The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kernel/capability.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * linux/kernel/capability.c
    3  *
    4  * Copyright (C) 1997  Andrew Main <zefram@fysh.org>
    5  *
    6  * Integrated into 2.1.97+,  Andrew G. Morgan <morgan@kernel.org>
    7  * 30 May 2002: Cleanup, Robert M. Love <rml@tech9.net>
    8  */
    9 
   10 #include <linux/audit.h>
   11 #include <linux/capability.h>
   12 #include <linux/mm.h>
   13 #include <linux/export.h>
   14 #include <linux/security.h>
   15 #include <linux/syscalls.h>
   16 #include <linux/pid_namespace.h>
   17 #include <linux/user_namespace.h>
   18 #include <asm/uaccess.h>
   19 
   20 /*
   21  * Leveraged for setting/resetting capabilities
   22  */
   23 
   24 const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET;
   25 
   26 EXPORT_SYMBOL(__cap_empty_set);
   27 
   28 int file_caps_enabled = 1;
   29 
   30 static int __init file_caps_disable(char *str)
   31 {
   32         file_caps_enabled = 0;
   33         return 1;
   34 }
   35 __setup("no_file_caps", file_caps_disable);
   36 
   37 /*
   38  * More recent versions of libcap are available from:
   39  *
   40  *   http://www.kernel.org/pub/linux/libs/security/linux-privs/
   41  */
   42 
   43 static void warn_legacy_capability_use(void)
   44 {
   45         static int warned;
   46         if (!warned) {
   47                 char name[sizeof(current->comm)];
   48 
   49                 printk(KERN_INFO "warning: `%s' uses 32-bit capabilities"
   50                        " (legacy support in use)\n",
   51                        get_task_comm(name, current));
   52                 warned = 1;
   53         }
   54 }
   55 
   56 /*
   57  * Version 2 capabilities worked fine, but the linux/capability.h file
   58  * that accompanied their introduction encouraged their use without
   59  * the necessary user-space source code changes. As such, we have
   60  * created a version 3 with equivalent functionality to version 2, but
   61  * with a header change to protect legacy source code from using
   62  * version 2 when it wanted to use version 1. If your system has code
   63  * that trips the following warning, it is using version 2 specific
   64  * capabilities and may be doing so insecurely.
   65  *
   66  * The remedy is to either upgrade your version of libcap (to 2.10+,
   67  * if the application is linked against it), or recompile your
   68  * application with modern kernel headers and this warning will go
   69  * away.
   70  */
   71 
   72 static void warn_deprecated_v2(void)
   73 {
   74         static int warned;
   75 
   76         if (!warned) {
   77                 char name[sizeof(current->comm)];
   78 
   79                 printk(KERN_INFO "warning: `%s' uses deprecated v2"
   80                        " capabilities in a way that may be insecure.\n",
   81                        get_task_comm(name, current));
   82                 warned = 1;
   83         }
   84 }
   85 
   86 /*
   87  * Version check. Return the number of u32s in each capability flag
   88  * array, or a negative value on error.
   89  */
   90 static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
   91 {
   92         __u32 version;
   93 
   94         if (get_user(version, &header->version))
   95                 return -EFAULT;
   96 
   97         switch (version) {
   98         case _LINUX_CAPABILITY_VERSION_1:
   99                 warn_legacy_capability_use();
  100                 *tocopy = _LINUX_CAPABILITY_U32S_1;
  101                 break;
  102         case _LINUX_CAPABILITY_VERSION_2:
  103                 warn_deprecated_v2();
  104                 /*
  105                  * fall through - v3 is otherwise equivalent to v2.
  106                  */
  107         case _LINUX_CAPABILITY_VERSION_3:
  108                 *tocopy = _LINUX_CAPABILITY_U32S_3;
  109                 break;
  110         default:
  111                 if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
  112                         return -EFAULT;
  113                 return -EINVAL;
  114         }
  115 
  116         return 0;
  117 }
  118 
  119 /*
  120  * The only thing that can change the capabilities of the current
  121  * process is the current process. As such, we can't be in this code
  122  * at the same time as we are in the process of setting capabilities
  123  * in this process. The net result is that we can limit our use of
  124  * locks to when we are reading the caps of another process.
  125  */
  126 static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
  127                                      kernel_cap_t *pIp, kernel_cap_t *pPp)
  128 {
  129         int ret;
  130 
  131         if (pid && (pid != task_pid_vnr(current))) {
  132                 struct task_struct *target;
  133 
  134                 rcu_read_lock();
  135 
  136                 target = find_task_by_vpid(pid);
  137                 if (!target)
  138                         ret = -ESRCH;
  139                 else
  140                         ret = security_capget(target, pEp, pIp, pPp);
  141 
  142                 rcu_read_unlock();
  143         } else
  144                 ret = security_capget(current, pEp, pIp, pPp);
  145 
  146         return ret;
  147 }
  148 
  149 /**
  150  * sys_capget - get the capabilities of a given process.
  151  * @header: pointer to struct that contains capability version and
  152  *      target pid data
  153  * @dataptr: pointer to struct that contains the effective, permitted,
  154  *      and inheritable capabilities that are returned
  155  *
  156  * Returns 0 on success and < 0 on error.
  157  */
  158 SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr)
  159 {
  160         int ret = 0;
  161         pid_t pid;
  162         unsigned tocopy;
  163         kernel_cap_t pE, pI, pP;
  164 
  165         ret = cap_validate_magic(header, &tocopy);
  166         if ((dataptr == NULL) || (ret != 0))
  167                 return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret;
  168 
  169         if (get_user(pid, &header->pid))
  170                 return -EFAULT;
  171 
  172         if (pid < 0)
  173                 return -EINVAL;
  174 
  175         ret = cap_get_target_pid(pid, &pE, &pI, &pP);
  176         if (!ret) {
  177                 struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
  178                 unsigned i;
  179 
  180                 for (i = 0; i < tocopy; i++) {
  181                         kdata[i].effective = pE.cap[i];
  182                         kdata[i].permitted = pP.cap[i];
  183                         kdata[i].inheritable = pI.cap[i];
  184                 }
  185 
  186                 /*
  187                  * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
  188                  * we silently drop the upper capabilities here. This
  189                  * has the effect of making older libcap
  190                  * implementations implicitly drop upper capability
  191                  * bits when they perform a: capget/modify/capset
  192                  * sequence.
  193                  *
  194                  * This behavior is considered fail-safe
  195                  * behavior. Upgrading the application to a newer
  196                  * version of libcap will enable access to the newer
  197                  * capabilities.
  198                  *
  199                  * An alternative would be to return an error here
  200                  * (-ERANGE), but that causes legacy applications to
  201                  * unexpectidly fail; the capget/modify/capset aborts
  202                  * before modification is attempted and the application
  203                  * fails.
  204                  */
  205                 if (copy_to_user(dataptr, kdata, tocopy
  206                                  * sizeof(struct __user_cap_data_struct))) {
  207                         return -EFAULT;
  208                 }
  209         }
  210 
  211         return ret;
  212 }
  213 
  214 /**
  215  * sys_capset - set capabilities for a process or (*) a group of processes
  216  * @header: pointer to struct that contains capability version and
  217  *      target pid data
  218  * @data: pointer to struct that contains the effective, permitted,
  219  *      and inheritable capabilities
  220  *
  221  * Set capabilities for the current process only.  The ability to any other
  222  * process(es) has been deprecated and removed.
  223  *
  224  * The restrictions on setting capabilities are specified as:
  225  *
  226  * I: any raised capabilities must be a subset of the old permitted
  227  * P: any raised capabilities must be a subset of the old permitted
  228  * E: must be set to a subset of new permitted
  229  *
  230  * Returns 0 on success and < 0 on error.
  231  */
  232 SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data)
  233 {
  234         struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
  235         unsigned i, tocopy, copybytes;
  236         kernel_cap_t inheritable, permitted, effective;
  237         struct cred *new;
  238         int ret;
  239         pid_t pid;
  240 
  241         ret = cap_validate_magic(header, &tocopy);
  242         if (ret != 0)
  243                 return ret;
  244 
  245         if (get_user(pid, &header->pid))
  246                 return -EFAULT;
  247 
  248         /* may only affect current now */
  249         if (pid != 0 && pid != task_pid_vnr(current))
  250                 return -EPERM;
  251 
  252         copybytes = tocopy * sizeof(struct __user_cap_data_struct);
  253         if (copybytes > sizeof(kdata))
  254                 return -EFAULT;
  255 
  256         if (copy_from_user(&kdata, data, copybytes))
  257                 return -EFAULT;
  258 
  259         for (i = 0; i < tocopy; i++) {
  260                 effective.cap[i] = kdata[i].effective;
  261                 permitted.cap[i] = kdata[i].permitted;
  262                 inheritable.cap[i] = kdata[i].inheritable;
  263         }
  264         while (i < _KERNEL_CAPABILITY_U32S) {
  265                 effective.cap[i] = 0;
  266                 permitted.cap[i] = 0;
  267                 inheritable.cap[i] = 0;
  268                 i++;
  269         }
  270 
  271         new = prepare_creds();
  272         if (!new)
  273                 return -ENOMEM;
  274 
  275         ret = security_capset(new, current_cred(),
  276                               &effective, &inheritable, &permitted);
  277         if (ret < 0)
  278                 goto error;
  279 
  280         audit_log_capset(pid, new, current_cred());
  281 
  282         return commit_creds(new);
  283 
  284 error:
  285         abort_creds(new);
  286         return ret;
  287 }
  288 
  289 /**
  290  * has_ns_capability - Does a task have a capability in a specific user ns
  291  * @t: The task in question
  292  * @ns: target user namespace
  293  * @cap: The capability to be tested for
  294  *
  295  * Return true if the specified task has the given superior capability
  296  * currently in effect to the specified user namespace, false if not.
  297  *
  298  * Note that this does not set PF_SUPERPRIV on the task.
  299  */
  300 bool has_ns_capability(struct task_struct *t,
  301                        struct user_namespace *ns, int cap)
  302 {
  303         int ret;
  304 
  305         rcu_read_lock();
  306         ret = security_capable(__task_cred(t), ns, cap);
  307         rcu_read_unlock();
  308 
  309         return (ret == 0);
  310 }
  311 
  312 /**
  313  * has_capability - Does a task have a capability in init_user_ns
  314  * @t: The task in question
  315  * @cap: The capability to be tested for
  316  *
  317  * Return true if the specified task has the given superior capability
  318  * currently in effect to the initial user namespace, false if not.
  319  *
  320  * Note that this does not set PF_SUPERPRIV on the task.
  321  */
  322 bool has_capability(struct task_struct *t, int cap)
  323 {
  324         return has_ns_capability(t, &init_user_ns, cap);
  325 }
  326 
  327 /**
  328  * has_ns_capability_noaudit - Does a task have a capability (unaudited)
  329  * in a specific user ns.
  330  * @t: The task in question
  331  * @ns: target user namespace
  332  * @cap: The capability to be tested for
  333  *
  334  * Return true if the specified task has the given superior capability
  335  * currently in effect to the specified user namespace, false if not.
  336  * Do not write an audit message for the check.
  337  *
  338  * Note that this does not set PF_SUPERPRIV on the task.
  339  */
  340 bool has_ns_capability_noaudit(struct task_struct *t,
  341                                struct user_namespace *ns, int cap)
  342 {
  343         int ret;
  344 
  345         rcu_read_lock();
  346         ret = security_capable_noaudit(__task_cred(t), ns, cap);
  347         rcu_read_unlock();
  348 
  349         return (ret == 0);
  350 }
  351 
  352 /**
  353  * has_capability_noaudit - Does a task have a capability (unaudited) in the
  354  * initial user ns
  355  * @t: The task in question
  356  * @cap: The capability to be tested for
  357  *
  358  * Return true if the specified task has the given superior capability
  359  * currently in effect to init_user_ns, false if not.  Don't write an
  360  * audit message for the check.
  361  *
  362  * Note that this does not set PF_SUPERPRIV on the task.
  363  */
  364 bool has_capability_noaudit(struct task_struct *t, int cap)
  365 {
  366         return has_ns_capability_noaudit(t, &init_user_ns, cap);
  367 }
  368 
  369 /**
  370  * ns_capable - Determine if the current task has a superior capability in effect
  371  * @ns:  The usernamespace we want the capability in
  372  * @cap: The capability to be tested for
  373  *
  374  * Return true if the current task has the given superior capability currently
  375  * available for use, false if not.
  376  *
  377  * This sets PF_SUPERPRIV on the task if the capability is available on the
  378  * assumption that it's about to be used.
  379  */
  380 bool ns_capable(struct user_namespace *ns, int cap)
  381 {
  382         if (unlikely(!cap_valid(cap))) {
  383                 printk(KERN_CRIT "capable() called with invalid cap=%u\n", cap);
  384                 BUG();
  385         }
  386 
  387         if (security_capable(current_cred(), ns, cap) == 0) {
  388                 current->flags |= PF_SUPERPRIV;
  389                 return true;
  390         }
  391         return false;
  392 }
  393 EXPORT_SYMBOL(ns_capable);
  394 
  395 /**
  396  * capable - Determine if the current task has a superior capability in effect
  397  * @cap: The capability to be tested for
  398  *
  399  * Return true if the current task has the given superior capability currently
  400  * available for use, false if not.
  401  *
  402  * This sets PF_SUPERPRIV on the task if the capability is available on the
  403  * assumption that it's about to be used.
  404  */
  405 bool capable(int cap)
  406 {
  407         return ns_capable(&init_user_ns, cap);
  408 }
  409 EXPORT_SYMBOL(capable);
  410 
  411 /**
  412  * nsown_capable - Check superior capability to one's own user_ns
  413  * @cap: The capability in question
  414  *
  415  * Return true if the current task has the given superior capability
  416  * targeted at its own user namespace.
  417  */
  418 bool nsown_capable(int cap)
  419 {
  420         return ns_capable(current_user_ns(), cap);
  421 }
  422 
  423 /**
  424  * inode_capable - Check superior capability over inode
  425  * @inode: The inode in question
  426  * @cap: The capability in question
  427  *
  428  * Return true if the current task has the given superior capability
  429  * targeted at it's own user namespace and that the given inode is owned
  430  * by the current user namespace or a child namespace.
  431  *
  432  * Currently we check to see if an inode is owned by the current
  433  * user namespace by seeing if the inode's owner maps into the
  434  * current user namespace.
  435  *
  436  */
  437 bool inode_capable(const struct inode *inode, int cap)
  438 {
  439         struct user_namespace *ns = current_user_ns();
  440 
  441         return ns_capable(ns, cap) && kuid_has_mapping(ns, inode->i_uid);
  442 }

Cache object: 3a502835e1b6aa427746f744b31a86c6


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.