (error);
 1241 
 1242         /*
 1243          * Zero the spare stat fields
 1244          */
 1245         bzero(sb, sizeof *sb);
 1246 
 1247         /*
 1248          * Copy from vattr table
 1249          */
 1250         if (vap->va_fsid != VNOVAL)
 1251                 sb->st_dev = vap->va_fsid;
 1252         else
 1253                 sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
 1254         sb->st_ino = vap->va_fileid;
 1255         mode = vap->va_mode;
 1256         switch (vap->va_type) {
 1257         case VREG:
 1258                 mode |= S_IFREG;
 1259                 break;
 1260         case VDIR:
 1261                 mode |= S_IFDIR;
 1262                 break;
 1263         case VBLK:
 1264                 mode |= S_IFBLK;
 1265                 break;
 1266         case VCHR:
 1267                 mode |= S_IFCHR;
 1268                 break;
 1269         case VLNK:
 1270                 mode |= S_IFLNK;
 1271                 break;
 1272         case VSOCK:
 1273                 mode |= S_IFSOCK;
 1274                 break;
 1275         case VFIFO:
 1276                 mode |= S_IFIFO;
 1277                 break;
 1278         default:
 1279                 return (EBADF);
 1280         };
 1281         sb->st_mode = mode;
 1282         sb->st_nlink = vap->va_nlink;
 1283         sb->st_uid = vap->va_uid;
 1284         sb->st_gid = vap->va_gid;
 1285         sb->st_rdev = vap->va_rdev;
 1286         if (vap->va_size > OFF_MAX)
 1287                 return (EOVERFLOW);
 1288         sb->st_size = vap->va_size;
 1289         sb->st_atim = vap->va_atime;
 1290         sb->st_mtim = vap->va_mtime;
 1291         sb->st_ctim = vap->va_ctime;
 1292         sb->st_birthtim = vap->va_birthtime;
 1293 
 1294         /*
 1295          * According to www.opengroup.org, the meaning of st_blksize is 
 1296          *   "a filesystem-specific preferred I/O block size for this 
 1297          *    object.  In some filesystem types, this may vary from file
 1298          *    to file"
 1299          * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
 1300          */
 1301 
 1302         sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
 1303         
 1304         sb->st_flags = vap->va_flags;
 1305         if (priv_check(td, PRIV_VFS_GENERATION))
 1306                 sb->st_gen = 0;
 1307         else
 1308                 sb->st_gen = vap->va_gen;
 1309 
 1310         sb->st_blocks = vap->va_bytes / S_BLKSIZE;
 1311         return (0);
 1312 }
 1313 
 1314 /*
 1315  * File table vnode ioctl routine.
 1316  */
 1317 static int
 1318 vn_ioctl(fp, com, data, active_cred, td)
 1319         struct file *fp;
 1320         u_long com;
 1321         void *data;
 1322         struct ucred *active_cred;
 1323         struct thread *td;
 1324 {
 1325         struct vnode *vp = fp->f_vnode;
 1326         struct vattr vattr;
 1327         int vfslocked;
 1328         int error;
 1329 
 1330         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 1331         error = ENOTTY;
 1332         switch (vp->v_type) {
 1333         case VREG:
 1334         case VDIR:
 1335                 if (com == FIONREAD) {
 1336                         vn_lock(vp, LK_SHARED | LK_RETRY);
 1337                         error = VOP_GETATTR(vp, &vattr, active_cred);
 1338                         VOP_UNLOCK(vp, 0);
 1339                         if (!error)
 1340                                 *(int *)data = vattr.va_size - fp->f_offset;
 1341                 } else if (com == FIONBIO || com == FIOASYNC)   /* XXX */
 1342                         error = 0;
 1343                 else
 1344                         error = VOP_IOCTL(vp, com, data, fp->f_flag,
 1345                             active_cred, td);
 1346                 break;
 1347 
 1348         default:
 1349                 break;
 1350         }
 1351         VFS_UNLOCK_GIANT(vfslocked);
 1352         return (error);
 1353 }
 1354 
 1355 /*
 1356  * File table vnode poll routine.
 1357  */
 1358 static int
 1359 vn_poll(fp, events, active_cred, td)
 1360         struct file *fp;
 1361         int events;
 1362         struct ucred *active_cred;
 1363         struct thread *td;
 1364 {
 1365         struct vnode *vp;
 1366         int vfslocked;
 1367         int error;
 1368 
 1369         vp = fp->f_vnode;
 1370         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 1371 #ifdef MAC
 1372         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1373         error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
 1374         VOP_UNLOCK(vp, 0);
 1375         if (!error)
 1376 #endif
 1377 
 1378         error = VOP_POLL(vp, events, fp->f_cred, td);
 1379         VFS_UNLOCK_GIANT(vfslocked);
 1380         return (error);
 1381 }
 1382 
 1383 /*
 1384  * Acquire the requested lock and then check for validity.  LK_RETRY
 1385  * permits vn_lock to return doomed vnodes.
 1386  */
 1387 int
 1388 _vn_lock(struct vnode *vp, int flags, char *file, int line)
 1389 {
 1390         int error;
 1391 
 1392         VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
 1393             ("vn_lock called with no locktype."));
 1394         do {
 1395 #ifdef DEBUG_VFS_LOCKS
 1396                 KASSERT(vp->v_holdcnt != 0,
 1397                     ("vn_lock %p: zero hold count", vp));
 1398 #endif
 1399                 error = VOP_LOCK1(vp, flags, file, line);
 1400                 flags &= ~LK_INTERLOCK; /* Interlock is always dropped. */
 1401                 KASSERT((flags & LK_RETRY) == 0 || error == 0,
 1402                     ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
 1403                     flags, error));
 1404                 /*
 1405                  * Callers specify LK_RETRY if they wish to get dead vnodes.
 1406                  * If RETRY is not set, we return ENOENT instead.
 1407                  */
 1408                 if (error == 0 && vp->v_iflag & VI_DOOMED &&
 1409                     (flags & LK_RETRY) == 0) {
 1410                         VOP_UNLOCK(vp, 0);
 1411                         error = ENOENT;
 1412                         break;
 1413                 }
 1414         } while (flags & LK_RETRY && error != 0);
 1415         return (error);
 1416 }
 1417 
 1418 /*
 1419  * File table vnode close routine.
 1420  */
 1421 static int
 1422 vn_closefile(fp, td)
 1423         struct file *fp;
 1424         struct thread *td;
 1425 {
 1426         struct vnode *vp;
 1427         struct flock lf;
 1428         int vfslocked;
 1429         int error;
 1430 
 1431         vp = fp->f_vnode;
 1432 
 1433         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 1434         if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
 1435                 lf.l_whence = SEEK_SET;
 1436                 lf.l_start = 0;
 1437                 lf.l_len = 0;
 1438                 lf.l_type = F_UNLCK;
 1439                 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
 1440         }
 1441 
 1442         fp->f_ops = &badfileops;
 1443 
 1444         error = vn_close(vp, fp->f_flag, fp->f_cred, td);
 1445         VFS_UNLOCK_GIANT(vfslocked);
 1446         return (error);
 1447 }
 1448 
 1449 /*
 1450  * Preparing to start a filesystem write operation. If the operation is
 1451  * permitted, then we bump the count of operations in progress and
 1452  * proceed. If a suspend request is in progress, we wait until the
 1453  * suspension is over, and then proceed.
 1454  */
 1455 static int
 1456 vn_start_write_locked(struct mount *mp, int flags)
 1457 {
 1458         int error;
 1459 
 1460         mtx_assert(MNT_MTX(mp), MA_OWNED);
 1461         error = 0;
 1462 
 1463         /*
 1464          * Check on status of suspension.
 1465          */
 1466         if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
 1467             mp->mnt_susp_owner != curthread) {
 1468                 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 1469                         if (flags & V_NOWAIT) {
 1470                                 error = EWOULDBLOCK;
 1471                                 goto unlock;
 1472                         }
 1473                         error = msleep(&mp->mnt_flag, MNT_MTX(mp),
 1474                             (PUSER - 1) | (flags & PCATCH), "suspfs", 0);
 1475                         if (error)
 1476                                 goto unlock;
 1477                 }
 1478         }
 1479         if (flags & V_XSLEEP)
 1480                 goto unlock;
 1481         mp->mnt_writeopcount++;
 1482 unlock:
 1483         if (error != 0 || (flags & V_XSLEEP) != 0)
 1484                 MNT_REL(mp);
 1485         MNT_IUNLOCK(mp);
 1486         return (error);
 1487 }
 1488 
 1489 int
 1490 vn_start_write(vp, mpp, flags)
 1491         struct vnode *vp;
 1492         struct mount **mpp;
 1493         int flags;
 1494 {
 1495         struct mount *mp;
 1496         int error;
 1497 
 1498         error = 0;
 1499         /*
 1500          * If a vnode is provided, get and return the mount point that
 1501          * to which it will write.
 1502          */
 1503         if (vp != NULL) {
 1504                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1505                         *mpp = NULL;
 1506                         if (error != EOPNOTSUPP)
 1507                                 return (error);
 1508                         return (0);
 1509                 }
 1510         }
 1511         if ((mp = *mpp) == NULL)
 1512                 return (0);
 1513 
 1514         /*
 1515          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1516          * a vfs_ref().
 1517          * As long as a vnode is not provided we need to acquire a
 1518          * refcount for the provided mountpoint too, in order to
 1519          * emulate a vfs_ref().
 1520          */
 1521         MNT_ILOCK(mp);
 1522         if (vp == NULL)
 1523                 MNT_REF(mp);
 1524 
 1525         return (vn_start_write_locked(mp, flags));
 1526 }
 1527 
 1528 /*
 1529  * Secondary suspension. Used by operations such as vop_inactive
 1530  * routines that are needed by the higher level functions. These
 1531  * are allowed to proceed until all the higher level functions have
 1532  * completed (indicated by mnt_writeopcount dropping to zero). At that
 1533  * time, these operations are halted until the suspension is over.
 1534  */
 1535 int
 1536 vn_start_secondary_write(vp, mpp, flags)
 1537         struct vnode *vp;
 1538         struct mount **mpp;
 1539         int flags;
 1540 {
 1541         struct mount *mp;
 1542         int error;
 1543 
 1544  retry:
 1545         if (vp != NULL) {
 1546                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1547                         *mpp = NULL;
 1548                         if (error != EOPNOTSUPP)
 1549                                 return (error);
 1550                         return (0);
 1551                 }
 1552         }
 1553         /*
 1554          * If we are not suspended or have not yet reached suspended
 1555          * mode, then let the operation proceed.
 1556          */
 1557         if ((mp = *mpp) == NULL)
 1558                 return (0);
 1559 
 1560         /*
 1561          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1562          * a vfs_ref().
 1563          * As long as a vnode is not provided we need to acquire a
 1564          * refcount for the provided mountpoint too, in order to
 1565          * emulate a vfs_ref().
 1566          */
 1567         MNT_ILOCK(mp);
 1568         if (vp == NULL)
 1569                 MNT_REF(mp);
 1570         if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
 1571                 mp->mnt_secondary_writes++;
 1572                 mp->mnt_secondary_accwrites++;
 1573                 MNT_IUNLOCK(mp);
 1574                 return (0);
 1575         }
 1576         if (flags & V_NOWAIT) {
 1577                 MNT_REL(mp);
 1578                 MNT_IUNLOCK(mp);
 1579                 return (EWOULDBLOCK);
 1580         }
 1581         /*
 1582          * Wait for the suspension to finish.
 1583          */
 1584         error = msleep(&mp->mnt_flag, MNT_MTX(mp),
 1585                        (PUSER - 1) | (flags & PCATCH) | PDROP, "suspfs", 0);
 1586         vfs_rel(mp);
 1587         if (error == 0)
 1588                 goto retry;
 1589         return (error);
 1590 }
 1591 
 1592 /*
 1593  * Filesystem write operation has completed. If we are suspending and this
 1594  * operation is the last one, notify the suspender that the suspension is
 1595  * now in effect.
 1596  */
 1597 void
 1598 vn_finished_write(mp)
 1599         struct mount *mp;
 1600 {
 1601         if (mp == NULL)
 1602                 return;
 1603         MNT_ILOCK(mp);
 1604         MNT_REL(mp);
 1605         mp->mnt_writeopcount--;
 1606         if (mp->mnt_writeopcount < 0)
 1607                 panic("vn_finished_write: neg cnt");
 1608         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
 1609             mp->mnt_writeopcount <= 0)
 1610                 wakeup(&mp->mnt_writeopcount);
 1611         MNT_IUNLOCK(mp);
 1612 }
 1613 
 1614 
 1615 /*
 1616  * Filesystem secondary write operation has completed. If we are
 1617  * suspending and this operation is the last one, notify the suspender
 1618  * that the suspension is now in effect.
 1619  */
 1620 void
 1621 vn_finished_secondary_write(mp)
 1622         struct mount *mp;
 1623 {
 1624         if (mp == NULL)
 1625                 return;
 1626         MNT_ILOCK(mp);
 1627         MNT_REL(mp);
 1628         mp->mnt_secondary_writes--;
 1629         if (mp->mnt_secondary_writes < 0)
 1630                 panic("vn_finished_secondary_write: neg cnt");
 1631         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
 1632             mp->mnt_secondary_writes <= 0)
 1633                 wakeup(&mp->mnt_secondary_writes);
 1634         MNT_IUNLOCK(mp);
 1635 }
 1636 
 1637 
 1638 
 1639 /*
 1640  * Request a filesystem to suspend write operations.
 1641  */
 1642 int
 1643 vfs_write_suspend(mp)
 1644         struct mount *mp;
 1645 {
 1646         int error;
 1647 
 1648         MNT_ILOCK(mp);
 1649         if (mp->mnt_susp_owner == curthread) {
 1650                 MNT_IUNLOCK(mp);
 1651                 return (EALREADY);
 1652         }
 1653         while (mp->mnt_kern_flag & MNTK_SUSPEND)
 1654                 msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
 1655         mp->mnt_kern_flag |= MNTK_SUSPEND;
 1656         mp->mnt_susp_owner = curthread;
 1657         if (mp->mnt_writeopcount > 0)
 1658                 (void) msleep(&mp->mnt_writeopcount, 
 1659                     MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
 1660         else
 1661                 MNT_IUNLOCK(mp);
 1662         if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
 1663                 vfs_write_resume(mp);
 1664         return (error);
 1665 }
 1666 
 1667 /*
 1668  * Request a filesystem to resume write operations.
 1669  */
 1670 void
 1671 vfs_write_resume_flags(struct mount *mp, int flags)
 1672 {
 1673 
 1674         MNT_ILOCK(mp);
 1675         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 1676                 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
 1677                 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
 1678                                        MNTK_SUSPENDED);
 1679                 mp->mnt_susp_owner = NULL;
 1680                 wakeup(&mp->mnt_writeopcount);
 1681                 wakeup(&mp->mnt_flag);
 1682                 curthread->td_pflags &= ~TDP_IGNSUSP;
 1683                 if ((flags & VR_START_WRITE) != 0) {
 1684                         MNT_REF(mp);
 1685                         mp->mnt_writeopcount++;
 1686                 }
 1687                 MNT_IUNLOCK(mp);
 1688                 if ((flags & VR_NO_SUSPCLR) == 0)
 1689                         VFS_SUSP_CLEAN(mp);
 1690         } else if ((flags & VR_START_WRITE) != 0) {
 1691                 MNT_REF(mp);
 1692                 vn_start_write_locked(mp, 0);
 1693         } else {
 1694                 MNT_IUNLOCK(mp);
 1695         }
 1696 }
 1697 
 1698 void
 1699 vfs_write_resume(struct mount *mp)
 1700 {
 1701 
 1702         vfs_write_resume_flags(mp, 0);
 1703 }
 1704 
 1705 /*
 1706  * Implement kqueues for files by translating it to vnode operation.
 1707  */
 1708 static int
 1709 vn_kqfilter(struct file *fp, struct knote *kn)
 1710 {
 1711         int vfslocked;
 1712         int error;
 1713 
 1714         vfslocked = VFS_LOCK_GIANT(fp->f_vnode->v_mount);
 1715         error = VOP_KQFILTER(fp->f_vnode, kn);
 1716         VFS_UNLOCK_GIANT(vfslocked);
 1717 
 1718         return error;
 1719 }
 1720 
 1721 /*
 1722  * Simplified in-kernel wrapper calls for extended attribute access.
 1723  * Both calls pass in a NULL credential, authorizing as "kernel" access.
 1724  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
 1725  */
 1726 int
 1727 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
 1728     const char *attrname, int *buflen, char *buf, struct thread *td)
 1729 {
 1730         struct uio      auio;
 1731         struct iovec    iov;
 1732         int     error;
 1733 
 1734         iov.iov_len = *buflen;
 1735         iov.iov_base = buf;
 1736 
 1737         auio.uio_iov = &iov;
 1738         auio.uio_iovcnt = 1;
 1739         auio.uio_rw = UIO_READ;
 1740         auio.uio_segflg = UIO_SYSSPACE;
 1741         auio.uio_td = td;
 1742         auio.uio_offset = 0;
 1743         auio.uio_resid = *buflen;
 1744 
 1745         if ((ioflg & IO_NODELOCKED) == 0)
 1746                 vn_lock(vp, LK_SHARED | LK_RETRY);
 1747 
 1748         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 1749 
 1750         /* authorize attribute retrieval as kernel */
 1751         error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
 1752             td);
 1753 
 1754         if ((ioflg & IO_NODELOCKED) == 0)
 1755                 VOP_UNLOCK(vp, 0);
 1756 
 1757         if (error == 0) {
 1758                 *buflen = *buflen - auio.uio_resid;
 1759         }
 1760 
 1761         return (error);
 1762 }
 1763 
 1764 /*
 1765  * XXX failure mode if partially written?
 1766  */
 1767 int
 1768 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
 1769     const char *attrname, int buflen, char *buf, struct thread *td)
 1770 {
 1771         struct uio      auio;
 1772         struct iovec    iov;
 1773         struct mount    *mp;
 1774         int     error;
 1775 
 1776         iov.iov_len = buflen;
 1777         iov.iov_base = buf;
 1778 
 1779         auio.uio_iov = &iov;
 1780         auio.uio_iovcnt = 1;
 1781         auio.uio_rw = UIO_WRITE;
 1782         auio.uio_segflg = UIO_SYSSPACE;
 1783         auio.uio_td = td;
 1784         auio.uio_offset = 0;
 1785         auio.uio_resid = buflen;
 1786 
 1787         if ((ioflg & IO_NODELOCKED) == 0) {
 1788                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 1789                         return (error);
 1790                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1791         }
 1792 
 1793         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 1794 
 1795         /* authorize attribute setting as kernel */
 1796         error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
 1797 
 1798         if ((ioflg & IO_NODELOCKED) == 0) {
 1799                 vn_finished_write(mp);
 1800                 VOP_UNLOCK(vp, 0);
 1801         }
 1802 
 1803         return (error);
 1804 }
 1805 
 1806 int
 1807 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
 1808     const char *attrname, struct thread *td)
 1809 {
 1810         struct mount    *mp;
 1811         int     error;
 1812 
 1813         if ((ioflg & IO_NODELOCKED) == 0) {
 1814                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 1815                         return (error);
 1816                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1817         }
 1818 
 1819         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 1820 
 1821         /* authorize attribute removal as kernel */
 1822         error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
 1823         if (error == EOPNOTSUPP)
 1824                 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
 1825                     NULL, td);
 1826 
 1827         if ((ioflg & IO_NODELOCKED) == 0) {
 1828                 vn_finished_write(mp);
 1829                 VOP_UNLOCK(vp, 0);
 1830         }
 1831 
 1832         return (error);
 1833 }
 1834 
 1835 int
 1836 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
 1837 {
 1838         struct mount *mp;
 1839         int ltype, error;
 1840 
 1841         mp = vp->v_mount;
 1842         ltype = VOP_ISLOCKED(vp);
 1843         KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
 1844             ("vn_vget_ino: vp not locked"));
 1845         error = vfs_busy(mp, MBF_NOWAIT);
 1846         if (error != 0) {
 1847                 vfs_ref(mp);
 1848                 VOP_UNLOCK(vp, 0);
 1849                 error = vfs_busy(mp, 0);
 1850                 vn_lock(vp, ltype | LK_RETRY);
 1851                 vfs_rel(mp);
 1852                 if (error != 0)
 1853                         return (ENOENT);
 1854                 if (vp->v_iflag & VI_DOOMED) {
 1855                         vfs_unbusy(mp);
 1856                         return (ENOENT);
 1857                 }
 1858         }
 1859         VOP_UNLOCK(vp, 0);
 1860         error = VFS_VGET(mp, ino, lkflags, rvp);
 1861         vfs_unbusy(mp);
 1862         vn_lock(vp, ltype | LK_RETRY);
 1863         if (vp->v_iflag & VI_DOOMED) {
 1864                 if (error == 0)
 1865                         vput(*rvp);
 1866                 error = ENOENT;
 1867         }
 1868         return (error);
 1869 }
 1870 
 1871 int
 1872 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
 1873     const struct thread *td)
 1874 {
 1875 
 1876         if (vp->v_type != VREG || td == NULL)
 1877                 return (0);
 1878         PROC_LOCK(td->td_proc);
 1879         if ((uoff_t)uio->uio_offset + uio->uio_resid >
 1880             lim_cur(td->td_proc, RLIMIT_FSIZE)) {
 1881                 kern_psignal(td->td_proc, SIGXFSZ);
 1882                 PROC_UNLOCK(td->td_proc);
 1883                 return (EFBIG);
 1884         }
 1885         PROC_UNLOCK(td->td_proc);
 1886         return (0);
 1887 }
 1888 
 1889 int
 1890 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
 1891     struct thread *td)
 1892 {
 1893         struct vnode *vp;
 1894         int error, vfslocked;
 1895 
 1896         vp = fp->f_vnode;
 1897         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 1898 #ifdef AUDIT
 1899         vn_lock(vp, LK_SHARED | LK_RETRY);
 1900         AUDIT_ARG_VNODE1(vp);
 1901         VOP_UNLOCK(vp, 0);
 1902 #endif
 1903         error = setfmode(td, active_cred, vp, mode);
 1904         VFS_UNLOCK_GIANT(vfslocked);
 1905         return (error);
 1906 }
 1907 
 1908 int
 1909 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
 1910     struct thread *td)
 1911 {
 1912         struct vnode *vp;
 1913         int error, vfslocked;
 1914 
 1915         vp = fp->f_vnode;
 1916         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 1917 #ifdef AUDIT
 1918         vn_lock(vp, LK_SHARED | LK_RETRY);
 1919         AUDIT_ARG_VNODE1(vp);
 1920         VOP_UNLOCK(vp, 0);
 1921 #endif
 1922         error = setfown(td, active_cred, vp, uid, gid);
 1923         VFS_UNLOCK_GIANT(vfslocked);
 1924         return (error);
 1925 }
 1926 
 1927 void
 1928 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
 1929 {
 1930         vm_object_t object;
 1931 
 1932         if ((object = vp->v_object) == NULL)
 1933                 return;
 1934         VM_OBJECT_LOCK(object);
 1935         vm_object_page_remove(object, start, end, 0);
 1936         VM_OBJECT_UNLOCK(object);
 1937 }
 1938 
 1939 int
 1940 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
 1941 {
 1942         struct vattr va;
 1943         daddr_t bn, bnp;
 1944         uint64_t bsize;
 1945         off_t noff;
 1946         int error;
 1947 
 1948         KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
 1949             ("Wrong command %lu", cmd));
 1950 
 1951         if (vn_lock(vp, LK_SHARED) != 0)
 1952                 return (EBADF);
 1953         if (vp->v_type != VREG) {
 1954                 error = ENOTTY;
 1955                 goto unlock;
 1956         }
 1957         error = VOP_GETATTR(vp, &va, cred);
 1958         if (error != 0)
 1959                 goto unlock;
 1960         noff = *off;
 1961         if (noff >= va.va_size) {
 1962                 error = ENXIO;
 1963                 goto unlock;
 1964         }
 1965         bsize = vp->v_mount->mnt_stat.f_iosize;
 1966         for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
 1967                 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
 1968                 if (error == EOPNOTSUPP) {
 1969                         error = ENOTTY;
 1970                         goto unlock;
 1971                 }
 1972                 if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
 1973                     (bnp != -1 && cmd == FIOSEEKDATA)) {
 1974                         noff = bn * bsize;
 1975                         if (noff < *off)
 1976                                 noff = *off;
 1977                         goto unlock;
 1978                 }
 1979         }
 1980         if (noff > va.va_size)
 1981                 noff = va.va_size;
 1982         /* noff == va.va_size. There is an implicit hole at the end of file. */
 1983         if (cmd == FIOSEEKDATA)
 1984                 error = ENXIO;
 1985 unlock:
 1986         VOP_UNLOCK(vp, 0);
 1987         if (error == 0)
 1988                 *off = noff;
 1989         return (error);
 1990 }

Cache object: 0d774b00bac233e4cb9a8673c026f44a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.