The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1989, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
   13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
   14  *
   15  * Portions of this software were developed by Konstantin Belousov
   16  * under sponsorship from the FreeBSD Foundation.
   17  *
   18  * Redistribution and use in source and binary forms, with or without
   19  * modification, are permitted provided that the following conditions
   20  * are met:
   21  * 1. Redistributions of source code must retain the above copyright
   22  *    notice, this list of conditions and the following disclaimer.
   23  * 2. Redistributions in binary form must reproduce the above copyright
   24  *    notice, this list of conditions and the following disclaimer in the
   25  *    documentation and/or other materials provided with the distribution.
   26  * 3. Neither the name of the University nor the names of its contributors
   27  *    may be used to endorse or promote products derived from this software
   28  *    without specific prior written permission.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   40  * SUCH DAMAGE.
   41  *
   42  *      @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94
   43  */
   44 
   45 #include <sys/cdefs.h>
   46 __FBSDID("$FreeBSD$");
   47 
   48 #include "opt_hwpmc_hooks.h"
   49 
   50 #include <sys/param.h>
   51 #include <sys/systm.h>
   52 #include <sys/disk.h>
   53 #include <sys/fail.h>
   54 #include <sys/fcntl.h>
   55 #include <sys/file.h>
   56 #include <sys/kdb.h>
   57 #include <sys/ktr.h>
   58 #include <sys/stat.h>
   59 #include <sys/priv.h>
   60 #include <sys/proc.h>
   61 #include <sys/limits.h>
   62 #include <sys/lock.h>
   63 #include <sys/mman.h>
   64 #include <sys/mount.h>
   65 #include <sys/mutex.h>
   66 #include <sys/namei.h>
   67 #include <sys/vnode.h>
   68 #include <sys/bio.h>
   69 #include <sys/buf.h>
   70 #include <sys/filio.h>
   71 #include <sys/resourcevar.h>
   72 #include <sys/rwlock.h>
   73 #include <sys/prng.h>
   74 #include <sys/sx.h>
   75 #include <sys/sleepqueue.h>
   76 #include <sys/sysctl.h>
   77 #include <sys/ttycom.h>
   78 #include <sys/conf.h>
   79 #include <sys/syslog.h>
   80 #include <sys/unistd.h>
   81 #include <sys/user.h>
   82 #include <sys/ktrace.h>
   83 
   84 #include <security/audit/audit.h>
   85 #include <security/mac/mac_framework.h>
   86 
   87 #include <vm/vm.h>
   88 #include <vm/vm_extern.h>
   89 #include <vm/pmap.h>
   90 #include <vm/vm_map.h>
   91 #include <vm/vm_object.h>
   92 #include <vm/vm_page.h>
   93 #include <vm/vm_pager.h>
   94 
   95 #ifdef HWPMC_HOOKS
   96 #include <sys/pmckern.h>
   97 #endif
   98 
   99 static fo_rdwr_t        vn_read;
  100 static fo_rdwr_t        vn_write;
  101 static fo_rdwr_t        vn_io_fault;
  102 static fo_truncate_t    vn_truncate;
  103 static fo_ioctl_t       vn_ioctl;
  104 static fo_poll_t        vn_poll;
  105 static fo_kqfilter_t    vn_kqfilter;
  106 static fo_close_t       vn_closefile;
  107 static fo_mmap_t        vn_mmap;
  108 static fo_fallocate_t   vn_fallocate;
  109 
  110 struct  fileops vnops = {
  111         .fo_read = vn_io_fault,
  112         .fo_write = vn_io_fault,
  113         .fo_truncate = vn_truncate,
  114         .fo_ioctl = vn_ioctl,
  115         .fo_poll = vn_poll,
  116         .fo_kqfilter = vn_kqfilter,
  117         .fo_stat = vn_statfile,
  118         .fo_close = vn_closefile,
  119         .fo_chmod = vn_chmod,
  120         .fo_chown = vn_chown,
  121         .fo_sendfile = vn_sendfile,
  122         .fo_seek = vn_seek,
  123         .fo_fill_kinfo = vn_fill_kinfo,
  124         .fo_mmap = vn_mmap,
  125         .fo_fallocate = vn_fallocate,
  126         .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
  127 };
  128 
  129 const u_int io_hold_cnt = 16;
  130 static int vn_io_fault_enable = 1;
  131 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN,
  132     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
  133 static int vn_io_fault_prefault = 0;
  134 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN,
  135     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
  136 static int vn_io_pgcache_read_enable = 1;
  137 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN,
  138     &vn_io_pgcache_read_enable, 0,
  139     "Enable copying from page cache for reads, avoiding fs");
  140 static u_long vn_io_faults_cnt;
  141 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
  142     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
  143 
  144 static int vfs_allow_read_dir = 0;
  145 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
  146     &vfs_allow_read_dir, 0,
  147     "Enable read(2) of directory by root for filesystems that support it");
  148 
  149 /*
  150  * Returns true if vn_io_fault mode of handling the i/o request should
  151  * be used.
  152  */
  153 static bool
  154 do_vn_io_fault(struct vnode *vp, struct uio *uio)
  155 {
  156         struct mount *mp;
  157 
  158         return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
  159             (mp = vp->v_mount) != NULL &&
  160             (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
  161 }
  162 
  163 /*
  164  * Structure used to pass arguments to vn_io_fault1(), to do either
  165  * file- or vnode-based I/O calls.
  166  */
  167 struct vn_io_fault_args {
  168         enum {
  169                 VN_IO_FAULT_FOP,
  170                 VN_IO_FAULT_VOP
  171         } kind;
  172         struct ucred *cred;
  173         int flags;
  174         union {
  175                 struct fop_args_tag {
  176                         struct file *fp;
  177                         fo_rdwr_t *doio;
  178                 } fop_args;
  179                 struct vop_args_tag {
  180                         struct vnode *vp;
  181                 } vop_args;
  182         } args;
  183 };
  184 
  185 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
  186     struct vn_io_fault_args *args, struct thread *td);
  187 
  188 int
  189 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
  190 {
  191         struct thread *td = ndp->ni_cnd.cn_thread;
  192 
  193         return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
  194 }
  195 
  196 static uint64_t
  197 open2nameif(int fmode, u_int vn_open_flags)
  198 {
  199         uint64_t res;
  200 
  201         res = ISOPEN | LOCKLEAF;
  202         if ((fmode & O_RESOLVE_BENEATH) != 0)
  203                 res |= RBENEATH;
  204         if ((fmode & O_EMPTY_PATH) != 0)
  205                 res |= EMPTYPATH;
  206         if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0)
  207                 res |= AUDITVNODE1;
  208         if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0)
  209                 res |= NOCAPCHECK;
  210         return (res);
  211 }
  212 
  213 /*
  214  * Common code for vnode open operations via a name lookup.
  215  * Lookup the vnode and invoke VOP_CREATE if needed.
  216  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
  217  *
  218  * Note that this does NOT free nameidata for the successful case,
  219  * due to the NDINIT being done elsewhere.
  220  */
  221 int
  222 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
  223     struct ucred *cred, struct file *fp)
  224 {
  225         struct vnode *vp;
  226         struct mount *mp;
  227         struct thread *td = ndp->ni_cnd.cn_thread;
  228         struct vattr vat;
  229         struct vattr *vap = &vat;
  230         int fmode, error;
  231         bool first_open;
  232 
  233 restart:
  234         first_open = false;
  235         fmode = *flagp;
  236         if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
  237             O_EXCL | O_DIRECTORY) ||
  238             (fmode & (O_CREAT | O_EMPTY_PATH)) == (O_CREAT | O_EMPTY_PATH))
  239                 return (EINVAL);
  240         else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
  241                 ndp->ni_cnd.cn_nameiop = CREATE;
  242                 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
  243                 /*
  244                  * Set NOCACHE to avoid flushing the cache when
  245                  * rolling in many files at once.
  246                  *
  247                  * Set NC_KEEPPOSENTRY to keep positive entries if they already
  248                  * exist despite NOCACHE.
  249                  */
  250                 ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY;
  251                 if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
  252                         ndp->ni_cnd.cn_flags |= FOLLOW;
  253                 if ((vn_open_flags & VN_OPEN_INVFS) == 0)
  254                         bwillwrite();
  255                 if ((error = namei(ndp)) != 0)
  256                         return (error);
  257                 if (ndp->ni_vp == NULL) {
  258                         VATTR_NULL(vap);
  259                         vap->va_type = VREG;
  260                         vap->va_mode = cmode;
  261                         if (fmode & O_EXCL)
  262                                 vap->va_vaflags |= VA_EXCLUSIVE;
  263                         if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
  264                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  265                                 vput(ndp->ni_dvp);
  266                                 if ((error = vn_start_write(NULL, &mp,
  267                                     V_XSLEEP | PCATCH)) != 0)
  268                                         return (error);
  269                                 NDREINIT(ndp);
  270                                 goto restart;
  271                         }
  272                         if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
  273                                 ndp->ni_cnd.cn_flags |= MAKEENTRY;
  274 #ifdef MAC
  275                         error = mac_vnode_check_create(cred, ndp->ni_dvp,
  276                             &ndp->ni_cnd, vap);
  277                         if (error == 0)
  278 #endif
  279                                 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
  280                                     &ndp->ni_cnd, vap);
  281                         vp = ndp->ni_vp;
  282                         if (error == 0 && (fmode & O_EXCL) != 0 &&
  283                             (fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
  284                                 VI_LOCK(vp);
  285                                 vp->v_iflag |= VI_FOPENING;
  286                                 VI_UNLOCK(vp);
  287                                 first_open = true;
  288                         }
  289                         VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL,
  290                             false);
  291                         vn_finished_write(mp);
  292                         if (error) {
  293                                 NDFREE(ndp, NDF_ONLY_PNBUF);
  294                                 if (error == ERELOOKUP) {
  295                                         NDREINIT(ndp);
  296                                         goto restart;
  297                                 }
  298                                 return (error);
  299                         }
  300                         fmode &= ~O_TRUNC;
  301                 } else {
  302                         if (ndp->ni_dvp == ndp->ni_vp)
  303                                 vrele(ndp->ni_dvp);
  304                         else
  305                                 vput(ndp->ni_dvp);
  306                         ndp->ni_dvp = NULL;
  307                         vp = ndp->ni_vp;
  308                         if (fmode & O_EXCL) {
  309                                 error = EEXIST;
  310                                 goto bad;
  311                         }
  312                         if (vp->v_type == VDIR) {
  313                                 error = EISDIR;
  314                                 goto bad;
  315                         }
  316                         fmode &= ~O_CREAT;
  317                 }
  318         } else {
  319                 ndp->ni_cnd.cn_nameiop = LOOKUP;
  320                 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
  321                 ndp->ni_cnd.cn_flags |= (fmode & O_NOFOLLOW) != 0 ? NOFOLLOW :
  322                     FOLLOW;
  323                 if ((fmode & FWRITE) == 0)
  324                         ndp->ni_cnd.cn_flags |= LOCKSHARED;
  325                 if ((error = namei(ndp)) != 0)
  326                         return (error);
  327                 vp = ndp->ni_vp;
  328         }
  329         error = vn_open_vnode(vp, fmode, cred, td, fp);
  330         if (first_open) {
  331                 VI_LOCK(vp);
  332                 vp->v_iflag &= ~VI_FOPENING;
  333                 wakeup(vp);
  334                 VI_UNLOCK(vp);
  335         }
  336         if (error)
  337                 goto bad;
  338         *flagp = fmode;
  339         return (0);
  340 bad:
  341         NDFREE(ndp, NDF_ONLY_PNBUF);
  342         vput(vp);
  343         *flagp = fmode;
  344         ndp->ni_vp = NULL;
  345         return (error);
  346 }
  347 
  348 static int
  349 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
  350 {
  351         struct flock lf;
  352         int error, lock_flags, type;
  353 
  354         ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
  355         if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
  356                 return (0);
  357         KASSERT(fp != NULL, ("open with flock requires fp"));
  358         if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
  359                 return (EOPNOTSUPP);
  360 
  361         lock_flags = VOP_ISLOCKED(vp);
  362         VOP_UNLOCK(vp);
  363 
  364         lf.l_whence = SEEK_SET;
  365         lf.l_start = 0;
  366         lf.l_len = 0;
  367         lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
  368         type = F_FLOCK;
  369         if ((fmode & FNONBLOCK) == 0)
  370                 type |= F_WAIT;
  371         if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
  372                 type |= F_FIRSTOPEN;
  373         error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
  374         if (error == 0)
  375                 fp->f_flag |= FHASLOCK;
  376 
  377         vn_lock(vp, lock_flags | LK_RETRY);
  378         return (error);
  379 }
  380 
  381 /*
  382  * Common code for vnode open operations once a vnode is located.
  383  * Check permissions, and call the VOP_OPEN routine.
  384  */
  385 int
  386 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
  387     struct thread *td, struct file *fp)
  388 {
  389         accmode_t accmode;
  390         int error;
  391 
  392         if (vp->v_type == VLNK) {
  393                 if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0)
  394                         return (EMLINK);
  395         }
  396         if (vp->v_type != VDIR && fmode & O_DIRECTORY)
  397                 return (ENOTDIR);
  398 
  399         accmode = 0;
  400         if ((fmode & O_PATH) == 0) {
  401                 if (vp->v_type == VSOCK)
  402                         return (EOPNOTSUPP);
  403                 if ((fmode & (FWRITE | O_TRUNC)) != 0) {
  404                         if (vp->v_type == VDIR)
  405                                 return (EISDIR);
  406                         accmode |= VWRITE;
  407                 }
  408                 if ((fmode & FREAD) != 0)
  409                         accmode |= VREAD;
  410                 if ((fmode & O_APPEND) && (fmode & FWRITE))
  411                         accmode |= VAPPEND;
  412 #ifdef MAC
  413                 if ((fmode & O_CREAT) != 0)
  414                         accmode |= VCREAT;
  415 #endif
  416         }
  417         if ((fmode & FEXEC) != 0)
  418                 accmode |= VEXEC;
  419 #ifdef MAC
  420         if ((fmode & O_VERIFY) != 0)
  421                 accmode |= VVERIFY;
  422         error = mac_vnode_check_open(cred, vp, accmode);
  423         if (error != 0)
  424                 return (error);
  425 
  426         accmode &= ~(VCREAT | VVERIFY);
  427 #endif
  428         if ((fmode & O_CREAT) == 0 && accmode != 0) {
  429                 error = VOP_ACCESS(vp, accmode, cred, td);
  430                 if (error != 0)
  431                         return (error);
  432         }
  433         if ((fmode & O_PATH) != 0) {
  434                 if (vp->v_type != VFIFO && vp->v_type != VSOCK &&
  435                     VOP_ACCESS(vp, VREAD, cred, td) == 0)
  436                         fp->f_flag |= FKQALLOWED;
  437                 return (0);
  438         }
  439 
  440         if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
  441                 vn_lock(vp, LK_UPGRADE | LK_RETRY);
  442         error = VOP_OPEN(vp, fmode, cred, td, fp);
  443         if (error != 0)
  444                 return (error);
  445 
  446         error = vn_open_vnode_advlock(vp, fmode, fp);
  447         if (error == 0 && (fmode & FWRITE) != 0) {
  448                 error = VOP_ADD_WRITECOUNT(vp, 1);
  449                 if (error == 0) {
  450                         CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
  451                              __func__, vp, vp->v_writecount);
  452                 }
  453         }
  454 
  455         /*
  456          * Error from advlock or VOP_ADD_WRITECOUNT() still requires
  457          * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
  458          */
  459         if (error != 0) {
  460                 if (fp != NULL) {
  461                         /*
  462                          * Arrange the call by having fdrop() to use
  463                          * vn_closefile().  This is to satisfy
  464                          * filesystems like devfs or tmpfs, which
  465                          * override fo_close().
  466                          */
  467                         fp->f_flag |= FOPENFAILED;
  468                         fp->f_vnode = vp;
  469                         if (fp->f_ops == &badfileops) {
  470                                 fp->f_type = DTYPE_VNODE;
  471                                 fp->f_ops = &vnops;
  472                         }
  473                         vref(vp);
  474                 } else {
  475                         /*
  476                          * If there is no fp, due to kernel-mode open,
  477                          * we can call VOP_CLOSE() now.
  478                          */
  479                         if (vp->v_type != VFIFO && (fmode & FWRITE) != 0 &&
  480                             !MNT_EXTENDED_SHARED(vp->v_mount) &&
  481                             VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
  482                                 vn_lock(vp, LK_UPGRADE | LK_RETRY);
  483                         (void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC),
  484                             cred, td);
  485                 }
  486         }
  487 
  488         ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
  489         return (error);
  490 
  491 }
  492 
  493 /*
  494  * Check for write permissions on the specified vnode.
  495  * Prototype text segments cannot be written.
  496  * It is racy.
  497  */
  498 int
  499 vn_writechk(struct vnode *vp)
  500 {
  501 
  502         ASSERT_VOP_LOCKED(vp, "vn_writechk");
  503         /*
  504          * If there's shared text associated with
  505          * the vnode, try to free it up once.  If
  506          * we fail, we can't allow writing.
  507          */
  508         if (VOP_IS_TEXT(vp))
  509                 return (ETXTBSY);
  510 
  511         return (0);
  512 }
  513 
  514 /*
  515  * Vnode close call
  516  */
  517 static int
  518 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
  519     struct thread *td, bool keep_ref)
  520 {
  521         struct mount *mp;
  522         int error, lock_flags;
  523 
  524         if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
  525             MNT_EXTENDED_SHARED(vp->v_mount))
  526                 lock_flags = LK_SHARED;
  527         else
  528                 lock_flags = LK_EXCLUSIVE;
  529 
  530         vn_start_write(vp, &mp, V_WAIT);
  531         vn_lock(vp, lock_flags | LK_RETRY);
  532         AUDIT_ARG_VNODE1(vp);
  533         if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
  534                 VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
  535                 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
  536                     __func__, vp, vp->v_writecount);
  537         }
  538         error = VOP_CLOSE(vp, flags, file_cred, td);
  539         if (keep_ref)
  540                 VOP_UNLOCK(vp);
  541         else
  542                 vput(vp);
  543         vn_finished_write(mp);
  544         return (error);
  545 }
  546 
  547 int
  548 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
  549     struct thread *td)
  550 {
  551 
  552         return (vn_close1(vp, flags, file_cred, td, false));
  553 }
  554 
  555 /*
  556  * Heuristic to detect sequential operation.
  557  */
  558 static int
  559 sequential_heuristic(struct uio *uio, struct file *fp)
  560 {
  561         enum uio_rw rw;
  562 
  563         ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
  564 
  565         rw = uio->uio_rw;
  566         if (fp->f_flag & FRDAHEAD)
  567                 return (fp->f_seqcount[rw] << IO_SEQSHIFT);
  568 
  569         /*
  570          * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
  571          * that the first I/O is normally considered to be slightly
  572          * sequential.  Seeking to offset 0 doesn't change sequentiality
  573          * unless previous seeks have reduced f_seqcount to 0, in which
  574          * case offset 0 is not special.
  575          */
  576         if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) ||
  577             uio->uio_offset == fp->f_nextoff[rw]) {
  578                 /*
  579                  * f_seqcount is in units of fixed-size blocks so that it
  580                  * depends mainly on the amount of sequential I/O and not
  581                  * much on the number of sequential I/O's.  The fixed size
  582                  * of 16384 is hard-coded here since it is (not quite) just
  583                  * a magic size that works well here.  This size is more
  584                  * closely related to the best I/O size for real disks than
  585                  * to any block size used by software.
  586                  */
  587                 if (uio->uio_resid >= IO_SEQMAX * 16384)
  588                         fp->f_seqcount[rw] = IO_SEQMAX;
  589                 else {
  590                         fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384);
  591                         if (fp->f_seqcount[rw] > IO_SEQMAX)
  592                                 fp->f_seqcount[rw] = IO_SEQMAX;
  593                 }
  594                 return (fp->f_seqcount[rw] << IO_SEQSHIFT);
  595         }
  596 
  597         /* Not sequential.  Quickly draw-down sequentiality. */
  598         if (fp->f_seqcount[rw] > 1)
  599                 fp->f_seqcount[rw] = 1;
  600         else
  601                 fp->f_seqcount[rw] = 0;
  602         return (0);
  603 }
  604 
  605 /*
  606  * Package up an I/O request on a vnode into a uio and do it.
  607  */
  608 int
  609 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
  610     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
  611     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
  612 {
  613         struct uio auio;
  614         struct iovec aiov;
  615         struct mount *mp;
  616         struct ucred *cred;
  617         void *rl_cookie;
  618         struct vn_io_fault_args args;
  619         int error, lock_flags;
  620 
  621         if (offset < 0 && vp->v_type != VCHR)
  622                 return (EINVAL);
  623         auio.uio_iov = &aiov;
  624         auio.uio_iovcnt = 1;
  625         aiov.iov_base = base;
  626         aiov.iov_len = len;
  627         auio.uio_resid = len;
  628         auio.uio_offset = offset;
  629         auio.uio_segflg = segflg;
  630         auio.uio_rw = rw;
  631         auio.uio_td = td;
  632         error = 0;
  633 
  634         if ((ioflg & IO_NODELOCKED) == 0) {
  635                 if ((ioflg & IO_RANGELOCKED) == 0) {
  636                         if (rw == UIO_READ) {
  637                                 rl_cookie = vn_rangelock_rlock(vp, offset,
  638                                     offset + len);
  639                         } else if ((ioflg & IO_APPEND) != 0) {
  640                                 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
  641                         } else {
  642                                 rl_cookie = vn_rangelock_wlock(vp, offset,
  643                                     offset + len);
  644                         }
  645                 } else
  646                         rl_cookie = NULL;
  647                 mp = NULL;
  648                 if (rw == UIO_WRITE) { 
  649                         if (vp->v_type != VCHR &&
  650                             (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
  651                             != 0)
  652                                 goto out;
  653                         lock_flags = vn_lktype_write(mp, vp);
  654                 } else
  655                         lock_flags = LK_SHARED;
  656                 vn_lock(vp, lock_flags | LK_RETRY);
  657         } else
  658                 rl_cookie = NULL;
  659 
  660         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
  661 #ifdef MAC
  662         if ((ioflg & IO_NOMACCHECK) == 0) {
  663                 if (rw == UIO_READ)
  664                         error = mac_vnode_check_read(active_cred, file_cred,
  665                             vp);
  666                 else
  667                         error = mac_vnode_check_write(active_cred, file_cred,
  668                             vp);
  669         }
  670 #endif
  671         if (error == 0) {
  672                 if (file_cred != NULL)
  673                         cred = file_cred;
  674                 else
  675                         cred = active_cred;
  676                 if (do_vn_io_fault(vp, &auio)) {
  677                         args.kind = VN_IO_FAULT_VOP;
  678                         args.cred = cred;
  679                         args.flags = ioflg;
  680                         args.args.vop_args.vp = vp;
  681                         error = vn_io_fault1(vp, &auio, &args, td);
  682                 } else if (rw == UIO_READ) {
  683                         error = VOP_READ(vp, &auio, ioflg, cred);
  684                 } else /* if (rw == UIO_WRITE) */ {
  685                         error = VOP_WRITE(vp, &auio, ioflg, cred);
  686                 }
  687         }
  688         if (aresid)
  689                 *aresid = auio.uio_resid;
  690         else
  691                 if (auio.uio_resid && error == 0)
  692                         error = EIO;
  693         if ((ioflg & IO_NODELOCKED) == 0) {
  694                 VOP_UNLOCK(vp);
  695                 if (mp != NULL)
  696                         vn_finished_write(mp);
  697         }
  698  out:
  699         if (rl_cookie != NULL)
  700                 vn_rangelock_unlock(vp, rl_cookie);
  701         return (error);
  702 }
  703 
  704 /*
  705  * Package up an I/O request on a vnode into a uio and do it.  The I/O
  706  * request is split up into smaller chunks and we try to avoid saturating
  707  * the buffer cache while potentially holding a vnode locked, so we 
  708  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
  709  * to give other processes a chance to lock the vnode (either other processes
  710  * core'ing the same binary, or unrelated processes scanning the directory).
  711  */
  712 int
  713 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
  714     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
  715     struct ucred *file_cred, size_t *aresid, struct thread *td)
  716 {
  717         int error = 0;
  718         ssize_t iaresid;
  719 
  720         do {
  721                 int chunk;
  722 
  723                 /*
  724                  * Force `offset' to a multiple of MAXBSIZE except possibly
  725                  * for the first chunk, so that filesystems only need to
  726                  * write full blocks except possibly for the first and last
  727                  * chunks.
  728                  */
  729                 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
  730 
  731                 if (chunk > len)
  732                         chunk = len;
  733                 if (rw != UIO_READ && vp->v_type == VREG)
  734                         bwillwrite();
  735                 iaresid = 0;
  736                 error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
  737                     ioflg, active_cred, file_cred, &iaresid, td);
  738                 len -= chunk;   /* aresid calc already includes length */
  739                 if (error)
  740                         break;
  741                 offset += chunk;
  742                 base = (char *)base + chunk;
  743                 kern_yield(PRI_USER);
  744         } while (len);
  745         if (aresid)
  746                 *aresid = len + iaresid;
  747         return (error);
  748 }
  749 
  750 #if OFF_MAX <= LONG_MAX
  751 off_t
  752 foffset_lock(struct file *fp, int flags)
  753 {
  754         volatile short *flagsp;
  755         off_t res;
  756         short state;
  757 
  758         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  759 
  760         if ((flags & FOF_NOLOCK) != 0)
  761                 return (atomic_load_long(&fp->f_offset));
  762 
  763         /*
  764          * According to McKusick the vn lock was protecting f_offset here.
  765          * It is now protected by the FOFFSET_LOCKED flag.
  766          */
  767         flagsp = &fp->f_vnread_flags;
  768         if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED))
  769                 return (atomic_load_long(&fp->f_offset));
  770 
  771         sleepq_lock(&fp->f_vnread_flags);
  772         state = atomic_load_16(flagsp);
  773         for (;;) {
  774                 if ((state & FOFFSET_LOCKED) == 0) {
  775                         if (!atomic_fcmpset_acq_16(flagsp, &state,
  776                             FOFFSET_LOCKED))
  777                                 continue;
  778                         break;
  779                 }
  780                 if ((state & FOFFSET_LOCK_WAITING) == 0) {
  781                         if (!atomic_fcmpset_acq_16(flagsp, &state,
  782                             state | FOFFSET_LOCK_WAITING))
  783                                 continue;
  784                 }
  785                 DROP_GIANT();
  786                 sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0);
  787                 sleepq_wait(&fp->f_vnread_flags, PUSER -1);
  788                 PICKUP_GIANT();
  789                 sleepq_lock(&fp->f_vnread_flags);
  790                 state = atomic_load_16(flagsp);
  791         }
  792         res = atomic_load_long(&fp->f_offset);
  793         sleepq_release(&fp->f_vnread_flags);
  794         return (res);
  795 }
  796 
  797 void
  798 foffset_unlock(struct file *fp, off_t val, int flags)
  799 {
  800         volatile short *flagsp;
  801         short state;
  802 
  803         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  804 
  805         if ((flags & FOF_NOUPDATE) == 0)
  806                 atomic_store_long(&fp->f_offset, val);
  807         if ((flags & FOF_NEXTOFF_R) != 0)
  808                 fp->f_nextoff[UIO_READ] = val;
  809         if ((flags & FOF_NEXTOFF_W) != 0)
  810                 fp->f_nextoff[UIO_WRITE] = val;
  811 
  812         if ((flags & FOF_NOLOCK) != 0)
  813                 return;
  814 
  815         flagsp = &fp->f_vnread_flags;
  816         state = atomic_load_16(flagsp);
  817         if ((state & FOFFSET_LOCK_WAITING) == 0 &&
  818             atomic_cmpset_rel_16(flagsp, state, 0))
  819                 return;
  820 
  821         sleepq_lock(&fp->f_vnread_flags);
  822         MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0);
  823         MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0);
  824         fp->f_vnread_flags = 0;
  825         sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0);
  826         sleepq_release(&fp->f_vnread_flags);
  827 }
  828 #else
  829 off_t
  830 foffset_lock(struct file *fp, int flags)
  831 {
  832         struct mtx *mtxp;
  833         off_t res;
  834 
  835         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  836 
  837         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  838         mtx_lock(mtxp);
  839         if ((flags & FOF_NOLOCK) == 0) {
  840                 while (fp->f_vnread_flags & FOFFSET_LOCKED) {
  841                         fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
  842                         msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
  843                             "vofflock", 0);
  844                 }
  845                 fp->f_vnread_flags |= FOFFSET_LOCKED;
  846         }
  847         res = fp->f_offset;
  848         mtx_unlock(mtxp);
  849         return (res);
  850 }
  851 
  852 void
  853 foffset_unlock(struct file *fp, off_t val, int flags)
  854 {
  855         struct mtx *mtxp;
  856 
  857         KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
  858 
  859         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  860         mtx_lock(mtxp);
  861         if ((flags & FOF_NOUPDATE) == 0)
  862                 fp->f_offset = val;
  863         if ((flags & FOF_NEXTOFF_R) != 0)
  864                 fp->f_nextoff[UIO_READ] = val;
  865         if ((flags & FOF_NEXTOFF_W) != 0)
  866                 fp->f_nextoff[UIO_WRITE] = val;
  867         if ((flags & FOF_NOLOCK) == 0) {
  868                 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
  869                     ("Lost FOFFSET_LOCKED"));
  870                 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
  871                         wakeup(&fp->f_vnread_flags);
  872                 fp->f_vnread_flags = 0;
  873         }
  874         mtx_unlock(mtxp);
  875 }
  876 #endif
  877 
  878 void
  879 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
  880 {
  881 
  882         if ((flags & FOF_OFFSET) == 0)
  883                 uio->uio_offset = foffset_lock(fp, flags);
  884 }
  885 
  886 void
  887 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
  888 {
  889 
  890         if ((flags & FOF_OFFSET) == 0)
  891                 foffset_unlock(fp, uio->uio_offset, flags);
  892 }
  893 
  894 static int
  895 get_advice(struct file *fp, struct uio *uio)
  896 {
  897         struct mtx *mtxp;
  898         int ret;
  899 
  900         ret = POSIX_FADV_NORMAL;
  901         if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
  902                 return (ret);
  903 
  904         mtxp = mtx_pool_find(mtxpool_sleep, fp);
  905         mtx_lock(mtxp);
  906         if (fp->f_advice != NULL &&
  907             uio->uio_offset >= fp->f_advice->fa_start &&
  908             uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
  909                 ret = fp->f_advice->fa_advice;
  910         mtx_unlock(mtxp);
  911         return (ret);
  912 }
  913 
  914 static int
  915 get_write_ioflag(struct file *fp)
  916 {
  917         int ioflag;
  918         struct mount *mp;
  919         struct vnode *vp;
  920 
  921         ioflag = 0;
  922         vp = fp->f_vnode;
  923         mp = atomic_load_ptr(&vp->v_mount);
  924 
  925         if ((fp->f_flag & O_DIRECT) != 0)
  926                 ioflag |= IO_DIRECT;
  927 
  928         if ((fp->f_flag & O_FSYNC) != 0 ||
  929             (mp != NULL && (mp->mnt_flag & MNT_SYNCHRONOUS) != 0))
  930                 ioflag |= IO_SYNC;
  931 
  932         /*
  933          * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE()
  934          * or VOP_DEALLOCATE() implementations that don't understand IO_DATASYNC
  935          * fall back to full O_SYNC behavior.
  936          */
  937         if ((fp->f_flag & O_DSYNC) != 0)
  938                 ioflag |= IO_SYNC | IO_DATASYNC;
  939 
  940         return (ioflag);
  941 }
  942 
  943 int
  944 vn_read_from_obj(struct vnode *vp, struct uio *uio)
  945 {
  946         vm_object_t obj;
  947         vm_page_t ma[io_hold_cnt + 2];
  948         off_t off, vsz;
  949         ssize_t resid;
  950         int error, i, j;
  951 
  952         MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2));
  953         obj = atomic_load_ptr(&vp->v_object);
  954         if (obj == NULL)
  955                 return (EJUSTRETURN);
  956 
  957         /*
  958          * Depends on type stability of vm_objects.
  959          */
  960         vm_object_pip_add(obj, 1);
  961         if ((obj->flags & OBJ_DEAD) != 0) {
  962                 /*
  963                  * Note that object might be already reused from the
  964                  * vnode, and the OBJ_DEAD flag cleared.  This is fine,
  965                  * we recheck for DOOMED vnode state after all pages
  966                  * are busied, and retract then.
  967                  *
  968                  * But we check for OBJ_DEAD to ensure that we do not
  969                  * busy pages while vm_object_terminate_pages()
  970                  * processes the queue.
  971                  */
  972                 error = EJUSTRETURN;
  973                 goto out_pip;
  974         }
  975 
  976         resid = uio->uio_resid;
  977         off = uio->uio_offset;
  978         for (i = 0; resid > 0; i++) {
  979                 MPASS(i < io_hold_cnt + 2);
  980                 ma[i] = vm_page_grab_unlocked(obj, atop(off),
  981                     VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY |
  982                     VM_ALLOC_NOWAIT);
  983                 if (ma[i] == NULL)
  984                         break;
  985 
  986                 /*
  987                  * Skip invalid pages.  Valid mask can be partial only
  988                  * at EOF, and we clip later.
  989                  */
  990                 if (vm_page_none_valid(ma[i])) {
  991                         vm_page_sunbusy(ma[i]);
  992                         break;
  993                 }
  994 
  995                 resid -= PAGE_SIZE;
  996                 off += PAGE_SIZE;
  997         }
  998         if (i == 0) {
  999                 error = EJUSTRETURN;
 1000                 goto out_pip;
 1001         }
 1002 
 1003         /*
 1004          * Check VIRF_DOOMED after we busied our pages.  Since
 1005          * vgonel() terminates the vnode' vm_object, it cannot
 1006          * process past pages busied by us.
 1007          */
 1008         if (VN_IS_DOOMED(vp)) {
 1009                 error = EJUSTRETURN;
 1010                 goto out;
 1011         }
 1012 
 1013         resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1);
 1014         if (resid > uio->uio_resid)
 1015                 resid = uio->uio_resid;
 1016 
 1017         /*
 1018          * Unlocked read of vnp_size is safe because truncation cannot
 1019          * pass busied page.  But we load vnp_size into a local
 1020          * variable so that possible concurrent extension does not
 1021          * break calculation.
 1022          */
 1023 #if defined(__powerpc__) && !defined(__powerpc64__)
 1024         vsz = obj->un_pager.vnp.vnp_size;
 1025 #else
 1026         vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size);
 1027 #endif
 1028         if (uio->uio_offset >= vsz) {
 1029                 error = EJUSTRETURN;
 1030                 goto out;
 1031         }
 1032         if (uio->uio_offset + resid > vsz)
 1033                 resid = vsz - uio->uio_offset;
 1034 
 1035         error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio);
 1036 
 1037 out:
 1038         for (j = 0; j < i; j++) {
 1039                 if (error == 0)
 1040                         vm_page_reference(ma[j]);
 1041                 vm_page_sunbusy(ma[j]);
 1042         }
 1043 out_pip:
 1044         vm_object_pip_wakeup(obj);
 1045         if (error != 0)
 1046                 return (error);
 1047         return (uio->uio_resid == 0 ? 0 : EJUSTRETURN);
 1048 }
 1049 
 1050 /*
 1051  * File table vnode read routine.
 1052  */
 1053 static int
 1054 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
 1055     struct thread *td)
 1056 {
 1057         struct vnode *vp;
 1058         off_t orig_offset;
 1059         int error, ioflag;
 1060         int advice;
 1061 
 1062         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
 1063             uio->uio_td, td));
 1064         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
 1065         vp = fp->f_vnode;
 1066         ioflag = 0;
 1067         if (fp->f_flag & FNONBLOCK)
 1068                 ioflag |= IO_NDELAY;
 1069         if (fp->f_flag & O_DIRECT)
 1070                 ioflag |= IO_DIRECT;
 1071 
 1072         /*
 1073          * Try to read from page cache.  VIRF_DOOMED check is racy but
 1074          * allows us to avoid unneeded work outright.
 1075          */
 1076         if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() &&
 1077             (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) {
 1078                 error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred);
 1079                 if (error == 0) {
 1080                         fp->f_nextoff[UIO_READ] = uio->uio_offset;
 1081                         return (0);
 1082                 }
 1083                 if (error != EJUSTRETURN)
 1084                         return (error);
 1085         }
 1086 
 1087         advice = get_advice(fp, uio);
 1088         vn_lock(vp, LK_SHARED | LK_RETRY);
 1089 
 1090         switch (advice) {
 1091         case POSIX_FADV_NORMAL:
 1092         case POSIX_FADV_SEQUENTIAL:
 1093         case POSIX_FADV_NOREUSE:
 1094                 ioflag |= sequential_heuristic(uio, fp);
 1095                 break;
 1096         case POSIX_FADV_RANDOM:
 1097                 /* Disable read-ahead for random I/O. */
 1098                 break;
 1099         }
 1100         orig_offset = uio->uio_offset;
 1101 
 1102 #ifdef MAC
 1103         error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
 1104         if (error == 0)
 1105 #endif
 1106                 error = VOP_READ(vp, uio, ioflag, fp->f_cred);
 1107         fp->f_nextoff[UIO_READ] = uio->uio_offset;
 1108         VOP_UNLOCK(vp);
 1109         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
 1110             orig_offset != uio->uio_offset)
 1111                 /*
 1112                  * Use POSIX_FADV_DONTNEED to flush pages and buffers
 1113                  * for the backing file after a POSIX_FADV_NOREUSE
 1114                  * read(2).
 1115                  */
 1116                 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
 1117                     POSIX_FADV_DONTNEED);
 1118         return (error);
 1119 }
 1120 
 1121 /*
 1122  * File table vnode write routine.
 1123  */
 1124 static int
 1125 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
 1126     struct thread *td)
 1127 {
 1128         struct vnode *vp;
 1129         struct mount *mp;
 1130         off_t orig_offset;
 1131         int error, ioflag;
 1132         int advice;
 1133         bool need_finished_write;
 1134 
 1135         KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
 1136             uio->uio_td, td));
 1137         KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
 1138         vp = fp->f_vnode;
 1139         if (vp->v_type == VREG)
 1140                 bwillwrite();
 1141         ioflag = IO_UNIT;
 1142         if (vp->v_type == VREG && (fp->f_flag & O_APPEND) != 0)
 1143                 ioflag |= IO_APPEND;
 1144         if ((fp->f_flag & FNONBLOCK) != 0)
 1145                 ioflag |= IO_NDELAY;
 1146         ioflag |= get_write_ioflag(fp);
 1147 
 1148         mp = NULL;
 1149         need_finished_write = false;
 1150         if (vp->v_type != VCHR) {
 1151                 error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
 1152                 if (error != 0)
 1153                         goto unlock;
 1154                 need_finished_write = true;
 1155         }
 1156 
 1157         advice = get_advice(fp, uio);
 1158 
 1159         vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
 1160         switch (advice) {
 1161         case POSIX_FADV_NORMAL:
 1162         case POSIX_FADV_SEQUENTIAL:
 1163         case POSIX_FADV_NOREUSE:
 1164                 ioflag |= sequential_heuristic(uio, fp);
 1165                 break;
 1166         case POSIX_FADV_RANDOM:
 1167                 /* XXX: Is this correct? */
 1168                 break;
 1169         }
 1170         orig_offset = uio->uio_offset;
 1171 
 1172 #ifdef MAC
 1173         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
 1174         if (error == 0)
 1175 #endif
 1176                 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
 1177         fp->f_nextoff[UIO_WRITE] = uio->uio_offset;
 1178         VOP_UNLOCK(vp);
 1179         if (need_finished_write)
 1180                 vn_finished_write(mp);
 1181         if (error == 0 && advice == POSIX_FADV_NOREUSE &&
 1182             orig_offset != uio->uio_offset)
 1183                 /*
 1184                  * Use POSIX_FADV_DONTNEED to flush pages and buffers
 1185                  * for the backing file after a POSIX_FADV_NOREUSE
 1186                  * write(2).
 1187                  */
 1188                 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
 1189                     POSIX_FADV_DONTNEED);
 1190 unlock:
 1191         return (error);
 1192 }
 1193 
 1194 /*
 1195  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
 1196  * prevent the following deadlock:
 1197  *
 1198  * Assume that the thread A reads from the vnode vp1 into userspace
 1199  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
 1200  * currently not resident, then system ends up with the call chain
 1201  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
 1202  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
 1203  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
 1204  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
 1205  * backed by the pages of vnode vp1, and some page in buf2 is not
 1206  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
 1207  *
 1208  * To prevent the lock order reversal and deadlock, vn_io_fault() does
 1209  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
 1210  * Instead, it first tries to do the whole range i/o with pagefaults
 1211  * disabled. If all pages in the i/o buffer are resident and mapped,
 1212  * VOP will succeed (ignoring the genuine filesystem errors).
 1213  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
 1214  * i/o in chunks, with all pages in the chunk prefaulted and held
 1215  * using vm_fault_quick_hold_pages().
 1216  *
 1217  * Filesystems using this deadlock avoidance scheme should use the
 1218  * array of the held pages from uio, saved in the curthread->td_ma,
 1219  * instead of doing uiomove().  A helper function
 1220  * vn_io_fault_uiomove() converts uiomove request into
 1221  * uiomove_fromphys() over td_ma array.
 1222  *
 1223  * Since vnode locks do not cover the whole i/o anymore, rangelocks
 1224  * make the current i/o request atomic with respect to other i/os and
 1225  * truncations.
 1226  */
 1227 
 1228 /*
 1229  * Decode vn_io_fault_args and perform the corresponding i/o.
 1230  */
 1231 static int
 1232 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
 1233     struct thread *td)
 1234 {
 1235         int error, save;
 1236 
 1237         error = 0;
 1238         save = vm_fault_disable_pagefaults();
 1239         switch (args->kind) {
 1240         case VN_IO_FAULT_FOP:
 1241                 error = (args->args.fop_args.doio)(args->args.fop_args.fp,
 1242                     uio, args->cred, args->flags, td);
 1243                 break;
 1244         case VN_IO_FAULT_VOP:
 1245                 if (uio->uio_rw == UIO_READ) {
 1246                         error = VOP_READ(args->args.vop_args.vp, uio,
 1247                             args->flags, args->cred);
 1248                 } else if (uio->uio_rw == UIO_WRITE) {
 1249                         error = VOP_WRITE(args->args.vop_args.vp, uio,
 1250                             args->flags, args->cred);
 1251                 }
 1252                 break;
 1253         default:
 1254                 panic("vn_io_fault_doio: unknown kind of io %d %d",
 1255                     args->kind, uio->uio_rw);
 1256         }
 1257         vm_fault_enable_pagefaults(save);
 1258         return (error);
 1259 }
 1260 
 1261 static int
 1262 vn_io_fault_touch(char *base, const struct uio *uio)
 1263 {
 1264         int r;
 1265 
 1266         r = fubyte(base);
 1267         if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
 1268                 return (EFAULT);
 1269         return (0);
 1270 }
 1271 
 1272 static int
 1273 vn_io_fault_prefault_user(const struct uio *uio)
 1274 {
 1275         char *base;
 1276         const struct iovec *iov;
 1277         size_t len;
 1278         ssize_t resid;
 1279         int error, i;
 1280 
 1281         KASSERT(uio->uio_segflg == UIO_USERSPACE,
 1282             ("vn_io_fault_prefault userspace"));
 1283 
 1284         error = i = 0;
 1285         iov = uio->uio_iov;
 1286         resid = uio->uio_resid;
 1287         base = iov->iov_base;
 1288         len = iov->iov_len;
 1289         while (resid > 0) {
 1290                 error = vn_io_fault_touch(base, uio);
 1291                 if (error != 0)
 1292                         break;
 1293                 if (len < PAGE_SIZE) {
 1294                         if (len != 0) {
 1295                                 error = vn_io_fault_touch(base + len - 1, uio);
 1296                                 if (error != 0)
 1297                                         break;
 1298                                 resid -= len;
 1299                         }
 1300                         if (++i >= uio->uio_iovcnt)
 1301                                 break;
 1302                         iov = uio->uio_iov + i;
 1303                         base = iov->iov_base;
 1304                         len = iov->iov_len;
 1305                 } else {
 1306                         len -= PAGE_SIZE;
 1307                         base += PAGE_SIZE;
 1308                         resid -= PAGE_SIZE;
 1309                 }
 1310         }
 1311         return (error);
 1312 }
 1313 
 1314 /*
 1315  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
 1316  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
 1317  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
 1318  * into args and call vn_io_fault1() to handle faults during the user
 1319  * mode buffer accesses.
 1320  */
 1321 static int
 1322 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
 1323     struct thread *td)
 1324 {
 1325         vm_page_t ma[io_hold_cnt + 2];
 1326         struct uio *uio_clone, short_uio;
 1327         struct iovec short_iovec[1];
 1328         vm_page_t *prev_td_ma;
 1329         vm_prot_t prot;
 1330         vm_offset_t addr, end;
 1331         size_t len, resid;
 1332         ssize_t adv;
 1333         int error, cnt, saveheld, prev_td_ma_cnt;
 1334 
 1335         if (vn_io_fault_prefault) {
 1336                 error = vn_io_fault_prefault_user(uio);
 1337                 if (error != 0)
 1338                         return (error); /* Or ignore ? */
 1339         }
 1340 
 1341         prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
 1342 
 1343         /*
 1344          * The UFS follows IO_UNIT directive and replays back both
 1345          * uio_offset and uio_resid if an error is encountered during the
 1346          * operation.  But, since the iovec may be already advanced,
 1347          * uio is still in an inconsistent state.
 1348          *
 1349          * Cache a copy of the original uio, which is advanced to the redo
 1350          * point using UIO_NOCOPY below.
 1351          */
 1352         uio_clone = cloneuio(uio);
 1353         resid = uio->uio_resid;
 1354 
 1355         short_uio.uio_segflg = UIO_USERSPACE;
 1356         short_uio.uio_rw = uio->uio_rw;
 1357         short_uio.uio_td = uio->uio_td;
 1358 
 1359         error = vn_io_fault_doio(args, uio, td);
 1360         if (error != EFAULT)
 1361                 goto out;
 1362 
 1363         atomic_add_long(&vn_io_faults_cnt, 1);
 1364         uio_clone->uio_segflg = UIO_NOCOPY;
 1365         uiomove(NULL, resid - uio->uio_resid, uio_clone);
 1366         uio_clone->uio_segflg = uio->uio_segflg;
 1367 
 1368         saveheld = curthread_pflags_set(TDP_UIOHELD);
 1369         prev_td_ma = td->td_ma;
 1370         prev_td_ma_cnt = td->td_ma_cnt;
 1371 
 1372         while (uio_clone->uio_resid != 0) {
 1373                 len = uio_clone->uio_iov->iov_len;
 1374                 if (len == 0) {
 1375                         KASSERT(uio_clone->uio_iovcnt >= 1,
 1376                             ("iovcnt underflow"));
 1377                         uio_clone->uio_iov++;
 1378                         uio_clone->uio_iovcnt--;
 1379                         continue;
 1380                 }
 1381                 if (len > ptoa(io_hold_cnt))
 1382                         len = ptoa(io_hold_cnt);
 1383                 addr = (uintptr_t)uio_clone->uio_iov->iov_base;
 1384                 end = round_page(addr + len);
 1385                 if (end < addr) {
 1386                         error = EFAULT;
 1387                         break;
 1388                 }
 1389                 cnt = atop(end - trunc_page(addr));
 1390                 /*
 1391                  * A perfectly misaligned address and length could cause
 1392                  * both the start and the end of the chunk to use partial
 1393                  * page.  +2 accounts for such a situation.
 1394                  */
 1395                 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
 1396                     addr, len, prot, ma, io_hold_cnt + 2);
 1397                 if (cnt == -1) {
 1398                         error = EFAULT;
 1399                         break;
 1400                 }
 1401                 short_uio.uio_iov = &short_iovec[0];
 1402                 short_iovec[0].iov_base = (void *)addr;
 1403                 short_uio.uio_iovcnt = 1;
 1404                 short_uio.uio_resid = short_iovec[0].iov_len = len;
 1405                 short_uio.uio_offset = uio_clone->uio_offset;
 1406                 td->td_ma = ma;
 1407                 td->td_ma_cnt = cnt;
 1408 
 1409                 error = vn_io_fault_doio(args, &short_uio, td);
 1410                 vm_page_unhold_pages(ma, cnt);
 1411                 adv = len - short_uio.uio_resid;
 1412 
 1413                 uio_clone->uio_iov->iov_base =
 1414                     (char *)uio_clone->uio_iov->iov_base + adv;
 1415                 uio_clone->uio_iov->iov_len -= adv;
 1416                 uio_clone->uio_resid -= adv;
 1417                 uio_clone->uio_offset += adv;
 1418 
 1419                 uio->uio_resid -= adv;
 1420                 uio->uio_offset += adv;
 1421 
 1422                 if (error != 0 || adv == 0)
 1423                         break;
 1424         }
 1425         td->td_ma = prev_td_ma;
 1426         td->td_ma_cnt = prev_td_ma_cnt;
 1427         curthread_pflags_restore(saveheld);
 1428 out:
 1429         free(uio_clone, M_IOV);
 1430         return (error);
 1431 }
 1432 
 1433 static int
 1434 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
 1435     int flags, struct thread *td)
 1436 {
 1437         fo_rdwr_t *doio;
 1438         struct vnode *vp;
 1439         void *rl_cookie;
 1440         struct vn_io_fault_args args;
 1441         int error;
 1442 
 1443         doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
 1444         vp = fp->f_vnode;
 1445 
 1446         /*
 1447          * The ability to read(2) on a directory has historically been
 1448          * allowed for all users, but this can and has been the source of
 1449          * at least one security issue in the past.  As such, it is now hidden
 1450          * away behind a sysctl for those that actually need it to use it, and
 1451          * restricted to root when it's turned on to make it relatively safe to
 1452          * leave on for longer sessions of need.
 1453          */
 1454         if (vp->v_type == VDIR) {
 1455                 KASSERT(uio->uio_rw == UIO_READ,
 1456                     ("illegal write attempted on a directory"));
 1457                 if (!vfs_allow_read_dir)
 1458                         return (EISDIR);
 1459                 if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
 1460                         return (EISDIR);
 1461         }
 1462 
 1463         foffset_lock_uio(fp, uio, flags);
 1464         if (do_vn_io_fault(vp, uio)) {
 1465                 args.kind = VN_IO_FAULT_FOP;
 1466                 args.args.fop_args.fp = fp;
 1467                 args.args.fop_args.doio = doio;
 1468                 args.cred = active_cred;
 1469                 args.flags = flags | FOF_OFFSET;
 1470                 if (uio->uio_rw == UIO_READ) {
 1471                         rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
 1472                             uio->uio_offset + uio->uio_resid);
 1473                 } else if ((fp->f_flag & O_APPEND) != 0 ||
 1474                     (flags & FOF_OFFSET) == 0) {
 1475                         /* For appenders, punt and lock the whole range. */
 1476                         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 1477                 } else {
 1478                         rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
 1479                             uio->uio_offset + uio->uio_resid);
 1480                 }
 1481                 error = vn_io_fault1(vp, uio, &args, td);
 1482                 vn_rangelock_unlock(vp, rl_cookie);
 1483         } else {
 1484                 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
 1485         }
 1486         foffset_unlock_uio(fp, uio, flags);
 1487         return (error);
 1488 }
 1489 
 1490 /*
 1491  * Helper function to perform the requested uiomove operation using
 1492  * the held pages for io->uio_iov[0].iov_base buffer instead of
 1493  * copyin/copyout.  Access to the pages with uiomove_fromphys()
 1494  * instead of iov_base prevents page faults that could occur due to
 1495  * pmap_collect() invalidating the mapping created by
 1496  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
 1497  * object cleanup revoking the write access from page mappings.
 1498  *
 1499  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
 1500  * instead of plain uiomove().
 1501  */
 1502 int
 1503 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
 1504 {
 1505         struct uio transp_uio;
 1506         struct iovec transp_iov[1];
 1507         struct thread *td;
 1508         size_t adv;
 1509         int error, pgadv;
 1510 
 1511         td = curthread;
 1512         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1513             uio->uio_segflg != UIO_USERSPACE)
 1514                 return (uiomove(data, xfersize, uio));
 1515 
 1516         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1517         transp_iov[0].iov_base = data;
 1518         transp_uio.uio_iov = &transp_iov[0];
 1519         transp_uio.uio_iovcnt = 1;
 1520         if (xfersize > uio->uio_resid)
 1521                 xfersize = uio->uio_resid;
 1522         transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
 1523         transp_uio.uio_offset = 0;
 1524         transp_uio.uio_segflg = UIO_SYSSPACE;
 1525         /*
 1526          * Since transp_iov points to data, and td_ma page array
 1527          * corresponds to original uio->uio_iov, we need to invert the
 1528          * direction of the i/o operation as passed to
 1529          * uiomove_fromphys().
 1530          */
 1531         switch (uio->uio_rw) {
 1532         case UIO_WRITE:
 1533                 transp_uio.uio_rw = UIO_READ;
 1534                 break;
 1535         case UIO_READ:
 1536                 transp_uio.uio_rw = UIO_WRITE;
 1537                 break;
 1538         }
 1539         transp_uio.uio_td = uio->uio_td;
 1540         error = uiomove_fromphys(td->td_ma,
 1541             ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
 1542             xfersize, &transp_uio);
 1543         adv = xfersize - transp_uio.uio_resid;
 1544         pgadv =
 1545             (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
 1546             (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
 1547         td->td_ma += pgadv;
 1548         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1549             pgadv));
 1550         td->td_ma_cnt -= pgadv;
 1551         uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
 1552         uio->uio_iov->iov_len -= adv;
 1553         uio->uio_resid -= adv;
 1554         uio->uio_offset += adv;
 1555         return (error);
 1556 }
 1557 
 1558 int
 1559 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
 1560     struct uio *uio)
 1561 {
 1562         struct thread *td;
 1563         vm_offset_t iov_base;
 1564         int cnt, pgadv;
 1565 
 1566         td = curthread;
 1567         if ((td->td_pflags & TDP_UIOHELD) == 0 ||
 1568             uio->uio_segflg != UIO_USERSPACE)
 1569                 return (uiomove_fromphys(ma, offset, xfersize, uio));
 1570 
 1571         KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
 1572         cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
 1573         iov_base = (vm_offset_t)uio->uio_iov->iov_base;
 1574         switch (uio->uio_rw) {
 1575         case UIO_WRITE:
 1576                 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
 1577                     offset, cnt);
 1578                 break;
 1579         case UIO_READ:
 1580                 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
 1581                     cnt);
 1582                 break;
 1583         }
 1584         pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
 1585         td->td_ma += pgadv;
 1586         KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
 1587             pgadv));
 1588         td->td_ma_cnt -= pgadv;
 1589         uio->uio_iov->iov_base = (char *)(iov_base + cnt);
 1590         uio->uio_iov->iov_len -= cnt;
 1591         uio->uio_resid -= cnt;
 1592         uio->uio_offset += cnt;
 1593         return (0);
 1594 }
 1595 
 1596 /*
 1597  * File table truncate routine.
 1598  */
 1599 static int
 1600 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
 1601     struct thread *td)
 1602 {
 1603         struct mount *mp;
 1604         struct vnode *vp;
 1605         void *rl_cookie;
 1606         int error;
 1607 
 1608         vp = fp->f_vnode;
 1609 
 1610 retry:
 1611         /*
 1612          * Lock the whole range for truncation.  Otherwise split i/o
 1613          * might happen partly before and partly after the truncation.
 1614          */
 1615         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 1616         error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
 1617         if (error)
 1618                 goto out1;
 1619         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1620         AUDIT_ARG_VNODE1(vp);
 1621         if (vp->v_type == VDIR) {
 1622                 error = EISDIR;
 1623                 goto out;
 1624         }
 1625 #ifdef MAC
 1626         error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
 1627         if (error)
 1628                 goto out;
 1629 #endif
 1630         error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
 1631             fp->f_cred);
 1632 out:
 1633         VOP_UNLOCK(vp);
 1634         vn_finished_write(mp);
 1635 out1:
 1636         vn_rangelock_unlock(vp, rl_cookie);
 1637         if (error == ERELOOKUP)
 1638                 goto retry;
 1639         return (error);
 1640 }
 1641 
 1642 /*
 1643  * Truncate a file that is already locked.
 1644  */
 1645 int
 1646 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
 1647     struct ucred *cred)
 1648 {
 1649         struct vattr vattr;
 1650         int error;
 1651 
 1652         error = VOP_ADD_WRITECOUNT(vp, 1);
 1653         if (error == 0) {
 1654                 VATTR_NULL(&vattr);
 1655                 vattr.va_size = length;
 1656                 if (sync)
 1657                         vattr.va_vaflags |= VA_SYNC;
 1658                 error = VOP_SETATTR(vp, &vattr, cred);
 1659                 VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
 1660         }
 1661         return (error);
 1662 }
 1663 
 1664 /*
 1665  * File table vnode stat routine.
 1666  */
 1667 int
 1668 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred,
 1669     struct thread *td)
 1670 {
 1671         struct vnode *vp = fp->f_vnode;
 1672         int error;
 1673 
 1674         vn_lock(vp, LK_SHARED | LK_RETRY);
 1675         error = VOP_STAT(vp, sb, active_cred, fp->f_cred, td);
 1676         VOP_UNLOCK(vp);
 1677 
 1678         return (error);
 1679 }
 1680 
 1681 /*
 1682  * File table vnode ioctl routine.
 1683  */
 1684 static int
 1685 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
 1686     struct thread *td)
 1687 {
 1688         struct vattr vattr;
 1689         struct vnode *vp;
 1690         struct fiobmap2_arg *bmarg;
 1691         int error;
 1692 
 1693         vp = fp->f_vnode;
 1694         switch (vp->v_type) {
 1695         case VDIR:
 1696         case VREG:
 1697                 switch (com) {
 1698                 case FIONREAD:
 1699                         vn_lock(vp, LK_SHARED | LK_RETRY);
 1700                         error = VOP_GETATTR(vp, &vattr, active_cred);
 1701                         VOP_UNLOCK(vp);
 1702                         if (error == 0)
 1703                                 *(int *)data = vattr.va_size - fp->f_offset;
 1704                         return (error);
 1705                 case FIOBMAP2:
 1706                         bmarg = (struct fiobmap2_arg *)data;
 1707                         vn_lock(vp, LK_SHARED | LK_RETRY);
 1708 #ifdef MAC
 1709                         error = mac_vnode_check_read(active_cred, fp->f_cred,
 1710                             vp);
 1711                         if (error == 0)
 1712 #endif
 1713                                 error = VOP_BMAP(vp, bmarg->bn, NULL,
 1714                                     &bmarg->bn, &bmarg->runp, &bmarg->runb);
 1715                         VOP_UNLOCK(vp);
 1716                         return (error);
 1717                 case FIONBIO:
 1718                 case FIOASYNC:
 1719                         return (0);
 1720                 default:
 1721                         return (VOP_IOCTL(vp, com, data, fp->f_flag,
 1722                             active_cred, td));
 1723                 }
 1724                 break;
 1725         case VCHR:
 1726                 return (VOP_IOCTL(vp, com, data, fp->f_flag,
 1727                     active_cred, td));
 1728         default:
 1729                 return (ENOTTY);
 1730         }
 1731 }
 1732 
 1733 /*
 1734  * File table vnode poll routine.
 1735  */
 1736 static int
 1737 vn_poll(struct file *fp, int events, struct ucred *active_cred,
 1738     struct thread *td)
 1739 {
 1740         struct vnode *vp;
 1741         int error;
 1742 
 1743         vp = fp->f_vnode;
 1744 #if defined(MAC) || defined(AUDIT)
 1745         if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) {
 1746                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1747                 AUDIT_ARG_VNODE1(vp);
 1748                 error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
 1749                 VOP_UNLOCK(vp);
 1750                 if (error != 0)
 1751                         return (error);
 1752         }
 1753 #endif
 1754         error = VOP_POLL(vp, events, fp->f_cred, td);
 1755         return (error);
 1756 }
 1757 
 1758 /*
 1759  * Acquire the requested lock and then check for validity.  LK_RETRY
 1760  * permits vn_lock to return doomed vnodes.
 1761  */
 1762 static int __noinline
 1763 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
 1764     int error)
 1765 {
 1766 
 1767         KASSERT((flags & LK_RETRY) == 0 || error == 0,
 1768             ("vn_lock: error %d incompatible with flags %#x", error, flags));
 1769 
 1770         if (error == 0)
 1771                 VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
 1772 
 1773         if ((flags & LK_RETRY) == 0) {
 1774                 if (error == 0) {
 1775                         VOP_UNLOCK(vp);
 1776                         error = ENOENT;
 1777                 }
 1778                 return (error);
 1779         }
 1780 
 1781         /*
 1782          * LK_RETRY case.
 1783          *
 1784          * Nothing to do if we got the lock.
 1785          */
 1786         if (error == 0)
 1787                 return (0);
 1788 
 1789         /*
 1790          * Interlock was dropped by the call in _vn_lock.
 1791          */
 1792         flags &= ~LK_INTERLOCK;
 1793         do {
 1794                 error = VOP_LOCK1(vp, flags, file, line);
 1795         } while (error != 0);
 1796         return (0);
 1797 }
 1798 
 1799 int
 1800 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
 1801 {
 1802         int error;
 1803 
 1804         VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
 1805             ("vn_lock: no locktype (%d passed)", flags));
 1806         VNPASS(vp->v_holdcnt > 0, vp);
 1807         error = VOP_LOCK1(vp, flags, file, line);
 1808         if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
 1809                 return (_vn_lock_fallback(vp, flags, file, line, error));
 1810         return (0);
 1811 }
 1812 
 1813 /*
 1814  * File table vnode close routine.
 1815  */
 1816 static int
 1817 vn_closefile(struct file *fp, struct thread *td)
 1818 {
 1819         struct vnode *vp;
 1820         struct flock lf;
 1821         int error;
 1822         bool ref;
 1823 
 1824         vp = fp->f_vnode;
 1825         fp->f_ops = &badfileops;
 1826         ref = (fp->f_flag & FHASLOCK) != 0;
 1827 
 1828         error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
 1829 
 1830         if (__predict_false(ref)) {
 1831                 lf.l_whence = SEEK_SET;
 1832                 lf.l_start = 0;
 1833                 lf.l_len = 0;
 1834                 lf.l_type = F_UNLCK;
 1835                 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
 1836                 vrele(vp);
 1837         }
 1838         return (error);
 1839 }
 1840 
 1841 /*
 1842  * Preparing to start a filesystem write operation. If the operation is
 1843  * permitted, then we bump the count of operations in progress and
 1844  * proceed. If a suspend request is in progress, we wait until the
 1845  * suspension is over, and then proceed.
 1846  */
 1847 static int
 1848 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
 1849 {
 1850         struct mount_pcpu *mpcpu;
 1851         int error, mflags;
 1852 
 1853         if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
 1854             vfs_op_thread_enter(mp, mpcpu)) {
 1855                 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
 1856                 vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1);
 1857                 vfs_op_thread_exit(mp, mpcpu);
 1858                 return (0);
 1859         }
 1860 
 1861         if (mplocked)
 1862                 mtx_assert(MNT_MTX(mp), MA_OWNED);
 1863         else
 1864                 MNT_ILOCK(mp);
 1865 
 1866         error = 0;
 1867 
 1868         /*
 1869          * Check on status of suspension.
 1870          */
 1871         if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
 1872             mp->mnt_susp_owner != curthread) {
 1873                 mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
 1874                     (flags & PCATCH) : 0) | (PUSER - 1);
 1875                 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 1876                         if (flags & V_NOWAIT) {
 1877                                 error = EWOULDBLOCK;
 1878                                 goto unlock;
 1879                         }
 1880                         error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
 1881                             "suspfs", 0);
 1882                         if (error)
 1883                                 goto unlock;
 1884                 }
 1885         }
 1886         if (flags & V_XSLEEP)
 1887                 goto unlock;
 1888         mp->mnt_writeopcount++;
 1889 unlock:
 1890         if (error != 0 || (flags & V_XSLEEP) != 0)
 1891                 MNT_REL(mp);
 1892         MNT_IUNLOCK(mp);
 1893         return (error);
 1894 }
 1895 
 1896 int
 1897 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
 1898 {
 1899         struct mount *mp;
 1900         int error;
 1901 
 1902         KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
 1903             ("V_MNTREF requires mp"));
 1904 
 1905         error = 0;
 1906         /*
 1907          * If a vnode is provided, get and return the mount point that
 1908          * to which it will write.
 1909          */
 1910         if (vp != NULL) {
 1911                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1912                         *mpp = NULL;
 1913                         if (error != EOPNOTSUPP)
 1914                                 return (error);
 1915                         return (0);
 1916                 }
 1917         }
 1918         if ((mp = *mpp) == NULL)
 1919                 return (0);
 1920 
 1921         /*
 1922          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1923          * a vfs_ref().
 1924          * As long as a vnode is not provided we need to acquire a
 1925          * refcount for the provided mountpoint too, in order to
 1926          * emulate a vfs_ref().
 1927          */
 1928         if (vp == NULL && (flags & V_MNTREF) == 0)
 1929                 vfs_ref(mp);
 1930 
 1931         return (vn_start_write_refed(mp, flags, false));
 1932 }
 1933 
 1934 /*
 1935  * Secondary suspension. Used by operations such as vop_inactive
 1936  * routines that are needed by the higher level functions. These
 1937  * are allowed to proceed until all the higher level functions have
 1938  * completed (indicated by mnt_writeopcount dropping to zero). At that
 1939  * time, these operations are halted until the suspension is over.
 1940  */
 1941 int
 1942 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
 1943 {
 1944         struct mount *mp;
 1945         int error;
 1946 
 1947         KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
 1948             ("V_MNTREF requires mp"));
 1949 
 1950  retry:
 1951         if (vp != NULL) {
 1952                 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
 1953                         *mpp = NULL;
 1954                         if (error != EOPNOTSUPP)
 1955                                 return (error);
 1956                         return (0);
 1957                 }
 1958         }
 1959         /*
 1960          * If we are not suspended or have not yet reached suspended
 1961          * mode, then let the operation proceed.
 1962          */
 1963         if ((mp = *mpp) == NULL)
 1964                 return (0);
 1965 
 1966         /*
 1967          * VOP_GETWRITEMOUNT() returns with the mp refcount held through
 1968          * a vfs_ref().
 1969          * As long as a vnode is not provided we need to acquire a
 1970          * refcount for the provided mountpoint too, in order to
 1971          * emulate a vfs_ref().
 1972          */
 1973         MNT_ILOCK(mp);
 1974         if (vp == NULL && (flags & V_MNTREF) == 0)
 1975                 MNT_REF(mp);
 1976         if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
 1977                 mp->mnt_secondary_writes++;
 1978                 mp->mnt_secondary_accwrites++;
 1979                 MNT_IUNLOCK(mp);
 1980                 return (0);
 1981         }
 1982         if (flags & V_NOWAIT) {
 1983                 MNT_REL(mp);
 1984                 MNT_IUNLOCK(mp);
 1985                 return (EWOULDBLOCK);
 1986         }
 1987         /*
 1988          * Wait for the suspension to finish.
 1989          */
 1990         error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
 1991             ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
 1992             "suspfs", 0);
 1993         vfs_rel(mp);
 1994         if (error == 0)
 1995                 goto retry;
 1996         return (error);
 1997 }
 1998 
 1999 /*
 2000  * Filesystem write operation has completed. If we are suspending and this
 2001  * operation is the last one, notify the suspender that the suspension is
 2002  * now in effect.
 2003  */
 2004 void
 2005 vn_finished_write(struct mount *mp)
 2006 {
 2007         struct mount_pcpu *mpcpu;
 2008         int c;
 2009 
 2010         if (mp == NULL)
 2011                 return;
 2012 
 2013         if (vfs_op_thread_enter(mp, mpcpu)) {
 2014                 vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1);
 2015                 vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
 2016                 vfs_op_thread_exit(mp, mpcpu);
 2017                 return;
 2018         }
 2019 
 2020         MNT_ILOCK(mp);
 2021         vfs_assert_mount_counters(mp);
 2022         MNT_REL(mp);
 2023         c = --mp->mnt_writeopcount;
 2024         if (mp->mnt_vfs_ops == 0) {
 2025                 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
 2026                 MNT_IUNLOCK(mp);
 2027                 return;
 2028         }
 2029         if (c < 0)
 2030                 vfs_dump_mount_counters(mp);
 2031         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
 2032                 wakeup(&mp->mnt_writeopcount);
 2033         MNT_IUNLOCK(mp);
 2034 }
 2035 
 2036 /*
 2037  * Filesystem secondary write operation has completed. If we are
 2038  * suspending and this operation is the last one, notify the suspender
 2039  * that the suspension is now in effect.
 2040  */
 2041 void
 2042 vn_finished_secondary_write(struct mount *mp)
 2043 {
 2044         if (mp == NULL)
 2045                 return;
 2046         MNT_ILOCK(mp);
 2047         MNT_REL(mp);
 2048         mp->mnt_secondary_writes--;
 2049         if (mp->mnt_secondary_writes < 0)
 2050                 panic("vn_finished_secondary_write: neg cnt");
 2051         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
 2052             mp->mnt_secondary_writes <= 0)
 2053                 wakeup(&mp->mnt_secondary_writes);
 2054         MNT_IUNLOCK(mp);
 2055 }
 2056 
 2057 /*
 2058  * Request a filesystem to suspend write operations.
 2059  */
 2060 int
 2061 vfs_write_suspend(struct mount *mp, int flags)
 2062 {
 2063         int error;
 2064 
 2065         vfs_op_enter(mp);
 2066 
 2067         MNT_ILOCK(mp);
 2068         vfs_assert_mount_counters(mp);
 2069         if (mp->mnt_susp_owner == curthread) {
 2070                 vfs_op_exit_locked(mp);
 2071                 MNT_IUNLOCK(mp);
 2072                 return (EALREADY);
 2073         }
 2074         while (mp->mnt_kern_flag & MNTK_SUSPEND)
 2075                 msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
 2076 
 2077         /*
 2078          * Unmount holds a write reference on the mount point.  If we
 2079          * own busy reference and drain for writers, we deadlock with
 2080          * the reference draining in the unmount path.  Callers of
 2081          * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
 2082          * vfs_busy() reference is owned and caller is not in the
 2083          * unmount context.
 2084          */
 2085         if ((flags & VS_SKIP_UNMOUNT) != 0 &&
 2086             (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
 2087                 vfs_op_exit_locked(mp);
 2088                 MNT_IUNLOCK(mp);
 2089                 return (EBUSY);
 2090         }
 2091 
 2092         mp->mnt_kern_flag |= MNTK_SUSPEND;
 2093         mp->mnt_susp_owner = curthread;
 2094         if (mp->mnt_writeopcount > 0)
 2095                 (void) msleep(&mp->mnt_writeopcount, 
 2096                     MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
 2097         else
 2098                 MNT_IUNLOCK(mp);
 2099         if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
 2100                 vfs_write_resume(mp, 0);
 2101                 /* vfs_write_resume does vfs_op_exit() for us */
 2102         }
 2103         return (error);
 2104 }
 2105 
 2106 /*
 2107  * Request a filesystem to resume write operations.
 2108  */
 2109 void
 2110 vfs_write_resume(struct mount *mp, int flags)
 2111 {
 2112 
 2113         MNT_ILOCK(mp);
 2114         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
 2115                 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
 2116                 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
 2117                                        MNTK_SUSPENDED);
 2118                 mp->mnt_susp_owner = NULL;
 2119                 wakeup(&mp->mnt_writeopcount);
 2120                 wakeup(&mp->mnt_flag);
 2121                 curthread->td_pflags &= ~TDP_IGNSUSP;
 2122                 if ((flags & VR_START_WRITE) != 0) {
 2123                         MNT_REF(mp);
 2124                         mp->mnt_writeopcount++;
 2125                 }
 2126                 MNT_IUNLOCK(mp);
 2127                 if ((flags & VR_NO_SUSPCLR) == 0)
 2128                         VFS_SUSP_CLEAN(mp);
 2129                 vfs_op_exit(mp);
 2130         } else if ((flags & VR_START_WRITE) != 0) {
 2131                 MNT_REF(mp);
 2132                 vn_start_write_refed(mp, 0, true);
 2133         } else {
 2134                 MNT_IUNLOCK(mp);
 2135         }
 2136 }
 2137 
 2138 /*
 2139  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
 2140  * methods.
 2141  */
 2142 int
 2143 vfs_write_suspend_umnt(struct mount *mp)
 2144 {
 2145         int error;
 2146 
 2147         KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
 2148             ("vfs_write_suspend_umnt: recursed"));
 2149 
 2150         /* dounmount() already called vn_start_write(). */
 2151         for (;;) {
 2152                 vn_finished_write(mp);
 2153                 error = vfs_write_suspend(mp, 0);
 2154                 if (error != 0) {
 2155                         vn_start_write(NULL, &mp, V_WAIT);
 2156                         return (error);
 2157                 }
 2158                 MNT_ILOCK(mp);
 2159                 if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
 2160                         break;
 2161                 MNT_IUNLOCK(mp);
 2162                 vn_start_write(NULL, &mp, V_WAIT);
 2163         }
 2164         mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
 2165         wakeup(&mp->mnt_flag);
 2166         MNT_IUNLOCK(mp);
 2167         curthread->td_pflags |= TDP_IGNSUSP;
 2168         return (0);
 2169 }
 2170 
 2171 /*
 2172  * Implement kqueues for files by translating it to vnode operation.
 2173  */
 2174 static int
 2175 vn_kqfilter(struct file *fp, struct knote *kn)
 2176 {
 2177 
 2178         return (VOP_KQFILTER(fp->f_vnode, kn));
 2179 }
 2180 
 2181 int
 2182 vn_kqfilter_opath(struct file *fp, struct knote *kn)
 2183 {
 2184         if ((fp->f_flag & FKQALLOWED) == 0)
 2185                 return (EBADF);
 2186         return (vn_kqfilter(fp, kn));
 2187 }
 2188 
 2189 /*
 2190  * Simplified in-kernel wrapper calls for extended attribute access.
 2191  * Both calls pass in a NULL credential, authorizing as "kernel" access.
 2192  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
 2193  */
 2194 int
 2195 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
 2196     const char *attrname, int *buflen, char *buf, struct thread *td)
 2197 {
 2198         struct uio      auio;
 2199         struct iovec    iov;
 2200         int     error;
 2201 
 2202         iov.iov_len = *buflen;
 2203         iov.iov_base = buf;
 2204 
 2205         auio.uio_iov = &iov;
 2206         auio.uio_iovcnt = 1;
 2207         auio.uio_rw = UIO_READ;
 2208         auio.uio_segflg = UIO_SYSSPACE;
 2209         auio.uio_td = td;
 2210         auio.uio_offset = 0;
 2211         auio.uio_resid = *buflen;
 2212 
 2213         if ((ioflg & IO_NODELOCKED) == 0)
 2214                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2215 
 2216         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 2217 
 2218         /* authorize attribute retrieval as kernel */
 2219         error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
 2220             td);
 2221 
 2222         if ((ioflg & IO_NODELOCKED) == 0)
 2223                 VOP_UNLOCK(vp);
 2224 
 2225         if (error == 0) {
 2226                 *buflen = *buflen - auio.uio_resid;
 2227         }
 2228 
 2229         return (error);
 2230 }
 2231 
 2232 /*
 2233  * XXX failure mode if partially written?
 2234  */
 2235 int
 2236 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
 2237     const char *attrname, int buflen, char *buf, struct thread *td)
 2238 {
 2239         struct uio      auio;
 2240         struct iovec    iov;
 2241         struct mount    *mp;
 2242         int     error;
 2243 
 2244         iov.iov_len = buflen;
 2245         iov.iov_base = buf;
 2246 
 2247         auio.uio_iov = &iov;
 2248         auio.uio_iovcnt = 1;
 2249         auio.uio_rw = UIO_WRITE;
 2250         auio.uio_segflg = UIO_SYSSPACE;
 2251         auio.uio_td = td;
 2252         auio.uio_offset = 0;
 2253         auio.uio_resid = buflen;
 2254 
 2255         if ((ioflg & IO_NODELOCKED) == 0) {
 2256                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 2257                         return (error);
 2258                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2259         }
 2260 
 2261         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 2262 
 2263         /* authorize attribute setting as kernel */
 2264         error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
 2265 
 2266         if ((ioflg & IO_NODELOCKED) == 0) {
 2267                 vn_finished_write(mp);
 2268                 VOP_UNLOCK(vp);
 2269         }
 2270 
 2271         return (error);
 2272 }
 2273 
 2274 int
 2275 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
 2276     const char *attrname, struct thread *td)
 2277 {
 2278         struct mount    *mp;
 2279         int     error;
 2280 
 2281         if ((ioflg & IO_NODELOCKED) == 0) {
 2282                 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
 2283                         return (error);
 2284                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2285         }
 2286 
 2287         ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
 2288 
 2289         /* authorize attribute removal as kernel */
 2290         error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
 2291         if (error == EOPNOTSUPP)
 2292                 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
 2293                     NULL, td);
 2294 
 2295         if ((ioflg & IO_NODELOCKED) == 0) {
 2296                 vn_finished_write(mp);
 2297                 VOP_UNLOCK(vp);
 2298         }
 2299 
 2300         return (error);
 2301 }
 2302 
 2303 static int
 2304 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
 2305     struct vnode **rvp)
 2306 {
 2307 
 2308         return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
 2309 }
 2310 
 2311 int
 2312 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
 2313 {
 2314 
 2315         return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
 2316             lkflags, rvp));
 2317 }
 2318 
 2319 int
 2320 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
 2321     int lkflags, struct vnode **rvp)
 2322 {
 2323         struct mount *mp;
 2324         int ltype, error;
 2325 
 2326         ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
 2327         mp = vp->v_mount;
 2328         ltype = VOP_ISLOCKED(vp);
 2329         KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
 2330             ("vn_vget_ino: vp not locked"));
 2331         error = vfs_busy(mp, MBF_NOWAIT);
 2332         if (error != 0) {
 2333                 vfs_ref(mp);
 2334                 VOP_UNLOCK(vp);
 2335                 error = vfs_busy(mp, 0);
 2336                 vn_lock(vp, ltype | LK_RETRY);
 2337                 vfs_rel(mp);
 2338                 if (error != 0)
 2339                         return (ENOENT);
 2340                 if (VN_IS_DOOMED(vp)) {
 2341                         vfs_unbusy(mp);
 2342                         return (ENOENT);
 2343                 }
 2344         }
 2345         VOP_UNLOCK(vp);
 2346         error = alloc(mp, alloc_arg, lkflags, rvp);
 2347         vfs_unbusy(mp);
 2348         if (error != 0 || *rvp != vp)
 2349                 vn_lock(vp, ltype | LK_RETRY);
 2350         if (VN_IS_DOOMED(vp)) {
 2351                 if (error == 0) {
 2352                         if (*rvp == vp)
 2353                                 vunref(vp);
 2354                         else
 2355                                 vput(*rvp);
 2356                 }
 2357                 error = ENOENT;
 2358         }
 2359         return (error);
 2360 }
 2361 
 2362 int
 2363 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
 2364     struct thread *td)
 2365 {
 2366         off_t lim;
 2367         bool ktr_write;
 2368 
 2369         if (td == NULL)
 2370                 return (0);
 2371 
 2372         /*
 2373          * There are conditions where the limit is to be ignored.
 2374          * However, since it is almost never reached, check it first.
 2375          */
 2376         ktr_write = (td->td_pflags & TDP_INKTRACE) != 0;
 2377         lim = lim_cur(td, RLIMIT_FSIZE);
 2378         if (__predict_false(ktr_write))
 2379                 lim = td->td_ktr_io_lim;
 2380         if (__predict_true((uoff_t)uio->uio_offset + uio->uio_resid <= lim))
 2381                 return (0);
 2382 
 2383         /*
 2384          * The limit is reached.
 2385          */
 2386         if (vp->v_type != VREG ||
 2387             (td->td_pflags2 & TDP2_ACCT) != 0)
 2388                 return (0);
 2389 
 2390         if (!ktr_write || ktr_filesize_limit_signal) {
 2391                 PROC_LOCK(td->td_proc);
 2392                 kern_psignal(td->td_proc, SIGXFSZ);
 2393                 PROC_UNLOCK(td->td_proc);
 2394         }
 2395         return (EFBIG);
 2396 }
 2397 
 2398 int
 2399 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
 2400     struct thread *td)
 2401 {
 2402         struct vnode *vp;
 2403 
 2404         vp = fp->f_vnode;
 2405 #ifdef AUDIT
 2406         vn_lock(vp, LK_SHARED | LK_RETRY);
 2407         AUDIT_ARG_VNODE1(vp);
 2408         VOP_UNLOCK(vp);
 2409 #endif
 2410         return (setfmode(td, active_cred, vp, mode));
 2411 }
 2412 
 2413 int
 2414 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
 2415     struct thread *td)
 2416 {
 2417         struct vnode *vp;
 2418 
 2419         vp = fp->f_vnode;
 2420 #ifdef AUDIT
 2421         vn_lock(vp, LK_SHARED | LK_RETRY);
 2422         AUDIT_ARG_VNODE1(vp);
 2423         VOP_UNLOCK(vp);
 2424 #endif
 2425         return (setfown(td, active_cred, vp, uid, gid));
 2426 }
 2427 
 2428 /*
 2429  * Remove pages in the range ["start", "end") from the vnode's VM object.  If
 2430  * "end" is 0, then the range extends to the end of the object.
 2431  */
 2432 void
 2433 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
 2434 {
 2435         vm_object_t object;
 2436 
 2437         if ((object = vp->v_object) == NULL)
 2438                 return;
 2439         VM_OBJECT_WLOCK(object);
 2440         vm_object_page_remove(object, start, end, 0);
 2441         VM_OBJECT_WUNLOCK(object);
 2442 }
 2443 
 2444 /*
 2445  * Like vn_pages_remove(), but skips invalid pages, which by definition are not
 2446  * mapped into any process' address space.  Filesystems may use this in
 2447  * preference to vn_pages_remove() to avoid blocking on pages busied in
 2448  * preparation for a VOP_GETPAGES.
 2449  */
 2450 void
 2451 vn_pages_remove_valid(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
 2452 {
 2453         vm_object_t object;
 2454 
 2455         if ((object = vp->v_object) == NULL)
 2456                 return;
 2457         VM_OBJECT_WLOCK(object);
 2458         vm_object_page_remove(object, start, end, OBJPR_VALIDONLY);
 2459         VM_OBJECT_WUNLOCK(object);
 2460 }
 2461 
 2462 int
 2463 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
 2464 {
 2465         struct vattr va;
 2466         daddr_t bn, bnp;
 2467         uint64_t bsize;
 2468         off_t noff;
 2469         int error;
 2470 
 2471         KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
 2472             ("Wrong command %lu", cmd));
 2473 
 2474         if (vn_lock(vp, LK_SHARED) != 0)
 2475                 return (EBADF);
 2476         if (vp->v_type != VREG) {
 2477                 error = ENOTTY;
 2478                 goto unlock;
 2479         }
 2480         error = VOP_GETATTR(vp, &va, cred);
 2481         if (error != 0)
 2482                 goto unlock;
 2483         noff = *off;
 2484         if (noff >= va.va_size) {
 2485                 error = ENXIO;
 2486                 goto unlock;
 2487         }
 2488         bsize = vp->v_mount->mnt_stat.f_iosize;
 2489         for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize -
 2490             noff % bsize) {
 2491                 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
 2492                 if (error == EOPNOTSUPP) {
 2493                         error = ENOTTY;
 2494                         goto unlock;
 2495                 }
 2496                 if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
 2497                     (bnp != -1 && cmd == FIOSEEKDATA)) {
 2498                         noff = bn * bsize;
 2499                         if (noff < *off)
 2500                                 noff = *off;
 2501                         goto unlock;
 2502                 }
 2503         }
 2504         if (noff > va.va_size)
 2505                 noff = va.va_size;
 2506         /* noff == va.va_size. There is an implicit hole at the end of file. */
 2507         if (cmd == FIOSEEKDATA)
 2508                 error = ENXIO;
 2509 unlock:
 2510         VOP_UNLOCK(vp);
 2511         if (error == 0)
 2512                 *off = noff;
 2513         return (error);
 2514 }
 2515 
 2516 int
 2517 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
 2518 {
 2519         struct ucred *cred;
 2520         struct vnode *vp;
 2521         struct vattr vattr;
 2522         off_t foffset, size;
 2523         int error, noneg;
 2524 
 2525         cred = td->td_ucred;
 2526         vp = fp->f_vnode;
 2527         foffset = foffset_lock(fp, 0);
 2528         noneg = (vp->v_type != VCHR);
 2529         error = 0;
 2530         switch (whence) {
 2531         case L_INCR:
 2532                 if (noneg &&
 2533                     (foffset < 0 ||
 2534                     (offset > 0 && foffset > OFF_MAX - offset))) {
 2535                         error = EOVERFLOW;
 2536                         break;
 2537                 }
 2538                 offset += foffset;
 2539                 break;
 2540         case L_XTND:
 2541                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2542                 error = VOP_GETATTR(vp, &vattr, cred);
 2543                 VOP_UNLOCK(vp);
 2544                 if (error)
 2545                         break;
 2546 
 2547                 /*
 2548                  * If the file references a disk device, then fetch
 2549                  * the media size and use that to determine the ending
 2550                  * offset.
 2551                  */
 2552                 if (vattr.va_size == 0 && vp->v_type == VCHR &&
 2553                     fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
 2554                         vattr.va_size = size;
 2555                 if (noneg &&
 2556                     (vattr.va_size > OFF_MAX ||
 2557                     (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
 2558                         error = EOVERFLOW;
 2559                         break;
 2560                 }
 2561                 offset += vattr.va_size;
 2562                 break;
 2563         case L_SET:
 2564                 break;
 2565         case SEEK_DATA:
 2566                 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
 2567                 if (error == ENOTTY)
 2568                         error = EINVAL;
 2569                 break;
 2570         case SEEK_HOLE:
 2571                 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
 2572                 if (error == ENOTTY)
 2573                         error = EINVAL;
 2574                 break;
 2575         default:
 2576                 error = EINVAL;
 2577         }
 2578         if (error == 0 && noneg && offset < 0)
 2579                 error = EINVAL;
 2580         if (error != 0)
 2581                 goto drop;
 2582         VFS_KNOTE_UNLOCKED(vp, 0);
 2583         td->td_uretoff.tdu_off = offset;
 2584 drop:
 2585         foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
 2586         return (error);
 2587 }
 2588 
 2589 int
 2590 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
 2591     struct thread *td)
 2592 {
 2593         int error;
 2594 
 2595         /*
 2596          * Grant permission if the caller is the owner of the file, or
 2597          * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
 2598          * on the file.  If the time pointer is null, then write
 2599          * permission on the file is also sufficient.
 2600          *
 2601          * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
 2602          * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
 2603          * will be allowed to set the times [..] to the current
 2604          * server time.
 2605          */
 2606         error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
 2607         if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
 2608                 error = VOP_ACCESS(vp, VWRITE, cred, td);
 2609         return (error);
 2610 }
 2611 
 2612 int
 2613 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
 2614 {
 2615         struct vnode *vp;
 2616         int error;
 2617 
 2618         if (fp->f_type == DTYPE_FIFO)
 2619                 kif->kf_type = KF_TYPE_FIFO;
 2620         else
 2621                 kif->kf_type = KF_TYPE_VNODE;
 2622         vp = fp->f_vnode;
 2623         vref(vp);
 2624         FILEDESC_SUNLOCK(fdp);
 2625         error = vn_fill_kinfo_vnode(vp, kif);
 2626         vrele(vp);
 2627         FILEDESC_SLOCK(fdp);
 2628         return (error);
 2629 }
 2630 
 2631 static inline void
 2632 vn_fill_junk(struct kinfo_file *kif)
 2633 {
 2634         size_t len, olen;
 2635 
 2636         /*
 2637          * Simulate vn_fullpath returning changing values for a given
 2638          * vp during e.g. coredump.
 2639          */
 2640         len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
 2641         olen = strlen(kif->kf_path);
 2642         if (len < olen)
 2643                 strcpy(&kif->kf_path[len - 1], "$");
 2644         else
 2645                 for (; olen < len; olen++)
 2646                         strcpy(&kif->kf_path[olen], "A");
 2647 }
 2648 
 2649 int
 2650 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
 2651 {
 2652         struct vattr va;
 2653         char *fullpath, *freepath;
 2654         int error;
 2655 
 2656         kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
 2657         freepath = NULL;
 2658         fullpath = "-";
 2659         error = vn_fullpath(vp, &fullpath, &freepath);
 2660         if (error == 0) {
 2661                 strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
 2662         }
 2663         if (freepath != NULL)
 2664                 free(freepath, M_TEMP);
 2665 
 2666         KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
 2667                 vn_fill_junk(kif);
 2668         );
 2669 
 2670         /*
 2671          * Retrieve vnode attributes.
 2672          */
 2673         va.va_fsid = VNOVAL;
 2674         va.va_rdev = NODEV;
 2675         vn_lock(vp, LK_SHARED | LK_RETRY);
 2676         error = VOP_GETATTR(vp, &va, curthread->td_ucred);
 2677         VOP_UNLOCK(vp);
 2678         if (error != 0)
 2679                 return (error);
 2680         if (va.va_fsid != VNOVAL)
 2681                 kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
 2682         else
 2683                 kif->kf_un.kf_file.kf_file_fsid =
 2684                     vp->v_mount->mnt_stat.f_fsid.val[0];
 2685         kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
 2686             kif->kf_un.kf_file.kf_file_fsid; /* truncate */
 2687         kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
 2688         kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
 2689         kif->kf_un.kf_file.kf_file_size = va.va_size;
 2690         kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
 2691         kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
 2692             kif->kf_un.kf_file.kf_file_rdev; /* truncate */
 2693         return (0);
 2694 }
 2695 
 2696 int
 2697 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
 2698     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
 2699     struct thread *td)
 2700 {
 2701 #ifdef HWPMC_HOOKS
 2702         struct pmckern_map_in pkm;
 2703 #endif
 2704         struct mount *mp;
 2705         struct vnode *vp;
 2706         vm_object_t object;
 2707         vm_prot_t maxprot;
 2708         boolean_t writecounted;
 2709         int error;
 2710 
 2711 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
 2712     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
 2713         /*
 2714          * POSIX shared-memory objects are defined to have
 2715          * kernel persistence, and are not defined to support
 2716          * read(2)/write(2) -- or even open(2).  Thus, we can
 2717          * use MAP_ASYNC to trade on-disk coherence for speed.
 2718          * The shm_open(3) library routine turns on the FPOSIXSHM
 2719          * flag to request this behavior.
 2720          */
 2721         if ((fp->f_flag & FPOSIXSHM) != 0)
 2722                 flags |= MAP_NOSYNC;
 2723 #endif
 2724         vp = fp->f_vnode;
 2725 
 2726         /*
 2727          * Ensure that file and memory protections are
 2728          * compatible.  Note that we only worry about
 2729          * writability if mapping is shared; in this case,
 2730          * current and max prot are dictated by the open file.
 2731          * XXX use the vnode instead?  Problem is: what
 2732          * credentials do we use for determination? What if
 2733          * proc does a setuid?
 2734          */
 2735         mp = vp->v_mount;
 2736         if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
 2737                 maxprot = VM_PROT_NONE;
 2738                 if ((prot & VM_PROT_EXECUTE) != 0)
 2739                         return (EACCES);
 2740         } else
 2741                 maxprot = VM_PROT_EXECUTE;
 2742         if ((fp->f_flag & FREAD) != 0)
 2743                 maxprot |= VM_PROT_READ;
 2744         else if ((prot & VM_PROT_READ) != 0)
 2745                 return (EACCES);
 2746 
 2747         /*
 2748          * If we are sharing potential changes via MAP_SHARED and we
 2749          * are trying to get write permission although we opened it
 2750          * without asking for it, bail out.
 2751          */
 2752         if ((flags & MAP_SHARED) != 0) {
 2753                 if ((fp->f_flag & FWRITE) != 0)
 2754                         maxprot |= VM_PROT_WRITE;
 2755                 else if ((prot & VM_PROT_WRITE) != 0)
 2756                         return (EACCES);
 2757         } else {
 2758                 maxprot |= VM_PROT_WRITE;
 2759                 cap_maxprot |= VM_PROT_WRITE;
 2760         }
 2761         maxprot &= cap_maxprot;
 2762 
 2763         /*
 2764          * For regular files and shared memory, POSIX requires that
 2765          * the value of foff be a legitimate offset within the data
 2766          * object.  In particular, negative offsets are invalid.
 2767          * Blocking negative offsets and overflows here avoids
 2768          * possible wraparound or user-level access into reserved
 2769          * ranges of the data object later.  In contrast, POSIX does
 2770          * not dictate how offsets are used by device drivers, so in
 2771          * the case of a device mapping a negative offset is passed
 2772          * on.
 2773          */
 2774         if (
 2775 #ifdef _LP64
 2776             size > OFF_MAX ||
 2777 #endif
 2778             foff > OFF_MAX - size)
 2779                 return (EINVAL);
 2780 
 2781         writecounted = FALSE;
 2782         error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
 2783             &foff, &object, &writecounted);
 2784         if (error != 0)
 2785                 return (error);
 2786         error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
 2787             foff, writecounted, td);
 2788         if (error != 0) {
 2789                 /*
 2790                  * If this mapping was accounted for in the vnode's
 2791                  * writecount, then undo that now.
 2792                  */
 2793                 if (writecounted)
 2794                         vm_pager_release_writecount(object, 0, size);
 2795                 vm_object_deallocate(object);
 2796         }
 2797 #ifdef HWPMC_HOOKS
 2798         /* Inform hwpmc(4) if an executable is being mapped. */
 2799         if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
 2800                 if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
 2801                         pkm.pm_file = vp;
 2802                         pkm.pm_address = (uintptr_t) *addr;
 2803                         PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
 2804                 }
 2805         }
 2806 #endif
 2807         return (error);
 2808 }
 2809 
 2810 void
 2811 vn_fsid(struct vnode *vp, struct vattr *va)
 2812 {
 2813         fsid_t *f;
 2814 
 2815         f = &vp->v_mount->mnt_stat.f_fsid;
 2816         va->va_fsid = (uint32_t)f->val[1];
 2817         va->va_fsid <<= sizeof(f->val[1]) * NBBY;
 2818         va->va_fsid += (uint32_t)f->val[0];
 2819 }
 2820 
 2821 int
 2822 vn_fsync_buf(struct vnode *vp, int waitfor)
 2823 {
 2824         struct buf *bp, *nbp;
 2825         struct bufobj *bo;
 2826         struct mount *mp;
 2827         int error, maxretry;
 2828 
 2829         error = 0;
 2830         maxretry = 10000;     /* large, arbitrarily chosen */
 2831         mp = NULL;
 2832         if (vp->v_type == VCHR) {
 2833                 VI_LOCK(vp);
 2834                 mp = vp->v_rdev->si_mountpt;
 2835                 VI_UNLOCK(vp);
 2836         }
 2837         bo = &vp->v_bufobj;
 2838         BO_LOCK(bo);
 2839 loop1:
 2840         /*
 2841          * MARK/SCAN initialization to avoid infinite loops.
 2842          */
 2843         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
 2844                 bp->b_vflags &= ~BV_SCANNED;
 2845                 bp->b_error = 0;
 2846         }
 2847 
 2848         /*
 2849          * Flush all dirty buffers associated with a vnode.
 2850          */
 2851 loop2:
 2852         TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
 2853                 if ((bp->b_vflags & BV_SCANNED) != 0)
 2854                         continue;
 2855                 bp->b_vflags |= BV_SCANNED;
 2856                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
 2857                         if (waitfor != MNT_WAIT)
 2858                                 continue;
 2859                         if (BUF_LOCK(bp,
 2860                             LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
 2861                             BO_LOCKPTR(bo)) != 0) {
 2862                                 BO_LOCK(bo);
 2863                                 goto loop1;
 2864                         }
 2865                         BO_LOCK(bo);
 2866                 }
 2867                 BO_UNLOCK(bo);
 2868                 KASSERT(bp->b_bufobj == bo,
 2869                     ("bp %p wrong b_bufobj %p should be %p",
 2870                     bp, bp->b_bufobj, bo));
 2871                 if ((bp->b_flags & B_DELWRI) == 0)
 2872                         panic("fsync: not dirty");
 2873                 if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
 2874                         vfs_bio_awrite(bp);
 2875                 } else {
 2876                         bremfree(bp);
 2877                         bawrite(bp);
 2878                 }
 2879                 if (maxretry < 1000)
 2880                         pause("dirty", hz < 1000 ? 1 : hz / 1000);
 2881                 BO_LOCK(bo);
 2882                 goto loop2;
 2883         }
 2884 
 2885         /*
 2886          * If synchronous the caller expects us to completely resolve all
 2887          * dirty buffers in the system.  Wait for in-progress I/O to
 2888          * complete (which could include background bitmap writes), then
 2889          * retry if dirty blocks still exist.
 2890          */
 2891         if (waitfor == MNT_WAIT) {
 2892                 bufobj_wwait(bo, 0, 0);
 2893                 if (bo->bo_dirty.bv_cnt > 0) {
 2894                         /*
 2895                          * If we are unable to write any of these buffers
 2896                          * then we fail now rather than trying endlessly
 2897                          * to write them out.
 2898                          */
 2899                         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
 2900                                 if ((error = bp->b_error) != 0)
 2901                                         break;
 2902                         if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
 2903                             (error == 0 && --maxretry >= 0))
 2904                                 goto loop1;
 2905                         if (error == 0)
 2906                                 error = EAGAIN;
 2907                 }
 2908         }
 2909         BO_UNLOCK(bo);
 2910         if (error != 0)
 2911                 vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
 2912 
 2913         return (error);
 2914 }
 2915 
 2916 /*
 2917  * Copies a byte range from invp to outvp.  Calls VOP_COPY_FILE_RANGE()
 2918  * or vn_generic_copy_file_range() after rangelocking the byte ranges,
 2919  * to do the actual copy.
 2920  * vn_generic_copy_file_range() is factored out, so it can be called
 2921  * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
 2922  * different file systems.
 2923  */
 2924 int
 2925 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
 2926     off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
 2927     struct ucred *outcred, struct thread *fsize_td)
 2928 {
 2929         int error;
 2930         size_t len;
 2931         uint64_t uval;
 2932 
 2933         len = *lenp;
 2934         *lenp = 0;              /* For error returns. */
 2935         error = 0;
 2936 
 2937         /* Do some sanity checks on the arguments. */
 2938         if (invp->v_type == VDIR || outvp->v_type == VDIR)
 2939                 error = EISDIR;
 2940         else if (*inoffp < 0 || *outoffp < 0 ||
 2941             invp->v_type != VREG || outvp->v_type != VREG)
 2942                 error = EINVAL;
 2943         if (error != 0)
 2944                 goto out;
 2945 
 2946         /* Ensure offset + len does not wrap around. */
 2947         uval = *inoffp;
 2948         uval += len;
 2949         if (uval > INT64_MAX)
 2950                 len = INT64_MAX - *inoffp;
 2951         uval = *outoffp;
 2952         uval += len;
 2953         if (uval > INT64_MAX)
 2954                 len = INT64_MAX - *outoffp;
 2955         if (len == 0)
 2956                 goto out;
 2957 
 2958         /*
 2959          * If the two vnode are for the same file system, call
 2960          * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
 2961          * which can handle copies across multiple file systems.
 2962          */
 2963         *lenp = len;
 2964         if (invp->v_mount == outvp->v_mount)
 2965                 error = VOP_COPY_FILE_RANGE(invp, inoffp, outvp, outoffp,
 2966                     lenp, flags, incred, outcred, fsize_td);
 2967         else
 2968                 error = vn_generic_copy_file_range(invp, inoffp, outvp,
 2969                     outoffp, lenp, flags, incred, outcred, fsize_td);
 2970 out:
 2971         return (error);
 2972 }
 2973 
 2974 /*
 2975  * Test len bytes of data starting at dat for all bytes == 0.
 2976  * Return true if all bytes are zero, false otherwise.
 2977  * Expects dat to be well aligned.
 2978  */
 2979 static bool
 2980 mem_iszero(void *dat, int len)
 2981 {
 2982         int i;
 2983         const u_int *p;
 2984         const char *cp;
 2985 
 2986         for (p = dat; len > 0; len -= sizeof(*p), p++) {
 2987                 if (len >= sizeof(*p)) {
 2988                         if (*p != 0)
 2989                                 return (false);
 2990                 } else {
 2991                         cp = (const char *)p;
 2992                         for (i = 0; i < len; i++, cp++)
 2993                                 if (*cp != '\0')
 2994                                         return (false);
 2995                 }
 2996         }
 2997         return (true);
 2998 }
 2999 
 3000 /*
 3001  * Look for a hole in the output file and, if found, adjust *outoffp
 3002  * and *xferp to skip past the hole.
 3003  * *xferp is the entire hole length to be written and xfer2 is how many bytes
 3004  * to be written as 0's upon return.
 3005  */
 3006 static off_t
 3007 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
 3008     off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
 3009 {
 3010         int error;
 3011         off_t delta;
 3012 
 3013         if (*holeoffp == 0 || *holeoffp <= *outoffp) {
 3014                 *dataoffp = *outoffp;
 3015                 error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
 3016                     curthread);
 3017                 if (error == 0) {
 3018                         *holeoffp = *dataoffp;
 3019                         error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
 3020                             curthread);
 3021                 }
 3022                 if (error != 0 || *holeoffp == *dataoffp) {
 3023                         /*
 3024                          * Since outvp is unlocked, it may be possible for
 3025                          * another thread to do a truncate(), lseek(), write()
 3026                          * creating a hole at startoff between the above
 3027                          * VOP_IOCTL() calls, if the other thread does not do
 3028                          * rangelocking.
 3029                          * If that happens, *holeoffp == *dataoffp and finding
 3030                          * the hole has failed, so disable vn_skip_hole().
 3031                          */
 3032                         *holeoffp = -1; /* Disable use of vn_skip_hole(). */
 3033                         return (xfer2);
 3034                 }
 3035                 KASSERT(*dataoffp >= *outoffp,
 3036                     ("vn_skip_hole: dataoff=%jd < outoff=%jd",
 3037                     (intmax_t)*dataoffp, (intmax_t)*outoffp));
 3038                 KASSERT(*holeoffp > *dataoffp,
 3039                     ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
 3040                     (intmax_t)*holeoffp, (intmax_t)*dataoffp));
 3041         }
 3042 
 3043         /*
 3044          * If there is a hole before the data starts, advance *outoffp and
 3045          * *xferp past the hole.
 3046          */
 3047         if (*dataoffp > *outoffp) {
 3048                 delta = *dataoffp - *outoffp;
 3049                 if (delta >= *xferp) {
 3050                         /* Entire *xferp is a hole. */
 3051                         *outoffp += *xferp;
 3052                         *xferp = 0;
 3053                         return (0);
 3054                 }
 3055                 *xferp -= delta;
 3056                 *outoffp += delta;
 3057                 xfer2 = MIN(xfer2, *xferp);
 3058         }
 3059 
 3060         /*
 3061          * If a hole starts before the end of this xfer2, reduce this xfer2 so
 3062          * that the write ends at the start of the hole.
 3063          * *holeoffp should always be greater than *outoffp, but for the
 3064          * non-INVARIANTS case, check this to make sure xfer2 remains a sane
 3065          * value.
 3066          */
 3067         if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
 3068                 xfer2 = *holeoffp - *outoffp;
 3069         return (xfer2);
 3070 }
 3071 
 3072 /*
 3073  * Write an xfer sized chunk to outvp in blksize blocks from dat.
 3074  * dat is a maximum of blksize in length and can be written repeatedly in
 3075  * the chunk.
 3076  * If growfile == true, just grow the file via vn_truncate_locked() instead
 3077  * of doing actual writes.
 3078  * If checkhole == true, a hole is being punched, so skip over any hole
 3079  * already in the output file.
 3080  */
 3081 static int
 3082 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
 3083     u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
 3084 {
 3085         struct mount *mp;
 3086         off_t dataoff, holeoff, xfer2;
 3087         int error;
 3088 
 3089         /*
 3090          * Loop around doing writes of blksize until write has been completed.
 3091          * Lock/unlock on each loop iteration so that a bwillwrite() can be
 3092          * done for each iteration, since the xfer argument can be very
 3093          * large if there is a large hole to punch in the output file.
 3094          */
 3095         error = 0;
 3096         holeoff = 0;
 3097         do {
 3098                 xfer2 = MIN(xfer, blksize);
 3099                 if (checkhole) {
 3100                         /*
 3101                          * Punching a hole.  Skip writing if there is
 3102                          * already a hole in the output file.
 3103                          */
 3104                         xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
 3105                             &dataoff, &holeoff, cred);
 3106                         if (xfer == 0)
 3107                                 break;
 3108                         if (holeoff < 0)
 3109                                 checkhole = false;
 3110                         KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
 3111                             (intmax_t)xfer2));
 3112                 }
 3113                 bwillwrite();
 3114                 mp = NULL;
 3115                 error = vn_start_write(outvp, &mp, V_WAIT);
 3116                 if (error != 0)
 3117                         break;
 3118                 if (growfile) {
 3119                         error = vn_lock(outvp, LK_EXCLUSIVE);
 3120                         if (error == 0) {
 3121                                 error = vn_truncate_locked(outvp, outoff + xfer,
 3122                                     false, cred);
 3123                                 VOP_UNLOCK(outvp);
 3124                         }
 3125                 } else {
 3126                         error = vn_lock(outvp, vn_lktype_write(mp, outvp));
 3127                         if (error == 0) {
 3128                                 error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
 3129                                     outoff, UIO_SYSSPACE, IO_NODELOCKED,
 3130                                     curthread->td_ucred, cred, NULL, curthread);
 3131                                 outoff += xfer2;
 3132                                 xfer -= xfer2;
 3133                                 VOP_UNLOCK(outvp);
 3134                         }
 3135                 }
 3136                 if (mp != NULL)
 3137                         vn_finished_write(mp);
 3138         } while (!growfile && xfer > 0 && error == 0);
 3139         return (error);
 3140 }
 3141 
 3142 /*
 3143  * Copy a byte range of one file to another.  This function can handle the
 3144  * case where invp and outvp are on different file systems.
 3145  * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
 3146  * is no better file system specific way to do it.
 3147  */
 3148 int
 3149 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
 3150     struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
 3151     struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
 3152 {
 3153         struct vattr va, inva;
 3154         struct mount *mp;
 3155         struct uio io;
 3156         off_t startoff, endoff, xfer, xfer2;
 3157         u_long blksize;
 3158         int error, interrupted;
 3159         bool cantseek, readzeros, eof, lastblock, holetoeof;
 3160         ssize_t aresid;
 3161         size_t copylen, len, rem, savlen;
 3162         char *dat;
 3163         long holein, holeout;
 3164         struct timespec curts, endts;
 3165 
 3166         holein = holeout = 0;
 3167         savlen = len = *lenp;
 3168         error = 0;
 3169         interrupted = 0;
 3170         dat = NULL;
 3171 
 3172         error = vn_lock(invp, LK_SHARED);
 3173         if (error != 0)
 3174                 goto out;
 3175         if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
 3176                 holein = 0;
 3177         if (holein > 0)
 3178                 error = VOP_GETATTR(invp, &inva, incred);
 3179         VOP_UNLOCK(invp);
 3180         if (error != 0)
 3181                 goto out;
 3182 
 3183         mp = NULL;
 3184         error = vn_start_write(outvp, &mp, V_WAIT);
 3185         if (error == 0)
 3186                 error = vn_lock(outvp, LK_EXCLUSIVE);
 3187         if (error == 0) {
 3188                 /*
 3189                  * If fsize_td != NULL, do a vn_rlimit_fsize() call,
 3190                  * now that outvp is locked.
 3191                  */
 3192                 if (fsize_td != NULL) {
 3193                         io.uio_offset = *outoffp;
 3194                         io.uio_resid = len;
 3195                         error = vn_rlimit_fsize(outvp, &io, fsize_td);
 3196                         if (error != 0)
 3197                                 error = EFBIG;
 3198                 }
 3199                 if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
 3200                         holeout = 0;
 3201                 /*
 3202                  * Holes that are past EOF do not need to be written as a block
 3203                  * of zero bytes.  So, truncate the output file as far as
 3204                  * possible and then use va.va_size to decide if writing 0
 3205                  * bytes is necessary in the loop below.
 3206                  */
 3207                 if (error == 0)
 3208                         error = VOP_GETATTR(outvp, &va, outcred);
 3209                 if (error == 0 && va.va_size > *outoffp && va.va_size <=
 3210                     *outoffp + len) {
 3211 #ifdef MAC
 3212                         error = mac_vnode_check_write(curthread->td_ucred,
 3213                             outcred, outvp);
 3214                         if (error == 0)
 3215 #endif
 3216                                 error = vn_truncate_locked(outvp, *outoffp,
 3217                                     false, outcred);
 3218                         if (error == 0)
 3219                                 va.va_size = *outoffp;
 3220                 }
 3221                 VOP_UNLOCK(outvp);
 3222         }
 3223         if (mp != NULL)
 3224                 vn_finished_write(mp);
 3225         if (error != 0)
 3226                 goto out;
 3227 
 3228         /*
 3229          * Set the blksize to the larger of the hole sizes for invp and outvp.
 3230          * If hole sizes aren't available, set the blksize to the larger 
 3231          * f_iosize of invp and outvp.
 3232          * This code expects the hole sizes and f_iosizes to be powers of 2.
 3233          * This value is clipped at 4Kbytes and 1Mbyte.
 3234          */
 3235         blksize = MAX(holein, holeout);
 3236 
 3237         /* Clip len to end at an exact multiple of hole size. */
 3238         if (blksize > 1) {
 3239                 rem = *inoffp % blksize;
 3240                 if (rem > 0)
 3241                         rem = blksize - rem;
 3242                 if (len > rem && len - rem > blksize)
 3243                         len = savlen = rounddown(len - rem, blksize) + rem;
 3244         }
 3245 
 3246         if (blksize <= 1)
 3247                 blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
 3248                     outvp->v_mount->mnt_stat.f_iosize);
 3249         if (blksize < 4096)
 3250                 blksize = 4096;
 3251         else if (blksize > 1024 * 1024)
 3252                 blksize = 1024 * 1024;
 3253         dat = malloc(blksize, M_TEMP, M_WAITOK);
 3254 
 3255         /*
 3256          * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
 3257          * to find holes.  Otherwise, just scan the read block for all 0s
 3258          * in the inner loop where the data copying is done.
 3259          * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
 3260          * support holes on the server, but do not support FIOSEEKHOLE.
 3261          * The kernel flag COPY_FILE_RANGE_TIMEO1SEC is used to indicate
 3262          * that this function should return after 1second with a partial
 3263          * completion.
 3264          */
 3265         if ((flags & COPY_FILE_RANGE_TIMEO1SEC) != 0) {
 3266                 getnanouptime(&endts);
 3267                 endts.tv_sec++;
 3268         } else
 3269                 timespecclear(&endts);
 3270         holetoeof = eof = false;
 3271         while (len > 0 && error == 0 && !eof && interrupted == 0) {
 3272                 endoff = 0;                     /* To shut up compilers. */
 3273                 cantseek = true;
 3274                 startoff = *inoffp;
 3275                 copylen = len;
 3276 
 3277                 /*
 3278                  * Find the next data area.  If there is just a hole to EOF,
 3279                  * FIOSEEKDATA should fail with ENXIO.
 3280                  * (I do not know if any file system will report a hole to
 3281                  *  EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
 3282                  *  will fail for those file systems.)
 3283                  *
 3284                  * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
 3285                  * the code just falls through to the inner copy loop.
 3286                  */
 3287                 error = EINVAL;
 3288                 if (holein > 0) {
 3289                         error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
 3290                             incred, curthread);
 3291                         if (error == ENXIO) {
 3292                                 startoff = endoff = inva.va_size;
 3293                                 eof = holetoeof = true;
 3294                                 error = 0;
 3295                         }
 3296                 }
 3297                 if (error == 0 && !holetoeof) {
 3298                         endoff = startoff;
 3299                         error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
 3300                             incred, curthread);
 3301                         /*
 3302                          * Since invp is unlocked, it may be possible for
 3303                          * another thread to do a truncate(), lseek(), write()
 3304                          * creating a hole at startoff between the above
 3305                          * VOP_IOCTL() calls, if the other thread does not do
 3306                          * rangelocking.
 3307                          * If that happens, startoff == endoff and finding
 3308                          * the hole has failed, so set an error.
 3309                          */
 3310                         if (error == 0 && startoff == endoff)
 3311                                 error = EINVAL; /* Any error. Reset to 0. */
 3312                 }
 3313                 if (error == 0) {
 3314                         if (startoff > *inoffp) {
 3315                                 /* Found hole before data block. */
 3316                                 xfer = MIN(startoff - *inoffp, len);
 3317                                 if (*outoffp < va.va_size) {
 3318                                         /* Must write 0s to punch hole. */
 3319                                         xfer2 = MIN(va.va_size - *outoffp,
 3320                                             xfer);
 3321                                         memset(dat, 0, MIN(xfer2, blksize));
 3322                                         error = vn_write_outvp(outvp, dat,
 3323                                             *outoffp, xfer2, blksize, false,
 3324                                             holeout > 0, outcred);
 3325                                 }
 3326 
 3327                                 if (error == 0 && *outoffp + xfer >
 3328                                     va.va_size && (xfer == len || holetoeof)) {
 3329                                         /* Grow output file (hole at end). */
 3330                                         error = vn_write_outvp(outvp, dat,
 3331                                             *outoffp, xfer, blksize, true,
 3332                                             false, outcred);
 3333                                 }
 3334                                 if (error == 0) {
 3335                                         *inoffp += xfer;
 3336                                         *outoffp += xfer;
 3337                                         len -= xfer;
 3338                                         if (len < savlen) {
 3339                                                 interrupted = sig_intr();
 3340                                                 if (timespecisset(&endts) &&
 3341                                                     interrupted == 0) {
 3342                                                         getnanouptime(&curts);
 3343                                                         if (timespeccmp(&curts,
 3344                                                             &endts, >=))
 3345                                                                 interrupted =
 3346                                                                     EINTR;
 3347                                                 }
 3348                                         }
 3349                                 }
 3350                         }
 3351                         copylen = MIN(len, endoff - startoff);
 3352                         cantseek = false;
 3353                 } else {
 3354                         cantseek = true;
 3355                         startoff = *inoffp;
 3356                         copylen = len;
 3357                         error = 0;
 3358                 }
 3359 
 3360                 xfer = blksize;
 3361                 if (cantseek) {
 3362                         /*
 3363                          * Set first xfer to end at a block boundary, so that
 3364                          * holes are more likely detected in the loop below via
 3365                          * the for all bytes 0 method.
 3366                          */
 3367                         xfer -= (*inoffp % blksize);
 3368                 }
 3369                 /* Loop copying the data block. */
 3370                 while (copylen > 0 && error == 0 && !eof && interrupted == 0) {
 3371                         if (copylen < xfer)
 3372                                 xfer = copylen;
 3373                         error = vn_lock(invp, LK_SHARED);
 3374                         if (error != 0)
 3375                                 goto out;
 3376                         error = vn_rdwr(UIO_READ, invp, dat, xfer,
 3377                             startoff, UIO_SYSSPACE, IO_NODELOCKED,
 3378                             curthread->td_ucred, incred, &aresid,
 3379                             curthread);
 3380                         VOP_UNLOCK(invp);
 3381                         lastblock = false;
 3382                         if (error == 0 && aresid > 0) {
 3383                                 /* Stop the copy at EOF on the input file. */
 3384                                 xfer -= aresid;
 3385                                 eof = true;
 3386                                 lastblock = true;
 3387                         }
 3388                         if (error == 0) {
 3389                                 /*
 3390                                  * Skip the write for holes past the initial EOF
 3391                                  * of the output file, unless this is the last
 3392                                  * write of the output file at EOF.
 3393                                  */
 3394                                 readzeros = cantseek ? mem_iszero(dat, xfer) :
 3395                                     false;
 3396                                 if (xfer == len)
 3397                                         lastblock = true;
 3398                                 if (!cantseek || *outoffp < va.va_size ||
 3399                                     lastblock || !readzeros)
 3400                                         error = vn_write_outvp(outvp, dat,
 3401                                             *outoffp, xfer, blksize,
 3402                                             readzeros && lastblock &&
 3403                                             *outoffp >= va.va_size, false,
 3404                                             outcred);
 3405                                 if (error == 0) {
 3406                                         *inoffp += xfer;
 3407                                         startoff += xfer;
 3408                                         *outoffp += xfer;
 3409                                         copylen -= xfer;
 3410                                         len -= xfer;
 3411                                         if (len < savlen) {
 3412                                                 interrupted = sig_intr();
 3413                                                 if (timespecisset(&endts) &&
 3414                                                     interrupted == 0) {
 3415                                                         getnanouptime(&curts);
 3416                                                         if (timespeccmp(&curts,
 3417                                                             &endts, >=))
 3418                                                                 interrupted =
 3419                                                                     EINTR;
 3420                                                 }
 3421                                         }
 3422                                 }
 3423                         }
 3424                         xfer = blksize;
 3425                 }
 3426         }
 3427 out:
 3428         *lenp = savlen - len;
 3429         free(dat, M_TEMP);
 3430         return (error);
 3431 }
 3432 
 3433 static int
 3434 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
 3435 {
 3436         struct mount *mp;
 3437         struct vnode *vp;
 3438         off_t olen, ooffset;
 3439         int error;
 3440 #ifdef AUDIT
 3441         int audited_vnode1 = 0;
 3442 #endif
 3443 
 3444         vp = fp->f_vnode;
 3445         if (vp->v_type != VREG)
 3446                 return (ENODEV);
 3447 
 3448         /* Allocating blocks may take a long time, so iterate. */
 3449         for (;;) {
 3450                 olen = len;
 3451                 ooffset = offset;
 3452 
 3453                 bwillwrite();
 3454                 mp = NULL;
 3455                 error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
 3456                 if (error != 0)
 3457                         break;
 3458                 error = vn_lock(vp, LK_EXCLUSIVE);
 3459                 if (error != 0) {
 3460                         vn_finished_write(mp);
 3461                         break;
 3462                 }
 3463 #ifdef AUDIT
 3464                 if (!audited_vnode1) {
 3465                         AUDIT_ARG_VNODE1(vp);
 3466                         audited_vnode1 = 1;
 3467                 }
 3468 #endif
 3469 #ifdef MAC
 3470                 error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
 3471                 if (error == 0)
 3472 #endif
 3473                         error = VOP_ALLOCATE(vp, &offset, &len);
 3474                 VOP_UNLOCK(vp);
 3475                 vn_finished_write(mp);
 3476 
 3477                 if (olen + ooffset != offset + len) {
 3478                         panic("offset + len changed from %jx/%jx to %jx/%jx",
 3479                             ooffset, olen, offset, len);
 3480                 }
 3481                 if (error != 0 || len == 0)
 3482                         break;
 3483                 KASSERT(olen > len, ("Iteration did not make progress?"));
 3484                 maybe_yield();
 3485         }
 3486 
 3487         return (error);
 3488 }
 3489 
 3490 static u_long vn_lock_pair_pause_cnt;
 3491 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD,
 3492     &vn_lock_pair_pause_cnt, 0,
 3493     "Count of vn_lock_pair deadlocks");
 3494 
 3495 u_int vn_lock_pair_pause_max;
 3496 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW,
 3497     &vn_lock_pair_pause_max, 0,
 3498     "Max ticks for vn_lock_pair deadlock avoidance sleep");
 3499 
 3500 static void
 3501 vn_lock_pair_pause(const char *wmesg)
 3502 {
 3503         atomic_add_long(&vn_lock_pair_pause_cnt, 1);
 3504         pause(wmesg, prng32_bounded(vn_lock_pair_pause_max));
 3505 }
 3506 
 3507 /*
 3508  * Lock pair of vnodes vp1, vp2, avoiding lock order reversal.
 3509  * vp1_locked indicates whether vp1 is exclusively locked; if not, vp1
 3510  * must be unlocked.  Same for vp2 and vp2_locked.  One of the vnodes
 3511  * can be NULL.
 3512  *
 3513  * The function returns with both vnodes exclusively locked, and
 3514  * guarantees that it does not create lock order reversal with other
 3515  * threads during its execution.  Both vnodes could be unlocked
 3516  * temporary (and reclaimed).
 3517  */
 3518 void
 3519 vn_lock_pair(struct vnode *vp1, bool vp1_locked, struct vnode *vp2,
 3520     bool vp2_locked)
 3521 {
 3522         int error;
 3523 
 3524         if (vp1 == NULL && vp2 == NULL)
 3525                 return;
 3526         if (vp1 != NULL) {
 3527                 if (vp1_locked)
 3528                         ASSERT_VOP_ELOCKED(vp1, "vp1");
 3529                 else
 3530                         ASSERT_VOP_UNLOCKED(vp1, "vp1");
 3531         } else {
 3532                 vp1_locked = true;
 3533         }
 3534         if (vp2 != NULL) {
 3535                 if (vp2_locked)
 3536                         ASSERT_VOP_ELOCKED(vp2, "vp2");
 3537                 else
 3538                         ASSERT_VOP_UNLOCKED(vp2, "vp2");
 3539         } else {
 3540                 vp2_locked = true;
 3541         }
 3542         if (!vp1_locked && !vp2_locked) {
 3543                 vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY);
 3544                 vp1_locked = true;
 3545         }
 3546 
 3547         for (;;) {
 3548                 if (vp1_locked && vp2_locked)
 3549                         break;
 3550                 if (vp1_locked && vp2 != NULL) {
 3551                         if (vp1 != NULL) {
 3552                                 error = VOP_LOCK1(vp2, LK_EXCLUSIVE | LK_NOWAIT,
 3553                                     __FILE__, __LINE__);
 3554                                 if (error == 0)
 3555                                         break;
 3556                                 VOP_UNLOCK(vp1);
 3557                                 vp1_locked = false;
 3558                                 vn_lock_pair_pause("vlp1");
 3559                         }
 3560                         vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY);
 3561                         vp2_locked = true;
 3562                 }
 3563                 if (vp2_locked && vp1 != NULL) {
 3564                         if (vp2 != NULL) {
 3565                                 error = VOP_LOCK1(vp1, LK_EXCLUSIVE | LK_NOWAIT,
 3566                                     __FILE__, __LINE__);
 3567                                 if (error == 0)
 3568                                         break;
 3569                                 VOP_UNLOCK(vp2);
 3570                                 vp2_locked = false;
 3571                                 vn_lock_pair_pause("vlp2");
 3572                         }
 3573                         vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY);
 3574                         vp1_locked = true;
 3575                 }
 3576         }
 3577         if (vp1 != NULL)
 3578                 ASSERT_VOP_ELOCKED(vp1, "vp1 ret");
 3579         if (vp2 != NULL)
 3580                 ASSERT_VOP_ELOCKED(vp2, "vp2 ret");
 3581 }
 3582 
 3583 int
 3584 vn_lktype_write(struct mount *mp, struct vnode *vp)
 3585 {
 3586         if (MNT_SHARED_WRITES(mp) ||
 3587             (mp == NULL && MNT_SHARED_WRITES(vp->v_mount)))
 3588                 return (LK_SHARED);
 3589         return (LK_EXCLUSIVE);
 3590 }

Cache object: 69d2d222a80ec5b38f73c0d5a9bc03c8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.