The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kernel/exit.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  *  linux/kernel/exit.c
    3  *
    4  *  Copyright (C) 1991, 1992  Linus Torvalds
    5  */
    6 
    7 #include <linux/mm.h>
    8 #include <linux/slab.h>
    9 #include <linux/interrupt.h>
   10 #include <linux/module.h>
   11 #include <linux/capability.h>
   12 #include <linux/completion.h>
   13 #include <linux/personality.h>
   14 #include <linux/tty.h>
   15 #include <linux/iocontext.h>
   16 #include <linux/key.h>
   17 #include <linux/security.h>
   18 #include <linux/cpu.h>
   19 #include <linux/acct.h>
   20 #include <linux/tsacct_kern.h>
   21 #include <linux/file.h>
   22 #include <linux/fdtable.h>
   23 #include <linux/binfmts.h>
   24 #include <linux/nsproxy.h>
   25 #include <linux/pid_namespace.h>
   26 #include <linux/ptrace.h>
   27 #include <linux/profile.h>
   28 #include <linux/mount.h>
   29 #include <linux/proc_fs.h>
   30 #include <linux/kthread.h>
   31 #include <linux/mempolicy.h>
   32 #include <linux/taskstats_kern.h>
   33 #include <linux/delayacct.h>
   34 #include <linux/freezer.h>
   35 #include <linux/cgroup.h>
   36 #include <linux/syscalls.h>
   37 #include <linux/signal.h>
   38 #include <linux/posix-timers.h>
   39 #include <linux/cn_proc.h>
   40 #include <linux/mutex.h>
   41 #include <linux/futex.h>
   42 #include <linux/pipe_fs_i.h>
   43 #include <linux/audit.h> /* for audit_free() */
   44 #include <linux/resource.h>
   45 #include <linux/blkdev.h>
   46 #include <linux/task_io_accounting_ops.h>
   47 #include <linux/tracehook.h>
   48 #include <linux/fs_struct.h>
   49 #include <linux/init_task.h>
   50 #include <linux/perf_event.h>
   51 #include <trace/events/sched.h>
   52 #include <linux/hw_breakpoint.h>
   53 #include <linux/oom.h>
   54 #include <linux/writeback.h>
   55 #include <linux/shm.h>
   56 
   57 #include <asm/uaccess.h>
   58 #include <asm/unistd.h>
   59 #include <asm/pgtable.h>
   60 #include <asm/mmu_context.h>
   61 
   62 static void exit_mm(struct task_struct * tsk);
   63 
   64 static void __unhash_process(struct task_struct *p, bool group_dead)
   65 {
   66         nr_threads--;
   67         detach_pid(p, PIDTYPE_PID);
   68         if (group_dead) {
   69                 detach_pid(p, PIDTYPE_PGID);
   70                 detach_pid(p, PIDTYPE_SID);
   71 
   72                 list_del_rcu(&p->tasks);
   73                 list_del_init(&p->sibling);
   74                 __this_cpu_dec(process_counts);
   75         }
   76         list_del_rcu(&p->thread_group);
   77 }
   78 
   79 /*
   80  * This function expects the tasklist_lock write-locked.
   81  */
   82 static void __exit_signal(struct task_struct *tsk)
   83 {
   84         struct signal_struct *sig = tsk->signal;
   85         bool group_dead = thread_group_leader(tsk);
   86         struct sighand_struct *sighand;
   87         struct tty_struct *uninitialized_var(tty);
   88 
   89         sighand = rcu_dereference_check(tsk->sighand,
   90                                         lockdep_tasklist_lock_is_held());
   91         spin_lock(&sighand->siglock);
   92 
   93         posix_cpu_timers_exit(tsk);
   94         if (group_dead) {
   95                 posix_cpu_timers_exit_group(tsk);
   96                 tty = sig->tty;
   97                 sig->tty = NULL;
   98         } else {
   99                 /*
  100                  * This can only happen if the caller is de_thread().
  101                  * FIXME: this is the temporary hack, we should teach
  102                  * posix-cpu-timers to handle this case correctly.
  103                  */
  104                 if (unlikely(has_group_leader_pid(tsk)))
  105                         posix_cpu_timers_exit_group(tsk);
  106 
  107                 /*
  108                  * If there is any task waiting for the group exit
  109                  * then notify it:
  110                  */
  111                 if (sig->notify_count > 0 && !--sig->notify_count)
  112                         wake_up_process(sig->group_exit_task);
  113 
  114                 if (tsk == sig->curr_target)
  115                         sig->curr_target = next_thread(tsk);
  116                 /*
  117                  * Accumulate here the counters for all threads but the
  118                  * group leader as they die, so they can be added into
  119                  * the process-wide totals when those are taken.
  120                  * The group leader stays around as a zombie as long
  121                  * as there are other threads.  When it gets reaped,
  122                  * the exit.c code will add its counts into these totals.
  123                  * We won't ever get here for the group leader, since it
  124                  * will have been the last reference on the signal_struct.
  125                  */
  126                 sig->utime += tsk->utime;
  127                 sig->stime += tsk->stime;
  128                 sig->gtime += tsk->gtime;
  129                 sig->min_flt += tsk->min_flt;
  130                 sig->maj_flt += tsk->maj_flt;
  131                 sig->nvcsw += tsk->nvcsw;
  132                 sig->nivcsw += tsk->nivcsw;
  133                 sig->inblock += task_io_get_inblock(tsk);
  134                 sig->oublock += task_io_get_oublock(tsk);
  135                 task_io_accounting_add(&sig->ioac, &tsk->ioac);
  136                 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
  137         }
  138 
  139         sig->nr_threads--;
  140         __unhash_process(tsk, group_dead);
  141 
  142         /*
  143          * Do this under ->siglock, we can race with another thread
  144          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
  145          */
  146         flush_sigqueue(&tsk->pending);
  147         tsk->sighand = NULL;
  148         spin_unlock(&sighand->siglock);
  149 
  150         __cleanup_sighand(sighand);
  151         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
  152         if (group_dead) {
  153                 flush_sigqueue(&sig->shared_pending);
  154                 tty_kref_put(tty);
  155         }
  156 }
  157 
  158 static void delayed_put_task_struct(struct rcu_head *rhp)
  159 {
  160         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  161 
  162         perf_event_delayed_put(tsk);
  163         trace_sched_process_free(tsk);
  164         put_task_struct(tsk);
  165 }
  166 
  167 
  168 void release_task(struct task_struct * p)
  169 {
  170         struct task_struct *leader;
  171         int zap_leader;
  172 repeat:
  173         /* don't need to get the RCU readlock here - the process is dead and
  174          * can't be modifying its own credentials. But shut RCU-lockdep up */
  175         rcu_read_lock();
  176         atomic_dec(&__task_cred(p)->user->processes);
  177         rcu_read_unlock();
  178 
  179         proc_flush_task(p);
  180 
  181         write_lock_irq(&tasklist_lock);
  182         ptrace_release_task(p);
  183         __exit_signal(p);
  184 
  185         /*
  186          * If we are the last non-leader member of the thread
  187          * group, and the leader is zombie, then notify the
  188          * group leader's parent process. (if it wants notification.)
  189          */
  190         zap_leader = 0;
  191         leader = p->group_leader;
  192         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
  193                 /*
  194                  * If we were the last child thread and the leader has
  195                  * exited already, and the leader's parent ignores SIGCHLD,
  196                  * then we are the one who should release the leader.
  197                  */
  198                 zap_leader = do_notify_parent(leader, leader->exit_signal);
  199                 if (zap_leader)
  200                         leader->exit_state = EXIT_DEAD;
  201         }
  202 
  203         write_unlock_irq(&tasklist_lock);
  204         release_thread(p);
  205         call_rcu(&p->rcu, delayed_put_task_struct);
  206 
  207         p = leader;
  208         if (unlikely(zap_leader))
  209                 goto repeat;
  210 }
  211 
  212 /*
  213  * This checks not only the pgrp, but falls back on the pid if no
  214  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
  215  * without this...
  216  *
  217  * The caller must hold rcu lock or the tasklist lock.
  218  */
  219 struct pid *session_of_pgrp(struct pid *pgrp)
  220 {
  221         struct task_struct *p;
  222         struct pid *sid = NULL;
  223 
  224         p = pid_task(pgrp, PIDTYPE_PGID);
  225         if (p == NULL)
  226                 p = pid_task(pgrp, PIDTYPE_PID);
  227         if (p != NULL)
  228                 sid = task_session(p);
  229 
  230         return sid;
  231 }
  232 
  233 /*
  234  * Determine if a process group is "orphaned", according to the POSIX
  235  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
  236  * by terminal-generated stop signals.  Newly orphaned process groups are
  237  * to receive a SIGHUP and a SIGCONT.
  238  *
  239  * "I ask you, have you ever known what it is to be an orphan?"
  240  */
  241 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
  242 {
  243         struct task_struct *p;
  244 
  245         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  246                 if ((p == ignored_task) ||
  247                     (p->exit_state && thread_group_empty(p)) ||
  248                     is_global_init(p->real_parent))
  249                         continue;
  250 
  251                 if (task_pgrp(p->real_parent) != pgrp &&
  252                     task_session(p->real_parent) == task_session(p))
  253                         return 0;
  254         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  255 
  256         return 1;
  257 }
  258 
  259 int is_current_pgrp_orphaned(void)
  260 {
  261         int retval;
  262 
  263         read_lock(&tasklist_lock);
  264         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
  265         read_unlock(&tasklist_lock);
  266 
  267         return retval;
  268 }
  269 
  270 static bool has_stopped_jobs(struct pid *pgrp)
  271 {
  272         struct task_struct *p;
  273 
  274         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  275                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
  276                         return true;
  277         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  278 
  279         return false;
  280 }
  281 
  282 /*
  283  * Check to see if any process groups have become orphaned as
  284  * a result of our exiting, and if they have any stopped jobs,
  285  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  286  */
  287 static void
  288 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
  289 {
  290         struct pid *pgrp = task_pgrp(tsk);
  291         struct task_struct *ignored_task = tsk;
  292 
  293         if (!parent)
  294                  /* exit: our father is in a different pgrp than
  295                   * we are and we were the only connection outside.
  296                   */
  297                 parent = tsk->real_parent;
  298         else
  299                 /* reparent: our child is in a different pgrp than
  300                  * we are, and it was the only connection outside.
  301                  */
  302                 ignored_task = NULL;
  303 
  304         if (task_pgrp(parent) != pgrp &&
  305             task_session(parent) == task_session(tsk) &&
  306             will_become_orphaned_pgrp(pgrp, ignored_task) &&
  307             has_stopped_jobs(pgrp)) {
  308                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
  309                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
  310         }
  311 }
  312 
  313 void __set_special_pids(struct pid *pid)
  314 {
  315         struct task_struct *curr = current->group_leader;
  316 
  317         if (task_session(curr) != pid)
  318                 change_pid(curr, PIDTYPE_SID, pid);
  319 
  320         if (task_pgrp(curr) != pid)
  321                 change_pid(curr, PIDTYPE_PGID, pid);
  322 }
  323 
  324 /*
  325  * Let kernel threads use this to say that they allow a certain signal.
  326  * Must not be used if kthread was cloned with CLONE_SIGHAND.
  327  */
  328 int allow_signal(int sig)
  329 {
  330         if (!valid_signal(sig) || sig < 1)
  331                 return -EINVAL;
  332 
  333         spin_lock_irq(&current->sighand->siglock);
  334         /* This is only needed for daemonize()'ed kthreads */
  335         sigdelset(&current->blocked, sig);
  336         /*
  337          * Kernel threads handle their own signals. Let the signal code
  338          * know it'll be handled, so that they don't get converted to
  339          * SIGKILL or just silently dropped.
  340          */
  341         current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
  342         recalc_sigpending();
  343         spin_unlock_irq(&current->sighand->siglock);
  344         return 0;
  345 }
  346 
  347 EXPORT_SYMBOL(allow_signal);
  348 
  349 int disallow_signal(int sig)
  350 {
  351         if (!valid_signal(sig) || sig < 1)
  352                 return -EINVAL;
  353 
  354         spin_lock_irq(&current->sighand->siglock);
  355         current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
  356         recalc_sigpending();
  357         spin_unlock_irq(&current->sighand->siglock);
  358         return 0;
  359 }
  360 
  361 EXPORT_SYMBOL(disallow_signal);
  362 
  363 #ifdef CONFIG_MM_OWNER
  364 /*
  365  * A task is exiting.   If it owned this mm, find a new owner for the mm.
  366  */
  367 void mm_update_next_owner(struct mm_struct *mm)
  368 {
  369         struct task_struct *c, *g, *p = current;
  370 
  371 retry:
  372         /*
  373          * If the exiting or execing task is not the owner, it's
  374          * someone else's problem.
  375          */
  376         if (mm->owner != p)
  377                 return;
  378         /*
  379          * The current owner is exiting/execing and there are no other
  380          * candidates.  Do not leave the mm pointing to a possibly
  381          * freed task structure.
  382          */
  383         if (atomic_read(&mm->mm_users) <= 1) {
  384                 mm->owner = NULL;
  385                 return;
  386         }
  387 
  388         read_lock(&tasklist_lock);
  389         /*
  390          * Search in the children
  391          */
  392         list_for_each_entry(c, &p->children, sibling) {
  393                 if (c->mm == mm)
  394                         goto assign_new_owner;
  395         }
  396 
  397         /*
  398          * Search in the siblings
  399          */
  400         list_for_each_entry(c, &p->real_parent->children, sibling) {
  401                 if (c->mm == mm)
  402                         goto assign_new_owner;
  403         }
  404 
  405         /*
  406          * Search through everything else. We should not get
  407          * here often
  408          */
  409         do_each_thread(g, c) {
  410                 if (c->mm == mm)
  411                         goto assign_new_owner;
  412         } while_each_thread(g, c);
  413 
  414         read_unlock(&tasklist_lock);
  415         /*
  416          * We found no owner yet mm_users > 1: this implies that we are
  417          * most likely racing with swapoff (try_to_unuse()) or /proc or
  418          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
  419          */
  420         mm->owner = NULL;
  421         return;
  422 
  423 assign_new_owner:
  424         BUG_ON(c == p);
  425         get_task_struct(c);
  426         /*
  427          * The task_lock protects c->mm from changing.
  428          * We always want mm->owner->mm == mm
  429          */
  430         task_lock(c);
  431         /*
  432          * Delay read_unlock() till we have the task_lock()
  433          * to ensure that c does not slip away underneath us
  434          */
  435         read_unlock(&tasklist_lock);
  436         if (c->mm != mm) {
  437                 task_unlock(c);
  438                 put_task_struct(c);
  439                 goto retry;
  440         }
  441         mm->owner = c;
  442         task_unlock(c);
  443         put_task_struct(c);
  444 }
  445 #endif /* CONFIG_MM_OWNER */
  446 
  447 /*
  448  * Turn us into a lazy TLB process if we
  449  * aren't already..
  450  */
  451 static void exit_mm(struct task_struct * tsk)
  452 {
  453         struct mm_struct *mm = tsk->mm;
  454         struct core_state *core_state;
  455 
  456         mm_release(tsk, mm);
  457         if (!mm)
  458                 return;
  459         sync_mm_rss(mm);
  460         /*
  461          * Serialize with any possible pending coredump.
  462          * We must hold mmap_sem around checking core_state
  463          * and clearing tsk->mm.  The core-inducing thread
  464          * will increment ->nr_threads for each thread in the
  465          * group with ->mm != NULL.
  466          */
  467         down_read(&mm->mmap_sem);
  468         core_state = mm->core_state;
  469         if (core_state) {
  470                 struct core_thread self;
  471                 up_read(&mm->mmap_sem);
  472 
  473                 self.task = tsk;
  474                 self.next = xchg(&core_state->dumper.next, &self);
  475                 /*
  476                  * Implies mb(), the result of xchg() must be visible
  477                  * to core_state->dumper.
  478                  */
  479                 if (atomic_dec_and_test(&core_state->nr_threads))
  480                         complete(&core_state->startup);
  481 
  482                 for (;;) {
  483                         set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  484                         if (!self.task) /* see coredump_finish() */
  485                                 break;
  486                         schedule();
  487                 }
  488                 __set_task_state(tsk, TASK_RUNNING);
  489                 down_read(&mm->mmap_sem);
  490         }
  491         atomic_inc(&mm->mm_count);
  492         BUG_ON(mm != tsk->active_mm);
  493         /* more a memory barrier than a real lock */
  494         task_lock(tsk);
  495         tsk->mm = NULL;
  496         up_read(&mm->mmap_sem);
  497         enter_lazy_tlb(mm, current);
  498         task_unlock(tsk);
  499         mm_update_next_owner(mm);
  500         mmput(mm);
  501 }
  502 
  503 /*
  504  * When we die, we re-parent all our children, and try to:
  505  * 1. give them to another thread in our thread group, if such a member exists
  506  * 2. give it to the first ancestor process which prctl'd itself as a
  507  *    child_subreaper for its children (like a service manager)
  508  * 3. give it to the init process (PID 1) in our pid namespace
  509  */
  510 static struct task_struct *find_new_reaper(struct task_struct *father)
  511         __releases(&tasklist_lock)
  512         __acquires(&tasklist_lock)
  513 {
  514         struct pid_namespace *pid_ns = task_active_pid_ns(father);
  515         struct task_struct *thread;
  516 
  517         thread = father;
  518         while_each_thread(father, thread) {
  519                 if (thread->flags & PF_EXITING)
  520                         continue;
  521                 if (unlikely(pid_ns->child_reaper == father))
  522                         pid_ns->child_reaper = thread;
  523                 return thread;
  524         }
  525 
  526         if (unlikely(pid_ns->child_reaper == father)) {
  527                 write_unlock_irq(&tasklist_lock);
  528                 if (unlikely(pid_ns == &init_pid_ns)) {
  529                         panic("Attempted to kill init! exitcode=0x%08x\n",
  530                                 father->signal->group_exit_code ?:
  531                                         father->exit_code);
  532                 }
  533 
  534                 zap_pid_ns_processes(pid_ns);
  535                 write_lock_irq(&tasklist_lock);
  536         } else if (father->signal->has_child_subreaper) {
  537                 struct task_struct *reaper;
  538 
  539                 /*
  540                  * Find the first ancestor marked as child_subreaper.
  541                  * Note that the code below checks same_thread_group(reaper,
  542                  * pid_ns->child_reaper).  This is what we need to DTRT in a
  543                  * PID namespace. However we still need the check above, see
  544                  * http://marc.info/?l=linux-kernel&m=131385460420380
  545                  */
  546                 for (reaper = father->real_parent;
  547                      reaper != &init_task;
  548                      reaper = reaper->real_parent) {
  549                         if (same_thread_group(reaper, pid_ns->child_reaper))
  550                                 break;
  551                         if (!reaper->signal->is_child_subreaper)
  552                                 continue;
  553                         thread = reaper;
  554                         do {
  555                                 if (!(thread->flags & PF_EXITING))
  556                                         return reaper;
  557                         } while_each_thread(reaper, thread);
  558                 }
  559         }
  560 
  561         return pid_ns->child_reaper;
  562 }
  563 
  564 /*
  565 * Any that need to be release_task'd are put on the @dead list.
  566  */
  567 static void reparent_leader(struct task_struct *father, struct task_struct *p,
  568                                 struct list_head *dead)
  569 {
  570         list_move_tail(&p->sibling, &p->real_parent->children);
  571 
  572         if (p->exit_state == EXIT_DEAD)
  573                 return;
  574         /*
  575          * If this is a threaded reparent there is no need to
  576          * notify anyone anything has happened.
  577          */
  578         if (same_thread_group(p->real_parent, father))
  579                 return;
  580 
  581         /* We don't want people slaying init.  */
  582         p->exit_signal = SIGCHLD;
  583 
  584         /* If it has exited notify the new parent about this child's death. */
  585         if (!p->ptrace &&
  586             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
  587                 if (do_notify_parent(p, p->exit_signal)) {
  588                         p->exit_state = EXIT_DEAD;
  589                         list_move_tail(&p->sibling, dead);
  590                 }
  591         }
  592 
  593         kill_orphaned_pgrp(p, father);
  594 }
  595 
  596 static void forget_original_parent(struct task_struct *father)
  597 {
  598         struct task_struct *p, *n, *reaper;
  599         LIST_HEAD(dead_children);
  600 
  601         write_lock_irq(&tasklist_lock);
  602         /*
  603          * Note that exit_ptrace() and find_new_reaper() might
  604          * drop tasklist_lock and reacquire it.
  605          */
  606         exit_ptrace(father);
  607         reaper = find_new_reaper(father);
  608 
  609         list_for_each_entry_safe(p, n, &father->children, sibling) {
  610                 struct task_struct *t = p;
  611                 do {
  612                         t->real_parent = reaper;
  613                         if (t->parent == father) {
  614                                 BUG_ON(t->ptrace);
  615                                 t->parent = t->real_parent;
  616                         }
  617                         if (t->pdeath_signal)
  618                                 group_send_sig_info(t->pdeath_signal,
  619                                                     SEND_SIG_NOINFO, t);
  620                 } while_each_thread(p, t);
  621                 reparent_leader(father, p, &dead_children);
  622         }
  623         write_unlock_irq(&tasklist_lock);
  624 
  625         BUG_ON(!list_empty(&father->children));
  626 
  627         list_for_each_entry_safe(p, n, &dead_children, sibling) {
  628                 list_del_init(&p->sibling);
  629                 release_task(p);
  630         }
  631 }
  632 
  633 /*
  634  * Send signals to all our closest relatives so that they know
  635  * to properly mourn us..
  636  */
  637 static void exit_notify(struct task_struct *tsk, int group_dead)
  638 {
  639         bool autoreap;
  640 
  641         /*
  642          * This does two things:
  643          *
  644          * A.  Make init inherit all the child processes
  645          * B.  Check to see if any process groups have become orphaned
  646          *      as a result of our exiting, and if they have any stopped
  647          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
  648          */
  649         forget_original_parent(tsk);
  650         exit_task_namespaces(tsk);
  651 
  652         write_lock_irq(&tasklist_lock);
  653         if (group_dead)
  654                 kill_orphaned_pgrp(tsk->group_leader, NULL);
  655 
  656         if (unlikely(tsk->ptrace)) {
  657                 int sig = thread_group_leader(tsk) &&
  658                                 thread_group_empty(tsk) &&
  659                                 !ptrace_reparented(tsk) ?
  660                         tsk->exit_signal : SIGCHLD;
  661                 autoreap = do_notify_parent(tsk, sig);
  662         } else if (thread_group_leader(tsk)) {
  663                 autoreap = thread_group_empty(tsk) &&
  664                         do_notify_parent(tsk, tsk->exit_signal);
  665         } else {
  666                 autoreap = true;
  667         }
  668 
  669         tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
  670 
  671         /* mt-exec, de_thread() is waiting for group leader */
  672         if (unlikely(tsk->signal->notify_count < 0))
  673                 wake_up_process(tsk->signal->group_exit_task);
  674         write_unlock_irq(&tasklist_lock);
  675 
  676         /* If the process is dead, release it - nobody will wait for it */
  677         if (autoreap)
  678                 release_task(tsk);
  679 }
  680 
  681 #ifdef CONFIG_DEBUG_STACK_USAGE
  682 static void check_stack_usage(void)
  683 {
  684         static DEFINE_SPINLOCK(low_water_lock);
  685         static int lowest_to_date = THREAD_SIZE;
  686         unsigned long free;
  687 
  688         free = stack_not_used(current);
  689 
  690         if (free >= lowest_to_date)
  691                 return;
  692 
  693         spin_lock(&low_water_lock);
  694         if (free < lowest_to_date) {
  695                 printk(KERN_WARNING "%s (%d) used greatest stack depth: "
  696                                 "%lu bytes left\n",
  697                                 current->comm, task_pid_nr(current), free);
  698                 lowest_to_date = free;
  699         }
  700         spin_unlock(&low_water_lock);
  701 }
  702 #else
  703 static inline void check_stack_usage(void) {}
  704 #endif
  705 
  706 void do_exit(long code)
  707 {
  708         struct task_struct *tsk = current;
  709         int group_dead;
  710 
  711         profile_task_exit(tsk);
  712 
  713         WARN_ON(blk_needs_flush_plug(tsk));
  714 
  715         if (unlikely(in_interrupt()))
  716                 panic("Aiee, killing interrupt handler!");
  717         if (unlikely(!tsk->pid))
  718                 panic("Attempted to kill the idle task!");
  719 
  720         /*
  721          * If do_exit is called because this processes oopsed, it's possible
  722          * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
  723          * continuing. Amongst other possible reasons, this is to prevent
  724          * mm_release()->clear_child_tid() from writing to a user-controlled
  725          * kernel address.
  726          */
  727         set_fs(USER_DS);
  728 
  729         ptrace_event(PTRACE_EVENT_EXIT, code);
  730 
  731         validate_creds_for_do_exit(tsk);
  732 
  733         /*
  734          * We're taking recursive faults here in do_exit. Safest is to just
  735          * leave this task alone and wait for reboot.
  736          */
  737         if (unlikely(tsk->flags & PF_EXITING)) {
  738                 printk(KERN_ALERT
  739                         "Fixing recursive fault but reboot is needed!\n");
  740                 /*
  741                  * We can do this unlocked here. The futex code uses
  742                  * this flag just to verify whether the pi state
  743                  * cleanup has been done or not. In the worst case it
  744                  * loops once more. We pretend that the cleanup was
  745                  * done as there is no way to return. Either the
  746                  * OWNER_DIED bit is set by now or we push the blocked
  747                  * task into the wait for ever nirwana as well.
  748                  */
  749                 tsk->flags |= PF_EXITPIDONE;
  750                 set_current_state(TASK_UNINTERRUPTIBLE);
  751                 schedule();
  752         }
  753 
  754         exit_signals(tsk);  /* sets PF_EXITING */
  755         /*
  756          * tsk->flags are checked in the futex code to protect against
  757          * an exiting task cleaning up the robust pi futexes.
  758          */
  759         smp_mb();
  760         raw_spin_unlock_wait(&tsk->pi_lock);
  761 
  762         if (unlikely(in_atomic()))
  763                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
  764                                 current->comm, task_pid_nr(current),
  765                                 preempt_count());
  766 
  767         acct_update_integrals(tsk);
  768         /* sync mm's RSS info before statistics gathering */
  769         if (tsk->mm)
  770                 sync_mm_rss(tsk->mm);
  771         group_dead = atomic_dec_and_test(&tsk->signal->live);
  772         if (group_dead) {
  773                 hrtimer_cancel(&tsk->signal->real_timer);
  774                 exit_itimers(tsk->signal);
  775                 if (tsk->mm)
  776                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
  777         }
  778         acct_collect(code, group_dead);
  779         if (group_dead)
  780                 tty_audit_exit();
  781         audit_free(tsk);
  782 
  783         tsk->exit_code = code;
  784         taskstats_exit(tsk, group_dead);
  785 
  786         exit_mm(tsk);
  787 
  788         if (group_dead)
  789                 acct_process();
  790         trace_sched_process_exit(tsk);
  791 
  792         exit_sem(tsk);
  793         exit_shm(tsk);
  794         exit_files(tsk);
  795         exit_fs(tsk);
  796         exit_task_work(tsk);
  797         check_stack_usage();
  798         exit_thread();
  799 
  800         /*
  801          * Flush inherited counters to the parent - before the parent
  802          * gets woken up by child-exit notifications.
  803          *
  804          * because of cgroup mode, must be called before cgroup_exit()
  805          */
  806         perf_event_exit_task(tsk);
  807 
  808         cgroup_exit(tsk, 1);
  809 
  810         if (group_dead)
  811                 disassociate_ctty(1);
  812 
  813         module_put(task_thread_info(tsk)->exec_domain->module);
  814 
  815         proc_exit_connector(tsk);
  816 
  817         /*
  818          * FIXME: do that only when needed, using sched_exit tracepoint
  819          */
  820         ptrace_put_breakpoints(tsk);
  821 
  822         exit_notify(tsk, group_dead);
  823 #ifdef CONFIG_NUMA
  824         task_lock(tsk);
  825         mpol_put(tsk->mempolicy);
  826         tsk->mempolicy = NULL;
  827         task_unlock(tsk);
  828 #endif
  829 #ifdef CONFIG_FUTEX
  830         if (unlikely(current->pi_state_cache))
  831                 kfree(current->pi_state_cache);
  832 #endif
  833         /*
  834          * Make sure we are holding no locks:
  835          */
  836         debug_check_no_locks_held(tsk);
  837         /*
  838          * We can do this unlocked here. The futex code uses this flag
  839          * just to verify whether the pi state cleanup has been done
  840          * or not. In the worst case it loops once more.
  841          */
  842         tsk->flags |= PF_EXITPIDONE;
  843 
  844         if (tsk->io_context)
  845                 exit_io_context(tsk);
  846 
  847         if (tsk->splice_pipe)
  848                 __free_pipe_info(tsk->splice_pipe);
  849 
  850         if (tsk->task_frag.page)
  851                 put_page(tsk->task_frag.page);
  852 
  853         validate_creds_for_do_exit(tsk);
  854 
  855         preempt_disable();
  856         if (tsk->nr_dirtied)
  857                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
  858         exit_rcu();
  859 
  860         /*
  861          * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
  862          * when the following two conditions become true.
  863          *   - There is race condition of mmap_sem (It is acquired by
  864          *     exit_mm()), and
  865          *   - SMI occurs before setting TASK_RUNINNG.
  866          *     (or hypervisor of virtual machine switches to other guest)
  867          *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
  868          *
  869          * To avoid it, we have to wait for releasing tsk->pi_lock which
  870          * is held by try_to_wake_up()
  871          */
  872         smp_mb();
  873         raw_spin_unlock_wait(&tsk->pi_lock);
  874 
  875         /* causes final put_task_struct in finish_task_switch(). */
  876         tsk->state = TASK_DEAD;
  877         tsk->flags |= PF_NOFREEZE;      /* tell freezer to ignore us */
  878         schedule();
  879         BUG();
  880         /* Avoid "noreturn function does return".  */
  881         for (;;)
  882                 cpu_relax();    /* For when BUG is null */
  883 }
  884 
  885 EXPORT_SYMBOL_GPL(do_exit);
  886 
  887 void complete_and_exit(struct completion *comp, long code)
  888 {
  889         if (comp)
  890                 complete(comp);
  891 
  892         do_exit(code);
  893 }
  894 
  895 EXPORT_SYMBOL(complete_and_exit);
  896 
  897 SYSCALL_DEFINE1(exit, int, error_code)
  898 {
  899         do_exit((error_code&0xff)<<8);
  900 }
  901 
  902 /*
  903  * Take down every thread in the group.  This is called by fatal signals
  904  * as well as by sys_exit_group (below).
  905  */
  906 void
  907 do_group_exit(int exit_code)
  908 {
  909         struct signal_struct *sig = current->signal;
  910 
  911         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
  912 
  913         if (signal_group_exit(sig))
  914                 exit_code = sig->group_exit_code;
  915         else if (!thread_group_empty(current)) {
  916                 struct sighand_struct *const sighand = current->sighand;
  917                 spin_lock_irq(&sighand->siglock);
  918                 if (signal_group_exit(sig))
  919                         /* Another thread got here before we took the lock.  */
  920                         exit_code = sig->group_exit_code;
  921                 else {
  922                         sig->group_exit_code = exit_code;
  923                         sig->flags = SIGNAL_GROUP_EXIT;
  924                         zap_other_threads(current);
  925                 }
  926                 spin_unlock_irq(&sighand->siglock);
  927         }
  928 
  929         do_exit(exit_code);
  930         /* NOTREACHED */
  931 }
  932 
  933 /*
  934  * this kills every thread in the thread group. Note that any externally
  935  * wait4()-ing process will get the correct exit code - even if this
  936  * thread is not the thread group leader.
  937  */
  938 SYSCALL_DEFINE1(exit_group, int, error_code)
  939 {
  940         do_group_exit((error_code & 0xff) << 8);
  941         /* NOTREACHED */
  942         return 0;
  943 }
  944 
  945 struct wait_opts {
  946         enum pid_type           wo_type;
  947         int                     wo_flags;
  948         struct pid              *wo_pid;
  949 
  950         struct siginfo __user   *wo_info;
  951         int __user              *wo_stat;
  952         struct rusage __user    *wo_rusage;
  953 
  954         wait_queue_t            child_wait;
  955         int                     notask_error;
  956 };
  957 
  958 static inline
  959 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
  960 {
  961         if (type != PIDTYPE_PID)
  962                 task = task->group_leader;
  963         return task->pids[type].pid;
  964 }
  965 
  966 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
  967 {
  968         return  wo->wo_type == PIDTYPE_MAX ||
  969                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
  970 }
  971 
  972 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
  973 {
  974         if (!eligible_pid(wo, p))
  975                 return 0;
  976         /* Wait for all children (clone and not) if __WALL is set;
  977          * otherwise, wait for clone children *only* if __WCLONE is
  978          * set; otherwise, wait for non-clone children *only*.  (Note:
  979          * A "clone" child here is one that reports to its parent
  980          * using a signal other than SIGCHLD.) */
  981         if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
  982             && !(wo->wo_flags & __WALL))
  983                 return 0;
  984 
  985         return 1;
  986 }
  987 
  988 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
  989                                 pid_t pid, uid_t uid, int why, int status)
  990 {
  991         struct siginfo __user *infop;
  992         int retval = wo->wo_rusage
  993                 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  994 
  995         put_task_struct(p);
  996         infop = wo->wo_info;
  997         if (infop) {
  998                 if (!retval)
  999                         retval = put_user(SIGCHLD, &infop->si_signo);
 1000                 if (!retval)
 1001                         retval = put_user(0, &infop->si_errno);
 1002                 if (!retval)
 1003                         retval = put_user((short)why, &infop->si_code);
 1004                 if (!retval)
 1005                         retval = put_user(pid, &infop->si_pid);
 1006                 if (!retval)
 1007                         retval = put_user(uid, &infop->si_uid);
 1008                 if (!retval)
 1009                         retval = put_user(status, &infop->si_status);
 1010         }
 1011         if (!retval)
 1012                 retval = pid;
 1013         return retval;
 1014 }
 1015 
 1016 /*
 1017  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
 1018  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 1019  * the lock and this task is uninteresting.  If we return nonzero, we have
 1020  * released the lock and the system call should return.
 1021  */
 1022 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
 1023 {
 1024         unsigned long state;
 1025         int retval, status, traced;
 1026         pid_t pid = task_pid_vnr(p);
 1027         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
 1028         struct siginfo __user *infop;
 1029 
 1030         if (!likely(wo->wo_flags & WEXITED))
 1031                 return 0;
 1032 
 1033         if (unlikely(wo->wo_flags & WNOWAIT)) {
 1034                 int exit_code = p->exit_code;
 1035                 int why;
 1036 
 1037                 get_task_struct(p);
 1038                 read_unlock(&tasklist_lock);
 1039                 if ((exit_code & 0x7f) == 0) {
 1040                         why = CLD_EXITED;
 1041                         status = exit_code >> 8;
 1042                 } else {
 1043                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
 1044                         status = exit_code & 0x7f;
 1045                 }
 1046                 return wait_noreap_copyout(wo, p, pid, uid, why, status);
 1047         }
 1048 
 1049         /*
 1050          * Try to move the task's state to DEAD
 1051          * only one thread is allowed to do this:
 1052          */
 1053         state = xchg(&p->exit_state, EXIT_DEAD);
 1054         if (state != EXIT_ZOMBIE) {
 1055                 BUG_ON(state != EXIT_DEAD);
 1056                 return 0;
 1057         }
 1058 
 1059         traced = ptrace_reparented(p);
 1060         /*
 1061          * It can be ptraced but not reparented, check
 1062          * thread_group_leader() to filter out sub-threads.
 1063          */
 1064         if (likely(!traced) && thread_group_leader(p)) {
 1065                 struct signal_struct *psig;
 1066                 struct signal_struct *sig;
 1067                 unsigned long maxrss;
 1068                 cputime_t tgutime, tgstime;
 1069 
 1070                 /*
 1071                  * The resource counters for the group leader are in its
 1072                  * own task_struct.  Those for dead threads in the group
 1073                  * are in its signal_struct, as are those for the child
 1074                  * processes it has previously reaped.  All these
 1075                  * accumulate in the parent's signal_struct c* fields.
 1076                  *
 1077                  * We don't bother to take a lock here to protect these
 1078                  * p->signal fields, because they are only touched by
 1079                  * __exit_signal, which runs with tasklist_lock
 1080                  * write-locked anyway, and so is excluded here.  We do
 1081                  * need to protect the access to parent->signal fields,
 1082                  * as other threads in the parent group can be right
 1083                  * here reaping other children at the same time.
 1084                  *
 1085                  * We use thread_group_cputime_adjusted() to get times for the thread
 1086                  * group, which consolidates times for all threads in the
 1087                  * group including the group leader.
 1088                  */
 1089                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
 1090                 spin_lock_irq(&p->real_parent->sighand->siglock);
 1091                 psig = p->real_parent->signal;
 1092                 sig = p->signal;
 1093                 psig->cutime += tgutime + sig->cutime;
 1094                 psig->cstime += tgstime + sig->cstime;
 1095                 psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
 1096                 psig->cmin_flt +=
 1097                         p->min_flt + sig->min_flt + sig->cmin_flt;
 1098                 psig->cmaj_flt +=
 1099                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
 1100                 psig->cnvcsw +=
 1101                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
 1102                 psig->cnivcsw +=
 1103                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
 1104                 psig->cinblock +=
 1105                         task_io_get_inblock(p) +
 1106                         sig->inblock + sig->cinblock;
 1107                 psig->coublock +=
 1108                         task_io_get_oublock(p) +
 1109                         sig->oublock + sig->coublock;
 1110                 maxrss = max(sig->maxrss, sig->cmaxrss);
 1111                 if (psig->cmaxrss < maxrss)
 1112                         psig->cmaxrss = maxrss;
 1113                 task_io_accounting_add(&psig->ioac, &p->ioac);
 1114                 task_io_accounting_add(&psig->ioac, &sig->ioac);
 1115                 spin_unlock_irq(&p->real_parent->sighand->siglock);
 1116         }
 1117 
 1118         /*
 1119          * Now we are sure this task is interesting, and no other
 1120          * thread can reap it because we set its state to EXIT_DEAD.
 1121          */
 1122         read_unlock(&tasklist_lock);
 1123 
 1124         retval = wo->wo_rusage
 1125                 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
 1126         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
 1127                 ? p->signal->group_exit_code : p->exit_code;
 1128         if (!retval && wo->wo_stat)
 1129                 retval = put_user(status, wo->wo_stat);
 1130 
 1131         infop = wo->wo_info;
 1132         if (!retval && infop)
 1133                 retval = put_user(SIGCHLD, &infop->si_signo);
 1134         if (!retval && infop)
 1135                 retval = put_user(0, &infop->si_errno);
 1136         if (!retval && infop) {
 1137                 int why;
 1138 
 1139                 if ((status & 0x7f) == 0) {
 1140                         why = CLD_EXITED;
 1141                         status >>= 8;
 1142                 } else {
 1143                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
 1144                         status &= 0x7f;
 1145                 }
 1146                 retval = put_user((short)why, &infop->si_code);
 1147                 if (!retval)
 1148                         retval = put_user(status, &infop->si_status);
 1149         }
 1150         if (!retval && infop)
 1151                 retval = put_user(pid, &infop->si_pid);
 1152         if (!retval && infop)
 1153                 retval = put_user(uid, &infop->si_uid);
 1154         if (!retval)
 1155                 retval = pid;
 1156 
 1157         if (traced) {
 1158                 write_lock_irq(&tasklist_lock);
 1159                 /* We dropped tasklist, ptracer could die and untrace */
 1160                 ptrace_unlink(p);
 1161                 /*
 1162                  * If this is not a sub-thread, notify the parent.
 1163                  * If parent wants a zombie, don't release it now.
 1164                  */
 1165                 if (thread_group_leader(p) &&
 1166                     !do_notify_parent(p, p->exit_signal)) {
 1167                         p->exit_state = EXIT_ZOMBIE;
 1168                         p = NULL;
 1169                 }
 1170                 write_unlock_irq(&tasklist_lock);
 1171         }
 1172         if (p != NULL)
 1173                 release_task(p);
 1174 
 1175         return retval;
 1176 }
 1177 
 1178 static int *task_stopped_code(struct task_struct *p, bool ptrace)
 1179 {
 1180         if (ptrace) {
 1181                 if (task_is_stopped_or_traced(p) &&
 1182                     !(p->jobctl & JOBCTL_LISTENING))
 1183                         return &p->exit_code;
 1184         } else {
 1185                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
 1186                         return &p->signal->group_exit_code;
 1187         }
 1188         return NULL;
 1189 }
 1190 
 1191 /**
 1192  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
 1193  * @wo: wait options
 1194  * @ptrace: is the wait for ptrace
 1195  * @p: task to wait for
 1196  *
 1197  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
 1198  *
 1199  * CONTEXT:
 1200  * read_lock(&tasklist_lock), which is released if return value is
 1201  * non-zero.  Also, grabs and releases @p->sighand->siglock.
 1202  *
 1203  * RETURNS:
 1204  * 0 if wait condition didn't exist and search for other wait conditions
 1205  * should continue.  Non-zero return, -errno on failure and @p's pid on
 1206  * success, implies that tasklist_lock is released and wait condition
 1207  * search should terminate.
 1208  */
 1209 static int wait_task_stopped(struct wait_opts *wo,
 1210                                 int ptrace, struct task_struct *p)
 1211 {
 1212         struct siginfo __user *infop;
 1213         int retval, exit_code, *p_code, why;
 1214         uid_t uid = 0; /* unneeded, required by compiler */
 1215         pid_t pid;
 1216 
 1217         /*
 1218          * Traditionally we see ptrace'd stopped tasks regardless of options.
 1219          */
 1220         if (!ptrace && !(wo->wo_flags & WUNTRACED))
 1221                 return 0;
 1222 
 1223         if (!task_stopped_code(p, ptrace))
 1224                 return 0;
 1225 
 1226         exit_code = 0;
 1227         spin_lock_irq(&p->sighand->siglock);
 1228 
 1229         p_code = task_stopped_code(p, ptrace);
 1230         if (unlikely(!p_code))
 1231                 goto unlock_sig;
 1232 
 1233         exit_code = *p_code;
 1234         if (!exit_code)
 1235                 goto unlock_sig;
 1236 
 1237         if (!unlikely(wo->wo_flags & WNOWAIT))
 1238                 *p_code = 0;
 1239 
 1240         uid = from_kuid_munged(current_user_ns(), task_uid(p));
 1241 unlock_sig:
 1242         spin_unlock_irq(&p->sighand->siglock);
 1243         if (!exit_code)
 1244                 return 0;
 1245 
 1246         /*
 1247          * Now we are pretty sure this task is interesting.
 1248          * Make sure it doesn't get reaped out from under us while we
 1249          * give up the lock and then examine it below.  We don't want to
 1250          * keep holding onto the tasklist_lock while we call getrusage and
 1251          * possibly take page faults for user memory.
 1252          */
 1253         get_task_struct(p);
 1254         pid = task_pid_vnr(p);
 1255         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
 1256         read_unlock(&tasklist_lock);
 1257 
 1258         if (unlikely(wo->wo_flags & WNOWAIT))
 1259                 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
 1260 
 1261         retval = wo->wo_rusage
 1262                 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
 1263         if (!retval && wo->wo_stat)
 1264                 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
 1265 
 1266         infop = wo->wo_info;
 1267         if (!retval && infop)
 1268                 retval = put_user(SIGCHLD, &infop->si_signo);
 1269         if (!retval && infop)
 1270                 retval = put_user(0, &infop->si_errno);
 1271         if (!retval && infop)
 1272                 retval = put_user((short)why, &infop->si_code);
 1273         if (!retval && infop)
 1274                 retval = put_user(exit_code, &infop->si_status);
 1275         if (!retval && infop)
 1276                 retval = put_user(pid, &infop->si_pid);
 1277         if (!retval && infop)
 1278                 retval = put_user(uid, &infop->si_uid);
 1279         if (!retval)
 1280                 retval = pid;
 1281         put_task_struct(p);
 1282 
 1283         BUG_ON(!retval);
 1284         return retval;
 1285 }
 1286 
 1287 /*
 1288  * Handle do_wait work for one task in a live, non-stopped state.
 1289  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 1290  * the lock and this task is uninteresting.  If we return nonzero, we have
 1291  * released the lock and the system call should return.
 1292  */
 1293 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
 1294 {
 1295         int retval;
 1296         pid_t pid;
 1297         uid_t uid;
 1298 
 1299         if (!unlikely(wo->wo_flags & WCONTINUED))
 1300                 return 0;
 1301 
 1302         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
 1303                 return 0;
 1304 
 1305         spin_lock_irq(&p->sighand->siglock);
 1306         /* Re-check with the lock held.  */
 1307         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
 1308                 spin_unlock_irq(&p->sighand->siglock);
 1309                 return 0;
 1310         }
 1311         if (!unlikely(wo->wo_flags & WNOWAIT))
 1312                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
 1313         uid = from_kuid_munged(current_user_ns(), task_uid(p));
 1314         spin_unlock_irq(&p->sighand->siglock);
 1315 
 1316         pid = task_pid_vnr(p);
 1317         get_task_struct(p);
 1318         read_unlock(&tasklist_lock);
 1319 
 1320         if (!wo->wo_info) {
 1321                 retval = wo->wo_rusage
 1322                         ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
 1323                 put_task_struct(p);
 1324                 if (!retval && wo->wo_stat)
 1325                         retval = put_user(0xffff, wo->wo_stat);
 1326                 if (!retval)
 1327                         retval = pid;
 1328         } else {
 1329                 retval = wait_noreap_copyout(wo, p, pid, uid,
 1330                                              CLD_CONTINUED, SIGCONT);
 1331                 BUG_ON(retval == 0);
 1332         }
 1333 
 1334         return retval;
 1335 }
 1336 
 1337 /*
 1338  * Consider @p for a wait by @parent.
 1339  *
 1340  * -ECHILD should be in ->notask_error before the first call.
 1341  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
 1342  * Returns zero if the search for a child should continue;
 1343  * then ->notask_error is 0 if @p is an eligible child,
 1344  * or another error from security_task_wait(), or still -ECHILD.
 1345  */
 1346 static int wait_consider_task(struct wait_opts *wo, int ptrace,
 1347                                 struct task_struct *p)
 1348 {
 1349         int ret = eligible_child(wo, p);
 1350         if (!ret)
 1351                 return ret;
 1352 
 1353         ret = security_task_wait(p);
 1354         if (unlikely(ret < 0)) {
 1355                 /*
 1356                  * If we have not yet seen any eligible child,
 1357                  * then let this error code replace -ECHILD.
 1358                  * A permission error will give the user a clue
 1359                  * to look for security policy problems, rather
 1360                  * than for mysterious wait bugs.
 1361                  */
 1362                 if (wo->notask_error)
 1363                         wo->notask_error = ret;
 1364                 return 0;
 1365         }
 1366 
 1367         /* dead body doesn't have much to contribute */
 1368         if (unlikely(p->exit_state == EXIT_DEAD)) {
 1369                 /*
 1370                  * But do not ignore this task until the tracer does
 1371                  * wait_task_zombie()->do_notify_parent().
 1372                  */
 1373                 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
 1374                         wo->notask_error = 0;
 1375                 return 0;
 1376         }
 1377 
 1378         /* slay zombie? */
 1379         if (p->exit_state == EXIT_ZOMBIE) {
 1380                 /*
 1381                  * A zombie ptracee is only visible to its ptracer.
 1382                  * Notification and reaping will be cascaded to the real
 1383                  * parent when the ptracer detaches.
 1384                  */
 1385                 if (likely(!ptrace) && unlikely(p->ptrace)) {
 1386                         /* it will become visible, clear notask_error */
 1387                         wo->notask_error = 0;
 1388                         return 0;
 1389                 }
 1390 
 1391                 /* we don't reap group leaders with subthreads */
 1392                 if (!delay_group_leader(p))
 1393                         return wait_task_zombie(wo, p);
 1394 
 1395                 /*
 1396                  * Allow access to stopped/continued state via zombie by
 1397                  * falling through.  Clearing of notask_error is complex.
 1398                  *
 1399                  * When !@ptrace:
 1400                  *
 1401                  * If WEXITED is set, notask_error should naturally be
 1402                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
 1403                  * so, if there are live subthreads, there are events to
 1404                  * wait for.  If all subthreads are dead, it's still safe
 1405                  * to clear - this function will be called again in finite
 1406                  * amount time once all the subthreads are released and
 1407                  * will then return without clearing.
 1408                  *
 1409                  * When @ptrace:
 1410                  *
 1411                  * Stopped state is per-task and thus can't change once the
 1412                  * target task dies.  Only continued and exited can happen.
 1413                  * Clear notask_error if WCONTINUED | WEXITED.
 1414                  */
 1415                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
 1416                         wo->notask_error = 0;
 1417         } else {
 1418                 /*
 1419                  * If @p is ptraced by a task in its real parent's group,
 1420                  * hide group stop/continued state when looking at @p as
 1421                  * the real parent; otherwise, a single stop can be
 1422                  * reported twice as group and ptrace stops.
 1423                  *
 1424                  * If a ptracer wants to distinguish the two events for its
 1425                  * own children, it should create a separate process which
 1426                  * takes the role of real parent.
 1427                  */
 1428                 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
 1429                         return 0;
 1430 
 1431                 /*
 1432                  * @p is alive and it's gonna stop, continue or exit, so
 1433                  * there always is something to wait for.
 1434                  */
 1435                 wo->notask_error = 0;
 1436         }
 1437 
 1438         /*
 1439          * Wait for stopped.  Depending on @ptrace, different stopped state
 1440          * is used and the two don't interact with each other.
 1441          */
 1442         ret = wait_task_stopped(wo, ptrace, p);
 1443         if (ret)
 1444                 return ret;
 1445 
 1446         /*
 1447          * Wait for continued.  There's only one continued state and the
 1448          * ptracer can consume it which can confuse the real parent.  Don't
 1449          * use WCONTINUED from ptracer.  You don't need or want it.
 1450          */
 1451         return wait_task_continued(wo, p);
 1452 }
 1453 
 1454 /*
 1455  * Do the work of do_wait() for one thread in the group, @tsk.
 1456  *
 1457  * -ECHILD should be in ->notask_error before the first call.
 1458  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
 1459  * Returns zero if the search for a child should continue; then
 1460  * ->notask_error is 0 if there were any eligible children,
 1461  * or another error from security_task_wait(), or still -ECHILD.
 1462  */
 1463 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
 1464 {
 1465         struct task_struct *p;
 1466 
 1467         list_for_each_entry(p, &tsk->children, sibling) {
 1468                 int ret = wait_consider_task(wo, 0, p);
 1469                 if (ret)
 1470                         return ret;
 1471         }
 1472 
 1473         return 0;
 1474 }
 1475 
 1476 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
 1477 {
 1478         struct task_struct *p;
 1479 
 1480         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
 1481                 int ret = wait_consider_task(wo, 1, p);
 1482                 if (ret)
 1483                         return ret;
 1484         }
 1485 
 1486         return 0;
 1487 }
 1488 
 1489 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
 1490                                 int sync, void *key)
 1491 {
 1492         struct wait_opts *wo = container_of(wait, struct wait_opts,
 1493                                                 child_wait);
 1494         struct task_struct *p = key;
 1495 
 1496         if (!eligible_pid(wo, p))
 1497                 return 0;
 1498 
 1499         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
 1500                 return 0;
 1501 
 1502         return default_wake_function(wait, mode, sync, key);
 1503 }
 1504 
 1505 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
 1506 {
 1507         __wake_up_sync_key(&parent->signal->wait_chldexit,
 1508                                 TASK_INTERRUPTIBLE, 1, p);
 1509 }
 1510 
 1511 static long do_wait(struct wait_opts *wo)
 1512 {
 1513         struct task_struct *tsk;
 1514         int retval;
 1515 
 1516         trace_sched_process_wait(wo->wo_pid);
 1517 
 1518         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
 1519         wo->child_wait.private = current;
 1520         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
 1521 repeat:
 1522         /*
 1523          * If there is nothing that can match our critiera just get out.
 1524          * We will clear ->notask_error to zero if we see any child that
 1525          * might later match our criteria, even if we are not able to reap
 1526          * it yet.
 1527          */
 1528         wo->notask_error = -ECHILD;
 1529         if ((wo->wo_type < PIDTYPE_MAX) &&
 1530            (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
 1531                 goto notask;
 1532 
 1533         set_current_state(TASK_INTERRUPTIBLE);
 1534         read_lock(&tasklist_lock);
 1535         tsk = current;
 1536         do {
 1537                 retval = do_wait_thread(wo, tsk);
 1538                 if (retval)
 1539                         goto end;
 1540 
 1541                 retval = ptrace_do_wait(wo, tsk);
 1542                 if (retval)
 1543                         goto end;
 1544 
 1545                 if (wo->wo_flags & __WNOTHREAD)
 1546                         break;
 1547         } while_each_thread(current, tsk);
 1548         read_unlock(&tasklist_lock);
 1549 
 1550 notask:
 1551         retval = wo->notask_error;
 1552         if (!retval && !(wo->wo_flags & WNOHANG)) {
 1553                 retval = -ERESTARTSYS;
 1554                 if (!signal_pending(current)) {
 1555                         schedule();
 1556                         goto repeat;
 1557                 }
 1558         }
 1559 end:
 1560         __set_current_state(TASK_RUNNING);
 1561         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
 1562         return retval;
 1563 }
 1564 
 1565 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
 1566                 infop, int, options, struct rusage __user *, ru)
 1567 {
 1568         struct wait_opts wo;
 1569         struct pid *pid = NULL;
 1570         enum pid_type type;
 1571         long ret;
 1572 
 1573         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
 1574                 return -EINVAL;
 1575         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
 1576                 return -EINVAL;
 1577 
 1578         switch (which) {
 1579         case P_ALL:
 1580                 type = PIDTYPE_MAX;
 1581                 break;
 1582         case P_PID:
 1583                 type = PIDTYPE_PID;
 1584                 if (upid <= 0)
 1585                         return -EINVAL;
 1586                 break;
 1587         case P_PGID:
 1588                 type = PIDTYPE_PGID;
 1589                 if (upid <= 0)
 1590                         return -EINVAL;
 1591                 break;
 1592         default:
 1593                 return -EINVAL;
 1594         }
 1595 
 1596         if (type < PIDTYPE_MAX)
 1597                 pid = find_get_pid(upid);
 1598 
 1599         wo.wo_type      = type;
 1600         wo.wo_pid       = pid;
 1601         wo.wo_flags     = options;
 1602         wo.wo_info      = infop;
 1603         wo.wo_stat      = NULL;
 1604         wo.wo_rusage    = ru;
 1605         ret = do_wait(&wo);
 1606 
 1607         if (ret > 0) {
 1608                 ret = 0;
 1609         } else if (infop) {
 1610                 /*
 1611                  * For a WNOHANG return, clear out all the fields
 1612                  * we would set so the user can easily tell the
 1613                  * difference.
 1614                  */
 1615                 if (!ret)
 1616                         ret = put_user(0, &infop->si_signo);
 1617                 if (!ret)
 1618                         ret = put_user(0, &infop->si_errno);
 1619                 if (!ret)
 1620                         ret = put_user(0, &infop->si_code);
 1621                 if (!ret)
 1622                         ret = put_user(0, &infop->si_pid);
 1623                 if (!ret)
 1624                         ret = put_user(0, &infop->si_uid);
 1625                 if (!ret)
 1626                         ret = put_user(0, &infop->si_status);
 1627         }
 1628 
 1629         put_pid(pid);
 1630 
 1631         /* avoid REGPARM breakage on x86: */
 1632         asmlinkage_protect(5, ret, which, upid, infop, options, ru);
 1633         return ret;
 1634 }
 1635 
 1636 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
 1637                 int, options, struct rusage __user *, ru)
 1638 {
 1639         struct wait_opts wo;
 1640         struct pid *pid = NULL;
 1641         enum pid_type type;
 1642         long ret;
 1643 
 1644         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
 1645                         __WNOTHREAD|__WCLONE|__WALL))
 1646                 return -EINVAL;
 1647 
 1648         if (upid == -1)
 1649                 type = PIDTYPE_MAX;
 1650         else if (upid < 0) {
 1651                 type = PIDTYPE_PGID;
 1652                 pid = find_get_pid(-upid);
 1653         } else if (upid == 0) {
 1654                 type = PIDTYPE_PGID;
 1655                 pid = get_task_pid(current, PIDTYPE_PGID);
 1656         } else /* upid > 0 */ {
 1657                 type = PIDTYPE_PID;
 1658                 pid = find_get_pid(upid);
 1659         }
 1660 
 1661         wo.wo_type      = type;
 1662         wo.wo_pid       = pid;
 1663         wo.wo_flags     = options | WEXITED;
 1664         wo.wo_info      = NULL;
 1665         wo.wo_stat      = stat_addr;
 1666         wo.wo_rusage    = ru;
 1667         ret = do_wait(&wo);
 1668         put_pid(pid);
 1669 
 1670         /* avoid REGPARM breakage on x86: */
 1671         asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
 1672         return ret;
 1673 }
 1674 
 1675 #ifdef __ARCH_WANT_SYS_WAITPID
 1676 
 1677 /*
 1678  * sys_waitpid() remains for compatibility. waitpid() should be
 1679  * implemented by calling sys_wait4() from libc.a.
 1680  */
 1681 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
 1682 {
 1683         return sys_wait4(pid, stat_addr, options, NULL);
 1684 }
 1685 
 1686 #endif

Cache object: 6c073923713a5ccb5c817dec8fdbb9be


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.