The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kernel/auditsc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /* auditsc.c -- System-call auditing support
    2  * Handles all system-call specific auditing features.
    3  *
    4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
    5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
    6  * Copyright (C) 2005, 2006 IBM Corporation
    7  * All Rights Reserved.
    8  *
    9  * This program is free software; you can redistribute it and/or modify
   10  * it under the terms of the GNU General Public License as published by
   11  * the Free Software Foundation; either version 2 of the License, or
   12  * (at your option) any later version.
   13  *
   14  * This program is distributed in the hope that it will be useful,
   15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
   16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   17  * GNU General Public License for more details.
   18  *
   19  * You should have received a copy of the GNU General Public License
   20  * along with this program; if not, write to the Free Software
   21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
   22  *
   23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
   24  *
   25  * Many of the ideas implemented here are from Stephen C. Tweedie,
   26  * especially the idea of avoiding a copy by using getname.
   27  *
   28  * The method for actual interception of syscall entry and exit (not in
   29  * this file -- see entry.S) is based on a GPL'd patch written by
   30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
   31  *
   32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
   33  * 2006.
   34  *
   35  * The support of additional filter rules compares (>, <, >=, <=) was
   36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
   37  *
   38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
   39  * filesystem information.
   40  *
   41  * Subject and object context labeling support added by <danjones@us.ibm.com>
   42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
   43  */
   44 
   45 #include <linux/init.h>
   46 #include <asm/types.h>
   47 #include <linux/atomic.h>
   48 #include <linux/fs.h>
   49 #include <linux/namei.h>
   50 #include <linux/mm.h>
   51 #include <linux/export.h>
   52 #include <linux/slab.h>
   53 #include <linux/mount.h>
   54 #include <linux/socket.h>
   55 #include <linux/mqueue.h>
   56 #include <linux/audit.h>
   57 #include <linux/personality.h>
   58 #include <linux/time.h>
   59 #include <linux/netlink.h>
   60 #include <linux/compiler.h>
   61 #include <asm/unistd.h>
   62 #include <linux/security.h>
   63 #include <linux/list.h>
   64 #include <linux/tty.h>
   65 #include <linux/binfmts.h>
   66 #include <linux/highmem.h>
   67 #include <linux/syscalls.h>
   68 #include <linux/capability.h>
   69 #include <linux/fs_struct.h>
   70 #include <linux/compat.h>
   71 
   72 #include "audit.h"
   73 
   74 /* flags stating the success for a syscall */
   75 #define AUDITSC_INVALID 0
   76 #define AUDITSC_SUCCESS 1
   77 #define AUDITSC_FAILURE 2
   78 
   79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
   80  * for saving names from getname().  If we get more names we will allocate
   81  * a name dynamically and also add those to the list anchored by names_list. */
   82 #define AUDIT_NAMES     5
   83 
   84 /* no execve audit message should be longer than this (userspace limits) */
   85 #define MAX_EXECVE_AUDIT_LEN 7500
   86 
   87 /* number of audit rules */
   88 int audit_n_rules;
   89 
   90 /* determines whether we collect data for signals sent */
   91 int audit_signals;
   92 
   93 struct audit_cap_data {
   94         kernel_cap_t            permitted;
   95         kernel_cap_t            inheritable;
   96         union {
   97                 unsigned int    fE;             /* effective bit of a file capability */
   98                 kernel_cap_t    effective;      /* effective set of a process */
   99         };
  100 };
  101 
  102 /* When fs/namei.c:getname() is called, we store the pointer in name and
  103  * we don't let putname() free it (instead we free all of the saved
  104  * pointers at syscall exit time).
  105  *
  106  * Further, in fs/namei.c:path_lookup() we store the inode and device.
  107  */
  108 struct audit_names {
  109         struct list_head        list;           /* audit_context->names_list */
  110         struct filename *name;
  111         unsigned long           ino;
  112         dev_t                   dev;
  113         umode_t                 mode;
  114         kuid_t                  uid;
  115         kgid_t                  gid;
  116         dev_t                   rdev;
  117         u32                     osid;
  118         struct audit_cap_data    fcap;
  119         unsigned int            fcap_ver;
  120         int                     name_len;       /* number of name's characters to log */
  121         unsigned char           type;           /* record type */
  122         bool                    name_put;       /* call __putname() for this name */
  123         /*
  124          * This was an allocated audit_names and not from the array of
  125          * names allocated in the task audit context.  Thus this name
  126          * should be freed on syscall exit
  127          */
  128         bool                    should_free;
  129 };
  130 
  131 struct audit_aux_data {
  132         struct audit_aux_data   *next;
  133         int                     type;
  134 };
  135 
  136 #define AUDIT_AUX_IPCPERM       0
  137 
  138 /* Number of target pids per aux struct. */
  139 #define AUDIT_AUX_PIDS  16
  140 
  141 struct audit_aux_data_execve {
  142         struct audit_aux_data   d;
  143         int argc;
  144         int envc;
  145         struct mm_struct *mm;
  146 };
  147 
  148 struct audit_aux_data_pids {
  149         struct audit_aux_data   d;
  150         pid_t                   target_pid[AUDIT_AUX_PIDS];
  151         kuid_t                  target_auid[AUDIT_AUX_PIDS];
  152         kuid_t                  target_uid[AUDIT_AUX_PIDS];
  153         unsigned int            target_sessionid[AUDIT_AUX_PIDS];
  154         u32                     target_sid[AUDIT_AUX_PIDS];
  155         char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
  156         int                     pid_count;
  157 };
  158 
  159 struct audit_aux_data_bprm_fcaps {
  160         struct audit_aux_data   d;
  161         struct audit_cap_data   fcap;
  162         unsigned int            fcap_ver;
  163         struct audit_cap_data   old_pcap;
  164         struct audit_cap_data   new_pcap;
  165 };
  166 
  167 struct audit_aux_data_capset {
  168         struct audit_aux_data   d;
  169         pid_t                   pid;
  170         struct audit_cap_data   cap;
  171 };
  172 
  173 struct audit_tree_refs {
  174         struct audit_tree_refs *next;
  175         struct audit_chunk *c[31];
  176 };
  177 
  178 /* The per-task audit context. */
  179 struct audit_context {
  180         int                 dummy;      /* must be the first element */
  181         int                 in_syscall; /* 1 if task is in a syscall */
  182         enum audit_state    state, current_state;
  183         unsigned int        serial;     /* serial number for record */
  184         int                 major;      /* syscall number */
  185         struct timespec     ctime;      /* time of syscall entry */
  186         unsigned long       argv[4];    /* syscall arguments */
  187         long                return_code;/* syscall return code */
  188         u64                 prio;
  189         int                 return_valid; /* return code is valid */
  190         /*
  191          * The names_list is the list of all audit_names collected during this
  192          * syscall.  The first AUDIT_NAMES entries in the names_list will
  193          * actually be from the preallocated_names array for performance
  194          * reasons.  Except during allocation they should never be referenced
  195          * through the preallocated_names array and should only be found/used
  196          * by running the names_list.
  197          */
  198         struct audit_names  preallocated_names[AUDIT_NAMES];
  199         int                 name_count; /* total records in names_list */
  200         struct list_head    names_list; /* anchor for struct audit_names->list */
  201         char *              filterkey;  /* key for rule that triggered record */
  202         struct path         pwd;
  203         struct audit_aux_data *aux;
  204         struct audit_aux_data *aux_pids;
  205         struct sockaddr_storage *sockaddr;
  206         size_t sockaddr_len;
  207                                 /* Save things to print about task_struct */
  208         pid_t               pid, ppid;
  209         kuid_t              uid, euid, suid, fsuid;
  210         kgid_t              gid, egid, sgid, fsgid;
  211         unsigned long       personality;
  212         int                 arch;
  213 
  214         pid_t               target_pid;
  215         kuid_t              target_auid;
  216         kuid_t              target_uid;
  217         unsigned int        target_sessionid;
  218         u32                 target_sid;
  219         char                target_comm[TASK_COMM_LEN];
  220 
  221         struct audit_tree_refs *trees, *first_trees;
  222         struct list_head killed_trees;
  223         int tree_count;
  224 
  225         int type;
  226         union {
  227                 struct {
  228                         int nargs;
  229                         long args[6];
  230                 } socketcall;
  231                 struct {
  232                         kuid_t                  uid;
  233                         kgid_t                  gid;
  234                         umode_t                 mode;
  235                         u32                     osid;
  236                         int                     has_perm;
  237                         uid_t                   perm_uid;
  238                         gid_t                   perm_gid;
  239                         umode_t                 perm_mode;
  240                         unsigned long           qbytes;
  241                 } ipc;
  242                 struct {
  243                         mqd_t                   mqdes;
  244                         struct mq_attr          mqstat;
  245                 } mq_getsetattr;
  246                 struct {
  247                         mqd_t                   mqdes;
  248                         int                     sigev_signo;
  249                 } mq_notify;
  250                 struct {
  251                         mqd_t                   mqdes;
  252                         size_t                  msg_len;
  253                         unsigned int            msg_prio;
  254                         struct timespec         abs_timeout;
  255                 } mq_sendrecv;
  256                 struct {
  257                         int                     oflag;
  258                         umode_t                 mode;
  259                         struct mq_attr          attr;
  260                 } mq_open;
  261                 struct {
  262                         pid_t                   pid;
  263                         struct audit_cap_data   cap;
  264                 } capset;
  265                 struct {
  266                         int                     fd;
  267                         int                     flags;
  268                 } mmap;
  269         };
  270         int fds[2];
  271 
  272 #if AUDIT_DEBUG
  273         int                 put_count;
  274         int                 ino_count;
  275 #endif
  276 };
  277 
  278 static inline int open_arg(int flags, int mask)
  279 {
  280         int n = ACC_MODE(flags);
  281         if (flags & (O_TRUNC | O_CREAT))
  282                 n |= AUDIT_PERM_WRITE;
  283         return n & mask;
  284 }
  285 
  286 static int audit_match_perm(struct audit_context *ctx, int mask)
  287 {
  288         unsigned n;
  289         if (unlikely(!ctx))
  290                 return 0;
  291         n = ctx->major;
  292 
  293         switch (audit_classify_syscall(ctx->arch, n)) {
  294         case 0: /* native */
  295                 if ((mask & AUDIT_PERM_WRITE) &&
  296                      audit_match_class(AUDIT_CLASS_WRITE, n))
  297                         return 1;
  298                 if ((mask & AUDIT_PERM_READ) &&
  299                      audit_match_class(AUDIT_CLASS_READ, n))
  300                         return 1;
  301                 if ((mask & AUDIT_PERM_ATTR) &&
  302                      audit_match_class(AUDIT_CLASS_CHATTR, n))
  303                         return 1;
  304                 return 0;
  305         case 1: /* 32bit on biarch */
  306                 if ((mask & AUDIT_PERM_WRITE) &&
  307                      audit_match_class(AUDIT_CLASS_WRITE_32, n))
  308                         return 1;
  309                 if ((mask & AUDIT_PERM_READ) &&
  310                      audit_match_class(AUDIT_CLASS_READ_32, n))
  311                         return 1;
  312                 if ((mask & AUDIT_PERM_ATTR) &&
  313                      audit_match_class(AUDIT_CLASS_CHATTR_32, n))
  314                         return 1;
  315                 return 0;
  316         case 2: /* open */
  317                 return mask & ACC_MODE(ctx->argv[1]);
  318         case 3: /* openat */
  319                 return mask & ACC_MODE(ctx->argv[2]);
  320         case 4: /* socketcall */
  321                 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
  322         case 5: /* execve */
  323                 return mask & AUDIT_PERM_EXEC;
  324         default:
  325                 return 0;
  326         }
  327 }
  328 
  329 static int audit_match_filetype(struct audit_context *ctx, int val)
  330 {
  331         struct audit_names *n;
  332         umode_t mode = (umode_t)val;
  333 
  334         if (unlikely(!ctx))
  335                 return 0;
  336 
  337         list_for_each_entry(n, &ctx->names_list, list) {
  338                 if ((n->ino != -1) &&
  339                     ((n->mode & S_IFMT) == mode))
  340                         return 1;
  341         }
  342 
  343         return 0;
  344 }
  345 
  346 /*
  347  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
  348  * ->first_trees points to its beginning, ->trees - to the current end of data.
  349  * ->tree_count is the number of free entries in array pointed to by ->trees.
  350  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
  351  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
  352  * it's going to remain 1-element for almost any setup) until we free context itself.
  353  * References in it _are_ dropped - at the same time we free/drop aux stuff.
  354  */
  355 
  356 #ifdef CONFIG_AUDIT_TREE
  357 static void audit_set_auditable(struct audit_context *ctx)
  358 {
  359         if (!ctx->prio) {
  360                 ctx->prio = 1;
  361                 ctx->current_state = AUDIT_RECORD_CONTEXT;
  362         }
  363 }
  364 
  365 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
  366 {
  367         struct audit_tree_refs *p = ctx->trees;
  368         int left = ctx->tree_count;
  369         if (likely(left)) {
  370                 p->c[--left] = chunk;
  371                 ctx->tree_count = left;
  372                 return 1;
  373         }
  374         if (!p)
  375                 return 0;
  376         p = p->next;
  377         if (p) {
  378                 p->c[30] = chunk;
  379                 ctx->trees = p;
  380                 ctx->tree_count = 30;
  381                 return 1;
  382         }
  383         return 0;
  384 }
  385 
  386 static int grow_tree_refs(struct audit_context *ctx)
  387 {
  388         struct audit_tree_refs *p = ctx->trees;
  389         ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
  390         if (!ctx->trees) {
  391                 ctx->trees = p;
  392                 return 0;
  393         }
  394         if (p)
  395                 p->next = ctx->trees;
  396         else
  397                 ctx->first_trees = ctx->trees;
  398         ctx->tree_count = 31;
  399         return 1;
  400 }
  401 #endif
  402 
  403 static void unroll_tree_refs(struct audit_context *ctx,
  404                       struct audit_tree_refs *p, int count)
  405 {
  406 #ifdef CONFIG_AUDIT_TREE
  407         struct audit_tree_refs *q;
  408         int n;
  409         if (!p) {
  410                 /* we started with empty chain */
  411                 p = ctx->first_trees;
  412                 count = 31;
  413                 /* if the very first allocation has failed, nothing to do */
  414                 if (!p)
  415                         return;
  416         }
  417         n = count;
  418         for (q = p; q != ctx->trees; q = q->next, n = 31) {
  419                 while (n--) {
  420                         audit_put_chunk(q->c[n]);
  421                         q->c[n] = NULL;
  422                 }
  423         }
  424         while (n-- > ctx->tree_count) {
  425                 audit_put_chunk(q->c[n]);
  426                 q->c[n] = NULL;
  427         }
  428         ctx->trees = p;
  429         ctx->tree_count = count;
  430 #endif
  431 }
  432 
  433 static void free_tree_refs(struct audit_context *ctx)
  434 {
  435         struct audit_tree_refs *p, *q;
  436         for (p = ctx->first_trees; p; p = q) {
  437                 q = p->next;
  438                 kfree(p);
  439         }
  440 }
  441 
  442 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
  443 {
  444 #ifdef CONFIG_AUDIT_TREE
  445         struct audit_tree_refs *p;
  446         int n;
  447         if (!tree)
  448                 return 0;
  449         /* full ones */
  450         for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
  451                 for (n = 0; n < 31; n++)
  452                         if (audit_tree_match(p->c[n], tree))
  453                                 return 1;
  454         }
  455         /* partial */
  456         if (p) {
  457                 for (n = ctx->tree_count; n < 31; n++)
  458                         if (audit_tree_match(p->c[n], tree))
  459                                 return 1;
  460         }
  461 #endif
  462         return 0;
  463 }
  464 
  465 static int audit_compare_uid(kuid_t uid,
  466                              struct audit_names *name,
  467                              struct audit_field *f,
  468                              struct audit_context *ctx)
  469 {
  470         struct audit_names *n;
  471         int rc;
  472  
  473         if (name) {
  474                 rc = audit_uid_comparator(uid, f->op, name->uid);
  475                 if (rc)
  476                         return rc;
  477         }
  478  
  479         if (ctx) {
  480                 list_for_each_entry(n, &ctx->names_list, list) {
  481                         rc = audit_uid_comparator(uid, f->op, n->uid);
  482                         if (rc)
  483                                 return rc;
  484                 }
  485         }
  486         return 0;
  487 }
  488 
  489 static int audit_compare_gid(kgid_t gid,
  490                              struct audit_names *name,
  491                              struct audit_field *f,
  492                              struct audit_context *ctx)
  493 {
  494         struct audit_names *n;
  495         int rc;
  496  
  497         if (name) {
  498                 rc = audit_gid_comparator(gid, f->op, name->gid);
  499                 if (rc)
  500                         return rc;
  501         }
  502  
  503         if (ctx) {
  504                 list_for_each_entry(n, &ctx->names_list, list) {
  505                         rc = audit_gid_comparator(gid, f->op, n->gid);
  506                         if (rc)
  507                                 return rc;
  508                 }
  509         }
  510         return 0;
  511 }
  512 
  513 static int audit_field_compare(struct task_struct *tsk,
  514                                const struct cred *cred,
  515                                struct audit_field *f,
  516                                struct audit_context *ctx,
  517                                struct audit_names *name)
  518 {
  519         switch (f->val) {
  520         /* process to file object comparisons */
  521         case AUDIT_COMPARE_UID_TO_OBJ_UID:
  522                 return audit_compare_uid(cred->uid, name, f, ctx);
  523         case AUDIT_COMPARE_GID_TO_OBJ_GID:
  524                 return audit_compare_gid(cred->gid, name, f, ctx);
  525         case AUDIT_COMPARE_EUID_TO_OBJ_UID:
  526                 return audit_compare_uid(cred->euid, name, f, ctx);
  527         case AUDIT_COMPARE_EGID_TO_OBJ_GID:
  528                 return audit_compare_gid(cred->egid, name, f, ctx);
  529         case AUDIT_COMPARE_AUID_TO_OBJ_UID:
  530                 return audit_compare_uid(tsk->loginuid, name, f, ctx);
  531         case AUDIT_COMPARE_SUID_TO_OBJ_UID:
  532                 return audit_compare_uid(cred->suid, name, f, ctx);
  533         case AUDIT_COMPARE_SGID_TO_OBJ_GID:
  534                 return audit_compare_gid(cred->sgid, name, f, ctx);
  535         case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
  536                 return audit_compare_uid(cred->fsuid, name, f, ctx);
  537         case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
  538                 return audit_compare_gid(cred->fsgid, name, f, ctx);
  539         /* uid comparisons */
  540         case AUDIT_COMPARE_UID_TO_AUID:
  541                 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
  542         case AUDIT_COMPARE_UID_TO_EUID:
  543                 return audit_uid_comparator(cred->uid, f->op, cred->euid);
  544         case AUDIT_COMPARE_UID_TO_SUID:
  545                 return audit_uid_comparator(cred->uid, f->op, cred->suid);
  546         case AUDIT_COMPARE_UID_TO_FSUID:
  547                 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
  548         /* auid comparisons */
  549         case AUDIT_COMPARE_AUID_TO_EUID:
  550                 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
  551         case AUDIT_COMPARE_AUID_TO_SUID:
  552                 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
  553         case AUDIT_COMPARE_AUID_TO_FSUID:
  554                 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
  555         /* euid comparisons */
  556         case AUDIT_COMPARE_EUID_TO_SUID:
  557                 return audit_uid_comparator(cred->euid, f->op, cred->suid);
  558         case AUDIT_COMPARE_EUID_TO_FSUID:
  559                 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
  560         /* suid comparisons */
  561         case AUDIT_COMPARE_SUID_TO_FSUID:
  562                 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
  563         /* gid comparisons */
  564         case AUDIT_COMPARE_GID_TO_EGID:
  565                 return audit_gid_comparator(cred->gid, f->op, cred->egid);
  566         case AUDIT_COMPARE_GID_TO_SGID:
  567                 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
  568         case AUDIT_COMPARE_GID_TO_FSGID:
  569                 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
  570         /* egid comparisons */
  571         case AUDIT_COMPARE_EGID_TO_SGID:
  572                 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
  573         case AUDIT_COMPARE_EGID_TO_FSGID:
  574                 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
  575         /* sgid comparison */
  576         case AUDIT_COMPARE_SGID_TO_FSGID:
  577                 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
  578         default:
  579                 WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
  580                 return 0;
  581         }
  582         return 0;
  583 }
  584 
  585 /* Determine if any context name data matches a rule's watch data */
  586 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
  587  * otherwise.
  588  *
  589  * If task_creation is true, this is an explicit indication that we are
  590  * filtering a task rule at task creation time.  This and tsk == current are
  591  * the only situations where tsk->cred may be accessed without an rcu read lock.
  592  */
  593 static int audit_filter_rules(struct task_struct *tsk,
  594                               struct audit_krule *rule,
  595                               struct audit_context *ctx,
  596                               struct audit_names *name,
  597                               enum audit_state *state,
  598                               bool task_creation)
  599 {
  600         const struct cred *cred;
  601         int i, need_sid = 1;
  602         u32 sid;
  603 
  604         cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
  605 
  606         for (i = 0; i < rule->field_count; i++) {
  607                 struct audit_field *f = &rule->fields[i];
  608                 struct audit_names *n;
  609                 int result = 0;
  610 
  611                 switch (f->type) {
  612                 case AUDIT_PID:
  613                         result = audit_comparator(tsk->pid, f->op, f->val);
  614                         break;
  615                 case AUDIT_PPID:
  616                         if (ctx) {
  617                                 if (!ctx->ppid)
  618                                         ctx->ppid = sys_getppid();
  619                                 result = audit_comparator(ctx->ppid, f->op, f->val);
  620                         }
  621                         break;
  622                 case AUDIT_UID:
  623                         result = audit_uid_comparator(cred->uid, f->op, f->uid);
  624                         break;
  625                 case AUDIT_EUID:
  626                         result = audit_uid_comparator(cred->euid, f->op, f->uid);
  627                         break;
  628                 case AUDIT_SUID:
  629                         result = audit_uid_comparator(cred->suid, f->op, f->uid);
  630                         break;
  631                 case AUDIT_FSUID:
  632                         result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
  633                         break;
  634                 case AUDIT_GID:
  635                         result = audit_gid_comparator(cred->gid, f->op, f->gid);
  636                         break;
  637                 case AUDIT_EGID:
  638                         result = audit_gid_comparator(cred->egid, f->op, f->gid);
  639                         break;
  640                 case AUDIT_SGID:
  641                         result = audit_gid_comparator(cred->sgid, f->op, f->gid);
  642                         break;
  643                 case AUDIT_FSGID:
  644                         result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
  645                         break;
  646                 case AUDIT_PERS:
  647                         result = audit_comparator(tsk->personality, f->op, f->val);
  648                         break;
  649                 case AUDIT_ARCH:
  650                         if (ctx)
  651                                 result = audit_comparator(ctx->arch, f->op, f->val);
  652                         break;
  653 
  654                 case AUDIT_EXIT:
  655                         if (ctx && ctx->return_valid)
  656                                 result = audit_comparator(ctx->return_code, f->op, f->val);
  657                         break;
  658                 case AUDIT_SUCCESS:
  659                         if (ctx && ctx->return_valid) {
  660                                 if (f->val)
  661                                         result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
  662                                 else
  663                                         result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
  664                         }
  665                         break;
  666                 case AUDIT_DEVMAJOR:
  667                         if (name) {
  668                                 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
  669                                     audit_comparator(MAJOR(name->rdev), f->op, f->val))
  670                                         ++result;
  671                         } else if (ctx) {
  672                                 list_for_each_entry(n, &ctx->names_list, list) {
  673                                         if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
  674                                             audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
  675                                                 ++result;
  676                                                 break;
  677                                         }
  678                                 }
  679                         }
  680                         break;
  681                 case AUDIT_DEVMINOR:
  682                         if (name) {
  683                                 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
  684                                     audit_comparator(MINOR(name->rdev), f->op, f->val))
  685                                         ++result;
  686                         } else if (ctx) {
  687                                 list_for_each_entry(n, &ctx->names_list, list) {
  688                                         if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
  689                                             audit_comparator(MINOR(n->rdev), f->op, f->val)) {
  690                                                 ++result;
  691                                                 break;
  692                                         }
  693                                 }
  694                         }
  695                         break;
  696                 case AUDIT_INODE:
  697                         if (name)
  698                                 result = (name->ino == f->val);
  699                         else if (ctx) {
  700                                 list_for_each_entry(n, &ctx->names_list, list) {
  701                                         if (audit_comparator(n->ino, f->op, f->val)) {
  702                                                 ++result;
  703                                                 break;
  704                                         }
  705                                 }
  706                         }
  707                         break;
  708                 case AUDIT_OBJ_UID:
  709                         if (name) {
  710                                 result = audit_uid_comparator(name->uid, f->op, f->uid);
  711                         } else if (ctx) {
  712                                 list_for_each_entry(n, &ctx->names_list, list) {
  713                                         if (audit_uid_comparator(n->uid, f->op, f->uid)) {
  714                                                 ++result;
  715                                                 break;
  716                                         }
  717                                 }
  718                         }
  719                         break;
  720                 case AUDIT_OBJ_GID:
  721                         if (name) {
  722                                 result = audit_gid_comparator(name->gid, f->op, f->gid);
  723                         } else if (ctx) {
  724                                 list_for_each_entry(n, &ctx->names_list, list) {
  725                                         if (audit_gid_comparator(n->gid, f->op, f->gid)) {
  726                                                 ++result;
  727                                                 break;
  728                                         }
  729                                 }
  730                         }
  731                         break;
  732                 case AUDIT_WATCH:
  733                         if (name)
  734                                 result = audit_watch_compare(rule->watch, name->ino, name->dev);
  735                         break;
  736                 case AUDIT_DIR:
  737                         if (ctx)
  738                                 result = match_tree_refs(ctx, rule->tree);
  739                         break;
  740                 case AUDIT_LOGINUID:
  741                         result = 0;
  742                         if (ctx)
  743                                 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
  744                         break;
  745                 case AUDIT_SUBJ_USER:
  746                 case AUDIT_SUBJ_ROLE:
  747                 case AUDIT_SUBJ_TYPE:
  748                 case AUDIT_SUBJ_SEN:
  749                 case AUDIT_SUBJ_CLR:
  750                         /* NOTE: this may return negative values indicating
  751                            a temporary error.  We simply treat this as a
  752                            match for now to avoid losing information that
  753                            may be wanted.   An error message will also be
  754                            logged upon error */
  755                         if (f->lsm_rule) {
  756                                 if (need_sid) {
  757                                         security_task_getsecid(tsk, &sid);
  758                                         need_sid = 0;
  759                                 }
  760                                 result = security_audit_rule_match(sid, f->type,
  761                                                                   f->op,
  762                                                                   f->lsm_rule,
  763                                                                   ctx);
  764                         }
  765                         break;
  766                 case AUDIT_OBJ_USER:
  767                 case AUDIT_OBJ_ROLE:
  768                 case AUDIT_OBJ_TYPE:
  769                 case AUDIT_OBJ_LEV_LOW:
  770                 case AUDIT_OBJ_LEV_HIGH:
  771                         /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
  772                            also applies here */
  773                         if (f->lsm_rule) {
  774                                 /* Find files that match */
  775                                 if (name) {
  776                                         result = security_audit_rule_match(
  777                                                    name->osid, f->type, f->op,
  778                                                    f->lsm_rule, ctx);
  779                                 } else if (ctx) {
  780                                         list_for_each_entry(n, &ctx->names_list, list) {
  781                                                 if (security_audit_rule_match(n->osid, f->type,
  782                                                                               f->op, f->lsm_rule,
  783                                                                               ctx)) {
  784                                                         ++result;
  785                                                         break;
  786                                                 }
  787                                         }
  788                                 }
  789                                 /* Find ipc objects that match */
  790                                 if (!ctx || ctx->type != AUDIT_IPC)
  791                                         break;
  792                                 if (security_audit_rule_match(ctx->ipc.osid,
  793                                                               f->type, f->op,
  794                                                               f->lsm_rule, ctx))
  795                                         ++result;
  796                         }
  797                         break;
  798                 case AUDIT_ARG0:
  799                 case AUDIT_ARG1:
  800                 case AUDIT_ARG2:
  801                 case AUDIT_ARG3:
  802                         if (ctx)
  803                                 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
  804                         break;
  805                 case AUDIT_FILTERKEY:
  806                         /* ignore this field for filtering */
  807                         result = 1;
  808                         break;
  809                 case AUDIT_PERM:
  810                         result = audit_match_perm(ctx, f->val);
  811                         break;
  812                 case AUDIT_FILETYPE:
  813                         result = audit_match_filetype(ctx, f->val);
  814                         break;
  815                 case AUDIT_FIELD_COMPARE:
  816                         result = audit_field_compare(tsk, cred, f, ctx, name);
  817                         break;
  818                 }
  819                 if (!result)
  820                         return 0;
  821         }
  822 
  823         if (ctx) {
  824                 if (rule->prio <= ctx->prio)
  825                         return 0;
  826                 if (rule->filterkey) {
  827                         kfree(ctx->filterkey);
  828                         ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
  829                 }
  830                 ctx->prio = rule->prio;
  831         }
  832         switch (rule->action) {
  833         case AUDIT_NEVER:    *state = AUDIT_DISABLED;       break;
  834         case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
  835         }
  836         return 1;
  837 }
  838 
  839 /* At process creation time, we can determine if system-call auditing is
  840  * completely disabled for this task.  Since we only have the task
  841  * structure at this point, we can only check uid and gid.
  842  */
  843 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
  844 {
  845         struct audit_entry *e;
  846         enum audit_state   state;
  847 
  848         rcu_read_lock();
  849         list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
  850                 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
  851                                        &state, true)) {
  852                         if (state == AUDIT_RECORD_CONTEXT)
  853                                 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
  854                         rcu_read_unlock();
  855                         return state;
  856                 }
  857         }
  858         rcu_read_unlock();
  859         return AUDIT_BUILD_CONTEXT;
  860 }
  861 
  862 /* At syscall entry and exit time, this filter is called if the
  863  * audit_state is not low enough that auditing cannot take place, but is
  864  * also not high enough that we already know we have to write an audit
  865  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
  866  */
  867 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
  868                                              struct audit_context *ctx,
  869                                              struct list_head *list)
  870 {
  871         struct audit_entry *e;
  872         enum audit_state state;
  873 
  874         if (audit_pid && tsk->tgid == audit_pid)
  875                 return AUDIT_DISABLED;
  876 
  877         rcu_read_lock();
  878         if (!list_empty(list)) {
  879                 int word = AUDIT_WORD(ctx->major);
  880                 int bit  = AUDIT_BIT(ctx->major);
  881 
  882                 list_for_each_entry_rcu(e, list, list) {
  883                         if ((e->rule.mask[word] & bit) == bit &&
  884                             audit_filter_rules(tsk, &e->rule, ctx, NULL,
  885                                                &state, false)) {
  886                                 rcu_read_unlock();
  887                                 ctx->current_state = state;
  888                                 return state;
  889                         }
  890                 }
  891         }
  892         rcu_read_unlock();
  893         return AUDIT_BUILD_CONTEXT;
  894 }
  895 
  896 /*
  897  * Given an audit_name check the inode hash table to see if they match.
  898  * Called holding the rcu read lock to protect the use of audit_inode_hash
  899  */
  900 static int audit_filter_inode_name(struct task_struct *tsk,
  901                                    struct audit_names *n,
  902                                    struct audit_context *ctx) {
  903         int word, bit;
  904         int h = audit_hash_ino((u32)n->ino);
  905         struct list_head *list = &audit_inode_hash[h];
  906         struct audit_entry *e;
  907         enum audit_state state;
  908 
  909         word = AUDIT_WORD(ctx->major);
  910         bit  = AUDIT_BIT(ctx->major);
  911 
  912         if (list_empty(list))
  913                 return 0;
  914 
  915         list_for_each_entry_rcu(e, list, list) {
  916                 if ((e->rule.mask[word] & bit) == bit &&
  917                     audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
  918                         ctx->current_state = state;
  919                         return 1;
  920                 }
  921         }
  922 
  923         return 0;
  924 }
  925 
  926 /* At syscall exit time, this filter is called if any audit_names have been
  927  * collected during syscall processing.  We only check rules in sublists at hash
  928  * buckets applicable to the inode numbers in audit_names.
  929  * Regarding audit_state, same rules apply as for audit_filter_syscall().
  930  */
  931 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
  932 {
  933         struct audit_names *n;
  934 
  935         if (audit_pid && tsk->tgid == audit_pid)
  936                 return;
  937 
  938         rcu_read_lock();
  939 
  940         list_for_each_entry(n, &ctx->names_list, list) {
  941                 if (audit_filter_inode_name(tsk, n, ctx))
  942                         break;
  943         }
  944         rcu_read_unlock();
  945 }
  946 
  947 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
  948                                                       int return_valid,
  949                                                       long return_code)
  950 {
  951         struct audit_context *context = tsk->audit_context;
  952 
  953         if (!context)
  954                 return NULL;
  955         context->return_valid = return_valid;
  956 
  957         /*
  958          * we need to fix up the return code in the audit logs if the actual
  959          * return codes are later going to be fixed up by the arch specific
  960          * signal handlers
  961          *
  962          * This is actually a test for:
  963          * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
  964          * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
  965          *
  966          * but is faster than a bunch of ||
  967          */
  968         if (unlikely(return_code <= -ERESTARTSYS) &&
  969             (return_code >= -ERESTART_RESTARTBLOCK) &&
  970             (return_code != -ENOIOCTLCMD))
  971                 context->return_code = -EINTR;
  972         else
  973                 context->return_code  = return_code;
  974 
  975         if (context->in_syscall && !context->dummy) {
  976                 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
  977                 audit_filter_inodes(tsk, context);
  978         }
  979 
  980         tsk->audit_context = NULL;
  981         return context;
  982 }
  983 
  984 static inline void audit_free_names(struct audit_context *context)
  985 {
  986         struct audit_names *n, *next;
  987 
  988 #if AUDIT_DEBUG == 2
  989         if (context->put_count + context->ino_count != context->name_count) {
  990                 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
  991                        " name_count=%d put_count=%d"
  992                        " ino_count=%d [NOT freeing]\n",
  993                        __FILE__, __LINE__,
  994                        context->serial, context->major, context->in_syscall,
  995                        context->name_count, context->put_count,
  996                        context->ino_count);
  997                 list_for_each_entry(n, &context->names_list, list) {
  998                         printk(KERN_ERR "names[%d] = %p = %s\n", i,
  999                                n->name, n->name->name ?: "(null)");
 1000                 }
 1001                 dump_stack();
 1002                 return;
 1003         }
 1004 #endif
 1005 #if AUDIT_DEBUG
 1006         context->put_count  = 0;
 1007         context->ino_count  = 0;
 1008 #endif
 1009 
 1010         list_for_each_entry_safe(n, next, &context->names_list, list) {
 1011                 list_del(&n->list);
 1012                 if (n->name && n->name_put)
 1013                         __putname(n->name);
 1014                 if (n->should_free)
 1015                         kfree(n);
 1016         }
 1017         context->name_count = 0;
 1018         path_put(&context->pwd);
 1019         context->pwd.dentry = NULL;
 1020         context->pwd.mnt = NULL;
 1021 }
 1022 
 1023 static inline void audit_free_aux(struct audit_context *context)
 1024 {
 1025         struct audit_aux_data *aux;
 1026 
 1027         while ((aux = context->aux)) {
 1028                 context->aux = aux->next;
 1029                 kfree(aux);
 1030         }
 1031         while ((aux = context->aux_pids)) {
 1032                 context->aux_pids = aux->next;
 1033                 kfree(aux);
 1034         }
 1035 }
 1036 
 1037 static inline void audit_zero_context(struct audit_context *context,
 1038                                       enum audit_state state)
 1039 {
 1040         memset(context, 0, sizeof(*context));
 1041         context->state      = state;
 1042         context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 1043 }
 1044 
 1045 static inline struct audit_context *audit_alloc_context(enum audit_state state)
 1046 {
 1047         struct audit_context *context;
 1048 
 1049         if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
 1050                 return NULL;
 1051         audit_zero_context(context, state);
 1052         INIT_LIST_HEAD(&context->killed_trees);
 1053         INIT_LIST_HEAD(&context->names_list);
 1054         return context;
 1055 }
 1056 
 1057 /**
 1058  * audit_alloc - allocate an audit context block for a task
 1059  * @tsk: task
 1060  *
 1061  * Filter on the task information and allocate a per-task audit context
 1062  * if necessary.  Doing so turns on system call auditing for the
 1063  * specified task.  This is called from copy_process, so no lock is
 1064  * needed.
 1065  */
 1066 int audit_alloc(struct task_struct *tsk)
 1067 {
 1068         struct audit_context *context;
 1069         enum audit_state     state;
 1070         char *key = NULL;
 1071 
 1072         if (likely(!audit_ever_enabled))
 1073                 return 0; /* Return if not auditing. */
 1074 
 1075         state = audit_filter_task(tsk, &key);
 1076         if (state == AUDIT_DISABLED)
 1077                 return 0;
 1078 
 1079         if (!(context = audit_alloc_context(state))) {
 1080                 kfree(key);
 1081                 audit_log_lost("out of memory in audit_alloc");
 1082                 return -ENOMEM;
 1083         }
 1084         context->filterkey = key;
 1085 
 1086         tsk->audit_context  = context;
 1087         set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 1088         return 0;
 1089 }
 1090 
 1091 static inline void audit_free_context(struct audit_context *context)
 1092 {
 1093         audit_free_names(context);
 1094         unroll_tree_refs(context, NULL, 0);
 1095         free_tree_refs(context);
 1096         audit_free_aux(context);
 1097         kfree(context->filterkey);
 1098         kfree(context->sockaddr);
 1099         kfree(context);
 1100 }
 1101 
 1102 void audit_log_task_context(struct audit_buffer *ab)
 1103 {
 1104         char *ctx = NULL;
 1105         unsigned len;
 1106         int error;
 1107         u32 sid;
 1108 
 1109         security_task_getsecid(current, &sid);
 1110         if (!sid)
 1111                 return;
 1112 
 1113         error = security_secid_to_secctx(sid, &ctx, &len);
 1114         if (error) {
 1115                 if (error != -EINVAL)
 1116                         goto error_path;
 1117                 return;
 1118         }
 1119 
 1120         audit_log_format(ab, " subj=%s", ctx);
 1121         security_release_secctx(ctx, len);
 1122         return;
 1123 
 1124 error_path:
 1125         audit_panic("error in audit_log_task_context");
 1126         return;
 1127 }
 1128 
 1129 EXPORT_SYMBOL(audit_log_task_context);
 1130 
 1131 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
 1132 {
 1133         const struct cred *cred;
 1134         char name[sizeof(tsk->comm)];
 1135         struct mm_struct *mm = tsk->mm;
 1136         char *tty;
 1137 
 1138         if (!ab)
 1139                 return;
 1140 
 1141         /* tsk == current */
 1142         cred = current_cred();
 1143 
 1144         spin_lock_irq(&tsk->sighand->siglock);
 1145         if (tsk->signal && tsk->signal->tty)
 1146                 tty = tsk->signal->tty->name;
 1147         else
 1148                 tty = "(none)";
 1149         spin_unlock_irq(&tsk->sighand->siglock);
 1150 
 1151 
 1152         audit_log_format(ab,
 1153                          " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
 1154                          " euid=%u suid=%u fsuid=%u"
 1155                          " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
 1156                          sys_getppid(),
 1157                          tsk->pid,
 1158                          from_kuid(&init_user_ns, tsk->loginuid),
 1159                          from_kuid(&init_user_ns, cred->uid),
 1160                          from_kgid(&init_user_ns, cred->gid),
 1161                          from_kuid(&init_user_ns, cred->euid),
 1162                          from_kuid(&init_user_ns, cred->suid),
 1163                          from_kuid(&init_user_ns, cred->fsuid),
 1164                          from_kgid(&init_user_ns, cred->egid),
 1165                          from_kgid(&init_user_ns, cred->sgid),
 1166                          from_kgid(&init_user_ns, cred->fsgid),
 1167                          tsk->sessionid, tty);
 1168 
 1169         get_task_comm(name, tsk);
 1170         audit_log_format(ab, " comm=");
 1171         audit_log_untrustedstring(ab, name);
 1172 
 1173         if (mm) {
 1174                 down_read(&mm->mmap_sem);
 1175                 if (mm->exe_file)
 1176                         audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
 1177                 up_read(&mm->mmap_sem);
 1178         }
 1179         audit_log_task_context(ab);
 1180 }
 1181 
 1182 EXPORT_SYMBOL(audit_log_task_info);
 1183 
 1184 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 1185                                  kuid_t auid, kuid_t uid, unsigned int sessionid,
 1186                                  u32 sid, char *comm)
 1187 {
 1188         struct audit_buffer *ab;
 1189         char *ctx = NULL;
 1190         u32 len;
 1191         int rc = 0;
 1192 
 1193         ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 1194         if (!ab)
 1195                 return rc;
 1196 
 1197         audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
 1198                          from_kuid(&init_user_ns, auid),
 1199                          from_kuid(&init_user_ns, uid), sessionid);
 1200         if (security_secid_to_secctx(sid, &ctx, &len)) {
 1201                 audit_log_format(ab, " obj=(none)");
 1202                 rc = 1;
 1203         } else {
 1204                 audit_log_format(ab, " obj=%s", ctx);
 1205                 security_release_secctx(ctx, len);
 1206         }
 1207         audit_log_format(ab, " ocomm=");
 1208         audit_log_untrustedstring(ab, comm);
 1209         audit_log_end(ab);
 1210 
 1211         return rc;
 1212 }
 1213 
 1214 /*
 1215  * to_send and len_sent accounting are very loose estimates.  We aren't
 1216  * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
 1217  * within about 500 bytes (next page boundary)
 1218  *
 1219  * why snprintf?  an int is up to 12 digits long.  if we just assumed when
 1220  * logging that a[%d]= was going to be 16 characters long we would be wasting
 1221  * space in every audit message.  In one 7500 byte message we can log up to
 1222  * about 1000 min size arguments.  That comes down to about 50% waste of space
 1223  * if we didn't do the snprintf to find out how long arg_num_len was.
 1224  */
 1225 static int audit_log_single_execve_arg(struct audit_context *context,
 1226                                         struct audit_buffer **ab,
 1227                                         int arg_num,
 1228                                         size_t *len_sent,
 1229                                         const char __user *p,
 1230                                         char *buf)
 1231 {
 1232         char arg_num_len_buf[12];
 1233         const char __user *tmp_p = p;
 1234         /* how many digits are in arg_num? 5 is the length of ' a=""' */
 1235         size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
 1236         size_t len, len_left, to_send;
 1237         size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
 1238         unsigned int i, has_cntl = 0, too_long = 0;
 1239         int ret;
 1240 
 1241         /* strnlen_user includes the null we don't want to send */
 1242         len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
 1243 
 1244         /*
 1245          * We just created this mm, if we can't find the strings
 1246          * we just copied into it something is _very_ wrong. Similar
 1247          * for strings that are too long, we should not have created
 1248          * any.
 1249          */
 1250         if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
 1251                 WARN_ON(1);
 1252                 send_sig(SIGKILL, current, 0);
 1253                 return -1;
 1254         }
 1255 
 1256         /* walk the whole argument looking for non-ascii chars */
 1257         do {
 1258                 if (len_left > MAX_EXECVE_AUDIT_LEN)
 1259                         to_send = MAX_EXECVE_AUDIT_LEN;
 1260                 else
 1261                         to_send = len_left;
 1262                 ret = copy_from_user(buf, tmp_p, to_send);
 1263                 /*
 1264                  * There is no reason for this copy to be short. We just
 1265                  * copied them here, and the mm hasn't been exposed to user-
 1266                  * space yet.
 1267                  */
 1268                 if (ret) {
 1269                         WARN_ON(1);
 1270                         send_sig(SIGKILL, current, 0);
 1271                         return -1;
 1272                 }
 1273                 buf[to_send] = '\0';
 1274                 has_cntl = audit_string_contains_control(buf, to_send);
 1275                 if (has_cntl) {
 1276                         /*
 1277                          * hex messages get logged as 2 bytes, so we can only
 1278                          * send half as much in each message
 1279                          */
 1280                         max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
 1281                         break;
 1282                 }
 1283                 len_left -= to_send;
 1284                 tmp_p += to_send;
 1285         } while (len_left > 0);
 1286 
 1287         len_left = len;
 1288 
 1289         if (len > max_execve_audit_len)
 1290                 too_long = 1;
 1291 
 1292         /* rewalk the argument actually logging the message */
 1293         for (i = 0; len_left > 0; i++) {
 1294                 int room_left;
 1295 
 1296                 if (len_left > max_execve_audit_len)
 1297                         to_send = max_execve_audit_len;
 1298                 else
 1299                         to_send = len_left;
 1300 
 1301                 /* do we have space left to send this argument in this ab? */
 1302                 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
 1303                 if (has_cntl)
 1304                         room_left -= (to_send * 2);
 1305                 else
 1306                         room_left -= to_send;
 1307                 if (room_left < 0) {
 1308                         *len_sent = 0;
 1309                         audit_log_end(*ab);
 1310                         *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
 1311                         if (!*ab)
 1312                                 return 0;
 1313                 }
 1314 
 1315                 /*
 1316                  * first record needs to say how long the original string was
 1317                  * so we can be sure nothing was lost.
 1318                  */
 1319                 if ((i == 0) && (too_long))
 1320                         audit_log_format(*ab, " a%d_len=%zu", arg_num,
 1321                                          has_cntl ? 2*len : len);
 1322 
 1323                 /*
 1324                  * normally arguments are small enough to fit and we already
 1325                  * filled buf above when we checked for control characters
 1326                  * so don't bother with another copy_from_user
 1327                  */
 1328                 if (len >= max_execve_audit_len)
 1329                         ret = copy_from_user(buf, p, to_send);
 1330                 else
 1331                         ret = 0;
 1332                 if (ret) {
 1333                         WARN_ON(1);
 1334                         send_sig(SIGKILL, current, 0);
 1335                         return -1;
 1336                 }
 1337                 buf[to_send] = '\0';
 1338 
 1339                 /* actually log it */
 1340                 audit_log_format(*ab, " a%d", arg_num);
 1341                 if (too_long)
 1342                         audit_log_format(*ab, "[%d]", i);
 1343                 audit_log_format(*ab, "=");
 1344                 if (has_cntl)
 1345                         audit_log_n_hex(*ab, buf, to_send);
 1346                 else
 1347                         audit_log_string(*ab, buf);
 1348 
 1349                 p += to_send;
 1350                 len_left -= to_send;
 1351                 *len_sent += arg_num_len;
 1352                 if (has_cntl)
 1353                         *len_sent += to_send * 2;
 1354                 else
 1355                         *len_sent += to_send;
 1356         }
 1357         /* include the null we didn't log */
 1358         return len + 1;
 1359 }
 1360 
 1361 static void audit_log_execve_info(struct audit_context *context,
 1362                                   struct audit_buffer **ab,
 1363                                   struct audit_aux_data_execve *axi)
 1364 {
 1365         int i, len;
 1366         size_t len_sent = 0;
 1367         const char __user *p;
 1368         char *buf;
 1369 
 1370         if (axi->mm != current->mm)
 1371                 return; /* execve failed, no additional info */
 1372 
 1373         p = (const char __user *)axi->mm->arg_start;
 1374 
 1375         audit_log_format(*ab, "argc=%d", axi->argc);
 1376 
 1377         /*
 1378          * we need some kernel buffer to hold the userspace args.  Just
 1379          * allocate one big one rather than allocating one of the right size
 1380          * for every single argument inside audit_log_single_execve_arg()
 1381          * should be <8k allocation so should be pretty safe.
 1382          */
 1383         buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
 1384         if (!buf) {
 1385                 audit_panic("out of memory for argv string\n");
 1386                 return;
 1387         }
 1388 
 1389         for (i = 0; i < axi->argc; i++) {
 1390                 len = audit_log_single_execve_arg(context, ab, i,
 1391                                                   &len_sent, p, buf);
 1392                 if (len <= 0)
 1393                         break;
 1394                 p += len;
 1395         }
 1396         kfree(buf);
 1397 }
 1398 
 1399 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
 1400 {
 1401         int i;
 1402 
 1403         audit_log_format(ab, " %s=", prefix);
 1404         CAP_FOR_EACH_U32(i) {
 1405                 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
 1406         }
 1407 }
 1408 
 1409 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
 1410 {
 1411         kernel_cap_t *perm = &name->fcap.permitted;
 1412         kernel_cap_t *inh = &name->fcap.inheritable;
 1413         int log = 0;
 1414 
 1415         if (!cap_isclear(*perm)) {
 1416                 audit_log_cap(ab, "cap_fp", perm);
 1417                 log = 1;
 1418         }
 1419         if (!cap_isclear(*inh)) {
 1420                 audit_log_cap(ab, "cap_fi", inh);
 1421                 log = 1;
 1422         }
 1423 
 1424         if (log)
 1425                 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
 1426 }
 1427 
 1428 static void show_special(struct audit_context *context, int *call_panic)
 1429 {
 1430         struct audit_buffer *ab;
 1431         int i;
 1432 
 1433         ab = audit_log_start(context, GFP_KERNEL, context->type);
 1434         if (!ab)
 1435                 return;
 1436 
 1437         switch (context->type) {
 1438         case AUDIT_SOCKETCALL: {
 1439                 int nargs = context->socketcall.nargs;
 1440                 audit_log_format(ab, "nargs=%d", nargs);
 1441                 for (i = 0; i < nargs; i++)
 1442                         audit_log_format(ab, " a%d=%lx", i,
 1443                                 context->socketcall.args[i]);
 1444                 break; }
 1445         case AUDIT_IPC: {
 1446                 u32 osid = context->ipc.osid;
 1447 
 1448                 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
 1449                                  from_kuid(&init_user_ns, context->ipc.uid),
 1450                                  from_kgid(&init_user_ns, context->ipc.gid),
 1451                                  context->ipc.mode);
 1452                 if (osid) {
 1453                         char *ctx = NULL;
 1454                         u32 len;
 1455                         if (security_secid_to_secctx(osid, &ctx, &len)) {
 1456                                 audit_log_format(ab, " osid=%u", osid);
 1457                                 *call_panic = 1;
 1458                         } else {
 1459                                 audit_log_format(ab, " obj=%s", ctx);
 1460                                 security_release_secctx(ctx, len);
 1461                         }
 1462                 }
 1463                 if (context->ipc.has_perm) {
 1464                         audit_log_end(ab);
 1465                         ab = audit_log_start(context, GFP_KERNEL,
 1466                                              AUDIT_IPC_SET_PERM);
 1467                         if (unlikely(!ab))
 1468                                 return;
 1469                         audit_log_format(ab,
 1470                                 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
 1471                                 context->ipc.qbytes,
 1472                                 context->ipc.perm_uid,
 1473                                 context->ipc.perm_gid,
 1474                                 context->ipc.perm_mode);
 1475                 }
 1476                 break; }
 1477         case AUDIT_MQ_OPEN: {
 1478                 audit_log_format(ab,
 1479                         "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
 1480                         "mq_msgsize=%ld mq_curmsgs=%ld",
 1481                         context->mq_open.oflag, context->mq_open.mode,
 1482                         context->mq_open.attr.mq_flags,
 1483                         context->mq_open.attr.mq_maxmsg,
 1484                         context->mq_open.attr.mq_msgsize,
 1485                         context->mq_open.attr.mq_curmsgs);
 1486                 break; }
 1487         case AUDIT_MQ_SENDRECV: {
 1488                 audit_log_format(ab,
 1489                         "mqdes=%d msg_len=%zd msg_prio=%u "
 1490                         "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
 1491                         context->mq_sendrecv.mqdes,
 1492                         context->mq_sendrecv.msg_len,
 1493                         context->mq_sendrecv.msg_prio,
 1494                         context->mq_sendrecv.abs_timeout.tv_sec,
 1495                         context->mq_sendrecv.abs_timeout.tv_nsec);
 1496                 break; }
 1497         case AUDIT_MQ_NOTIFY: {
 1498                 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
 1499                                 context->mq_notify.mqdes,
 1500                                 context->mq_notify.sigev_signo);
 1501                 break; }
 1502         case AUDIT_MQ_GETSETATTR: {
 1503                 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
 1504                 audit_log_format(ab,
 1505                         "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
 1506                         "mq_curmsgs=%ld ",
 1507                         context->mq_getsetattr.mqdes,
 1508                         attr->mq_flags, attr->mq_maxmsg,
 1509                         attr->mq_msgsize, attr->mq_curmsgs);
 1510                 break; }
 1511         case AUDIT_CAPSET: {
 1512                 audit_log_format(ab, "pid=%d", context->capset.pid);
 1513                 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
 1514                 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
 1515                 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
 1516                 break; }
 1517         case AUDIT_MMAP: {
 1518                 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
 1519                                  context->mmap.flags);
 1520                 break; }
 1521         }
 1522         audit_log_end(ab);
 1523 }
 1524 
 1525 static void audit_log_name(struct audit_context *context, struct audit_names *n,
 1526                            int record_num, int *call_panic)
 1527 {
 1528         struct audit_buffer *ab;
 1529         ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
 1530         if (!ab)
 1531                 return; /* audit_panic has been called */
 1532 
 1533         audit_log_format(ab, "item=%d", record_num);
 1534 
 1535         if (n->name) {
 1536                 switch (n->name_len) {
 1537                 case AUDIT_NAME_FULL:
 1538                         /* log the full path */
 1539                         audit_log_format(ab, " name=");
 1540                         audit_log_untrustedstring(ab, n->name->name);
 1541                         break;
 1542                 case 0:
 1543                         /* name was specified as a relative path and the
 1544                          * directory component is the cwd */
 1545                         audit_log_d_path(ab, " name=", &context->pwd);
 1546                         break;
 1547                 default:
 1548                         /* log the name's directory component */
 1549                         audit_log_format(ab, " name=");
 1550                         audit_log_n_untrustedstring(ab, n->name->name,
 1551                                                     n->name_len);
 1552                 }
 1553         } else
 1554                 audit_log_format(ab, " name=(null)");
 1555 
 1556         if (n->ino != (unsigned long)-1) {
 1557                 audit_log_format(ab, " inode=%lu"
 1558                                  " dev=%02x:%02x mode=%#ho"
 1559                                  " ouid=%u ogid=%u rdev=%02x:%02x",
 1560                                  n->ino,
 1561                                  MAJOR(n->dev),
 1562                                  MINOR(n->dev),
 1563                                  n->mode,
 1564                                  from_kuid(&init_user_ns, n->uid),
 1565                                  from_kgid(&init_user_ns, n->gid),
 1566                                  MAJOR(n->rdev),
 1567                                  MINOR(n->rdev));
 1568         }
 1569         if (n->osid != 0) {
 1570                 char *ctx = NULL;
 1571                 u32 len;
 1572                 if (security_secid_to_secctx(
 1573                         n->osid, &ctx, &len)) {
 1574                         audit_log_format(ab, " osid=%u", n->osid);
 1575                         *call_panic = 2;
 1576                 } else {
 1577                         audit_log_format(ab, " obj=%s", ctx);
 1578                         security_release_secctx(ctx, len);
 1579                 }
 1580         }
 1581 
 1582         audit_log_fcaps(ab, n);
 1583 
 1584         audit_log_end(ab);
 1585 }
 1586 
 1587 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
 1588 {
 1589         int i, call_panic = 0;
 1590         struct audit_buffer *ab;
 1591         struct audit_aux_data *aux;
 1592         struct audit_names *n;
 1593 
 1594         /* tsk == current */
 1595         context->personality = tsk->personality;
 1596 
 1597         ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
 1598         if (!ab)
 1599                 return;         /* audit_panic has been called */
 1600         audit_log_format(ab, "arch=%x syscall=%d",
 1601                          context->arch, context->major);
 1602         if (context->personality != PER_LINUX)
 1603                 audit_log_format(ab, " per=%lx", context->personality);
 1604         if (context->return_valid)
 1605                 audit_log_format(ab, " success=%s exit=%ld",
 1606                                  (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
 1607                                  context->return_code);
 1608 
 1609         audit_log_format(ab,
 1610                          " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
 1611                          context->argv[0],
 1612                          context->argv[1],
 1613                          context->argv[2],
 1614                          context->argv[3],
 1615                          context->name_count);
 1616 
 1617         audit_log_task_info(ab, tsk);
 1618         audit_log_key(ab, context->filterkey);
 1619         audit_log_end(ab);
 1620 
 1621         for (aux = context->aux; aux; aux = aux->next) {
 1622 
 1623                 ab = audit_log_start(context, GFP_KERNEL, aux->type);
 1624                 if (!ab)
 1625                         continue; /* audit_panic has been called */
 1626 
 1627                 switch (aux->type) {
 1628 
 1629                 case AUDIT_EXECVE: {
 1630                         struct audit_aux_data_execve *axi = (void *)aux;
 1631                         audit_log_execve_info(context, &ab, axi);
 1632                         break; }
 1633 
 1634                 case AUDIT_BPRM_FCAPS: {
 1635                         struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
 1636                         audit_log_format(ab, "fver=%x", axs->fcap_ver);
 1637                         audit_log_cap(ab, "fp", &axs->fcap.permitted);
 1638                         audit_log_cap(ab, "fi", &axs->fcap.inheritable);
 1639                         audit_log_format(ab, " fe=%d", axs->fcap.fE);
 1640                         audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
 1641                         audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
 1642                         audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
 1643                         audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
 1644                         audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
 1645                         audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
 1646                         break; }
 1647 
 1648                 }
 1649                 audit_log_end(ab);
 1650         }
 1651 
 1652         if (context->type)
 1653                 show_special(context, &call_panic);
 1654 
 1655         if (context->fds[0] >= 0) {
 1656                 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
 1657                 if (ab) {
 1658                         audit_log_format(ab, "fd0=%d fd1=%d",
 1659                                         context->fds[0], context->fds[1]);
 1660                         audit_log_end(ab);
 1661                 }
 1662         }
 1663 
 1664         if (context->sockaddr_len) {
 1665                 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
 1666                 if (ab) {
 1667                         audit_log_format(ab, "saddr=");
 1668                         audit_log_n_hex(ab, (void *)context->sockaddr,
 1669                                         context->sockaddr_len);
 1670                         audit_log_end(ab);
 1671                 }
 1672         }
 1673 
 1674         for (aux = context->aux_pids; aux; aux = aux->next) {
 1675                 struct audit_aux_data_pids *axs = (void *)aux;
 1676 
 1677                 for (i = 0; i < axs->pid_count; i++)
 1678                         if (audit_log_pid_context(context, axs->target_pid[i],
 1679                                                   axs->target_auid[i],
 1680                                                   axs->target_uid[i],
 1681                                                   axs->target_sessionid[i],
 1682                                                   axs->target_sid[i],
 1683                                                   axs->target_comm[i]))
 1684                                 call_panic = 1;
 1685         }
 1686 
 1687         if (context->target_pid &&
 1688             audit_log_pid_context(context, context->target_pid,
 1689                                   context->target_auid, context->target_uid,
 1690                                   context->target_sessionid,
 1691                                   context->target_sid, context->target_comm))
 1692                         call_panic = 1;
 1693 
 1694         if (context->pwd.dentry && context->pwd.mnt) {
 1695                 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
 1696                 if (ab) {
 1697                         audit_log_d_path(ab, " cwd=", &context->pwd);
 1698                         audit_log_end(ab);
 1699                 }
 1700         }
 1701 
 1702         i = 0;
 1703         list_for_each_entry(n, &context->names_list, list)
 1704                 audit_log_name(context, n, i++, &call_panic);
 1705 
 1706         /* Send end of event record to help user space know we are finished */
 1707         ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
 1708         if (ab)
 1709                 audit_log_end(ab);
 1710         if (call_panic)
 1711                 audit_panic("error converting sid to string");
 1712 }
 1713 
 1714 /**
 1715  * audit_free - free a per-task audit context
 1716  * @tsk: task whose audit context block to free
 1717  *
 1718  * Called from copy_process and do_exit
 1719  */
 1720 void __audit_free(struct task_struct *tsk)
 1721 {
 1722         struct audit_context *context;
 1723 
 1724         context = audit_get_context(tsk, 0, 0);
 1725         if (!context)
 1726                 return;
 1727 
 1728         /* Check for system calls that do not go through the exit
 1729          * function (e.g., exit_group), then free context block.
 1730          * We use GFP_ATOMIC here because we might be doing this
 1731          * in the context of the idle thread */
 1732         /* that can happen only if we are called from do_exit() */
 1733         if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
 1734                 audit_log_exit(context, tsk);
 1735         if (!list_empty(&context->killed_trees))
 1736                 audit_kill_trees(&context->killed_trees);
 1737 
 1738         audit_free_context(context);
 1739 }
 1740 
 1741 /**
 1742  * audit_syscall_entry - fill in an audit record at syscall entry
 1743  * @arch: architecture type
 1744  * @major: major syscall type (function)
 1745  * @a1: additional syscall register 1
 1746  * @a2: additional syscall register 2
 1747  * @a3: additional syscall register 3
 1748  * @a4: additional syscall register 4
 1749  *
 1750  * Fill in audit context at syscall entry.  This only happens if the
 1751  * audit context was created when the task was created and the state or
 1752  * filters demand the audit context be built.  If the state from the
 1753  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
 1754  * then the record will be written at syscall exit time (otherwise, it
 1755  * will only be written if another part of the kernel requests that it
 1756  * be written).
 1757  */
 1758 void __audit_syscall_entry(int arch, int major,
 1759                          unsigned long a1, unsigned long a2,
 1760                          unsigned long a3, unsigned long a4)
 1761 {
 1762         struct task_struct *tsk = current;
 1763         struct audit_context *context = tsk->audit_context;
 1764         enum audit_state     state;
 1765 
 1766         if (!context)
 1767                 return;
 1768 
 1769         BUG_ON(context->in_syscall || context->name_count);
 1770 
 1771         if (!audit_enabled)
 1772                 return;
 1773 
 1774         context->arch       = arch;
 1775         context->major      = major;
 1776         context->argv[0]    = a1;
 1777         context->argv[1]    = a2;
 1778         context->argv[2]    = a3;
 1779         context->argv[3]    = a4;
 1780 
 1781         state = context->state;
 1782         context->dummy = !audit_n_rules;
 1783         if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
 1784                 context->prio = 0;
 1785                 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
 1786         }
 1787         if (state == AUDIT_DISABLED)
 1788                 return;
 1789 
 1790         context->serial     = 0;
 1791         context->ctime      = CURRENT_TIME;
 1792         context->in_syscall = 1;
 1793         context->current_state  = state;
 1794         context->ppid       = 0;
 1795 }
 1796 
 1797 /**
 1798  * audit_syscall_exit - deallocate audit context after a system call
 1799  * @success: success value of the syscall
 1800  * @return_code: return value of the syscall
 1801  *
 1802  * Tear down after system call.  If the audit context has been marked as
 1803  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
 1804  * filtering, or because some other part of the kernel wrote an audit
 1805  * message), then write out the syscall information.  In call cases,
 1806  * free the names stored from getname().
 1807  */
 1808 void __audit_syscall_exit(int success, long return_code)
 1809 {
 1810         struct task_struct *tsk = current;
 1811         struct audit_context *context;
 1812 
 1813         if (success)
 1814                 success = AUDITSC_SUCCESS;
 1815         else
 1816                 success = AUDITSC_FAILURE;
 1817 
 1818         context = audit_get_context(tsk, success, return_code);
 1819         if (!context)
 1820                 return;
 1821 
 1822         if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
 1823                 audit_log_exit(context, tsk);
 1824 
 1825         context->in_syscall = 0;
 1826         context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 1827 
 1828         if (!list_empty(&context->killed_trees))
 1829                 audit_kill_trees(&context->killed_trees);
 1830 
 1831         audit_free_names(context);
 1832         unroll_tree_refs(context, NULL, 0);
 1833         audit_free_aux(context);
 1834         context->aux = NULL;
 1835         context->aux_pids = NULL;
 1836         context->target_pid = 0;
 1837         context->target_sid = 0;
 1838         context->sockaddr_len = 0;
 1839         context->type = 0;
 1840         context->fds[0] = -1;
 1841         if (context->state != AUDIT_RECORD_CONTEXT) {
 1842                 kfree(context->filterkey);
 1843                 context->filterkey = NULL;
 1844         }
 1845         tsk->audit_context = context;
 1846 }
 1847 
 1848 static inline void handle_one(const struct inode *inode)
 1849 {
 1850 #ifdef CONFIG_AUDIT_TREE
 1851         struct audit_context *context;
 1852         struct audit_tree_refs *p;
 1853         struct audit_chunk *chunk;
 1854         int count;
 1855         if (likely(hlist_empty(&inode->i_fsnotify_marks)))
 1856                 return;
 1857         context = current->audit_context;
 1858         p = context->trees;
 1859         count = context->tree_count;
 1860         rcu_read_lock();
 1861         chunk = audit_tree_lookup(inode);
 1862         rcu_read_unlock();
 1863         if (!chunk)
 1864                 return;
 1865         if (likely(put_tree_ref(context, chunk)))
 1866                 return;
 1867         if (unlikely(!grow_tree_refs(context))) {
 1868                 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
 1869                 audit_set_auditable(context);
 1870                 audit_put_chunk(chunk);
 1871                 unroll_tree_refs(context, p, count);
 1872                 return;
 1873         }
 1874         put_tree_ref(context, chunk);
 1875 #endif
 1876 }
 1877 
 1878 static void handle_path(const struct dentry *dentry)
 1879 {
 1880 #ifdef CONFIG_AUDIT_TREE
 1881         struct audit_context *context;
 1882         struct audit_tree_refs *p;
 1883         const struct dentry *d, *parent;
 1884         struct audit_chunk *drop;
 1885         unsigned long seq;
 1886         int count;
 1887 
 1888         context = current->audit_context;
 1889         p = context->trees;
 1890         count = context->tree_count;
 1891 retry:
 1892         drop = NULL;
 1893         d = dentry;
 1894         rcu_read_lock();
 1895         seq = read_seqbegin(&rename_lock);
 1896         for(;;) {
 1897                 struct inode *inode = d->d_inode;
 1898                 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
 1899                         struct audit_chunk *chunk;
 1900                         chunk = audit_tree_lookup(inode);
 1901                         if (chunk) {
 1902                                 if (unlikely(!put_tree_ref(context, chunk))) {
 1903                                         drop = chunk;
 1904                                         break;
 1905                                 }
 1906                         }
 1907                 }
 1908                 parent = d->d_parent;
 1909                 if (parent == d)
 1910                         break;
 1911                 d = parent;
 1912         }
 1913         if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
 1914                 rcu_read_unlock();
 1915                 if (!drop) {
 1916                         /* just a race with rename */
 1917                         unroll_tree_refs(context, p, count);
 1918                         goto retry;
 1919                 }
 1920                 audit_put_chunk(drop);
 1921                 if (grow_tree_refs(context)) {
 1922                         /* OK, got more space */
 1923                         unroll_tree_refs(context, p, count);
 1924                         goto retry;
 1925                 }
 1926                 /* too bad */
 1927                 printk(KERN_WARNING
 1928                         "out of memory, audit has lost a tree reference\n");
 1929                 unroll_tree_refs(context, p, count);
 1930                 audit_set_auditable(context);
 1931                 return;
 1932         }
 1933         rcu_read_unlock();
 1934 #endif
 1935 }
 1936 
 1937 static struct audit_names *audit_alloc_name(struct audit_context *context,
 1938                                                 unsigned char type)
 1939 {
 1940         struct audit_names *aname;
 1941 
 1942         if (context->name_count < AUDIT_NAMES) {
 1943                 aname = &context->preallocated_names[context->name_count];
 1944                 memset(aname, 0, sizeof(*aname));
 1945         } else {
 1946                 aname = kzalloc(sizeof(*aname), GFP_NOFS);
 1947                 if (!aname)
 1948                         return NULL;
 1949                 aname->should_free = true;
 1950         }
 1951 
 1952         aname->ino = (unsigned long)-1;
 1953         aname->type = type;
 1954         list_add_tail(&aname->list, &context->names_list);
 1955 
 1956         context->name_count++;
 1957 #if AUDIT_DEBUG
 1958         context->ino_count++;
 1959 #endif
 1960         return aname;
 1961 }
 1962 
 1963 /**
 1964  * audit_reusename - fill out filename with info from existing entry
 1965  * @uptr: userland ptr to pathname
 1966  *
 1967  * Search the audit_names list for the current audit context. If there is an
 1968  * existing entry with a matching "uptr" then return the filename
 1969  * associated with that audit_name. If not, return NULL.
 1970  */
 1971 struct filename *
 1972 __audit_reusename(const __user char *uptr)
 1973 {
 1974         struct audit_context *context = current->audit_context;
 1975         struct audit_names *n;
 1976 
 1977         list_for_each_entry(n, &context->names_list, list) {
 1978                 if (!n->name)
 1979                         continue;
 1980                 if (n->name->uptr == uptr)
 1981                         return n->name;
 1982         }
 1983         return NULL;
 1984 }
 1985 
 1986 /**
 1987  * audit_getname - add a name to the list
 1988  * @name: name to add
 1989  *
 1990  * Add a name to the list of audit names for this context.
 1991  * Called from fs/namei.c:getname().
 1992  */
 1993 void __audit_getname(struct filename *name)
 1994 {
 1995         struct audit_context *context = current->audit_context;
 1996         struct audit_names *n;
 1997 
 1998         if (!context->in_syscall) {
 1999 #if AUDIT_DEBUG == 2
 2000                 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
 2001                        __FILE__, __LINE__, context->serial, name);
 2002                 dump_stack();
 2003 #endif
 2004                 return;
 2005         }
 2006 
 2007 #if AUDIT_DEBUG
 2008         /* The filename _must_ have a populated ->name */
 2009         BUG_ON(!name->name);
 2010 #endif
 2011 
 2012         n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
 2013         if (!n)
 2014                 return;
 2015 
 2016         n->name = name;
 2017         n->name_len = AUDIT_NAME_FULL;
 2018         n->name_put = true;
 2019         name->aname = n;
 2020 
 2021         if (!context->pwd.dentry)
 2022                 get_fs_pwd(current->fs, &context->pwd);
 2023 }
 2024 
 2025 /* audit_putname - intercept a putname request
 2026  * @name: name to intercept and delay for putname
 2027  *
 2028  * If we have stored the name from getname in the audit context,
 2029  * then we delay the putname until syscall exit.
 2030  * Called from include/linux/fs.h:putname().
 2031  */
 2032 void audit_putname(struct filename *name)
 2033 {
 2034         struct audit_context *context = current->audit_context;
 2035 
 2036         BUG_ON(!context);
 2037         if (!context->in_syscall) {
 2038 #if AUDIT_DEBUG == 2
 2039                 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
 2040                        __FILE__, __LINE__, context->serial, name);
 2041                 if (context->name_count) {
 2042                         struct audit_names *n;
 2043                         int i;
 2044 
 2045                         list_for_each_entry(n, &context->names_list, list)
 2046                                 printk(KERN_ERR "name[%d] = %p = %s\n", i,
 2047                                        n->name, n->name->name ?: "(null)");
 2048                         }
 2049 #endif
 2050                 __putname(name);
 2051         }
 2052 #if AUDIT_DEBUG
 2053         else {
 2054                 ++context->put_count;
 2055                 if (context->put_count > context->name_count) {
 2056                         printk(KERN_ERR "%s:%d(:%d): major=%d"
 2057                                " in_syscall=%d putname(%p) name_count=%d"
 2058                                " put_count=%d\n",
 2059                                __FILE__, __LINE__,
 2060                                context->serial, context->major,
 2061                                context->in_syscall, name->name,
 2062                                context->name_count, context->put_count);
 2063                         dump_stack();
 2064                 }
 2065         }
 2066 #endif
 2067 }
 2068 
 2069 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
 2070 {
 2071         struct cpu_vfs_cap_data caps;
 2072         int rc;
 2073 
 2074         if (!dentry)
 2075                 return 0;
 2076 
 2077         rc = get_vfs_caps_from_disk(dentry, &caps);
 2078         if (rc)
 2079                 return rc;
 2080 
 2081         name->fcap.permitted = caps.permitted;
 2082         name->fcap.inheritable = caps.inheritable;
 2083         name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
 2084         name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
 2085 
 2086         return 0;
 2087 }
 2088 
 2089 
 2090 /* Copy inode data into an audit_names. */
 2091 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
 2092                              const struct inode *inode)
 2093 {
 2094         name->ino   = inode->i_ino;
 2095         name->dev   = inode->i_sb->s_dev;
 2096         name->mode  = inode->i_mode;
 2097         name->uid   = inode->i_uid;
 2098         name->gid   = inode->i_gid;
 2099         name->rdev  = inode->i_rdev;
 2100         security_inode_getsecid(inode, &name->osid);
 2101         audit_copy_fcaps(name, dentry);
 2102 }
 2103 
 2104 /**
 2105  * __audit_inode - store the inode and device from a lookup
 2106  * @name: name being audited
 2107  * @dentry: dentry being audited
 2108  * @parent: does this dentry represent the parent?
 2109  */
 2110 void __audit_inode(struct filename *name, const struct dentry *dentry,
 2111                    unsigned int parent)
 2112 {
 2113         struct audit_context *context = current->audit_context;
 2114         const struct inode *inode = dentry->d_inode;
 2115         struct audit_names *n;
 2116 
 2117         if (!context->in_syscall)
 2118                 return;
 2119 
 2120         if (!name)
 2121                 goto out_alloc;
 2122 
 2123 #if AUDIT_DEBUG
 2124         /* The struct filename _must_ have a populated ->name */
 2125         BUG_ON(!name->name);
 2126 #endif
 2127         /*
 2128          * If we have a pointer to an audit_names entry already, then we can
 2129          * just use it directly if the type is correct.
 2130          */
 2131         n = name->aname;
 2132         if (n) {
 2133                 if (parent) {
 2134                         if (n->type == AUDIT_TYPE_PARENT ||
 2135                             n->type == AUDIT_TYPE_UNKNOWN)
 2136                                 goto out;
 2137                 } else {
 2138                         if (n->type != AUDIT_TYPE_PARENT)
 2139                                 goto out;
 2140                 }
 2141         }
 2142 
 2143         list_for_each_entry_reverse(n, &context->names_list, list) {
 2144                 /* does the name pointer match? */
 2145                 if (!n->name || n->name->name != name->name)
 2146                         continue;
 2147 
 2148                 /* match the correct record type */
 2149                 if (parent) {
 2150                         if (n->type == AUDIT_TYPE_PARENT ||
 2151                             n->type == AUDIT_TYPE_UNKNOWN)
 2152                                 goto out;
 2153                 } else {
 2154                         if (n->type != AUDIT_TYPE_PARENT)
 2155                                 goto out;
 2156                 }
 2157         }
 2158 
 2159 out_alloc:
 2160         /* unable to find the name from a previous getname(). Allocate a new
 2161          * anonymous entry.
 2162          */
 2163         n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
 2164         if (!n)
 2165                 return;
 2166 out:
 2167         if (parent) {
 2168                 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
 2169                 n->type = AUDIT_TYPE_PARENT;
 2170         } else {
 2171                 n->name_len = AUDIT_NAME_FULL;
 2172                 n->type = AUDIT_TYPE_NORMAL;
 2173         }
 2174         handle_path(dentry);
 2175         audit_copy_inode(n, dentry, inode);
 2176 }
 2177 
 2178 /**
 2179  * __audit_inode_child - collect inode info for created/removed objects
 2180  * @parent: inode of dentry parent
 2181  * @dentry: dentry being audited
 2182  * @type:   AUDIT_TYPE_* value that we're looking for
 2183  *
 2184  * For syscalls that create or remove filesystem objects, audit_inode
 2185  * can only collect information for the filesystem object's parent.
 2186  * This call updates the audit context with the child's information.
 2187  * Syscalls that create a new filesystem object must be hooked after
 2188  * the object is created.  Syscalls that remove a filesystem object
 2189  * must be hooked prior, in order to capture the target inode during
 2190  * unsuccessful attempts.
 2191  */
 2192 void __audit_inode_child(const struct inode *parent,
 2193                          const struct dentry *dentry,
 2194                          const unsigned char type)
 2195 {
 2196         struct audit_context *context = current->audit_context;
 2197         const struct inode *inode = dentry->d_inode;
 2198         const char *dname = dentry->d_name.name;
 2199         struct audit_names *n, *found_parent = NULL, *found_child = NULL;
 2200 
 2201         if (!context->in_syscall)
 2202                 return;
 2203 
 2204         if (inode)
 2205                 handle_one(inode);
 2206 
 2207         /* look for a parent entry first */
 2208         list_for_each_entry(n, &context->names_list, list) {
 2209                 if (!n->name || n->type != AUDIT_TYPE_PARENT)
 2210                         continue;
 2211 
 2212                 if (n->ino == parent->i_ino &&
 2213                     !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
 2214                         found_parent = n;
 2215                         break;
 2216                 }
 2217         }
 2218 
 2219         /* is there a matching child entry? */
 2220         list_for_each_entry(n, &context->names_list, list) {
 2221                 /* can only match entries that have a name */
 2222                 if (!n->name || n->type != type)
 2223                         continue;
 2224 
 2225                 /* if we found a parent, make sure this one is a child of it */
 2226                 if (found_parent && (n->name != found_parent->name))
 2227                         continue;
 2228 
 2229                 if (!strcmp(dname, n->name->name) ||
 2230                     !audit_compare_dname_path(dname, n->name->name,
 2231                                                 found_parent ?
 2232                                                 found_parent->name_len :
 2233                                                 AUDIT_NAME_FULL)) {
 2234                         found_child = n;
 2235                         break;
 2236                 }
 2237         }
 2238 
 2239         if (!found_parent) {
 2240                 /* create a new, "anonymous" parent record */
 2241                 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
 2242                 if (!n)
 2243                         return;
 2244                 audit_copy_inode(n, NULL, parent);
 2245         }
 2246 
 2247         if (!found_child) {
 2248                 found_child = audit_alloc_name(context, type);
 2249                 if (!found_child)
 2250                         return;
 2251 
 2252                 /* Re-use the name belonging to the slot for a matching parent
 2253                  * directory. All names for this context are relinquished in
 2254                  * audit_free_names() */
 2255                 if (found_parent) {
 2256                         found_child->name = found_parent->name;
 2257                         found_child->name_len = AUDIT_NAME_FULL;
 2258                         /* don't call __putname() */
 2259                         found_child->name_put = false;
 2260                 }
 2261         }
 2262         if (inode)
 2263                 audit_copy_inode(found_child, dentry, inode);
 2264         else
 2265                 found_child->ino = (unsigned long)-1;
 2266 }
 2267 EXPORT_SYMBOL_GPL(__audit_inode_child);
 2268 
 2269 /**
 2270  * auditsc_get_stamp - get local copies of audit_context values
 2271  * @ctx: audit_context for the task
 2272  * @t: timespec to store time recorded in the audit_context
 2273  * @serial: serial value that is recorded in the audit_context
 2274  *
 2275  * Also sets the context as auditable.
 2276  */
 2277 int auditsc_get_stamp(struct audit_context *ctx,
 2278                        struct timespec *t, unsigned int *serial)
 2279 {
 2280         if (!ctx->in_syscall)
 2281                 return 0;
 2282         if (!ctx->serial)
 2283                 ctx->serial = audit_serial();
 2284         t->tv_sec  = ctx->ctime.tv_sec;
 2285         t->tv_nsec = ctx->ctime.tv_nsec;
 2286         *serial    = ctx->serial;
 2287         if (!ctx->prio) {
 2288                 ctx->prio = 1;
 2289                 ctx->current_state = AUDIT_RECORD_CONTEXT;
 2290         }
 2291         return 1;
 2292 }
 2293 
 2294 /* global counter which is incremented every time something logs in */
 2295 static atomic_t session_id = ATOMIC_INIT(0);
 2296 
 2297 /**
 2298  * audit_set_loginuid - set current task's audit_context loginuid
 2299  * @loginuid: loginuid value
 2300  *
 2301  * Returns 0.
 2302  *
 2303  * Called (set) from fs/proc/base.c::proc_loginuid_write().
 2304  */
 2305 int audit_set_loginuid(kuid_t loginuid)
 2306 {
 2307         struct task_struct *task = current;
 2308         struct audit_context *context = task->audit_context;
 2309         unsigned int sessionid;
 2310 
 2311 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
 2312         if (uid_valid(task->loginuid))
 2313                 return -EPERM;
 2314 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
 2315         if (!capable(CAP_AUDIT_CONTROL))
 2316                 return -EPERM;
 2317 #endif  /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
 2318 
 2319         sessionid = atomic_inc_return(&session_id);
 2320         if (context && context->in_syscall) {
 2321                 struct audit_buffer *ab;
 2322 
 2323                 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
 2324                 if (ab) {
 2325                         audit_log_format(ab, "login pid=%d uid=%u "
 2326                                 "old auid=%u new auid=%u"
 2327                                 " old ses=%u new ses=%u",
 2328                                 task->pid,
 2329                                 from_kuid(&init_user_ns, task_uid(task)),
 2330                                 from_kuid(&init_user_ns, task->loginuid),
 2331                                 from_kuid(&init_user_ns, loginuid),
 2332                                 task->sessionid, sessionid);
 2333                         audit_log_end(ab);
 2334                 }
 2335         }
 2336         task->sessionid = sessionid;
 2337         task->loginuid = loginuid;
 2338         return 0;
 2339 }
 2340 
 2341 /**
 2342  * __audit_mq_open - record audit data for a POSIX MQ open
 2343  * @oflag: open flag
 2344  * @mode: mode bits
 2345  * @attr: queue attributes
 2346  *
 2347  */
 2348 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
 2349 {
 2350         struct audit_context *context = current->audit_context;
 2351 
 2352         if (attr)
 2353                 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
 2354         else
 2355                 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
 2356 
 2357         context->mq_open.oflag = oflag;
 2358         context->mq_open.mode = mode;
 2359 
 2360         context->type = AUDIT_MQ_OPEN;
 2361 }
 2362 
 2363 /**
 2364  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
 2365  * @mqdes: MQ descriptor
 2366  * @msg_len: Message length
 2367  * @msg_prio: Message priority
 2368  * @abs_timeout: Message timeout in absolute time
 2369  *
 2370  */
 2371 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
 2372                         const struct timespec *abs_timeout)
 2373 {
 2374         struct audit_context *context = current->audit_context;
 2375         struct timespec *p = &context->mq_sendrecv.abs_timeout;
 2376 
 2377         if (abs_timeout)
 2378                 memcpy(p, abs_timeout, sizeof(struct timespec));
 2379         else
 2380                 memset(p, 0, sizeof(struct timespec));
 2381 
 2382         context->mq_sendrecv.mqdes = mqdes;
 2383         context->mq_sendrecv.msg_len = msg_len;
 2384         context->mq_sendrecv.msg_prio = msg_prio;
 2385 
 2386         context->type = AUDIT_MQ_SENDRECV;
 2387 }
 2388 
 2389 /**
 2390  * __audit_mq_notify - record audit data for a POSIX MQ notify
 2391  * @mqdes: MQ descriptor
 2392  * @notification: Notification event
 2393  *
 2394  */
 2395 
 2396 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
 2397 {
 2398         struct audit_context *context = current->audit_context;
 2399 
 2400         if (notification)
 2401                 context->mq_notify.sigev_signo = notification->sigev_signo;
 2402         else
 2403                 context->mq_notify.sigev_signo = 0;
 2404 
 2405         context->mq_notify.mqdes = mqdes;
 2406         context->type = AUDIT_MQ_NOTIFY;
 2407 }
 2408 
 2409 /**
 2410  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
 2411  * @mqdes: MQ descriptor
 2412  * @mqstat: MQ flags
 2413  *
 2414  */
 2415 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
 2416 {
 2417         struct audit_context *context = current->audit_context;
 2418         context->mq_getsetattr.mqdes = mqdes;
 2419         context->mq_getsetattr.mqstat = *mqstat;
 2420         context->type = AUDIT_MQ_GETSETATTR;
 2421 }
 2422 
 2423 /**
 2424  * audit_ipc_obj - record audit data for ipc object
 2425  * @ipcp: ipc permissions
 2426  *
 2427  */
 2428 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
 2429 {
 2430         struct audit_context *context = current->audit_context;
 2431         context->ipc.uid = ipcp->uid;
 2432         context->ipc.gid = ipcp->gid;
 2433         context->ipc.mode = ipcp->mode;
 2434         context->ipc.has_perm = 0;
 2435         security_ipc_getsecid(ipcp, &context->ipc.osid);
 2436         context->type = AUDIT_IPC;
 2437 }
 2438 
 2439 /**
 2440  * audit_ipc_set_perm - record audit data for new ipc permissions
 2441  * @qbytes: msgq bytes
 2442  * @uid: msgq user id
 2443  * @gid: msgq group id
 2444  * @mode: msgq mode (permissions)
 2445  *
 2446  * Called only after audit_ipc_obj().
 2447  */
 2448 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
 2449 {
 2450         struct audit_context *context = current->audit_context;
 2451 
 2452         context->ipc.qbytes = qbytes;
 2453         context->ipc.perm_uid = uid;
 2454         context->ipc.perm_gid = gid;
 2455         context->ipc.perm_mode = mode;
 2456         context->ipc.has_perm = 1;
 2457 }
 2458 
 2459 int __audit_bprm(struct linux_binprm *bprm)
 2460 {
 2461         struct audit_aux_data_execve *ax;
 2462         struct audit_context *context = current->audit_context;
 2463 
 2464         ax = kmalloc(sizeof(*ax), GFP_KERNEL);
 2465         if (!ax)
 2466                 return -ENOMEM;
 2467 
 2468         ax->argc = bprm->argc;
 2469         ax->envc = bprm->envc;
 2470         ax->mm = bprm->mm;
 2471         ax->d.type = AUDIT_EXECVE;
 2472         ax->d.next = context->aux;
 2473         context->aux = (void *)ax;
 2474         return 0;
 2475 }
 2476 
 2477 
 2478 /**
 2479  * audit_socketcall - record audit data for sys_socketcall
 2480  * @nargs: number of args
 2481  * @args: args array
 2482  *
 2483  */
 2484 void __audit_socketcall(int nargs, unsigned long *args)
 2485 {
 2486         struct audit_context *context = current->audit_context;
 2487 
 2488         context->type = AUDIT_SOCKETCALL;
 2489         context->socketcall.nargs = nargs;
 2490         memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
 2491 }
 2492 
 2493 /**
 2494  * __audit_fd_pair - record audit data for pipe and socketpair
 2495  * @fd1: the first file descriptor
 2496  * @fd2: the second file descriptor
 2497  *
 2498  */
 2499 void __audit_fd_pair(int fd1, int fd2)
 2500 {
 2501         struct audit_context *context = current->audit_context;
 2502         context->fds[0] = fd1;
 2503         context->fds[1] = fd2;
 2504 }
 2505 
 2506 /**
 2507  * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
 2508  * @len: data length in user space
 2509  * @a: data address in kernel space
 2510  *
 2511  * Returns 0 for success or NULL context or < 0 on error.
 2512  */
 2513 int __audit_sockaddr(int len, void *a)
 2514 {
 2515         struct audit_context *context = current->audit_context;
 2516 
 2517         if (!context->sockaddr) {
 2518                 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
 2519                 if (!p)
 2520                         return -ENOMEM;
 2521                 context->sockaddr = p;
 2522         }
 2523 
 2524         context->sockaddr_len = len;
 2525         memcpy(context->sockaddr, a, len);
 2526         return 0;
 2527 }
 2528 
 2529 void __audit_ptrace(struct task_struct *t)
 2530 {
 2531         struct audit_context *context = current->audit_context;
 2532 
 2533         context->target_pid = t->pid;
 2534         context->target_auid = audit_get_loginuid(t);
 2535         context->target_uid = task_uid(t);
 2536         context->target_sessionid = audit_get_sessionid(t);
 2537         security_task_getsecid(t, &context->target_sid);
 2538         memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
 2539 }
 2540 
 2541 /**
 2542  * audit_signal_info - record signal info for shutting down audit subsystem
 2543  * @sig: signal value
 2544  * @t: task being signaled
 2545  *
 2546  * If the audit subsystem is being terminated, record the task (pid)
 2547  * and uid that is doing that.
 2548  */
 2549 int __audit_signal_info(int sig, struct task_struct *t)
 2550 {
 2551         struct audit_aux_data_pids *axp;
 2552         struct task_struct *tsk = current;
 2553         struct audit_context *ctx = tsk->audit_context;
 2554         kuid_t uid = current_uid(), t_uid = task_uid(t);
 2555 
 2556         if (audit_pid && t->tgid == audit_pid) {
 2557                 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
 2558                         audit_sig_pid = tsk->pid;
 2559                         if (uid_valid(tsk->loginuid))
 2560                                 audit_sig_uid = tsk->loginuid;
 2561                         else
 2562                                 audit_sig_uid = uid;
 2563                         security_task_getsecid(tsk, &audit_sig_sid);
 2564                 }
 2565                 if (!audit_signals || audit_dummy_context())
 2566                         return 0;
 2567         }
 2568 
 2569         /* optimize the common case by putting first signal recipient directly
 2570          * in audit_context */
 2571         if (!ctx->target_pid) {
 2572                 ctx->target_pid = t->tgid;
 2573                 ctx->target_auid = audit_get_loginuid(t);
 2574                 ctx->target_uid = t_uid;
 2575                 ctx->target_sessionid = audit_get_sessionid(t);
 2576                 security_task_getsecid(t, &ctx->target_sid);
 2577                 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
 2578                 return 0;
 2579         }
 2580 
 2581         axp = (void *)ctx->aux_pids;
 2582         if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
 2583                 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
 2584                 if (!axp)
 2585                         return -ENOMEM;
 2586 
 2587                 axp->d.type = AUDIT_OBJ_PID;
 2588                 axp->d.next = ctx->aux_pids;
 2589                 ctx->aux_pids = (void *)axp;
 2590         }
 2591         BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
 2592 
 2593         axp->target_pid[axp->pid_count] = t->tgid;
 2594         axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
 2595         axp->target_uid[axp->pid_count] = t_uid;
 2596         axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
 2597         security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
 2598         memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
 2599         axp->pid_count++;
 2600 
 2601         return 0;
 2602 }
 2603 
 2604 /**
 2605  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
 2606  * @bprm: pointer to the bprm being processed
 2607  * @new: the proposed new credentials
 2608  * @old: the old credentials
 2609  *
 2610  * Simply check if the proc already has the caps given by the file and if not
 2611  * store the priv escalation info for later auditing at the end of the syscall
 2612  *
 2613  * -Eric
 2614  */
 2615 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
 2616                            const struct cred *new, const struct cred *old)
 2617 {
 2618         struct audit_aux_data_bprm_fcaps *ax;
 2619         struct audit_context *context = current->audit_context;
 2620         struct cpu_vfs_cap_data vcaps;
 2621         struct dentry *dentry;
 2622 
 2623         ax = kmalloc(sizeof(*ax), GFP_KERNEL);
 2624         if (!ax)
 2625                 return -ENOMEM;
 2626 
 2627         ax->d.type = AUDIT_BPRM_FCAPS;
 2628         ax->d.next = context->aux;
 2629         context->aux = (void *)ax;
 2630 
 2631         dentry = dget(bprm->file->f_dentry);
 2632         get_vfs_caps_from_disk(dentry, &vcaps);
 2633         dput(dentry);
 2634 
 2635         ax->fcap.permitted = vcaps.permitted;
 2636         ax->fcap.inheritable = vcaps.inheritable;
 2637         ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
 2638         ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
 2639 
 2640         ax->old_pcap.permitted   = old->cap_permitted;
 2641         ax->old_pcap.inheritable = old->cap_inheritable;
 2642         ax->old_pcap.effective   = old->cap_effective;
 2643 
 2644         ax->new_pcap.permitted   = new->cap_permitted;
 2645         ax->new_pcap.inheritable = new->cap_inheritable;
 2646         ax->new_pcap.effective   = new->cap_effective;
 2647         return 0;
 2648 }
 2649 
 2650 /**
 2651  * __audit_log_capset - store information about the arguments to the capset syscall
 2652  * @pid: target pid of the capset call
 2653  * @new: the new credentials
 2654  * @old: the old (current) credentials
 2655  *
 2656  * Record the aguments userspace sent to sys_capset for later printing by the
 2657  * audit system if applicable
 2658  */
 2659 void __audit_log_capset(pid_t pid,
 2660                        const struct cred *new, const struct cred *old)
 2661 {
 2662         struct audit_context *context = current->audit_context;
 2663         context->capset.pid = pid;
 2664         context->capset.cap.effective   = new->cap_effective;
 2665         context->capset.cap.inheritable = new->cap_effective;
 2666         context->capset.cap.permitted   = new->cap_permitted;
 2667         context->type = AUDIT_CAPSET;
 2668 }
 2669 
 2670 void __audit_mmap_fd(int fd, int flags)
 2671 {
 2672         struct audit_context *context = current->audit_context;
 2673         context->mmap.fd = fd;
 2674         context->mmap.flags = flags;
 2675         context->type = AUDIT_MMAP;
 2676 }
 2677 
 2678 static void audit_log_task(struct audit_buffer *ab)
 2679 {
 2680         kuid_t auid, uid;
 2681         kgid_t gid;
 2682         unsigned int sessionid;
 2683 
 2684         auid = audit_get_loginuid(current);
 2685         sessionid = audit_get_sessionid(current);
 2686         current_uid_gid(&uid, &gid);
 2687 
 2688         audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
 2689                          from_kuid(&init_user_ns, auid),
 2690                          from_kuid(&init_user_ns, uid),
 2691                          from_kgid(&init_user_ns, gid),
 2692                          sessionid);
 2693         audit_log_task_context(ab);
 2694         audit_log_format(ab, " pid=%d comm=", current->pid);
 2695         audit_log_untrustedstring(ab, current->comm);
 2696 }
 2697 
 2698 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
 2699 {
 2700         audit_log_task(ab);
 2701         audit_log_format(ab, " reason=");
 2702         audit_log_string(ab, reason);
 2703         audit_log_format(ab, " sig=%ld", signr);
 2704 }
 2705 /**
 2706  * audit_core_dumps - record information about processes that end abnormally
 2707  * @signr: signal value
 2708  *
 2709  * If a process ends with a core dump, something fishy is going on and we
 2710  * should record the event for investigation.
 2711  */
 2712 void audit_core_dumps(long signr)
 2713 {
 2714         struct audit_buffer *ab;
 2715 
 2716         if (!audit_enabled)
 2717                 return;
 2718 
 2719         if (signr == SIGQUIT)   /* don't care for those */
 2720                 return;
 2721 
 2722         ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
 2723         if (unlikely(!ab))
 2724                 return;
 2725         audit_log_abend(ab, "memory violation", signr);
 2726         audit_log_end(ab);
 2727 }
 2728 
 2729 void __audit_seccomp(unsigned long syscall, long signr, int code)
 2730 {
 2731         struct audit_buffer *ab;
 2732 
 2733         ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
 2734         if (unlikely(!ab))
 2735                 return;
 2736         audit_log_task(ab);
 2737         audit_log_format(ab, " sig=%ld", signr);
 2738         audit_log_format(ab, " syscall=%ld", syscall);
 2739         audit_log_format(ab, " compat=%d", is_compat_task());
 2740         audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
 2741         audit_log_format(ab, " code=0x%x", code);
 2742         audit_log_end(ab);
 2743 }
 2744 
 2745 struct list_head *audit_killed_trees(void)
 2746 {
 2747         struct audit_context *ctx = current->audit_context;
 2748         if (likely(!ctx || !ctx->in_syscall))
 2749                 return NULL;
 2750         return &ctx->killed_trees;
 2751 }

Cache object: d4c8549014fbca06cf5eab9f68167cfe


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.