The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kernel/futex.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  *  Fast Userspace Mutexes (which I call "Futexes!").
    3  *  (C) Rusty Russell, IBM 2002
    4  *
    5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
    6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
    7  *
    8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
    9  *  (C) Copyright 2003, 2004 Jamie Lokier
   10  *
   11  *  Robust futex support started by Ingo Molnar
   12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
   13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
   14  *
   15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
   16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
   18  *
   19  *  PRIVATE futexes by Eric Dumazet
   20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
   21  *
   22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
   23  *  Copyright (C) IBM Corporation, 2009
   24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
   25  *
   26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
   27  *  enough at me, Linus for the original (flawed) idea, Matthew
   28  *  Kirkwood for proof-of-concept implementation.
   29  *
   30  *  "The futexes are also cursed."
   31  *  "But they come in a choice of three flavours!"
   32  *
   33  *  This program is free software; you can redistribute it and/or modify
   34  *  it under the terms of the GNU General Public License as published by
   35  *  the Free Software Foundation; either version 2 of the License, or
   36  *  (at your option) any later version.
   37  *
   38  *  This program is distributed in the hope that it will be useful,
   39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
   40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   41  *  GNU General Public License for more details.
   42  *
   43  *  You should have received a copy of the GNU General Public License
   44  *  along with this program; if not, write to the Free Software
   45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
   46  */
   47 #include <linux/slab.h>
   48 #include <linux/poll.h>
   49 #include <linux/fs.h>
   50 #include <linux/file.h>
   51 #include <linux/jhash.h>
   52 #include <linux/init.h>
   53 #include <linux/futex.h>
   54 #include <linux/mount.h>
   55 #include <linux/pagemap.h>
   56 #include <linux/syscalls.h>
   57 #include <linux/signal.h>
   58 #include <linux/export.h>
   59 #include <linux/magic.h>
   60 #include <linux/pid.h>
   61 #include <linux/nsproxy.h>
   62 #include <linux/ptrace.h>
   63 
   64 #include <asm/futex.h>
   65 
   66 #include "rtmutex_common.h"
   67 
   68 int __read_mostly futex_cmpxchg_enabled;
   69 
   70 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
   71 
   72 /*
   73  * Futex flags used to encode options to functions and preserve them across
   74  * restarts.
   75  */
   76 #define FLAGS_SHARED            0x01
   77 #define FLAGS_CLOCKRT           0x02
   78 #define FLAGS_HAS_TIMEOUT       0x04
   79 
   80 /*
   81  * Priority Inheritance state:
   82  */
   83 struct futex_pi_state {
   84         /*
   85          * list of 'owned' pi_state instances - these have to be
   86          * cleaned up in do_exit() if the task exits prematurely:
   87          */
   88         struct list_head list;
   89 
   90         /*
   91          * The PI object:
   92          */
   93         struct rt_mutex pi_mutex;
   94 
   95         struct task_struct *owner;
   96         atomic_t refcount;
   97 
   98         union futex_key key;
   99 };
  100 
  101 /**
  102  * struct futex_q - The hashed futex queue entry, one per waiting task
  103  * @list:               priority-sorted list of tasks waiting on this futex
  104  * @task:               the task waiting on the futex
  105  * @lock_ptr:           the hash bucket lock
  106  * @key:                the key the futex is hashed on
  107  * @pi_state:           optional priority inheritance state
  108  * @rt_waiter:          rt_waiter storage for use with requeue_pi
  109  * @requeue_pi_key:     the requeue_pi target futex key
  110  * @bitset:             bitset for the optional bitmasked wakeup
  111  *
  112  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
  113  * we can wake only the relevant ones (hashed queues may be shared).
  114  *
  115  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  116  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  117  * The order of wakeup is always to make the first condition true, then
  118  * the second.
  119  *
  120  * PI futexes are typically woken before they are removed from the hash list via
  121  * the rt_mutex code. See unqueue_me_pi().
  122  */
  123 struct futex_q {
  124         struct plist_node list;
  125 
  126         struct task_struct *task;
  127         spinlock_t *lock_ptr;
  128         union futex_key key;
  129         struct futex_pi_state *pi_state;
  130         struct rt_mutex_waiter *rt_waiter;
  131         union futex_key *requeue_pi_key;
  132         u32 bitset;
  133 };
  134 
  135 static const struct futex_q futex_q_init = {
  136         /* list gets initialized in queue_me()*/
  137         .key = FUTEX_KEY_INIT,
  138         .bitset = FUTEX_BITSET_MATCH_ANY
  139 };
  140 
  141 /*
  142  * Hash buckets are shared by all the futex_keys that hash to the same
  143  * location.  Each key may have multiple futex_q structures, one for each task
  144  * waiting on a futex.
  145  */
  146 struct futex_hash_bucket {
  147         spinlock_t lock;
  148         struct plist_head chain;
  149 };
  150 
  151 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
  152 
  153 /*
  154  * We hash on the keys returned from get_futex_key (see below).
  155  */
  156 static struct futex_hash_bucket *hash_futex(union futex_key *key)
  157 {
  158         u32 hash = jhash2((u32*)&key->both.word,
  159                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  160                           key->both.offset);
  161         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
  162 }
  163 
  164 /*
  165  * Return 1 if two futex_keys are equal, 0 otherwise.
  166  */
  167 static inline int match_futex(union futex_key *key1, union futex_key *key2)
  168 {
  169         return (key1 && key2
  170                 && key1->both.word == key2->both.word
  171                 && key1->both.ptr == key2->both.ptr
  172                 && key1->both.offset == key2->both.offset);
  173 }
  174 
  175 /*
  176  * Take a reference to the resource addressed by a key.
  177  * Can be called while holding spinlocks.
  178  *
  179  */
  180 static void get_futex_key_refs(union futex_key *key)
  181 {
  182         if (!key->both.ptr)
  183                 return;
  184 
  185         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  186         case FUT_OFF_INODE:
  187                 ihold(key->shared.inode);
  188                 break;
  189         case FUT_OFF_MMSHARED:
  190                 atomic_inc(&key->private.mm->mm_count);
  191                 break;
  192         }
  193 }
  194 
  195 /*
  196  * Drop a reference to the resource addressed by a key.
  197  * The hash bucket spinlock must not be held.
  198  */
  199 static void drop_futex_key_refs(union futex_key *key)
  200 {
  201         if (!key->both.ptr) {
  202                 /* If we're here then we tried to put a key we failed to get */
  203                 WARN_ON_ONCE(1);
  204                 return;
  205         }
  206 
  207         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  208         case FUT_OFF_INODE:
  209                 iput(key->shared.inode);
  210                 break;
  211         case FUT_OFF_MMSHARED:
  212                 mmdrop(key->private.mm);
  213                 break;
  214         }
  215 }
  216 
  217 /**
  218  * get_futex_key() - Get parameters which are the keys for a futex
  219  * @uaddr:      virtual address of the futex
  220  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  221  * @key:        address where result is stored.
  222  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
  223  *              VERIFY_WRITE)
  224  *
  225  * Returns a negative error code or 0
  226  * The key words are stored in *key on success.
  227  *
  228  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
  229  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
  230  * We can usually work out the index without swapping in the page.
  231  *
  232  * lock_page() might sleep, the caller should not hold a spinlock.
  233  */
  234 static int
  235 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
  236 {
  237         unsigned long address = (unsigned long)uaddr;
  238         struct mm_struct *mm = current->mm;
  239         struct page *page, *page_head;
  240         int err, ro = 0;
  241 
  242         /*
  243          * The futex address must be "naturally" aligned.
  244          */
  245         key->both.offset = address % PAGE_SIZE;
  246         if (unlikely((address % sizeof(u32)) != 0))
  247                 return -EINVAL;
  248         address -= key->both.offset;
  249 
  250         /*
  251          * PROCESS_PRIVATE futexes are fast.
  252          * As the mm cannot disappear under us and the 'key' only needs
  253          * virtual address, we dont even have to find the underlying vma.
  254          * Note : We do have to check 'uaddr' is a valid user address,
  255          *        but access_ok() should be faster than find_vma()
  256          */
  257         if (!fshared) {
  258                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
  259                         return -EFAULT;
  260                 key->private.mm = mm;
  261                 key->private.address = address;
  262                 get_futex_key_refs(key);
  263                 return 0;
  264         }
  265 
  266 again:
  267         err = get_user_pages_fast(address, 1, 1, &page);
  268         /*
  269          * If write access is not required (eg. FUTEX_WAIT), try
  270          * and get read-only access.
  271          */
  272         if (err == -EFAULT && rw == VERIFY_READ) {
  273                 err = get_user_pages_fast(address, 1, 0, &page);
  274                 ro = 1;
  275         }
  276         if (err < 0)
  277                 return err;
  278         else
  279                 err = 0;
  280 
  281 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  282         page_head = page;
  283         if (unlikely(PageTail(page))) {
  284                 put_page(page);
  285                 /* serialize against __split_huge_page_splitting() */
  286                 local_irq_disable();
  287                 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
  288                         page_head = compound_head(page);
  289                         /*
  290                          * page_head is valid pointer but we must pin
  291                          * it before taking the PG_lock and/or
  292                          * PG_compound_lock. The moment we re-enable
  293                          * irqs __split_huge_page_splitting() can
  294                          * return and the head page can be freed from
  295                          * under us. We can't take the PG_lock and/or
  296                          * PG_compound_lock on a page that could be
  297                          * freed from under us.
  298                          */
  299                         if (page != page_head) {
  300                                 get_page(page_head);
  301                                 put_page(page);
  302                         }
  303                         local_irq_enable();
  304                 } else {
  305                         local_irq_enable();
  306                         goto again;
  307                 }
  308         }
  309 #else
  310         page_head = compound_head(page);
  311         if (page != page_head) {
  312                 get_page(page_head);
  313                 put_page(page);
  314         }
  315 #endif
  316 
  317         lock_page(page_head);
  318 
  319         /*
  320          * If page_head->mapping is NULL, then it cannot be a PageAnon
  321          * page; but it might be the ZERO_PAGE or in the gate area or
  322          * in a special mapping (all cases which we are happy to fail);
  323          * or it may have been a good file page when get_user_pages_fast
  324          * found it, but truncated or holepunched or subjected to
  325          * invalidate_complete_page2 before we got the page lock (also
  326          * cases which we are happy to fail).  And we hold a reference,
  327          * so refcount care in invalidate_complete_page's remove_mapping
  328          * prevents drop_caches from setting mapping to NULL beneath us.
  329          *
  330          * The case we do have to guard against is when memory pressure made
  331          * shmem_writepage move it from filecache to swapcache beneath us:
  332          * an unlikely race, but we do need to retry for page_head->mapping.
  333          */
  334         if (!page_head->mapping) {
  335                 int shmem_swizzled = PageSwapCache(page_head);
  336                 unlock_page(page_head);
  337                 put_page(page_head);
  338                 if (shmem_swizzled)
  339                         goto again;
  340                 return -EFAULT;
  341         }
  342 
  343         /*
  344          * Private mappings are handled in a simple way.
  345          *
  346          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  347          * it's a read-only handle, it's expected that futexes attach to
  348          * the object not the particular process.
  349          */
  350         if (PageAnon(page_head)) {
  351                 /*
  352                  * A RO anonymous page will never change and thus doesn't make
  353                  * sense for futex operations.
  354                  */
  355                 if (ro) {
  356                         err = -EFAULT;
  357                         goto out;
  358                 }
  359 
  360                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  361                 key->private.mm = mm;
  362                 key->private.address = address;
  363         } else {
  364                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  365                 key->shared.inode = page_head->mapping->host;
  366                 key->shared.pgoff = page_head->index;
  367         }
  368 
  369         get_futex_key_refs(key);
  370 
  371 out:
  372         unlock_page(page_head);
  373         put_page(page_head);
  374         return err;
  375 }
  376 
  377 static inline void put_futex_key(union futex_key *key)
  378 {
  379         drop_futex_key_refs(key);
  380 }
  381 
  382 /**
  383  * fault_in_user_writeable() - Fault in user address and verify RW access
  384  * @uaddr:      pointer to faulting user space address
  385  *
  386  * Slow path to fixup the fault we just took in the atomic write
  387  * access to @uaddr.
  388  *
  389  * We have no generic implementation of a non-destructive write to the
  390  * user address. We know that we faulted in the atomic pagefault
  391  * disabled section so we can as well avoid the #PF overhead by
  392  * calling get_user_pages() right away.
  393  */
  394 static int fault_in_user_writeable(u32 __user *uaddr)
  395 {
  396         struct mm_struct *mm = current->mm;
  397         int ret;
  398 
  399         down_read(&mm->mmap_sem);
  400         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
  401                                FAULT_FLAG_WRITE);
  402         up_read(&mm->mmap_sem);
  403 
  404         return ret < 0 ? ret : 0;
  405 }
  406 
  407 /**
  408  * futex_top_waiter() - Return the highest priority waiter on a futex
  409  * @hb:         the hash bucket the futex_q's reside in
  410  * @key:        the futex key (to distinguish it from other futex futex_q's)
  411  *
  412  * Must be called with the hb lock held.
  413  */
  414 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
  415                                         union futex_key *key)
  416 {
  417         struct futex_q *this;
  418 
  419         plist_for_each_entry(this, &hb->chain, list) {
  420                 if (match_futex(&this->key, key))
  421                         return this;
  422         }
  423         return NULL;
  424 }
  425 
  426 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
  427                                       u32 uval, u32 newval)
  428 {
  429         int ret;
  430 
  431         pagefault_disable();
  432         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
  433         pagefault_enable();
  434 
  435         return ret;
  436 }
  437 
  438 static int get_futex_value_locked(u32 *dest, u32 __user *from)
  439 {
  440         int ret;
  441 
  442         pagefault_disable();
  443         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
  444         pagefault_enable();
  445 
  446         return ret ? -EFAULT : 0;
  447 }
  448 
  449 
  450 /*
  451  * PI code:
  452  */
  453 static int refill_pi_state_cache(void)
  454 {
  455         struct futex_pi_state *pi_state;
  456 
  457         if (likely(current->pi_state_cache))
  458                 return 0;
  459 
  460         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  461 
  462         if (!pi_state)
  463                 return -ENOMEM;
  464 
  465         INIT_LIST_HEAD(&pi_state->list);
  466         /* pi_mutex gets initialized later */
  467         pi_state->owner = NULL;
  468         atomic_set(&pi_state->refcount, 1);
  469         pi_state->key = FUTEX_KEY_INIT;
  470 
  471         current->pi_state_cache = pi_state;
  472 
  473         return 0;
  474 }
  475 
  476 static struct futex_pi_state * alloc_pi_state(void)
  477 {
  478         struct futex_pi_state *pi_state = current->pi_state_cache;
  479 
  480         WARN_ON(!pi_state);
  481         current->pi_state_cache = NULL;
  482 
  483         return pi_state;
  484 }
  485 
  486 static void free_pi_state(struct futex_pi_state *pi_state)
  487 {
  488         if (!atomic_dec_and_test(&pi_state->refcount))
  489                 return;
  490 
  491         /*
  492          * If pi_state->owner is NULL, the owner is most probably dying
  493          * and has cleaned up the pi_state already
  494          */
  495         if (pi_state->owner) {
  496                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
  497                 list_del_init(&pi_state->list);
  498                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  499 
  500                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  501         }
  502 
  503         if (current->pi_state_cache)
  504                 kfree(pi_state);
  505         else {
  506                 /*
  507                  * pi_state->list is already empty.
  508                  * clear pi_state->owner.
  509                  * refcount is at 0 - put it back to 1.
  510                  */
  511                 pi_state->owner = NULL;
  512                 atomic_set(&pi_state->refcount, 1);
  513                 current->pi_state_cache = pi_state;
  514         }
  515 }
  516 
  517 /*
  518  * Look up the task based on what TID userspace gave us.
  519  * We dont trust it.
  520  */
  521 static struct task_struct * futex_find_get_task(pid_t pid)
  522 {
  523         struct task_struct *p;
  524 
  525         rcu_read_lock();
  526         p = find_task_by_vpid(pid);
  527         if (p)
  528                 get_task_struct(p);
  529 
  530         rcu_read_unlock();
  531 
  532         return p;
  533 }
  534 
  535 /*
  536  * This task is holding PI mutexes at exit time => bad.
  537  * Kernel cleans up PI-state, but userspace is likely hosed.
  538  * (Robust-futex cleanup is separate and might save the day for userspace.)
  539  */
  540 void exit_pi_state_list(struct task_struct *curr)
  541 {
  542         struct list_head *next, *head = &curr->pi_state_list;
  543         struct futex_pi_state *pi_state;
  544         struct futex_hash_bucket *hb;
  545         union futex_key key = FUTEX_KEY_INIT;
  546 
  547         if (!futex_cmpxchg_enabled)
  548                 return;
  549         /*
  550          * We are a ZOMBIE and nobody can enqueue itself on
  551          * pi_state_list anymore, but we have to be careful
  552          * versus waiters unqueueing themselves:
  553          */
  554         raw_spin_lock_irq(&curr->pi_lock);
  555         while (!list_empty(head)) {
  556 
  557                 next = head->next;
  558                 pi_state = list_entry(next, struct futex_pi_state, list);
  559                 key = pi_state->key;
  560                 hb = hash_futex(&key);
  561                 raw_spin_unlock_irq(&curr->pi_lock);
  562 
  563                 spin_lock(&hb->lock);
  564 
  565                 raw_spin_lock_irq(&curr->pi_lock);
  566                 /*
  567                  * We dropped the pi-lock, so re-check whether this
  568                  * task still owns the PI-state:
  569                  */
  570                 if (head->next != next) {
  571                         spin_unlock(&hb->lock);
  572                         continue;
  573                 }
  574 
  575                 WARN_ON(pi_state->owner != curr);
  576                 WARN_ON(list_empty(&pi_state->list));
  577                 list_del_init(&pi_state->list);
  578                 pi_state->owner = NULL;
  579                 raw_spin_unlock_irq(&curr->pi_lock);
  580 
  581                 rt_mutex_unlock(&pi_state->pi_mutex);
  582 
  583                 spin_unlock(&hb->lock);
  584 
  585                 raw_spin_lock_irq(&curr->pi_lock);
  586         }
  587         raw_spin_unlock_irq(&curr->pi_lock);
  588 }
  589 
  590 static int
  591 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
  592                 union futex_key *key, struct futex_pi_state **ps)
  593 {
  594         struct futex_pi_state *pi_state = NULL;
  595         struct futex_q *this, *next;
  596         struct plist_head *head;
  597         struct task_struct *p;
  598         pid_t pid = uval & FUTEX_TID_MASK;
  599 
  600         head = &hb->chain;
  601 
  602         plist_for_each_entry_safe(this, next, head, list) {
  603                 if (match_futex(&this->key, key)) {
  604                         /*
  605                          * Another waiter already exists - bump up
  606                          * the refcount and return its pi_state:
  607                          */
  608                         pi_state = this->pi_state;
  609                         /*
  610                          * Userspace might have messed up non-PI and PI futexes
  611                          */
  612                         if (unlikely(!pi_state))
  613                                 return -EINVAL;
  614 
  615                         WARN_ON(!atomic_read(&pi_state->refcount));
  616 
  617                         /*
  618                          * When pi_state->owner is NULL then the owner died
  619                          * and another waiter is on the fly. pi_state->owner
  620                          * is fixed up by the task which acquires
  621                          * pi_state->rt_mutex.
  622                          *
  623                          * We do not check for pid == 0 which can happen when
  624                          * the owner died and robust_list_exit() cleared the
  625                          * TID.
  626                          */
  627                         if (pid && pi_state->owner) {
  628                                 /*
  629                                  * Bail out if user space manipulated the
  630                                  * futex value.
  631                                  */
  632                                 if (pid != task_pid_vnr(pi_state->owner))
  633                                         return -EINVAL;
  634                         }
  635 
  636                         atomic_inc(&pi_state->refcount);
  637                         *ps = pi_state;
  638 
  639                         return 0;
  640                 }
  641         }
  642 
  643         /*
  644          * We are the first waiter - try to look up the real owner and attach
  645          * the new pi_state to it, but bail out when TID = 0
  646          */
  647         if (!pid)
  648                 return -ESRCH;
  649         p = futex_find_get_task(pid);
  650         if (!p)
  651                 return -ESRCH;
  652 
  653         /*
  654          * We need to look at the task state flags to figure out,
  655          * whether the task is exiting. To protect against the do_exit
  656          * change of the task flags, we do this protected by
  657          * p->pi_lock:
  658          */
  659         raw_spin_lock_irq(&p->pi_lock);
  660         if (unlikely(p->flags & PF_EXITING)) {
  661                 /*
  662                  * The task is on the way out. When PF_EXITPIDONE is
  663                  * set, we know that the task has finished the
  664                  * cleanup:
  665                  */
  666                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  667 
  668                 raw_spin_unlock_irq(&p->pi_lock);
  669                 put_task_struct(p);
  670                 return ret;
  671         }
  672 
  673         pi_state = alloc_pi_state();
  674 
  675         /*
  676          * Initialize the pi_mutex in locked state and make 'p'
  677          * the owner of it:
  678          */
  679         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  680 
  681         /* Store the key for possible exit cleanups: */
  682         pi_state->key = *key;
  683 
  684         WARN_ON(!list_empty(&pi_state->list));
  685         list_add(&pi_state->list, &p->pi_state_list);
  686         pi_state->owner = p;
  687         raw_spin_unlock_irq(&p->pi_lock);
  688 
  689         put_task_struct(p);
  690 
  691         *ps = pi_state;
  692 
  693         return 0;
  694 }
  695 
  696 /**
  697  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
  698  * @uaddr:              the pi futex user address
  699  * @hb:                 the pi futex hash bucket
  700  * @key:                the futex key associated with uaddr and hb
  701  * @ps:                 the pi_state pointer where we store the result of the
  702  *                      lookup
  703  * @task:               the task to perform the atomic lock work for.  This will
  704  *                      be "current" except in the case of requeue pi.
  705  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
  706  *
  707  * Returns:
  708  *  0 - ready to wait
  709  *  1 - acquired the lock
  710  * <0 - error
  711  *
  712  * The hb->lock and futex_key refs shall be held by the caller.
  713  */
  714 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
  715                                 union futex_key *key,
  716                                 struct futex_pi_state **ps,
  717                                 struct task_struct *task, int set_waiters)
  718 {
  719         int lock_taken, ret, force_take = 0;
  720         u32 uval, newval, curval, vpid = task_pid_vnr(task);
  721 
  722 retry:
  723         ret = lock_taken = 0;
  724 
  725         /*
  726          * To avoid races, we attempt to take the lock here again
  727          * (by doing a 0 -> TID atomic cmpxchg), while holding all
  728          * the locks. It will most likely not succeed.
  729          */
  730         newval = vpid;
  731         if (set_waiters)
  732                 newval |= FUTEX_WAITERS;
  733 
  734         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
  735                 return -EFAULT;
  736 
  737         /*
  738          * Detect deadlocks.
  739          */
  740         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
  741                 return -EDEADLK;
  742 
  743         /*
  744          * Surprise - we got the lock. Just return to userspace:
  745          */
  746         if (unlikely(!curval))
  747                 return 1;
  748 
  749         uval = curval;
  750 
  751         /*
  752          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
  753          * to wake at the next unlock.
  754          */
  755         newval = curval | FUTEX_WAITERS;
  756 
  757         /*
  758          * Should we force take the futex? See below.
  759          */
  760         if (unlikely(force_take)) {
  761                 /*
  762                  * Keep the OWNER_DIED and the WAITERS bit and set the
  763                  * new TID value.
  764                  */
  765                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
  766                 force_take = 0;
  767                 lock_taken = 1;
  768         }
  769 
  770         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
  771                 return -EFAULT;
  772         if (unlikely(curval != uval))
  773                 goto retry;
  774 
  775         /*
  776          * We took the lock due to forced take over.
  777          */
  778         if (unlikely(lock_taken))
  779                 return 1;
  780 
  781         /*
  782          * We dont have the lock. Look up the PI state (or create it if
  783          * we are the first waiter):
  784          */
  785         ret = lookup_pi_state(uval, hb, key, ps);
  786 
  787         if (unlikely(ret)) {
  788                 switch (ret) {
  789                 case -ESRCH:
  790                         /*
  791                          * We failed to find an owner for this
  792                          * futex. So we have no pi_state to block
  793                          * on. This can happen in two cases:
  794                          *
  795                          * 1) The owner died
  796                          * 2) A stale FUTEX_WAITERS bit
  797                          *
  798                          * Re-read the futex value.
  799                          */
  800                         if (get_futex_value_locked(&curval, uaddr))
  801                                 return -EFAULT;
  802 
  803                         /*
  804                          * If the owner died or we have a stale
  805                          * WAITERS bit the owner TID in the user space
  806                          * futex is 0.
  807                          */
  808                         if (!(curval & FUTEX_TID_MASK)) {
  809                                 force_take = 1;
  810                                 goto retry;
  811                         }
  812                 default:
  813                         break;
  814                 }
  815         }
  816 
  817         return ret;
  818 }
  819 
  820 /**
  821  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
  822  * @q:  The futex_q to unqueue
  823  *
  824  * The q->lock_ptr must not be NULL and must be held by the caller.
  825  */
  826 static void __unqueue_futex(struct futex_q *q)
  827 {
  828         struct futex_hash_bucket *hb;
  829 
  830         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
  831             || WARN_ON(plist_node_empty(&q->list)))
  832                 return;
  833 
  834         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
  835         plist_del(&q->list, &hb->chain);
  836 }
  837 
  838 /*
  839  * The hash bucket lock must be held when this is called.
  840  * Afterwards, the futex_q must not be accessed.
  841  */
  842 static void wake_futex(struct futex_q *q)
  843 {
  844         struct task_struct *p = q->task;
  845 
  846         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
  847                 return;
  848 
  849         /*
  850          * We set q->lock_ptr = NULL _before_ we wake up the task. If
  851          * a non-futex wake up happens on another CPU then the task
  852          * might exit and p would dereference a non-existing task
  853          * struct. Prevent this by holding a reference on p across the
  854          * wake up.
  855          */
  856         get_task_struct(p);
  857 
  858         __unqueue_futex(q);
  859         /*
  860          * The waiting task can free the futex_q as soon as
  861          * q->lock_ptr = NULL is written, without taking any locks. A
  862          * memory barrier is required here to prevent the following
  863          * store to lock_ptr from getting ahead of the plist_del.
  864          */
  865         smp_wmb();
  866         q->lock_ptr = NULL;
  867 
  868         wake_up_state(p, TASK_NORMAL);
  869         put_task_struct(p);
  870 }
  871 
  872 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
  873 {
  874         struct task_struct *new_owner;
  875         struct futex_pi_state *pi_state = this->pi_state;
  876         u32 uninitialized_var(curval), newval;
  877 
  878         if (!pi_state)
  879                 return -EINVAL;
  880 
  881         /*
  882          * If current does not own the pi_state then the futex is
  883          * inconsistent and user space fiddled with the futex value.
  884          */
  885         if (pi_state->owner != current)
  886                 return -EINVAL;
  887 
  888         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
  889         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  890 
  891         /*
  892          * It is possible that the next waiter (the one that brought
  893          * this owner to the kernel) timed out and is no longer
  894          * waiting on the lock.
  895          */
  896         if (!new_owner)
  897                 new_owner = this->task;
  898 
  899         /*
  900          * We pass it to the next owner. (The WAITERS bit is always
  901          * kept enabled while there is PI state around. We must also
  902          * preserve the owner died bit.)
  903          */
  904         if (!(uval & FUTEX_OWNER_DIED)) {
  905                 int ret = 0;
  906 
  907                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  908 
  909                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  910                         ret = -EFAULT;
  911                 else if (curval != uval)
  912                         ret = -EINVAL;
  913                 if (ret) {
  914                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  915                         return ret;
  916                 }
  917         }
  918 
  919         raw_spin_lock_irq(&pi_state->owner->pi_lock);
  920         WARN_ON(list_empty(&pi_state->list));
  921         list_del_init(&pi_state->list);
  922         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  923 
  924         raw_spin_lock_irq(&new_owner->pi_lock);
  925         WARN_ON(!list_empty(&pi_state->list));
  926         list_add(&pi_state->list, &new_owner->pi_state_list);
  927         pi_state->owner = new_owner;
  928         raw_spin_unlock_irq(&new_owner->pi_lock);
  929 
  930         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  931         rt_mutex_unlock(&pi_state->pi_mutex);
  932 
  933         return 0;
  934 }
  935 
  936 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
  937 {
  938         u32 uninitialized_var(oldval);
  939 
  940         /*
  941          * There is no waiter, so we unlock the futex. The owner died
  942          * bit has not to be preserved here. We are the owner:
  943          */
  944         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
  945                 return -EFAULT;
  946         if (oldval != uval)
  947                 return -EAGAIN;
  948 
  949         return 0;
  950 }
  951 
  952 /*
  953  * Express the locking dependencies for lockdep:
  954  */
  955 static inline void
  956 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  957 {
  958         if (hb1 <= hb2) {
  959                 spin_lock(&hb1->lock);
  960                 if (hb1 < hb2)
  961                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  962         } else { /* hb1 > hb2 */
  963                 spin_lock(&hb2->lock);
  964                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  965         }
  966 }
  967 
  968 static inline void
  969 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  970 {
  971         spin_unlock(&hb1->lock);
  972         if (hb1 != hb2)
  973                 spin_unlock(&hb2->lock);
  974 }
  975 
  976 /*
  977  * Wake up waiters matching bitset queued on this futex (uaddr).
  978  */
  979 static int
  980 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
  981 {
  982         struct futex_hash_bucket *hb;
  983         struct futex_q *this, *next;
  984         struct plist_head *head;
  985         union futex_key key = FUTEX_KEY_INIT;
  986         int ret;
  987 
  988         if (!bitset)
  989                 return -EINVAL;
  990 
  991         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
  992         if (unlikely(ret != 0))
  993                 goto out;
  994 
  995         hb = hash_futex(&key);
  996         spin_lock(&hb->lock);
  997         head = &hb->chain;
  998 
  999         plist_for_each_entry_safe(this, next, head, list) {
 1000                 if (match_futex (&this->key, &key)) {
 1001                         if (this->pi_state || this->rt_waiter) {
 1002                                 ret = -EINVAL;
 1003                                 break;
 1004                         }
 1005 
 1006                         /* Check if one of the bits is set in both bitsets */
 1007                         if (!(this->bitset & bitset))
 1008                                 continue;
 1009 
 1010                         wake_futex(this);
 1011                         if (++ret >= nr_wake)
 1012                                 break;
 1013                 }
 1014         }
 1015 
 1016         spin_unlock(&hb->lock);
 1017         put_futex_key(&key);
 1018 out:
 1019         return ret;
 1020 }
 1021 
 1022 /*
 1023  * Wake up all waiters hashed on the physical page that is mapped
 1024  * to this virtual address:
 1025  */
 1026 static int
 1027 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
 1028               int nr_wake, int nr_wake2, int op)
 1029 {
 1030         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
 1031         struct futex_hash_bucket *hb1, *hb2;
 1032         struct plist_head *head;
 1033         struct futex_q *this, *next;
 1034         int ret, op_ret;
 1035 
 1036 retry:
 1037         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
 1038         if (unlikely(ret != 0))
 1039                 goto out;
 1040         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
 1041         if (unlikely(ret != 0))
 1042                 goto out_put_key1;
 1043 
 1044         hb1 = hash_futex(&key1);
 1045         hb2 = hash_futex(&key2);
 1046 
 1047 retry_private:
 1048         double_lock_hb(hb1, hb2);
 1049         op_ret = futex_atomic_op_inuser(op, uaddr2);
 1050         if (unlikely(op_ret < 0)) {
 1051 
 1052                 double_unlock_hb(hb1, hb2);
 1053 
 1054 #ifndef CONFIG_MMU
 1055                 /*
 1056                  * we don't get EFAULT from MMU faults if we don't have an MMU,
 1057                  * but we might get them from range checking
 1058                  */
 1059                 ret = op_ret;
 1060                 goto out_put_keys;
 1061 #endif
 1062 
 1063                 if (unlikely(op_ret != -EFAULT)) {
 1064                         ret = op_ret;
 1065                         goto out_put_keys;
 1066                 }
 1067 
 1068                 ret = fault_in_user_writeable(uaddr2);
 1069                 if (ret)
 1070                         goto out_put_keys;
 1071 
 1072                 if (!(flags & FLAGS_SHARED))
 1073                         goto retry_private;
 1074 
 1075                 put_futex_key(&key2);
 1076                 put_futex_key(&key1);
 1077                 goto retry;
 1078         }
 1079 
 1080         head = &hb1->chain;
 1081 
 1082         plist_for_each_entry_safe(this, next, head, list) {
 1083                 if (match_futex (&this->key, &key1)) {
 1084                         if (this->pi_state || this->rt_waiter) {
 1085                                 ret = -EINVAL;
 1086                                 goto out_unlock;
 1087                         }
 1088                         wake_futex(this);
 1089                         if (++ret >= nr_wake)
 1090                                 break;
 1091                 }
 1092         }
 1093 
 1094         if (op_ret > 0) {
 1095                 head = &hb2->chain;
 1096 
 1097                 op_ret = 0;
 1098                 plist_for_each_entry_safe(this, next, head, list) {
 1099                         if (match_futex (&this->key, &key2)) {
 1100                                 if (this->pi_state || this->rt_waiter) {
 1101                                         ret = -EINVAL;
 1102                                         goto out_unlock;
 1103                                 }
 1104                                 wake_futex(this);
 1105                                 if (++op_ret >= nr_wake2)
 1106                                         break;
 1107                         }
 1108                 }
 1109                 ret += op_ret;
 1110         }
 1111 
 1112 out_unlock:
 1113         double_unlock_hb(hb1, hb2);
 1114 out_put_keys:
 1115         put_futex_key(&key2);
 1116 out_put_key1:
 1117         put_futex_key(&key1);
 1118 out:
 1119         return ret;
 1120 }
 1121 
 1122 /**
 1123  * requeue_futex() - Requeue a futex_q from one hb to another
 1124  * @q:          the futex_q to requeue
 1125  * @hb1:        the source hash_bucket
 1126  * @hb2:        the target hash_bucket
 1127  * @key2:       the new key for the requeued futex_q
 1128  */
 1129 static inline
 1130 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
 1131                    struct futex_hash_bucket *hb2, union futex_key *key2)
 1132 {
 1133 
 1134         /*
 1135          * If key1 and key2 hash to the same bucket, no need to
 1136          * requeue.
 1137          */
 1138         if (likely(&hb1->chain != &hb2->chain)) {
 1139                 plist_del(&q->list, &hb1->chain);
 1140                 plist_add(&q->list, &hb2->chain);
 1141                 q->lock_ptr = &hb2->lock;
 1142         }
 1143         get_futex_key_refs(key2);
 1144         q->key = *key2;
 1145 }
 1146 
 1147 /**
 1148  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
 1149  * @q:          the futex_q
 1150  * @key:        the key of the requeue target futex
 1151  * @hb:         the hash_bucket of the requeue target futex
 1152  *
 1153  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 1154  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 1155  * to the requeue target futex so the waiter can detect the wakeup on the right
 1156  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
 1157  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 1158  * to protect access to the pi_state to fixup the owner later.  Must be called
 1159  * with both q->lock_ptr and hb->lock held.
 1160  */
 1161 static inline
 1162 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
 1163                            struct futex_hash_bucket *hb)
 1164 {
 1165         get_futex_key_refs(key);
 1166         q->key = *key;
 1167 
 1168         __unqueue_futex(q);
 1169 
 1170         WARN_ON(!q->rt_waiter);
 1171         q->rt_waiter = NULL;
 1172 
 1173         q->lock_ptr = &hb->lock;
 1174 
 1175         wake_up_state(q->task, TASK_NORMAL);
 1176 }
 1177 
 1178 /**
 1179  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
 1180  * @pifutex:            the user address of the to futex
 1181  * @hb1:                the from futex hash bucket, must be locked by the caller
 1182  * @hb2:                the to futex hash bucket, must be locked by the caller
 1183  * @key1:               the from futex key
 1184  * @key2:               the to futex key
 1185  * @ps:                 address to store the pi_state pointer
 1186  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
 1187  *
 1188  * Try and get the lock on behalf of the top waiter if we can do it atomically.
 1189  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 1190  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 1191  * hb1 and hb2 must be held by the caller.
 1192  *
 1193  * Returns:
 1194  *  0 - failed to acquire the lock atomicly
 1195  *  1 - acquired the lock
 1196  * <0 - error
 1197  */
 1198 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
 1199                                  struct futex_hash_bucket *hb1,
 1200                                  struct futex_hash_bucket *hb2,
 1201                                  union futex_key *key1, union futex_key *key2,
 1202                                  struct futex_pi_state **ps, int set_waiters)
 1203 {
 1204         struct futex_q *top_waiter = NULL;
 1205         u32 curval;
 1206         int ret;
 1207 
 1208         if (get_futex_value_locked(&curval, pifutex))
 1209                 return -EFAULT;
 1210 
 1211         /*
 1212          * Find the top_waiter and determine if there are additional waiters.
 1213          * If the caller intends to requeue more than 1 waiter to pifutex,
 1214          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
 1215          * as we have means to handle the possible fault.  If not, don't set
 1216          * the bit unecessarily as it will force the subsequent unlock to enter
 1217          * the kernel.
 1218          */
 1219         top_waiter = futex_top_waiter(hb1, key1);
 1220 
 1221         /* There are no waiters, nothing for us to do. */
 1222         if (!top_waiter)
 1223                 return 0;
 1224 
 1225         /* Ensure we requeue to the expected futex. */
 1226         if (!match_futex(top_waiter->requeue_pi_key, key2))
 1227                 return -EINVAL;
 1228 
 1229         /*
 1230          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
 1231          * the contended case or if set_waiters is 1.  The pi_state is returned
 1232          * in ps in contended cases.
 1233          */
 1234         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
 1235                                    set_waiters);
 1236         if (ret == 1)
 1237                 requeue_pi_wake_futex(top_waiter, key2, hb2);
 1238 
 1239         return ret;
 1240 }
 1241 
 1242 /**
 1243  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
 1244  * @uaddr1:     source futex user address
 1245  * @flags:      futex flags (FLAGS_SHARED, etc.)
 1246  * @uaddr2:     target futex user address
 1247  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
 1248  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
 1249  * @cmpval:     @uaddr1 expected value (or %NULL)
 1250  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
 1251  *              pi futex (pi to pi requeue is not supported)
 1252  *
 1253  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 1254  * uaddr2 atomically on behalf of the top waiter.
 1255  *
 1256  * Returns:
 1257  * >=0 - on success, the number of tasks requeued or woken
 1258  *  <0 - on error
 1259  */
 1260 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
 1261                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
 1262                          u32 *cmpval, int requeue_pi)
 1263 {
 1264         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
 1265         int drop_count = 0, task_count = 0, ret;
 1266         struct futex_pi_state *pi_state = NULL;
 1267         struct futex_hash_bucket *hb1, *hb2;
 1268         struct plist_head *head1;
 1269         struct futex_q *this, *next;
 1270         u32 curval2;
 1271 
 1272         if (requeue_pi) {
 1273                 /*
 1274                  * requeue_pi requires a pi_state, try to allocate it now
 1275                  * without any locks in case it fails.
 1276                  */
 1277                 if (refill_pi_state_cache())
 1278                         return -ENOMEM;
 1279                 /*
 1280                  * requeue_pi must wake as many tasks as it can, up to nr_wake
 1281                  * + nr_requeue, since it acquires the rt_mutex prior to
 1282                  * returning to userspace, so as to not leave the rt_mutex with
 1283                  * waiters and no owner.  However, second and third wake-ups
 1284                  * cannot be predicted as they involve race conditions with the
 1285                  * first wake and a fault while looking up the pi_state.  Both
 1286                  * pthread_cond_signal() and pthread_cond_broadcast() should
 1287                  * use nr_wake=1.
 1288                  */
 1289                 if (nr_wake != 1)
 1290                         return -EINVAL;
 1291         }
 1292 
 1293 retry:
 1294         if (pi_state != NULL) {
 1295                 /*
 1296                  * We will have to lookup the pi_state again, so free this one
 1297                  * to keep the accounting correct.
 1298                  */
 1299                 free_pi_state(pi_state);
 1300                 pi_state = NULL;
 1301         }
 1302 
 1303         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
 1304         if (unlikely(ret != 0))
 1305                 goto out;
 1306         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
 1307                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
 1308         if (unlikely(ret != 0))
 1309                 goto out_put_key1;
 1310 
 1311         hb1 = hash_futex(&key1);
 1312         hb2 = hash_futex(&key2);
 1313 
 1314 retry_private:
 1315         double_lock_hb(hb1, hb2);
 1316 
 1317         if (likely(cmpval != NULL)) {
 1318                 u32 curval;
 1319 
 1320                 ret = get_futex_value_locked(&curval, uaddr1);
 1321 
 1322                 if (unlikely(ret)) {
 1323                         double_unlock_hb(hb1, hb2);
 1324 
 1325                         ret = get_user(curval, uaddr1);
 1326                         if (ret)
 1327                                 goto out_put_keys;
 1328 
 1329                         if (!(flags & FLAGS_SHARED))
 1330                                 goto retry_private;
 1331 
 1332                         put_futex_key(&key2);
 1333                         put_futex_key(&key1);
 1334                         goto retry;
 1335                 }
 1336                 if (curval != *cmpval) {
 1337                         ret = -EAGAIN;
 1338                         goto out_unlock;
 1339                 }
 1340         }
 1341 
 1342         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
 1343                 /*
 1344                  * Attempt to acquire uaddr2 and wake the top waiter. If we
 1345                  * intend to requeue waiters, force setting the FUTEX_WAITERS
 1346                  * bit.  We force this here where we are able to easily handle
 1347                  * faults rather in the requeue loop below.
 1348                  */
 1349                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
 1350                                                  &key2, &pi_state, nr_requeue);
 1351 
 1352                 /*
 1353                  * At this point the top_waiter has either taken uaddr2 or is
 1354                  * waiting on it.  If the former, then the pi_state will not
 1355                  * exist yet, look it up one more time to ensure we have a
 1356                  * reference to it.
 1357                  */
 1358                 if (ret == 1) {
 1359                         WARN_ON(pi_state);
 1360                         drop_count++;
 1361                         task_count++;
 1362                         ret = get_futex_value_locked(&curval2, uaddr2);
 1363                         if (!ret)
 1364                                 ret = lookup_pi_state(curval2, hb2, &key2,
 1365                                                       &pi_state);
 1366                 }
 1367 
 1368                 switch (ret) {
 1369                 case 0:
 1370                         break;
 1371                 case -EFAULT:
 1372                         double_unlock_hb(hb1, hb2);
 1373                         put_futex_key(&key2);
 1374                         put_futex_key(&key1);
 1375                         ret = fault_in_user_writeable(uaddr2);
 1376                         if (!ret)
 1377                                 goto retry;
 1378                         goto out;
 1379                 case -EAGAIN:
 1380                         /* The owner was exiting, try again. */
 1381                         double_unlock_hb(hb1, hb2);
 1382                         put_futex_key(&key2);
 1383                         put_futex_key(&key1);
 1384                         cond_resched();
 1385                         goto retry;
 1386                 default:
 1387                         goto out_unlock;
 1388                 }
 1389         }
 1390 
 1391         head1 = &hb1->chain;
 1392         plist_for_each_entry_safe(this, next, head1, list) {
 1393                 if (task_count - nr_wake >= nr_requeue)
 1394                         break;
 1395 
 1396                 if (!match_futex(&this->key, &key1))
 1397                         continue;
 1398 
 1399                 /*
 1400                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
 1401                  * be paired with each other and no other futex ops.
 1402                  *
 1403                  * We should never be requeueing a futex_q with a pi_state,
 1404                  * which is awaiting a futex_unlock_pi().
 1405                  */
 1406                 if ((requeue_pi && !this->rt_waiter) ||
 1407                     (!requeue_pi && this->rt_waiter) ||
 1408                     this->pi_state) {
 1409                         ret = -EINVAL;
 1410                         break;
 1411                 }
 1412 
 1413                 /*
 1414                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
 1415                  * lock, we already woke the top_waiter.  If not, it will be
 1416                  * woken by futex_unlock_pi().
 1417                  */
 1418                 if (++task_count <= nr_wake && !requeue_pi) {
 1419                         wake_futex(this);
 1420                         continue;
 1421                 }
 1422 
 1423                 /* Ensure we requeue to the expected futex for requeue_pi. */
 1424                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
 1425                         ret = -EINVAL;
 1426                         break;
 1427                 }
 1428 
 1429                 /*
 1430                  * Requeue nr_requeue waiters and possibly one more in the case
 1431                  * of requeue_pi if we couldn't acquire the lock atomically.
 1432                  */
 1433                 if (requeue_pi) {
 1434                         /* Prepare the waiter to take the rt_mutex. */
 1435                         atomic_inc(&pi_state->refcount);
 1436                         this->pi_state = pi_state;
 1437                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
 1438                                                         this->rt_waiter,
 1439                                                         this->task, 1);
 1440                         if (ret == 1) {
 1441                                 /* We got the lock. */
 1442                                 requeue_pi_wake_futex(this, &key2, hb2);
 1443                                 drop_count++;
 1444                                 continue;
 1445                         } else if (ret) {
 1446                                 /* -EDEADLK */
 1447                                 this->pi_state = NULL;
 1448                                 free_pi_state(pi_state);
 1449                                 goto out_unlock;
 1450                         }
 1451                 }
 1452                 requeue_futex(this, hb1, hb2, &key2);
 1453                 drop_count++;
 1454         }
 1455 
 1456 out_unlock:
 1457         double_unlock_hb(hb1, hb2);
 1458 
 1459         /*
 1460          * drop_futex_key_refs() must be called outside the spinlocks. During
 1461          * the requeue we moved futex_q's from the hash bucket at key1 to the
 1462          * one at key2 and updated their key pointer.  We no longer need to
 1463          * hold the references to key1.
 1464          */
 1465         while (--drop_count >= 0)
 1466                 drop_futex_key_refs(&key1);
 1467 
 1468 out_put_keys:
 1469         put_futex_key(&key2);
 1470 out_put_key1:
 1471         put_futex_key(&key1);
 1472 out:
 1473         if (pi_state != NULL)
 1474                 free_pi_state(pi_state);
 1475         return ret ? ret : task_count;
 1476 }
 1477 
 1478 /* The key must be already stored in q->key. */
 1479 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
 1480         __acquires(&hb->lock)
 1481 {
 1482         struct futex_hash_bucket *hb;
 1483 
 1484         hb = hash_futex(&q->key);
 1485         q->lock_ptr = &hb->lock;
 1486 
 1487         spin_lock(&hb->lock);
 1488         return hb;
 1489 }
 1490 
 1491 static inline void
 1492 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
 1493         __releases(&hb->lock)
 1494 {
 1495         spin_unlock(&hb->lock);
 1496 }
 1497 
 1498 /**
 1499  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 1500  * @q:  The futex_q to enqueue
 1501  * @hb: The destination hash bucket
 1502  *
 1503  * The hb->lock must be held by the caller, and is released here. A call to
 1504  * queue_me() is typically paired with exactly one call to unqueue_me().  The
 1505  * exceptions involve the PI related operations, which may use unqueue_me_pi()
 1506  * or nothing if the unqueue is done as part of the wake process and the unqueue
 1507  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 1508  * an example).
 1509  */
 1510 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
 1511         __releases(&hb->lock)
 1512 {
 1513         int prio;
 1514 
 1515         /*
 1516          * The priority used to register this element is
 1517          * - either the real thread-priority for the real-time threads
 1518          * (i.e. threads with a priority lower than MAX_RT_PRIO)
 1519          * - or MAX_RT_PRIO for non-RT threads.
 1520          * Thus, all RT-threads are woken first in priority order, and
 1521          * the others are woken last, in FIFO order.
 1522          */
 1523         prio = min(current->normal_prio, MAX_RT_PRIO);
 1524 
 1525         plist_node_init(&q->list, prio);
 1526         plist_add(&q->list, &hb->chain);
 1527         q->task = current;
 1528         spin_unlock(&hb->lock);
 1529 }
 1530 
 1531 /**
 1532  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 1533  * @q:  The futex_q to unqueue
 1534  *
 1535  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 1536  * be paired with exactly one earlier call to queue_me().
 1537  *
 1538  * Returns:
 1539  *   1 - if the futex_q was still queued (and we removed unqueued it)
 1540  *   0 - if the futex_q was already removed by the waking thread
 1541  */
 1542 static int unqueue_me(struct futex_q *q)
 1543 {
 1544         spinlock_t *lock_ptr;
 1545         int ret = 0;
 1546 
 1547         /* In the common case we don't take the spinlock, which is nice. */
 1548 retry:
 1549         lock_ptr = q->lock_ptr;
 1550         barrier();
 1551         if (lock_ptr != NULL) {
 1552                 spin_lock(lock_ptr);
 1553                 /*
 1554                  * q->lock_ptr can change between reading it and
 1555                  * spin_lock(), causing us to take the wrong lock.  This
 1556                  * corrects the race condition.
 1557                  *
 1558                  * Reasoning goes like this: if we have the wrong lock,
 1559                  * q->lock_ptr must have changed (maybe several times)
 1560                  * between reading it and the spin_lock().  It can
 1561                  * change again after the spin_lock() but only if it was
 1562                  * already changed before the spin_lock().  It cannot,
 1563                  * however, change back to the original value.  Therefore
 1564                  * we can detect whether we acquired the correct lock.
 1565                  */
 1566                 if (unlikely(lock_ptr != q->lock_ptr)) {
 1567                         spin_unlock(lock_ptr);
 1568                         goto retry;
 1569                 }
 1570                 __unqueue_futex(q);
 1571 
 1572                 BUG_ON(q->pi_state);
 1573 
 1574                 spin_unlock(lock_ptr);
 1575                 ret = 1;
 1576         }
 1577 
 1578         drop_futex_key_refs(&q->key);
 1579         return ret;
 1580 }
 1581 
 1582 /*
 1583  * PI futexes can not be requeued and must remove themself from the
 1584  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 1585  * and dropped here.
 1586  */
 1587 static void unqueue_me_pi(struct futex_q *q)
 1588         __releases(q->lock_ptr)
 1589 {
 1590         __unqueue_futex(q);
 1591 
 1592         BUG_ON(!q->pi_state);
 1593         free_pi_state(q->pi_state);
 1594         q->pi_state = NULL;
 1595 
 1596         spin_unlock(q->lock_ptr);
 1597 }
 1598 
 1599 /*
 1600  * Fixup the pi_state owner with the new owner.
 1601  *
 1602  * Must be called with hash bucket lock held and mm->sem held for non
 1603  * private futexes.
 1604  */
 1605 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
 1606                                 struct task_struct *newowner)
 1607 {
 1608         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
 1609         struct futex_pi_state *pi_state = q->pi_state;
 1610         struct task_struct *oldowner = pi_state->owner;
 1611         u32 uval, uninitialized_var(curval), newval;
 1612         int ret;
 1613 
 1614         /* Owner died? */
 1615         if (!pi_state->owner)
 1616                 newtid |= FUTEX_OWNER_DIED;
 1617 
 1618         /*
 1619          * We are here either because we stole the rtmutex from the
 1620          * previous highest priority waiter or we are the highest priority
 1621          * waiter but failed to get the rtmutex the first time.
 1622          * We have to replace the newowner TID in the user space variable.
 1623          * This must be atomic as we have to preserve the owner died bit here.
 1624          *
 1625          * Note: We write the user space value _before_ changing the pi_state
 1626          * because we can fault here. Imagine swapped out pages or a fork
 1627          * that marked all the anonymous memory readonly for cow.
 1628          *
 1629          * Modifying pi_state _before_ the user space value would
 1630          * leave the pi_state in an inconsistent state when we fault
 1631          * here, because we need to drop the hash bucket lock to
 1632          * handle the fault. This might be observed in the PID check
 1633          * in lookup_pi_state.
 1634          */
 1635 retry:
 1636         if (get_futex_value_locked(&uval, uaddr))
 1637                 goto handle_fault;
 1638 
 1639         while (1) {
 1640                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
 1641 
 1642                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
 1643                         goto handle_fault;
 1644                 if (curval == uval)
 1645                         break;
 1646                 uval = curval;
 1647         }
 1648 
 1649         /*
 1650          * We fixed up user space. Now we need to fix the pi_state
 1651          * itself.
 1652          */
 1653         if (pi_state->owner != NULL) {
 1654                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
 1655                 WARN_ON(list_empty(&pi_state->list));
 1656                 list_del_init(&pi_state->list);
 1657                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 1658         }
 1659 
 1660         pi_state->owner = newowner;
 1661 
 1662         raw_spin_lock_irq(&newowner->pi_lock);
 1663         WARN_ON(!list_empty(&pi_state->list));
 1664         list_add(&pi_state->list, &newowner->pi_state_list);
 1665         raw_spin_unlock_irq(&newowner->pi_lock);
 1666         return 0;
 1667 
 1668         /*
 1669          * To handle the page fault we need to drop the hash bucket
 1670          * lock here. That gives the other task (either the highest priority
 1671          * waiter itself or the task which stole the rtmutex) the
 1672          * chance to try the fixup of the pi_state. So once we are
 1673          * back from handling the fault we need to check the pi_state
 1674          * after reacquiring the hash bucket lock and before trying to
 1675          * do another fixup. When the fixup has been done already we
 1676          * simply return.
 1677          */
 1678 handle_fault:
 1679         spin_unlock(q->lock_ptr);
 1680 
 1681         ret = fault_in_user_writeable(uaddr);
 1682 
 1683         spin_lock(q->lock_ptr);
 1684 
 1685         /*
 1686          * Check if someone else fixed it for us:
 1687          */
 1688         if (pi_state->owner != oldowner)
 1689                 return 0;
 1690 
 1691         if (ret)
 1692                 return ret;
 1693 
 1694         goto retry;
 1695 }
 1696 
 1697 static long futex_wait_restart(struct restart_block *restart);
 1698 
 1699 /**
 1700  * fixup_owner() - Post lock pi_state and corner case management
 1701  * @uaddr:      user address of the futex
 1702  * @q:          futex_q (contains pi_state and access to the rt_mutex)
 1703  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
 1704  *
 1705  * After attempting to lock an rt_mutex, this function is called to cleanup
 1706  * the pi_state owner as well as handle race conditions that may allow us to
 1707  * acquire the lock. Must be called with the hb lock held.
 1708  *
 1709  * Returns:
 1710  *  1 - success, lock taken
 1711  *  0 - success, lock not taken
 1712  * <0 - on error (-EFAULT)
 1713  */
 1714 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
 1715 {
 1716         struct task_struct *owner;
 1717         int ret = 0;
 1718 
 1719         if (locked) {
 1720                 /*
 1721                  * Got the lock. We might not be the anticipated owner if we
 1722                  * did a lock-steal - fix up the PI-state in that case:
 1723                  */
 1724                 if (q->pi_state->owner != current)
 1725                         ret = fixup_pi_state_owner(uaddr, q, current);
 1726                 goto out;
 1727         }
 1728 
 1729         /*
 1730          * Catch the rare case, where the lock was released when we were on the
 1731          * way back before we locked the hash bucket.
 1732          */
 1733         if (q->pi_state->owner == current) {
 1734                 /*
 1735                  * Try to get the rt_mutex now. This might fail as some other
 1736                  * task acquired the rt_mutex after we removed ourself from the
 1737                  * rt_mutex waiters list.
 1738                  */
 1739                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
 1740                         locked = 1;
 1741                         goto out;
 1742                 }
 1743 
 1744                 /*
 1745                  * pi_state is incorrect, some other task did a lock steal and
 1746                  * we returned due to timeout or signal without taking the
 1747                  * rt_mutex. Too late.
 1748                  */
 1749                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
 1750                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
 1751                 if (!owner)
 1752                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
 1753                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
 1754                 ret = fixup_pi_state_owner(uaddr, q, owner);
 1755                 goto out;
 1756         }
 1757 
 1758         /*
 1759          * Paranoia check. If we did not take the lock, then we should not be
 1760          * the owner of the rt_mutex.
 1761          */
 1762         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
 1763                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
 1764                                 "pi-state %p\n", ret,
 1765                                 q->pi_state->pi_mutex.owner,
 1766                                 q->pi_state->owner);
 1767 
 1768 out:
 1769         return ret ? ret : locked;
 1770 }
 1771 
 1772 /**
 1773  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 1774  * @hb:         the futex hash bucket, must be locked by the caller
 1775  * @q:          the futex_q to queue up on
 1776  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
 1777  */
 1778 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
 1779                                 struct hrtimer_sleeper *timeout)
 1780 {
 1781         /*
 1782          * The task state is guaranteed to be set before another task can
 1783          * wake it. set_current_state() is implemented using set_mb() and
 1784          * queue_me() calls spin_unlock() upon completion, both serializing
 1785          * access to the hash list and forcing another memory barrier.
 1786          */
 1787         set_current_state(TASK_INTERRUPTIBLE);
 1788         queue_me(q, hb);
 1789 
 1790         /* Arm the timer */
 1791         if (timeout) {
 1792                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
 1793                 if (!hrtimer_active(&timeout->timer))
 1794                         timeout->task = NULL;
 1795         }
 1796 
 1797         /*
 1798          * If we have been removed from the hash list, then another task
 1799          * has tried to wake us, and we can skip the call to schedule().
 1800          */
 1801         if (likely(!plist_node_empty(&q->list))) {
 1802                 /*
 1803                  * If the timer has already expired, current will already be
 1804                  * flagged for rescheduling. Only call schedule if there
 1805                  * is no timeout, or if it has yet to expire.
 1806                  */
 1807                 if (!timeout || timeout->task)
 1808                         schedule();
 1809         }
 1810         __set_current_state(TASK_RUNNING);
 1811 }
 1812 
 1813 /**
 1814  * futex_wait_setup() - Prepare to wait on a futex
 1815  * @uaddr:      the futex userspace address
 1816  * @val:        the expected value
 1817  * @flags:      futex flags (FLAGS_SHARED, etc.)
 1818  * @q:          the associated futex_q
 1819  * @hb:         storage for hash_bucket pointer to be returned to caller
 1820  *
 1821  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 1822  * compare it with the expected value.  Handle atomic faults internally.
 1823  * Return with the hb lock held and a q.key reference on success, and unlocked
 1824  * with no q.key reference on failure.
 1825  *
 1826  * Returns:
 1827  *  0 - uaddr contains val and hb has been locked
 1828  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
 1829  */
 1830 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
 1831                            struct futex_q *q, struct futex_hash_bucket **hb)
 1832 {
 1833         u32 uval;
 1834         int ret;
 1835 
 1836         /*
 1837          * Access the page AFTER the hash-bucket is locked.
 1838          * Order is important:
 1839          *
 1840          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
 1841          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
 1842          *
 1843          * The basic logical guarantee of a futex is that it blocks ONLY
 1844          * if cond(var) is known to be true at the time of blocking, for
 1845          * any cond.  If we locked the hash-bucket after testing *uaddr, that
 1846          * would open a race condition where we could block indefinitely with
 1847          * cond(var) false, which would violate the guarantee.
 1848          *
 1849          * On the other hand, we insert q and release the hash-bucket only
 1850          * after testing *uaddr.  This guarantees that futex_wait() will NOT
 1851          * absorb a wakeup if *uaddr does not match the desired values
 1852          * while the syscall executes.
 1853          */
 1854 retry:
 1855         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
 1856         if (unlikely(ret != 0))
 1857                 return ret;
 1858 
 1859 retry_private:
 1860         *hb = queue_lock(q);
 1861 
 1862         ret = get_futex_value_locked(&uval, uaddr);
 1863 
 1864         if (ret) {
 1865                 queue_unlock(q, *hb);
 1866 
 1867                 ret = get_user(uval, uaddr);
 1868                 if (ret)
 1869                         goto out;
 1870 
 1871                 if (!(flags & FLAGS_SHARED))
 1872                         goto retry_private;
 1873 
 1874                 put_futex_key(&q->key);
 1875                 goto retry;
 1876         }
 1877 
 1878         if (uval != val) {
 1879                 queue_unlock(q, *hb);
 1880                 ret = -EWOULDBLOCK;
 1881         }
 1882 
 1883 out:
 1884         if (ret)
 1885                 put_futex_key(&q->key);
 1886         return ret;
 1887 }
 1888 
 1889 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
 1890                       ktime_t *abs_time, u32 bitset)
 1891 {
 1892         struct hrtimer_sleeper timeout, *to = NULL;
 1893         struct restart_block *restart;
 1894         struct futex_hash_bucket *hb;
 1895         struct futex_q q = futex_q_init;
 1896         int ret;
 1897 
 1898         if (!bitset)
 1899                 return -EINVAL;
 1900         q.bitset = bitset;
 1901 
 1902         if (abs_time) {
 1903                 to = &timeout;
 1904 
 1905                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
 1906                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
 1907                                       HRTIMER_MODE_ABS);
 1908                 hrtimer_init_sleeper(to, current);
 1909                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
 1910                                              current->timer_slack_ns);
 1911         }
 1912 
 1913 retry:
 1914         /*
 1915          * Prepare to wait on uaddr. On success, holds hb lock and increments
 1916          * q.key refs.
 1917          */
 1918         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
 1919         if (ret)
 1920                 goto out;
 1921 
 1922         /* queue_me and wait for wakeup, timeout, or a signal. */
 1923         futex_wait_queue_me(hb, &q, to);
 1924 
 1925         /* If we were woken (and unqueued), we succeeded, whatever. */
 1926         ret = 0;
 1927         /* unqueue_me() drops q.key ref */
 1928         if (!unqueue_me(&q))
 1929                 goto out;
 1930         ret = -ETIMEDOUT;
 1931         if (to && !to->task)
 1932                 goto out;
 1933 
 1934         /*
 1935          * We expect signal_pending(current), but we might be the
 1936          * victim of a spurious wakeup as well.
 1937          */
 1938         if (!signal_pending(current))
 1939                 goto retry;
 1940 
 1941         ret = -ERESTARTSYS;
 1942         if (!abs_time)
 1943                 goto out;
 1944 
 1945         restart = &current_thread_info()->restart_block;
 1946         restart->fn = futex_wait_restart;
 1947         restart->futex.uaddr = uaddr;
 1948         restart->futex.val = val;
 1949         restart->futex.time = abs_time->tv64;
 1950         restart->futex.bitset = bitset;
 1951         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
 1952 
 1953         ret = -ERESTART_RESTARTBLOCK;
 1954 
 1955 out:
 1956         if (to) {
 1957                 hrtimer_cancel(&to->timer);
 1958                 destroy_hrtimer_on_stack(&to->timer);
 1959         }
 1960         return ret;
 1961 }
 1962 
 1963 
 1964 static long futex_wait_restart(struct restart_block *restart)
 1965 {
 1966         u32 __user *uaddr = restart->futex.uaddr;
 1967         ktime_t t, *tp = NULL;
 1968 
 1969         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
 1970                 t.tv64 = restart->futex.time;
 1971                 tp = &t;
 1972         }
 1973         restart->fn = do_no_restart_syscall;
 1974 
 1975         return (long)futex_wait(uaddr, restart->futex.flags,
 1976                                 restart->futex.val, tp, restart->futex.bitset);
 1977 }
 1978 
 1979 
 1980 /*
 1981  * Userspace tried a 0 -> TID atomic transition of the futex value
 1982  * and failed. The kernel side here does the whole locking operation:
 1983  * if there are waiters then it will block, it does PI, etc. (Due to
 1984  * races the kernel might see a 0 value of the futex too.)
 1985  */
 1986 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
 1987                          ktime_t *time, int trylock)
 1988 {
 1989         struct hrtimer_sleeper timeout, *to = NULL;
 1990         struct futex_hash_bucket *hb;
 1991         struct futex_q q = futex_q_init;
 1992         int res, ret;
 1993 
 1994         if (refill_pi_state_cache())
 1995                 return -ENOMEM;
 1996 
 1997         if (time) {
 1998                 to = &timeout;
 1999                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
 2000                                       HRTIMER_MODE_ABS);
 2001                 hrtimer_init_sleeper(to, current);
 2002                 hrtimer_set_expires(&to->timer, *time);
 2003         }
 2004 
 2005 retry:
 2006         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
 2007         if (unlikely(ret != 0))
 2008                 goto out;
 2009 
 2010 retry_private:
 2011         hb = queue_lock(&q);
 2012 
 2013         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
 2014         if (unlikely(ret)) {
 2015                 switch (ret) {
 2016                 case 1:
 2017                         /* We got the lock. */
 2018                         ret = 0;
 2019                         goto out_unlock_put_key;
 2020                 case -EFAULT:
 2021                         goto uaddr_faulted;
 2022                 case -EAGAIN:
 2023                         /*
 2024                          * Task is exiting and we just wait for the
 2025                          * exit to complete.
 2026                          */
 2027                         queue_unlock(&q, hb);
 2028                         put_futex_key(&q.key);
 2029                         cond_resched();
 2030                         goto retry;
 2031                 default:
 2032                         goto out_unlock_put_key;
 2033                 }
 2034         }
 2035 
 2036         /*
 2037          * Only actually queue now that the atomic ops are done:
 2038          */
 2039         queue_me(&q, hb);
 2040 
 2041         WARN_ON(!q.pi_state);
 2042         /*
 2043          * Block on the PI mutex:
 2044          */
 2045         if (!trylock)
 2046                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
 2047         else {
 2048                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
 2049                 /* Fixup the trylock return value: */
 2050                 ret = ret ? 0 : -EWOULDBLOCK;
 2051         }
 2052 
 2053         spin_lock(q.lock_ptr);
 2054         /*
 2055          * Fixup the pi_state owner and possibly acquire the lock if we
 2056          * haven't already.
 2057          */
 2058         res = fixup_owner(uaddr, &q, !ret);
 2059         /*
 2060          * If fixup_owner() returned an error, proprogate that.  If it acquired
 2061          * the lock, clear our -ETIMEDOUT or -EINTR.
 2062          */
 2063         if (res)
 2064                 ret = (res < 0) ? res : 0;
 2065 
 2066         /*
 2067          * If fixup_owner() faulted and was unable to handle the fault, unlock
 2068          * it and return the fault to userspace.
 2069          */
 2070         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
 2071                 rt_mutex_unlock(&q.pi_state->pi_mutex);
 2072 
 2073         /* Unqueue and drop the lock */
 2074         unqueue_me_pi(&q);
 2075 
 2076         goto out_put_key;
 2077 
 2078 out_unlock_put_key:
 2079         queue_unlock(&q, hb);
 2080 
 2081 out_put_key:
 2082         put_futex_key(&q.key);
 2083 out:
 2084         if (to)
 2085                 destroy_hrtimer_on_stack(&to->timer);
 2086         return ret != -EINTR ? ret : -ERESTARTNOINTR;
 2087 
 2088 uaddr_faulted:
 2089         queue_unlock(&q, hb);
 2090 
 2091         ret = fault_in_user_writeable(uaddr);
 2092         if (ret)
 2093                 goto out_put_key;
 2094 
 2095         if (!(flags & FLAGS_SHARED))
 2096                 goto retry_private;
 2097 
 2098         put_futex_key(&q.key);
 2099         goto retry;
 2100 }
 2101 
 2102 /*
 2103  * Userspace attempted a TID -> 0 atomic transition, and failed.
 2104  * This is the in-kernel slowpath: we look up the PI state (if any),
 2105  * and do the rt-mutex unlock.
 2106  */
 2107 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
 2108 {
 2109         struct futex_hash_bucket *hb;
 2110         struct futex_q *this, *next;
 2111         struct plist_head *head;
 2112         union futex_key key = FUTEX_KEY_INIT;
 2113         u32 uval, vpid = task_pid_vnr(current);
 2114         int ret;
 2115 
 2116 retry:
 2117         if (get_user(uval, uaddr))
 2118                 return -EFAULT;
 2119         /*
 2120          * We release only a lock we actually own:
 2121          */
 2122         if ((uval & FUTEX_TID_MASK) != vpid)
 2123                 return -EPERM;
 2124 
 2125         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
 2126         if (unlikely(ret != 0))
 2127                 goto out;
 2128 
 2129         hb = hash_futex(&key);
 2130         spin_lock(&hb->lock);
 2131 
 2132         /*
 2133          * To avoid races, try to do the TID -> 0 atomic transition
 2134          * again. If it succeeds then we can return without waking
 2135          * anyone else up:
 2136          */
 2137         if (!(uval & FUTEX_OWNER_DIED) &&
 2138             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
 2139                 goto pi_faulted;
 2140         /*
 2141          * Rare case: we managed to release the lock atomically,
 2142          * no need to wake anyone else up:
 2143          */
 2144         if (unlikely(uval == vpid))
 2145                 goto out_unlock;
 2146 
 2147         /*
 2148          * Ok, other tasks may need to be woken up - check waiters
 2149          * and do the wakeup if necessary:
 2150          */
 2151         head = &hb->chain;
 2152 
 2153         plist_for_each_entry_safe(this, next, head, list) {
 2154                 if (!match_futex (&this->key, &key))
 2155                         continue;
 2156                 ret = wake_futex_pi(uaddr, uval, this);
 2157                 /*
 2158                  * The atomic access to the futex value
 2159                  * generated a pagefault, so retry the
 2160                  * user-access and the wakeup:
 2161                  */
 2162                 if (ret == -EFAULT)
 2163                         goto pi_faulted;
 2164                 goto out_unlock;
 2165         }
 2166         /*
 2167          * No waiters - kernel unlocks the futex:
 2168          */
 2169         if (!(uval & FUTEX_OWNER_DIED)) {
 2170                 ret = unlock_futex_pi(uaddr, uval);
 2171                 if (ret == -EFAULT)
 2172                         goto pi_faulted;
 2173         }
 2174 
 2175 out_unlock:
 2176         spin_unlock(&hb->lock);
 2177         put_futex_key(&key);
 2178 
 2179 out:
 2180         return ret;
 2181 
 2182 pi_faulted:
 2183         spin_unlock(&hb->lock);
 2184         put_futex_key(&key);
 2185 
 2186         ret = fault_in_user_writeable(uaddr);
 2187         if (!ret)
 2188                 goto retry;
 2189 
 2190         return ret;
 2191 }
 2192 
 2193 /**
 2194  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 2195  * @hb:         the hash_bucket futex_q was original enqueued on
 2196  * @q:          the futex_q woken while waiting to be requeued
 2197  * @key2:       the futex_key of the requeue target futex
 2198  * @timeout:    the timeout associated with the wait (NULL if none)
 2199  *
 2200  * Detect if the task was woken on the initial futex as opposed to the requeue
 2201  * target futex.  If so, determine if it was a timeout or a signal that caused
 2202  * the wakeup and return the appropriate error code to the caller.  Must be
 2203  * called with the hb lock held.
 2204  *
 2205  * Returns
 2206  *  0 - no early wakeup detected
 2207  * <0 - -ETIMEDOUT or -ERESTARTNOINTR
 2208  */
 2209 static inline
 2210 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
 2211                                    struct futex_q *q, union futex_key *key2,
 2212                                    struct hrtimer_sleeper *timeout)
 2213 {
 2214         int ret = 0;
 2215 
 2216         /*
 2217          * With the hb lock held, we avoid races while we process the wakeup.
 2218          * We only need to hold hb (and not hb2) to ensure atomicity as the
 2219          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
 2220          * It can't be requeued from uaddr2 to something else since we don't
 2221          * support a PI aware source futex for requeue.
 2222          */
 2223         if (!match_futex(&q->key, key2)) {
 2224                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
 2225                 /*
 2226                  * We were woken prior to requeue by a timeout or a signal.
 2227                  * Unqueue the futex_q and determine which it was.
 2228                  */
 2229                 plist_del(&q->list, &hb->chain);
 2230 
 2231                 /* Handle spurious wakeups gracefully */
 2232                 ret = -EWOULDBLOCK;
 2233                 if (timeout && !timeout->task)
 2234                         ret = -ETIMEDOUT;
 2235                 else if (signal_pending(current))
 2236                         ret = -ERESTARTNOINTR;
 2237         }
 2238         return ret;
 2239 }
 2240 
 2241 /**
 2242  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
 2243  * @uaddr:      the futex we initially wait on (non-pi)
 2244  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
 2245  *              the same type, no requeueing from private to shared, etc.
 2246  * @val:        the expected value of uaddr
 2247  * @abs_time:   absolute timeout
 2248  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
 2249  * @clockrt:    whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
 2250  * @uaddr2:     the pi futex we will take prior to returning to user-space
 2251  *
 2252  * The caller will wait on uaddr and will be requeued by futex_requeue() to
 2253  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 2254  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 2255  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 2256  * without one, the pi logic would not know which task to boost/deboost, if
 2257  * there was a need to.
 2258  *
 2259  * We call schedule in futex_wait_queue_me() when we enqueue and return there
 2260  * via the following:
 2261  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
 2262  * 2) wakeup on uaddr2 after a requeue
 2263  * 3) signal
 2264  * 4) timeout
 2265  *
 2266  * If 3, cleanup and return -ERESTARTNOINTR.
 2267  *
 2268  * If 2, we may then block on trying to take the rt_mutex and return via:
 2269  * 5) successful lock
 2270  * 6) signal
 2271  * 7) timeout
 2272  * 8) other lock acquisition failure
 2273  *
 2274  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
 2275  *
 2276  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 2277  *
 2278  * Returns:
 2279  *  0 - On success
 2280  * <0 - On error
 2281  */
 2282 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
 2283                                  u32 val, ktime_t *abs_time, u32 bitset,
 2284                                  u32 __user *uaddr2)
 2285 {
 2286         struct hrtimer_sleeper timeout, *to = NULL;
 2287         struct rt_mutex_waiter rt_waiter;
 2288         struct rt_mutex *pi_mutex = NULL;
 2289         struct futex_hash_bucket *hb;
 2290         union futex_key key2 = FUTEX_KEY_INIT;
 2291         struct futex_q q = futex_q_init;
 2292         int res, ret;
 2293 
 2294         if (uaddr == uaddr2)
 2295                 return -EINVAL;
 2296 
 2297         if (!bitset)
 2298                 return -EINVAL;
 2299 
 2300         if (abs_time) {
 2301                 to = &timeout;
 2302                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
 2303                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
 2304                                       HRTIMER_MODE_ABS);
 2305                 hrtimer_init_sleeper(to, current);
 2306                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
 2307                                              current->timer_slack_ns);
 2308         }
 2309 
 2310         /*
 2311          * The waiter is allocated on our stack, manipulated by the requeue
 2312          * code while we sleep on uaddr.
 2313          */
 2314         debug_rt_mutex_init_waiter(&rt_waiter);
 2315         rt_waiter.task = NULL;
 2316 
 2317         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
 2318         if (unlikely(ret != 0))
 2319                 goto out;
 2320 
 2321         q.bitset = bitset;
 2322         q.rt_waiter = &rt_waiter;
 2323         q.requeue_pi_key = &key2;
 2324 
 2325         /*
 2326          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
 2327          * count.
 2328          */
 2329         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
 2330         if (ret)
 2331                 goto out_key2;
 2332 
 2333         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
 2334         futex_wait_queue_me(hb, &q, to);
 2335 
 2336         spin_lock(&hb->lock);
 2337         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
 2338         spin_unlock(&hb->lock);
 2339         if (ret)
 2340                 goto out_put_keys;
 2341 
 2342         /*
 2343          * In order for us to be here, we know our q.key == key2, and since
 2344          * we took the hb->lock above, we also know that futex_requeue() has
 2345          * completed and we no longer have to concern ourselves with a wakeup
 2346          * race with the atomic proxy lock acquisition by the requeue code. The
 2347          * futex_requeue dropped our key1 reference and incremented our key2
 2348          * reference count.
 2349          */
 2350 
 2351         /* Check if the requeue code acquired the second futex for us. */
 2352         if (!q.rt_waiter) {
 2353                 /*
 2354                  * Got the lock. We might not be the anticipated owner if we
 2355                  * did a lock-steal - fix up the PI-state in that case.
 2356                  */
 2357                 if (q.pi_state && (q.pi_state->owner != current)) {
 2358                         spin_lock(q.lock_ptr);
 2359                         ret = fixup_pi_state_owner(uaddr2, &q, current);
 2360                         spin_unlock(q.lock_ptr);
 2361                 }
 2362         } else {
 2363                 /*
 2364                  * We have been woken up by futex_unlock_pi(), a timeout, or a
 2365                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
 2366                  * the pi_state.
 2367                  */
 2368                 WARN_ON(!q.pi_state);
 2369                 pi_mutex = &q.pi_state->pi_mutex;
 2370                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
 2371                 debug_rt_mutex_free_waiter(&rt_waiter);
 2372 
 2373                 spin_lock(q.lock_ptr);
 2374                 /*
 2375                  * Fixup the pi_state owner and possibly acquire the lock if we
 2376                  * haven't already.
 2377                  */
 2378                 res = fixup_owner(uaddr2, &q, !ret);
 2379                 /*
 2380                  * If fixup_owner() returned an error, proprogate that.  If it
 2381                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
 2382                  */
 2383                 if (res)
 2384                         ret = (res < 0) ? res : 0;
 2385 
 2386                 /* Unqueue and drop the lock. */
 2387                 unqueue_me_pi(&q);
 2388         }
 2389 
 2390         /*
 2391          * If fixup_pi_state_owner() faulted and was unable to handle the
 2392          * fault, unlock the rt_mutex and return the fault to userspace.
 2393          */
 2394         if (ret == -EFAULT) {
 2395                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
 2396                         rt_mutex_unlock(pi_mutex);
 2397         } else if (ret == -EINTR) {
 2398                 /*
 2399                  * We've already been requeued, but cannot restart by calling
 2400                  * futex_lock_pi() directly. We could restart this syscall, but
 2401                  * it would detect that the user space "val" changed and return
 2402                  * -EWOULDBLOCK.  Save the overhead of the restart and return
 2403                  * -EWOULDBLOCK directly.
 2404                  */
 2405                 ret = -EWOULDBLOCK;
 2406         }
 2407 
 2408 out_put_keys:
 2409         put_futex_key(&q.key);
 2410 out_key2:
 2411         put_futex_key(&key2);
 2412 
 2413 out:
 2414         if (to) {
 2415                 hrtimer_cancel(&to->timer);
 2416                 destroy_hrtimer_on_stack(&to->timer);
 2417         }
 2418         return ret;
 2419 }
 2420 
 2421 /*
 2422  * Support for robust futexes: the kernel cleans up held futexes at
 2423  * thread exit time.
 2424  *
 2425  * Implementation: user-space maintains a per-thread list of locks it
 2426  * is holding. Upon do_exit(), the kernel carefully walks this list,
 2427  * and marks all locks that are owned by this thread with the
 2428  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
 2429  * always manipulated with the lock held, so the list is private and
 2430  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 2431  * field, to allow the kernel to clean up if the thread dies after
 2432  * acquiring the lock, but just before it could have added itself to
 2433  * the list. There can only be one such pending lock.
 2434  */
 2435 
 2436 /**
 2437  * sys_set_robust_list() - Set the robust-futex list head of a task
 2438  * @head:       pointer to the list-head
 2439  * @len:        length of the list-head, as userspace expects
 2440  */
 2441 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
 2442                 size_t, len)
 2443 {
 2444         if (!futex_cmpxchg_enabled)
 2445                 return -ENOSYS;
 2446         /*
 2447          * The kernel knows only one size for now:
 2448          */
 2449         if (unlikely(len != sizeof(*head)))
 2450                 return -EINVAL;
 2451 
 2452         current->robust_list = head;
 2453 
 2454         return 0;
 2455 }
 2456 
 2457 /**
 2458  * sys_get_robust_list() - Get the robust-futex list head of a task
 2459  * @pid:        pid of the process [zero for current task]
 2460  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
 2461  * @len_ptr:    pointer to a length field, the kernel fills in the header size
 2462  */
 2463 SYSCALL_DEFINE3(get_robust_list, int, pid,
 2464                 struct robust_list_head __user * __user *, head_ptr,
 2465                 size_t __user *, len_ptr)
 2466 {
 2467         struct robust_list_head __user *head;
 2468         unsigned long ret;
 2469         struct task_struct *p;
 2470 
 2471         if (!futex_cmpxchg_enabled)
 2472                 return -ENOSYS;
 2473 
 2474         WARN_ONCE(1, "deprecated: get_robust_list will be deleted in 2013.\n");
 2475 
 2476         rcu_read_lock();
 2477 
 2478         ret = -ESRCH;
 2479         if (!pid)
 2480                 p = current;
 2481         else {
 2482                 p = find_task_by_vpid(pid);
 2483                 if (!p)
 2484                         goto err_unlock;
 2485         }
 2486 
 2487         ret = -EPERM;
 2488         if (!ptrace_may_access(p, PTRACE_MODE_READ))
 2489                 goto err_unlock;
 2490 
 2491         head = p->robust_list;
 2492         rcu_read_unlock();
 2493 
 2494         if (put_user(sizeof(*head), len_ptr))
 2495                 return -EFAULT;
 2496         return put_user(head, head_ptr);
 2497 
 2498 err_unlock:
 2499         rcu_read_unlock();
 2500 
 2501         return ret;
 2502 }
 2503 
 2504 /*
 2505  * Process a futex-list entry, check whether it's owned by the
 2506  * dying task, and do notification if so:
 2507  */
 2508 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
 2509 {
 2510         u32 uval, uninitialized_var(nval), mval;
 2511 
 2512 retry:
 2513         if (get_user(uval, uaddr))
 2514                 return -1;
 2515 
 2516         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
 2517                 /*
 2518                  * Ok, this dying thread is truly holding a futex
 2519                  * of interest. Set the OWNER_DIED bit atomically
 2520                  * via cmpxchg, and if the value had FUTEX_WAITERS
 2521                  * set, wake up a waiter (if any). (We have to do a
 2522                  * futex_wake() even if OWNER_DIED is already set -
 2523                  * to handle the rare but possible case of recursive
 2524                  * thread-death.) The rest of the cleanup is done in
 2525                  * userspace.
 2526                  */
 2527                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
 2528                 /*
 2529                  * We are not holding a lock here, but we want to have
 2530                  * the pagefault_disable/enable() protection because
 2531                  * we want to handle the fault gracefully. If the
 2532                  * access fails we try to fault in the futex with R/W
 2533                  * verification via get_user_pages. get_user() above
 2534                  * does not guarantee R/W access. If that fails we
 2535                  * give up and leave the futex locked.
 2536                  */
 2537                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
 2538                         if (fault_in_user_writeable(uaddr))
 2539                                 return -1;
 2540                         goto retry;
 2541                 }
 2542                 if (nval != uval)
 2543                         goto retry;
 2544 
 2545                 /*
 2546                  * Wake robust non-PI futexes here. The wakeup of
 2547                  * PI futexes happens in exit_pi_state():
 2548                  */
 2549                 if (!pi && (uval & FUTEX_WAITERS))
 2550                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
 2551         }
 2552         return 0;
 2553 }
 2554 
 2555 /*
 2556  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 2557  */
 2558 static inline int fetch_robust_entry(struct robust_list __user **entry,
 2559                                      struct robust_list __user * __user *head,
 2560                                      unsigned int *pi)
 2561 {
 2562         unsigned long uentry;
 2563 
 2564         if (get_user(uentry, (unsigned long __user *)head))
 2565                 return -EFAULT;
 2566 
 2567         *entry = (void __user *)(uentry & ~1UL);
 2568         *pi = uentry & 1;
 2569 
 2570         return 0;
 2571 }
 2572 
 2573 /*
 2574  * Walk curr->robust_list (very carefully, it's a userspace list!)
 2575  * and mark any locks found there dead, and notify any waiters.
 2576  *
 2577  * We silently return on any sign of list-walking problem.
 2578  */
 2579 void exit_robust_list(struct task_struct *curr)
 2580 {
 2581         struct robust_list_head __user *head = curr->robust_list;
 2582         struct robust_list __user *entry, *next_entry, *pending;
 2583         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
 2584         unsigned int uninitialized_var(next_pi);
 2585         unsigned long futex_offset;
 2586         int rc;
 2587 
 2588         if (!futex_cmpxchg_enabled)
 2589                 return;
 2590 
 2591         /*
 2592          * Fetch the list head (which was registered earlier, via
 2593          * sys_set_robust_list()):
 2594          */
 2595         if (fetch_robust_entry(&entry, &head->list.next, &pi))
 2596                 return;
 2597         /*
 2598          * Fetch the relative futex offset:
 2599          */
 2600         if (get_user(futex_offset, &head->futex_offset))
 2601                 return;
 2602         /*
 2603          * Fetch any possibly pending lock-add first, and handle it
 2604          * if it exists:
 2605          */
 2606         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
 2607                 return;
 2608 
 2609         next_entry = NULL;      /* avoid warning with gcc */
 2610         while (entry != &head->list) {
 2611                 /*
 2612                  * Fetch the next entry in the list before calling
 2613                  * handle_futex_death:
 2614                  */
 2615                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
 2616                 /*
 2617                  * A pending lock might already be on the list, so
 2618                  * don't process it twice:
 2619                  */
 2620                 if (entry != pending)
 2621                         if (handle_futex_death((void __user *)entry + futex_offset,
 2622                                                 curr, pi))
 2623                                 return;
 2624                 if (rc)
 2625                         return;
 2626                 entry = next_entry;
 2627                 pi = next_pi;
 2628                 /*
 2629                  * Avoid excessively long or circular lists:
 2630                  */
 2631                 if (!--limit)
 2632                         break;
 2633 
 2634                 cond_resched();
 2635         }
 2636 
 2637         if (pending)
 2638                 handle_futex_death((void __user *)pending + futex_offset,
 2639                                    curr, pip);
 2640 }
 2641 
 2642 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
 2643                 u32 __user *uaddr2, u32 val2, u32 val3)
 2644 {
 2645         int cmd = op & FUTEX_CMD_MASK;
 2646         unsigned int flags = 0;
 2647 
 2648         if (!(op & FUTEX_PRIVATE_FLAG))
 2649                 flags |= FLAGS_SHARED;
 2650 
 2651         if (op & FUTEX_CLOCK_REALTIME) {
 2652                 flags |= FLAGS_CLOCKRT;
 2653                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
 2654                         return -ENOSYS;
 2655         }
 2656 
 2657         switch (cmd) {
 2658         case FUTEX_LOCK_PI:
 2659         case FUTEX_UNLOCK_PI:
 2660         case FUTEX_TRYLOCK_PI:
 2661         case FUTEX_WAIT_REQUEUE_PI:
 2662         case FUTEX_CMP_REQUEUE_PI:
 2663                 if (!futex_cmpxchg_enabled)
 2664                         return -ENOSYS;
 2665         }
 2666 
 2667         switch (cmd) {
 2668         case FUTEX_WAIT:
 2669                 val3 = FUTEX_BITSET_MATCH_ANY;
 2670         case FUTEX_WAIT_BITSET:
 2671                 return futex_wait(uaddr, flags, val, timeout, val3);
 2672         case FUTEX_WAKE:
 2673                 val3 = FUTEX_BITSET_MATCH_ANY;
 2674         case FUTEX_WAKE_BITSET:
 2675                 return futex_wake(uaddr, flags, val, val3);
 2676         case FUTEX_REQUEUE:
 2677                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
 2678         case FUTEX_CMP_REQUEUE:
 2679                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
 2680         case FUTEX_WAKE_OP:
 2681                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
 2682         case FUTEX_LOCK_PI:
 2683                 return futex_lock_pi(uaddr, flags, val, timeout, 0);
 2684         case FUTEX_UNLOCK_PI:
 2685                 return futex_unlock_pi(uaddr, flags);
 2686         case FUTEX_TRYLOCK_PI:
 2687                 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
 2688         case FUTEX_WAIT_REQUEUE_PI:
 2689                 val3 = FUTEX_BITSET_MATCH_ANY;
 2690                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
 2691                                              uaddr2);
 2692         case FUTEX_CMP_REQUEUE_PI:
 2693                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
 2694         }
 2695         return -ENOSYS;
 2696 }
 2697 
 2698 
 2699 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
 2700                 struct timespec __user *, utime, u32 __user *, uaddr2,
 2701                 u32, val3)
 2702 {
 2703         struct timespec ts;
 2704         ktime_t t, *tp = NULL;
 2705         u32 val2 = 0;
 2706         int cmd = op & FUTEX_CMD_MASK;
 2707 
 2708         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
 2709                       cmd == FUTEX_WAIT_BITSET ||
 2710                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
 2711                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
 2712                         return -EFAULT;
 2713                 if (!timespec_valid(&ts))
 2714                         return -EINVAL;
 2715 
 2716                 t = timespec_to_ktime(ts);
 2717                 if (cmd == FUTEX_WAIT)
 2718                         t = ktime_add_safe(ktime_get(), t);
 2719                 tp = &t;
 2720         }
 2721         /*
 2722          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
 2723          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
 2724          */
 2725         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
 2726             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
 2727                 val2 = (u32) (unsigned long) utime;
 2728 
 2729         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
 2730 }
 2731 
 2732 static int __init futex_init(void)
 2733 {
 2734         u32 curval;
 2735         int i;
 2736 
 2737         /*
 2738          * This will fail and we want it. Some arch implementations do
 2739          * runtime detection of the futex_atomic_cmpxchg_inatomic()
 2740          * functionality. We want to know that before we call in any
 2741          * of the complex code paths. Also we want to prevent
 2742          * registration of robust lists in that case. NULL is
 2743          * guaranteed to fault and we get -EFAULT on functional
 2744          * implementation, the non-functional ones will return
 2745          * -ENOSYS.
 2746          */
 2747         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
 2748                 futex_cmpxchg_enabled = 1;
 2749 
 2750         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
 2751                 plist_head_init(&futex_queues[i].chain);
 2752                 spin_lock_init(&futex_queues[i].lock);
 2753         }
 2754 
 2755         return 0;
 2756 }
 2757 __initcall(futex_init);

Cache object: 9f7c9d75f7d3a4026e0f05fed6b6fb74


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.