The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kernel/cpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /* CPU control.
    2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
    3  *
    4  * This code is licenced under the GPL.
    5  */
    6 #include <linux/proc_fs.h>
    7 #include <linux/smp.h>
    8 #include <linux/init.h>
    9 #include <linux/notifier.h>
   10 #include <linux/sched.h>
   11 #include <linux/unistd.h>
   12 #include <linux/cpu.h>
   13 #include <linux/oom.h>
   14 #include <linux/rcupdate.h>
   15 #include <linux/export.h>
   16 #include <linux/bug.h>
   17 #include <linux/kthread.h>
   18 #include <linux/stop_machine.h>
   19 #include <linux/mutex.h>
   20 #include <linux/gfp.h>
   21 #include <linux/suspend.h>
   22 
   23 #include "smpboot.h"
   24 
   25 #ifdef CONFIG_SMP
   26 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
   27 static DEFINE_MUTEX(cpu_add_remove_lock);
   28 
   29 /*
   30  * The following two API's must be used when attempting
   31  * to serialize the updates to cpu_online_mask, cpu_present_mask.
   32  */
   33 void cpu_maps_update_begin(void)
   34 {
   35         mutex_lock(&cpu_add_remove_lock);
   36 }
   37 
   38 void cpu_maps_update_done(void)
   39 {
   40         mutex_unlock(&cpu_add_remove_lock);
   41 }
   42 
   43 static RAW_NOTIFIER_HEAD(cpu_chain);
   44 
   45 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
   46  * Should always be manipulated under cpu_add_remove_lock
   47  */
   48 static int cpu_hotplug_disabled;
   49 
   50 #ifdef CONFIG_HOTPLUG_CPU
   51 
   52 static struct {
   53         struct task_struct *active_writer;
   54         struct mutex lock; /* Synchronizes accesses to refcount, */
   55         /*
   56          * Also blocks the new readers during
   57          * an ongoing cpu hotplug operation.
   58          */
   59         int refcount;
   60 } cpu_hotplug = {
   61         .active_writer = NULL,
   62         .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
   63         .refcount = 0,
   64 };
   65 
   66 void get_online_cpus(void)
   67 {
   68         might_sleep();
   69         if (cpu_hotplug.active_writer == current)
   70                 return;
   71         mutex_lock(&cpu_hotplug.lock);
   72         cpu_hotplug.refcount++;
   73         mutex_unlock(&cpu_hotplug.lock);
   74 
   75 }
   76 EXPORT_SYMBOL_GPL(get_online_cpus);
   77 
   78 void put_online_cpus(void)
   79 {
   80         if (cpu_hotplug.active_writer == current)
   81                 return;
   82         mutex_lock(&cpu_hotplug.lock);
   83 
   84         if (WARN_ON(!cpu_hotplug.refcount))
   85                 cpu_hotplug.refcount++; /* try to fix things up */
   86 
   87         if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
   88                 wake_up_process(cpu_hotplug.active_writer);
   89         mutex_unlock(&cpu_hotplug.lock);
   90 
   91 }
   92 EXPORT_SYMBOL_GPL(put_online_cpus);
   93 
   94 /*
   95  * This ensures that the hotplug operation can begin only when the
   96  * refcount goes to zero.
   97  *
   98  * Note that during a cpu-hotplug operation, the new readers, if any,
   99  * will be blocked by the cpu_hotplug.lock
  100  *
  101  * Since cpu_hotplug_begin() is always called after invoking
  102  * cpu_maps_update_begin(), we can be sure that only one writer is active.
  103  *
  104  * Note that theoretically, there is a possibility of a livelock:
  105  * - Refcount goes to zero, last reader wakes up the sleeping
  106  *   writer.
  107  * - Last reader unlocks the cpu_hotplug.lock.
  108  * - A new reader arrives at this moment, bumps up the refcount.
  109  * - The writer acquires the cpu_hotplug.lock finds the refcount
  110  *   non zero and goes to sleep again.
  111  *
  112  * However, this is very difficult to achieve in practice since
  113  * get_online_cpus() not an api which is called all that often.
  114  *
  115  */
  116 static void cpu_hotplug_begin(void)
  117 {
  118         cpu_hotplug.active_writer = current;
  119 
  120         for (;;) {
  121                 mutex_lock(&cpu_hotplug.lock);
  122                 if (likely(!cpu_hotplug.refcount))
  123                         break;
  124                 __set_current_state(TASK_UNINTERRUPTIBLE);
  125                 mutex_unlock(&cpu_hotplug.lock);
  126                 schedule();
  127         }
  128 }
  129 
  130 static void cpu_hotplug_done(void)
  131 {
  132         cpu_hotplug.active_writer = NULL;
  133         mutex_unlock(&cpu_hotplug.lock);
  134 }
  135 
  136 #else /* #if CONFIG_HOTPLUG_CPU */
  137 static void cpu_hotplug_begin(void) {}
  138 static void cpu_hotplug_done(void) {}
  139 #endif  /* #else #if CONFIG_HOTPLUG_CPU */
  140 
  141 /* Need to know about CPUs going up/down? */
  142 int __ref register_cpu_notifier(struct notifier_block *nb)
  143 {
  144         int ret;
  145         cpu_maps_update_begin();
  146         ret = raw_notifier_chain_register(&cpu_chain, nb);
  147         cpu_maps_update_done();
  148         return ret;
  149 }
  150 
  151 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
  152                         int *nr_calls)
  153 {
  154         int ret;
  155 
  156         ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
  157                                         nr_calls);
  158 
  159         return notifier_to_errno(ret);
  160 }
  161 
  162 static int cpu_notify(unsigned long val, void *v)
  163 {
  164         return __cpu_notify(val, v, -1, NULL);
  165 }
  166 
  167 #ifdef CONFIG_HOTPLUG_CPU
  168 
  169 static void cpu_notify_nofail(unsigned long val, void *v)
  170 {
  171         BUG_ON(cpu_notify(val, v));
  172 }
  173 EXPORT_SYMBOL(register_cpu_notifier);
  174 
  175 void __ref unregister_cpu_notifier(struct notifier_block *nb)
  176 {
  177         cpu_maps_update_begin();
  178         raw_notifier_chain_unregister(&cpu_chain, nb);
  179         cpu_maps_update_done();
  180 }
  181 EXPORT_SYMBOL(unregister_cpu_notifier);
  182 
  183 /**
  184  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
  185  * @cpu: a CPU id
  186  *
  187  * This function walks all processes, finds a valid mm struct for each one and
  188  * then clears a corresponding bit in mm's cpumask.  While this all sounds
  189  * trivial, there are various non-obvious corner cases, which this function
  190  * tries to solve in a safe manner.
  191  *
  192  * Also note that the function uses a somewhat relaxed locking scheme, so it may
  193  * be called only for an already offlined CPU.
  194  */
  195 void clear_tasks_mm_cpumask(int cpu)
  196 {
  197         struct task_struct *p;
  198 
  199         /*
  200          * This function is called after the cpu is taken down and marked
  201          * offline, so its not like new tasks will ever get this cpu set in
  202          * their mm mask. -- Peter Zijlstra
  203          * Thus, we may use rcu_read_lock() here, instead of grabbing
  204          * full-fledged tasklist_lock.
  205          */
  206         WARN_ON(cpu_online(cpu));
  207         rcu_read_lock();
  208         for_each_process(p) {
  209                 struct task_struct *t;
  210 
  211                 /*
  212                  * Main thread might exit, but other threads may still have
  213                  * a valid mm. Find one.
  214                  */
  215                 t = find_lock_task_mm(p);
  216                 if (!t)
  217                         continue;
  218                 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
  219                 task_unlock(t);
  220         }
  221         rcu_read_unlock();
  222 }
  223 
  224 static inline void check_for_tasks(int cpu)
  225 {
  226         struct task_struct *p;
  227 
  228         write_lock_irq(&tasklist_lock);
  229         for_each_process(p) {
  230                 if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
  231                     (p->utime || p->stime))
  232                         printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
  233                                 "(state = %ld, flags = %x)\n",
  234                                 p->comm, task_pid_nr(p), cpu,
  235                                 p->state, p->flags);
  236         }
  237         write_unlock_irq(&tasklist_lock);
  238 }
  239 
  240 struct take_cpu_down_param {
  241         unsigned long mod;
  242         void *hcpu;
  243 };
  244 
  245 /* Take this CPU down. */
  246 static int __ref take_cpu_down(void *_param)
  247 {
  248         struct take_cpu_down_param *param = _param;
  249         int err;
  250 
  251         /* Ensure this CPU doesn't handle any more interrupts. */
  252         err = __cpu_disable();
  253         if (err < 0)
  254                 return err;
  255 
  256         cpu_notify(CPU_DYING | param->mod, param->hcpu);
  257         return 0;
  258 }
  259 
  260 /* Requires cpu_add_remove_lock to be held */
  261 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
  262 {
  263         int err, nr_calls = 0;
  264         void *hcpu = (void *)(long)cpu;
  265         unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
  266         struct take_cpu_down_param tcd_param = {
  267                 .mod = mod,
  268                 .hcpu = hcpu,
  269         };
  270 
  271         if (num_online_cpus() == 1)
  272                 return -EBUSY;
  273 
  274         if (!cpu_online(cpu))
  275                 return -EINVAL;
  276 
  277         cpu_hotplug_begin();
  278 
  279         err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
  280         if (err) {
  281                 nr_calls--;
  282                 __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
  283                 printk("%s: attempt to take down CPU %u failed\n",
  284                                 __func__, cpu);
  285                 goto out_release;
  286         }
  287         smpboot_park_threads(cpu);
  288 
  289         err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
  290         if (err) {
  291                 /* CPU didn't die: tell everyone.  Can't complain. */
  292                 smpboot_unpark_threads(cpu);
  293                 cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
  294                 goto out_release;
  295         }
  296         BUG_ON(cpu_online(cpu));
  297 
  298         /*
  299          * The migration_call() CPU_DYING callback will have removed all
  300          * runnable tasks from the cpu, there's only the idle task left now
  301          * that the migration thread is done doing the stop_machine thing.
  302          *
  303          * Wait for the stop thread to go away.
  304          */
  305         while (!idle_cpu(cpu))
  306                 cpu_relax();
  307 
  308         /* This actually kills the CPU. */
  309         __cpu_die(cpu);
  310 
  311         /* CPU is completely dead: tell everyone.  Too late to complain. */
  312         cpu_notify_nofail(CPU_DEAD | mod, hcpu);
  313 
  314         check_for_tasks(cpu);
  315 
  316 out_release:
  317         cpu_hotplug_done();
  318         if (!err)
  319                 cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
  320         return err;
  321 }
  322 
  323 int __ref cpu_down(unsigned int cpu)
  324 {
  325         int err;
  326 
  327         cpu_maps_update_begin();
  328 
  329         if (cpu_hotplug_disabled) {
  330                 err = -EBUSY;
  331                 goto out;
  332         }
  333 
  334         err = _cpu_down(cpu, 0);
  335 
  336 out:
  337         cpu_maps_update_done();
  338         return err;
  339 }
  340 EXPORT_SYMBOL(cpu_down);
  341 #endif /*CONFIG_HOTPLUG_CPU*/
  342 
  343 /* Requires cpu_add_remove_lock to be held */
  344 static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
  345 {
  346         int ret, nr_calls = 0;
  347         void *hcpu = (void *)(long)cpu;
  348         unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
  349         struct task_struct *idle;
  350 
  351         cpu_hotplug_begin();
  352 
  353         if (cpu_online(cpu) || !cpu_present(cpu)) {
  354                 ret = -EINVAL;
  355                 goto out;
  356         }
  357 
  358         idle = idle_thread_get(cpu);
  359         if (IS_ERR(idle)) {
  360                 ret = PTR_ERR(idle);
  361                 goto out;
  362         }
  363 
  364         ret = smpboot_create_threads(cpu);
  365         if (ret)
  366                 goto out;
  367 
  368         ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
  369         if (ret) {
  370                 nr_calls--;
  371                 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
  372                                 __func__, cpu);
  373                 goto out_notify;
  374         }
  375 
  376         /* Arch-specific enabling code. */
  377         ret = __cpu_up(cpu, idle);
  378         if (ret != 0)
  379                 goto out_notify;
  380         BUG_ON(!cpu_online(cpu));
  381 
  382         /* Wake the per cpu threads */
  383         smpboot_unpark_threads(cpu);
  384 
  385         /* Now call notifier in preparation. */
  386         cpu_notify(CPU_ONLINE | mod, hcpu);
  387 
  388 out_notify:
  389         if (ret != 0)
  390                 __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
  391 out:
  392         cpu_hotplug_done();
  393 
  394         return ret;
  395 }
  396 
  397 int __cpuinit cpu_up(unsigned int cpu)
  398 {
  399         int err = 0;
  400 
  401 #ifdef  CONFIG_MEMORY_HOTPLUG
  402         int nid;
  403         pg_data_t       *pgdat;
  404 #endif
  405 
  406         if (!cpu_possible(cpu)) {
  407                 printk(KERN_ERR "can't online cpu %d because it is not "
  408                         "configured as may-hotadd at boot time\n", cpu);
  409 #if defined(CONFIG_IA64)
  410                 printk(KERN_ERR "please check additional_cpus= boot "
  411                                 "parameter\n");
  412 #endif
  413                 return -EINVAL;
  414         }
  415 
  416 #ifdef  CONFIG_MEMORY_HOTPLUG
  417         nid = cpu_to_node(cpu);
  418         if (!node_online(nid)) {
  419                 err = mem_online_node(nid);
  420                 if (err)
  421                         return err;
  422         }
  423 
  424         pgdat = NODE_DATA(nid);
  425         if (!pgdat) {
  426                 printk(KERN_ERR
  427                         "Can't online cpu %d due to NULL pgdat\n", cpu);
  428                 return -ENOMEM;
  429         }
  430 
  431         if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
  432                 mutex_lock(&zonelists_mutex);
  433                 build_all_zonelists(NULL, NULL);
  434                 mutex_unlock(&zonelists_mutex);
  435         }
  436 #endif
  437 
  438         cpu_maps_update_begin();
  439 
  440         if (cpu_hotplug_disabled) {
  441                 err = -EBUSY;
  442                 goto out;
  443         }
  444 
  445         err = _cpu_up(cpu, 0);
  446 
  447 out:
  448         cpu_maps_update_done();
  449         return err;
  450 }
  451 EXPORT_SYMBOL_GPL(cpu_up);
  452 
  453 #ifdef CONFIG_PM_SLEEP_SMP
  454 static cpumask_var_t frozen_cpus;
  455 
  456 int disable_nonboot_cpus(void)
  457 {
  458         int cpu, first_cpu, error = 0;
  459 
  460         cpu_maps_update_begin();
  461         first_cpu = cpumask_first(cpu_online_mask);
  462         /*
  463          * We take down all of the non-boot CPUs in one shot to avoid races
  464          * with the userspace trying to use the CPU hotplug at the same time
  465          */
  466         cpumask_clear(frozen_cpus);
  467 
  468         printk("Disabling non-boot CPUs ...\n");
  469         for_each_online_cpu(cpu) {
  470                 if (cpu == first_cpu)
  471                         continue;
  472                 error = _cpu_down(cpu, 1);
  473                 if (!error)
  474                         cpumask_set_cpu(cpu, frozen_cpus);
  475                 else {
  476                         printk(KERN_ERR "Error taking CPU%d down: %d\n",
  477                                 cpu, error);
  478                         break;
  479                 }
  480         }
  481 
  482         if (!error) {
  483                 BUG_ON(num_online_cpus() > 1);
  484                 /* Make sure the CPUs won't be enabled by someone else */
  485                 cpu_hotplug_disabled = 1;
  486         } else {
  487                 printk(KERN_ERR "Non-boot CPUs are not disabled\n");
  488         }
  489         cpu_maps_update_done();
  490         return error;
  491 }
  492 
  493 void __weak arch_enable_nonboot_cpus_begin(void)
  494 {
  495 }
  496 
  497 void __weak arch_enable_nonboot_cpus_end(void)
  498 {
  499 }
  500 
  501 void __ref enable_nonboot_cpus(void)
  502 {
  503         int cpu, error;
  504 
  505         /* Allow everyone to use the CPU hotplug again */
  506         cpu_maps_update_begin();
  507         cpu_hotplug_disabled = 0;
  508         if (cpumask_empty(frozen_cpus))
  509                 goto out;
  510 
  511         printk(KERN_INFO "Enabling non-boot CPUs ...\n");
  512 
  513         arch_enable_nonboot_cpus_begin();
  514 
  515         for_each_cpu(cpu, frozen_cpus) {
  516                 error = _cpu_up(cpu, 1);
  517                 if (!error) {
  518                         printk(KERN_INFO "CPU%d is up\n", cpu);
  519                         continue;
  520                 }
  521                 printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
  522         }
  523 
  524         arch_enable_nonboot_cpus_end();
  525 
  526         cpumask_clear(frozen_cpus);
  527 out:
  528         cpu_maps_update_done();
  529 }
  530 
  531 static int __init alloc_frozen_cpus(void)
  532 {
  533         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
  534                 return -ENOMEM;
  535         return 0;
  536 }
  537 core_initcall(alloc_frozen_cpus);
  538 
  539 /*
  540  * Prevent regular CPU hotplug from racing with the freezer, by disabling CPU
  541  * hotplug when tasks are about to be frozen. Also, don't allow the freezer
  542  * to continue until any currently running CPU hotplug operation gets
  543  * completed.
  544  * To modify the 'cpu_hotplug_disabled' flag, we need to acquire the
  545  * 'cpu_add_remove_lock'. And this same lock is also taken by the regular
  546  * CPU hotplug path and released only after it is complete. Thus, we
  547  * (and hence the freezer) will block here until any currently running CPU
  548  * hotplug operation gets completed.
  549  */
  550 void cpu_hotplug_disable_before_freeze(void)
  551 {
  552         cpu_maps_update_begin();
  553         cpu_hotplug_disabled = 1;
  554         cpu_maps_update_done();
  555 }
  556 
  557 
  558 /*
  559  * When tasks have been thawed, re-enable regular CPU hotplug (which had been
  560  * disabled while beginning to freeze tasks).
  561  */
  562 void cpu_hotplug_enable_after_thaw(void)
  563 {
  564         cpu_maps_update_begin();
  565         cpu_hotplug_disabled = 0;
  566         cpu_maps_update_done();
  567 }
  568 
  569 /*
  570  * When callbacks for CPU hotplug notifications are being executed, we must
  571  * ensure that the state of the system with respect to the tasks being frozen
  572  * or not, as reported by the notification, remains unchanged *throughout the
  573  * duration* of the execution of the callbacks.
  574  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
  575  *
  576  * This synchronization is implemented by mutually excluding regular CPU
  577  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
  578  * Hibernate notifications.
  579  */
  580 static int
  581 cpu_hotplug_pm_callback(struct notifier_block *nb,
  582                         unsigned long action, void *ptr)
  583 {
  584         switch (action) {
  585 
  586         case PM_SUSPEND_PREPARE:
  587         case PM_HIBERNATION_PREPARE:
  588                 cpu_hotplug_disable_before_freeze();
  589                 break;
  590 
  591         case PM_POST_SUSPEND:
  592         case PM_POST_HIBERNATION:
  593                 cpu_hotplug_enable_after_thaw();
  594                 break;
  595 
  596         default:
  597                 return NOTIFY_DONE;
  598         }
  599 
  600         return NOTIFY_OK;
  601 }
  602 
  603 
  604 static int __init cpu_hotplug_pm_sync_init(void)
  605 {
  606         /*
  607          * cpu_hotplug_pm_callback has higher priority than x86
  608          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
  609          * to disable cpu hotplug to avoid cpu hotplug race.
  610          */
  611         pm_notifier(cpu_hotplug_pm_callback, 0);
  612         return 0;
  613 }
  614 core_initcall(cpu_hotplug_pm_sync_init);
  615 
  616 #endif /* CONFIG_PM_SLEEP_SMP */
  617 
  618 /**
  619  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
  620  * @cpu: cpu that just started
  621  *
  622  * This function calls the cpu_chain notifiers with CPU_STARTING.
  623  * It must be called by the arch code on the new cpu, before the new cpu
  624  * enables interrupts and before the "boot" cpu returns from __cpu_up().
  625  */
  626 void __cpuinit notify_cpu_starting(unsigned int cpu)
  627 {
  628         unsigned long val = CPU_STARTING;
  629 
  630 #ifdef CONFIG_PM_SLEEP_SMP
  631         if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
  632                 val = CPU_STARTING_FROZEN;
  633 #endif /* CONFIG_PM_SLEEP_SMP */
  634         cpu_notify(val, (void *)(long)cpu);
  635 }
  636 
  637 #endif /* CONFIG_SMP */
  638 
  639 /*
  640  * cpu_bit_bitmap[] is a special, "compressed" data structure that
  641  * represents all NR_CPUS bits binary values of 1<<nr.
  642  *
  643  * It is used by cpumask_of() to get a constant address to a CPU
  644  * mask value that has a single bit set only.
  645  */
  646 
  647 /* cpu_bit_bitmap[0] is empty - so we can back into it */
  648 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
  649 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
  650 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
  651 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
  652 
  653 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
  654 
  655         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
  656         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
  657 #if BITS_PER_LONG > 32
  658         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
  659         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
  660 #endif
  661 };
  662 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
  663 
  664 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
  665 EXPORT_SYMBOL(cpu_all_bits);
  666 
  667 #ifdef CONFIG_INIT_ALL_POSSIBLE
  668 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
  669         = CPU_BITS_ALL;
  670 #else
  671 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
  672 #endif
  673 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
  674 EXPORT_SYMBOL(cpu_possible_mask);
  675 
  676 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
  677 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
  678 EXPORT_SYMBOL(cpu_online_mask);
  679 
  680 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
  681 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
  682 EXPORT_SYMBOL(cpu_present_mask);
  683 
  684 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
  685 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
  686 EXPORT_SYMBOL(cpu_active_mask);
  687 
  688 void set_cpu_possible(unsigned int cpu, bool possible)
  689 {
  690         if (possible)
  691                 cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
  692         else
  693                 cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
  694 }
  695 
  696 void set_cpu_present(unsigned int cpu, bool present)
  697 {
  698         if (present)
  699                 cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
  700         else
  701                 cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
  702 }
  703 
  704 void set_cpu_online(unsigned int cpu, bool online)
  705 {
  706         if (online)
  707                 cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
  708         else
  709                 cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
  710 }
  711 
  712 void set_cpu_active(unsigned int cpu, bool active)
  713 {
  714         if (active)
  715                 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
  716         else
  717                 cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
  718 }
  719 
  720 void init_cpu_present(const struct cpumask *src)
  721 {
  722         cpumask_copy(to_cpumask(cpu_present_bits), src);
  723 }
  724 
  725 void init_cpu_possible(const struct cpumask *src)
  726 {
  727         cpumask_copy(to_cpumask(cpu_possible_bits), src);
  728 }
  729 
  730 void init_cpu_online(const struct cpumask *src)
  731 {
  732         cpumask_copy(to_cpumask(cpu_online_bits), src);
  733 }

Cache object: 2eb734ce2bd0194ac3d53da06c179c6d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.