The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kernel/marker.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (C) 2007 Mathieu Desnoyers
    3  *
    4  * This program is free software; you can redistribute it and/or modify
    5  * it under the terms of the GNU General Public License as published by
    6  * the Free Software Foundation; either version 2 of the License, or
    7  * (at your option) any later version.
    8  *
    9  * This program is distributed in the hope that it will be useful,
   10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
   11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   12  * GNU General Public License for more details.
   13  *
   14  * You should have received a copy of the GNU General Public License
   15  * along with this program; if not, write to the Free Software
   16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
   17  */
   18 #include <linux/module.h>
   19 #include <linux/mutex.h>
   20 #include <linux/types.h>
   21 #include <linux/jhash.h>
   22 #include <linux/list.h>
   23 #include <linux/rcupdate.h>
   24 #include <linux/marker.h>
   25 #include <linux/err.h>
   26 #include <linux/slab.h>
   27 
   28 extern struct marker __start___markers[];
   29 extern struct marker __stop___markers[];
   30 
   31 /* Set to 1 to enable marker debug output */
   32 static const int marker_debug;
   33 
   34 /*
   35  * markers_mutex nests inside module_mutex. Markers mutex protects the builtin
   36  * and module markers and the hash table.
   37  */
   38 static DEFINE_MUTEX(markers_mutex);
   39 
   40 /*
   41  * Marker hash table, containing the active markers.
   42  * Protected by module_mutex.
   43  */
   44 #define MARKER_HASH_BITS 6
   45 #define MARKER_TABLE_SIZE (1 << MARKER_HASH_BITS)
   46 
   47 /*
   48  * Note about RCU :
   49  * It is used to make sure every handler has finished using its private data
   50  * between two consecutive operation (add or remove) on a given marker.  It is
   51  * also used to delay the free of multiple probes array until a quiescent state
   52  * is reached.
   53  * marker entries modifications are protected by the markers_mutex.
   54  */
   55 struct marker_entry {
   56         struct hlist_node hlist;
   57         char *format;
   58                         /* Probe wrapper */
   59         void (*call)(const struct marker *mdata, void *call_private, ...);
   60         struct marker_probe_closure single;
   61         struct marker_probe_closure *multi;
   62         int refcount;   /* Number of times armed. 0 if disarmed. */
   63         struct rcu_head rcu;
   64         void *oldptr;
   65         int rcu_pending;
   66         unsigned char ptype:1;
   67         char name[0];   /* Contains name'\0'format'\0' */
   68 };
   69 
   70 static struct hlist_head marker_table[MARKER_TABLE_SIZE];
   71 
   72 /**
   73  * __mark_empty_function - Empty probe callback
   74  * @probe_private: probe private data
   75  * @call_private: call site private data
   76  * @fmt: format string
   77  * @...: variable argument list
   78  *
   79  * Empty callback provided as a probe to the markers. By providing this to a
   80  * disabled marker, we make sure the  execution flow is always valid even
   81  * though the function pointer change and the marker enabling are two distinct
   82  * operations that modifies the execution flow of preemptible code.
   83  */
   84 void __mark_empty_function(void *probe_private, void *call_private,
   85         const char *fmt, va_list *args)
   86 {
   87 }
   88 EXPORT_SYMBOL_GPL(__mark_empty_function);
   89 
   90 /*
   91  * marker_probe_cb Callback that prepares the variable argument list for probes.
   92  * @mdata: pointer of type struct marker
   93  * @call_private: caller site private data
   94  * @...:  Variable argument list.
   95  *
   96  * Since we do not use "typical" pointer based RCU in the 1 argument case, we
   97  * need to put a full smp_rmb() in this branch. This is why we do not use
   98  * rcu_dereference() for the pointer read.
   99  */
  100 void marker_probe_cb(const struct marker *mdata, void *call_private, ...)
  101 {
  102         va_list args;
  103         char ptype;
  104 
  105         /*
  106          * rcu_read_lock_sched does two things : disabling preemption to make
  107          * sure the teardown of the callbacks can be done correctly when they
  108          * are in modules and they insure RCU read coherency.
  109          */
  110         rcu_read_lock_sched();
  111         ptype = mdata->ptype;
  112         if (likely(!ptype)) {
  113                 marker_probe_func *func;
  114                 /* Must read the ptype before ptr. They are not data dependant,
  115                  * so we put an explicit smp_rmb() here. */
  116                 smp_rmb();
  117                 func = mdata->single.func;
  118                 /* Must read the ptr before private data. They are not data
  119                  * dependant, so we put an explicit smp_rmb() here. */
  120                 smp_rmb();
  121                 va_start(args, call_private);
  122                 func(mdata->single.probe_private, call_private, mdata->format,
  123                         &args);
  124                 va_end(args);
  125         } else {
  126                 struct marker_probe_closure *multi;
  127                 int i;
  128                 /*
  129                  * Read mdata->ptype before mdata->multi.
  130                  */
  131                 smp_rmb();
  132                 multi = mdata->multi;
  133                 /*
  134                  * multi points to an array, therefore accessing the array
  135                  * depends on reading multi. However, even in this case,
  136                  * we must insure that the pointer is read _before_ the array
  137                  * data. Same as rcu_dereference, but we need a full smp_rmb()
  138                  * in the fast path, so put the explicit barrier here.
  139                  */
  140                 smp_read_barrier_depends();
  141                 for (i = 0; multi[i].func; i++) {
  142                         va_start(args, call_private);
  143                         multi[i].func(multi[i].probe_private, call_private,
  144                                 mdata->format, &args);
  145                         va_end(args);
  146                 }
  147         }
  148         rcu_read_unlock_sched();
  149 }
  150 EXPORT_SYMBOL_GPL(marker_probe_cb);
  151 
  152 /*
  153  * marker_probe_cb Callback that does not prepare the variable argument list.
  154  * @mdata: pointer of type struct marker
  155  * @call_private: caller site private data
  156  * @...:  Variable argument list.
  157  *
  158  * Should be connected to markers "MARK_NOARGS".
  159  */
  160 void marker_probe_cb_noarg(const struct marker *mdata, void *call_private, ...)
  161 {
  162         va_list args;   /* not initialized */
  163         char ptype;
  164 
  165         rcu_read_lock_sched();
  166         ptype = mdata->ptype;
  167         if (likely(!ptype)) {
  168                 marker_probe_func *func;
  169                 /* Must read the ptype before ptr. They are not data dependant,
  170                  * so we put an explicit smp_rmb() here. */
  171                 smp_rmb();
  172                 func = mdata->single.func;
  173                 /* Must read the ptr before private data. They are not data
  174                  * dependant, so we put an explicit smp_rmb() here. */
  175                 smp_rmb();
  176                 func(mdata->single.probe_private, call_private, mdata->format,
  177                         &args);
  178         } else {
  179                 struct marker_probe_closure *multi;
  180                 int i;
  181                 /*
  182                  * Read mdata->ptype before mdata->multi.
  183                  */
  184                 smp_rmb();
  185                 multi = mdata->multi;
  186                 /*
  187                  * multi points to an array, therefore accessing the array
  188                  * depends on reading multi. However, even in this case,
  189                  * we must insure that the pointer is read _before_ the array
  190                  * data. Same as rcu_dereference, but we need a full smp_rmb()
  191                  * in the fast path, so put the explicit barrier here.
  192                  */
  193                 smp_read_barrier_depends();
  194                 for (i = 0; multi[i].func; i++)
  195                         multi[i].func(multi[i].probe_private, call_private,
  196                                 mdata->format, &args);
  197         }
  198         rcu_read_unlock_sched();
  199 }
  200 EXPORT_SYMBOL_GPL(marker_probe_cb_noarg);
  201 
  202 static void free_old_closure(struct rcu_head *head)
  203 {
  204         struct marker_entry *entry = container_of(head,
  205                 struct marker_entry, rcu);
  206         kfree(entry->oldptr);
  207         /* Make sure we free the data before setting the pending flag to 0 */
  208         smp_wmb();
  209         entry->rcu_pending = 0;
  210 }
  211 
  212 static void debug_print_probes(struct marker_entry *entry)
  213 {
  214         int i;
  215 
  216         if (!marker_debug)
  217                 return;
  218 
  219         if (!entry->ptype) {
  220                 printk(KERN_DEBUG "Single probe : %p %p\n",
  221                         entry->single.func,
  222                         entry->single.probe_private);
  223         } else {
  224                 for (i = 0; entry->multi[i].func; i++)
  225                         printk(KERN_DEBUG "Multi probe %d : %p %p\n", i,
  226                                 entry->multi[i].func,
  227                                 entry->multi[i].probe_private);
  228         }
  229 }
  230 
  231 static struct marker_probe_closure *
  232 marker_entry_add_probe(struct marker_entry *entry,
  233                 marker_probe_func *probe, void *probe_private)
  234 {
  235         int nr_probes = 0;
  236         struct marker_probe_closure *old, *new;
  237 
  238         WARN_ON(!probe);
  239 
  240         debug_print_probes(entry);
  241         old = entry->multi;
  242         if (!entry->ptype) {
  243                 if (entry->single.func == probe &&
  244                                 entry->single.probe_private == probe_private)
  245                         return ERR_PTR(-EBUSY);
  246                 if (entry->single.func == __mark_empty_function) {
  247                         /* 0 -> 1 probes */
  248                         entry->single.func = probe;
  249                         entry->single.probe_private = probe_private;
  250                         entry->refcount = 1;
  251                         entry->ptype = 0;
  252                         debug_print_probes(entry);
  253                         return NULL;
  254                 } else {
  255                         /* 1 -> 2 probes */
  256                         nr_probes = 1;
  257                         old = NULL;
  258                 }
  259         } else {
  260                 /* (N -> N+1), (N != 0, 1) probes */
  261                 for (nr_probes = 0; old[nr_probes].func; nr_probes++)
  262                         if (old[nr_probes].func == probe
  263                                         && old[nr_probes].probe_private
  264                                                 == probe_private)
  265                                 return ERR_PTR(-EBUSY);
  266         }
  267         /* + 2 : one for new probe, one for NULL func */
  268         new = kzalloc((nr_probes + 2) * sizeof(struct marker_probe_closure),
  269                         GFP_KERNEL);
  270         if (new == NULL)
  271                 return ERR_PTR(-ENOMEM);
  272         if (!old)
  273                 new[0] = entry->single;
  274         else
  275                 memcpy(new, old,
  276                         nr_probes * sizeof(struct marker_probe_closure));
  277         new[nr_probes].func = probe;
  278         new[nr_probes].probe_private = probe_private;
  279         entry->refcount = nr_probes + 1;
  280         entry->multi = new;
  281         entry->ptype = 1;
  282         debug_print_probes(entry);
  283         return old;
  284 }
  285 
  286 static struct marker_probe_closure *
  287 marker_entry_remove_probe(struct marker_entry *entry,
  288                 marker_probe_func *probe, void *probe_private)
  289 {
  290         int nr_probes = 0, nr_del = 0, i;
  291         struct marker_probe_closure *old, *new;
  292 
  293         old = entry->multi;
  294 
  295         debug_print_probes(entry);
  296         if (!entry->ptype) {
  297                 /* 0 -> N is an error */
  298                 WARN_ON(entry->single.func == __mark_empty_function);
  299                 /* 1 -> 0 probes */
  300                 WARN_ON(probe && entry->single.func != probe);
  301                 WARN_ON(entry->single.probe_private != probe_private);
  302                 entry->single.func = __mark_empty_function;
  303                 entry->refcount = 0;
  304                 entry->ptype = 0;
  305                 debug_print_probes(entry);
  306                 return NULL;
  307         } else {
  308                 /* (N -> M), (N > 1, M >= 0) probes */
  309                 for (nr_probes = 0; old[nr_probes].func; nr_probes++) {
  310                         if ((!probe || old[nr_probes].func == probe)
  311                                         && old[nr_probes].probe_private
  312                                                 == probe_private)
  313                                 nr_del++;
  314                 }
  315         }
  316 
  317         if (nr_probes - nr_del == 0) {
  318                 /* N -> 0, (N > 1) */
  319                 entry->single.func = __mark_empty_function;
  320                 entry->refcount = 0;
  321                 entry->ptype = 0;
  322         } else if (nr_probes - nr_del == 1) {
  323                 /* N -> 1, (N > 1) */
  324                 for (i = 0; old[i].func; i++)
  325                         if ((probe && old[i].func != probe) ||
  326                                         old[i].probe_private != probe_private)
  327                                 entry->single = old[i];
  328                 entry->refcount = 1;
  329                 entry->ptype = 0;
  330         } else {
  331                 int j = 0;
  332                 /* N -> M, (N > 1, M > 1) */
  333                 /* + 1 for NULL */
  334                 new = kzalloc((nr_probes - nr_del + 1)
  335                         * sizeof(struct marker_probe_closure), GFP_KERNEL);
  336                 if (new == NULL)
  337                         return ERR_PTR(-ENOMEM);
  338                 for (i = 0; old[i].func; i++)
  339                         if ((probe && old[i].func != probe) ||
  340                                         old[i].probe_private != probe_private)
  341                                 new[j++] = old[i];
  342                 entry->refcount = nr_probes - nr_del;
  343                 entry->ptype = 1;
  344                 entry->multi = new;
  345         }
  346         debug_print_probes(entry);
  347         return old;
  348 }
  349 
  350 /*
  351  * Get marker if the marker is present in the marker hash table.
  352  * Must be called with markers_mutex held.
  353  * Returns NULL if not present.
  354  */
  355 static struct marker_entry *get_marker(const char *name)
  356 {
  357         struct hlist_head *head;
  358         struct hlist_node *node;
  359         struct marker_entry *e;
  360         u32 hash = jhash(name, strlen(name), 0);
  361 
  362         head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)];
  363         hlist_for_each_entry(e, node, head, hlist) {
  364                 if (!strcmp(name, e->name))
  365                         return e;
  366         }
  367         return NULL;
  368 }
  369 
  370 /*
  371  * Add the marker to the marker hash table. Must be called with markers_mutex
  372  * held.
  373  */
  374 static struct marker_entry *add_marker(const char *name, const char *format)
  375 {
  376         struct hlist_head *head;
  377         struct hlist_node *node;
  378         struct marker_entry *e;
  379         size_t name_len = strlen(name) + 1;
  380         size_t format_len = 0;
  381         u32 hash = jhash(name, name_len-1, 0);
  382 
  383         if (format)
  384                 format_len = strlen(format) + 1;
  385         head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)];
  386         hlist_for_each_entry(e, node, head, hlist) {
  387                 if (!strcmp(name, e->name)) {
  388                         printk(KERN_NOTICE
  389                                 "Marker %s busy\n", name);
  390                         return ERR_PTR(-EBUSY); /* Already there */
  391                 }
  392         }
  393         /*
  394          * Using kmalloc here to allocate a variable length element. Could
  395          * cause some memory fragmentation if overused.
  396          */
  397         e = kmalloc(sizeof(struct marker_entry) + name_len + format_len,
  398                         GFP_KERNEL);
  399         if (!e)
  400                 return ERR_PTR(-ENOMEM);
  401         memcpy(&e->name[0], name, name_len);
  402         if (format) {
  403                 e->format = &e->name[name_len];
  404                 memcpy(e->format, format, format_len);
  405                 if (strcmp(e->format, MARK_NOARGS) == 0)
  406                         e->call = marker_probe_cb_noarg;
  407                 else
  408                         e->call = marker_probe_cb;
  409                 trace_mark(core_marker_format, "name %s format %s",
  410                                 e->name, e->format);
  411         } else {
  412                 e->format = NULL;
  413                 e->call = marker_probe_cb;
  414         }
  415         e->single.func = __mark_empty_function;
  416         e->single.probe_private = NULL;
  417         e->multi = NULL;
  418         e->ptype = 0;
  419         e->refcount = 0;
  420         e->rcu_pending = 0;
  421         hlist_add_head(&e->hlist, head);
  422         return e;
  423 }
  424 
  425 /*
  426  * Remove the marker from the marker hash table. Must be called with mutex_lock
  427  * held.
  428  */
  429 static int remove_marker(const char *name)
  430 {
  431         struct hlist_head *head;
  432         struct hlist_node *node;
  433         struct marker_entry *e;
  434         int found = 0;
  435         size_t len = strlen(name) + 1;
  436         u32 hash = jhash(name, len-1, 0);
  437 
  438         head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)];
  439         hlist_for_each_entry(e, node, head, hlist) {
  440                 if (!strcmp(name, e->name)) {
  441                         found = 1;
  442                         break;
  443                 }
  444         }
  445         if (!found)
  446                 return -ENOENT;
  447         if (e->single.func != __mark_empty_function)
  448                 return -EBUSY;
  449         hlist_del(&e->hlist);
  450         /* Make sure the call_rcu has been executed */
  451         if (e->rcu_pending)
  452                 rcu_barrier_sched();
  453         kfree(e);
  454         return 0;
  455 }
  456 
  457 /*
  458  * Set the mark_entry format to the format found in the element.
  459  */
  460 static int marker_set_format(struct marker_entry **entry, const char *format)
  461 {
  462         struct marker_entry *e;
  463         size_t name_len = strlen((*entry)->name) + 1;
  464         size_t format_len = strlen(format) + 1;
  465 
  466 
  467         e = kmalloc(sizeof(struct marker_entry) + name_len + format_len,
  468                         GFP_KERNEL);
  469         if (!e)
  470                 return -ENOMEM;
  471         memcpy(&e->name[0], (*entry)->name, name_len);
  472         e->format = &e->name[name_len];
  473         memcpy(e->format, format, format_len);
  474         if (strcmp(e->format, MARK_NOARGS) == 0)
  475                 e->call = marker_probe_cb_noarg;
  476         else
  477                 e->call = marker_probe_cb;
  478         e->single = (*entry)->single;
  479         e->multi = (*entry)->multi;
  480         e->ptype = (*entry)->ptype;
  481         e->refcount = (*entry)->refcount;
  482         e->rcu_pending = 0;
  483         hlist_add_before(&e->hlist, &(*entry)->hlist);
  484         hlist_del(&(*entry)->hlist);
  485         /* Make sure the call_rcu has been executed */
  486         if ((*entry)->rcu_pending)
  487                 rcu_barrier_sched();
  488         kfree(*entry);
  489         *entry = e;
  490         trace_mark(core_marker_format, "name %s format %s",
  491                         e->name, e->format);
  492         return 0;
  493 }
  494 
  495 /*
  496  * Sets the probe callback corresponding to one marker.
  497  */
  498 static int set_marker(struct marker_entry **entry, struct marker *elem,
  499                 int active)
  500 {
  501         int ret;
  502         WARN_ON(strcmp((*entry)->name, elem->name) != 0);
  503 
  504         if ((*entry)->format) {
  505                 if (strcmp((*entry)->format, elem->format) != 0) {
  506                         printk(KERN_NOTICE
  507                                 "Format mismatch for probe %s "
  508                                 "(%s), marker (%s)\n",
  509                                 (*entry)->name,
  510                                 (*entry)->format,
  511                                 elem->format);
  512                         return -EPERM;
  513                 }
  514         } else {
  515                 ret = marker_set_format(entry, elem->format);
  516                 if (ret)
  517                         return ret;
  518         }
  519 
  520         /*
  521          * probe_cb setup (statically known) is done here. It is
  522          * asynchronous with the rest of execution, therefore we only
  523          * pass from a "safe" callback (with argument) to an "unsafe"
  524          * callback (does not set arguments).
  525          */
  526         elem->call = (*entry)->call;
  527         /*
  528          * Sanity check :
  529          * We only update the single probe private data when the ptr is
  530          * set to a _non_ single probe! (0 -> 1 and N -> 1, N != 1)
  531          */
  532         WARN_ON(elem->single.func != __mark_empty_function
  533                 && elem->single.probe_private
  534                 != (*entry)->single.probe_private &&
  535                 !elem->ptype);
  536         elem->single.probe_private = (*entry)->single.probe_private;
  537         /*
  538          * Make sure the private data is valid when we update the
  539          * single probe ptr.
  540          */
  541         smp_wmb();
  542         elem->single.func = (*entry)->single.func;
  543         /*
  544          * We also make sure that the new probe callbacks array is consistent
  545          * before setting a pointer to it.
  546          */
  547         rcu_assign_pointer(elem->multi, (*entry)->multi);
  548         /*
  549          * Update the function or multi probe array pointer before setting the
  550          * ptype.
  551          */
  552         smp_wmb();
  553         elem->ptype = (*entry)->ptype;
  554         elem->state = active;
  555 
  556         return 0;
  557 }
  558 
  559 /*
  560  * Disable a marker and its probe callback.
  561  * Note: only waiting an RCU period after setting elem->call to the empty
  562  * function insures that the original callback is not used anymore. This insured
  563  * by rcu_read_lock_sched around the call site.
  564  */
  565 static void disable_marker(struct marker *elem)
  566 {
  567         /* leave "call" as is. It is known statically. */
  568         elem->state = 0;
  569         elem->single.func = __mark_empty_function;
  570         /* Update the function before setting the ptype */
  571         smp_wmb();
  572         elem->ptype = 0;        /* single probe */
  573         /*
  574          * Leave the private data and id there, because removal is racy and
  575          * should be done only after an RCU period. These are never used until
  576          * the next initialization anyway.
  577          */
  578 }
  579 
  580 /**
  581  * marker_update_probe_range - Update a probe range
  582  * @begin: beginning of the range
  583  * @end: end of the range
  584  *
  585  * Updates the probe callback corresponding to a range of markers.
  586  */
  587 void marker_update_probe_range(struct marker *begin,
  588         struct marker *end)
  589 {
  590         struct marker *iter;
  591         struct marker_entry *mark_entry;
  592 
  593         mutex_lock(&markers_mutex);
  594         for (iter = begin; iter < end; iter++) {
  595                 mark_entry = get_marker(iter->name);
  596                 if (mark_entry) {
  597                         set_marker(&mark_entry, iter,
  598                                         !!mark_entry->refcount);
  599                         /*
  600                          * ignore error, continue
  601                          */
  602                 } else {
  603                         disable_marker(iter);
  604                 }
  605         }
  606         mutex_unlock(&markers_mutex);
  607 }
  608 
  609 /*
  610  * Update probes, removing the faulty probes.
  611  *
  612  * Internal callback only changed before the first probe is connected to it.
  613  * Single probe private data can only be changed on 0 -> 1 and 2 -> 1
  614  * transitions.  All other transitions will leave the old private data valid.
  615  * This makes the non-atomicity of the callback/private data updates valid.
  616  *
  617  * "special case" updates :
  618  * 0 -> 1 callback
  619  * 1 -> 0 callback
  620  * 1 -> 2 callbacks
  621  * 2 -> 1 callbacks
  622  * Other updates all behave the same, just like the 2 -> 3 or 3 -> 2 updates.
  623  * Site effect : marker_set_format may delete the marker entry (creating a
  624  * replacement).
  625  */
  626 static void marker_update_probes(void)
  627 {
  628         /* Core kernel markers */
  629         marker_update_probe_range(__start___markers, __stop___markers);
  630         /* Markers in modules. */
  631         module_update_markers();
  632 }
  633 
  634 /**
  635  * marker_probe_register -  Connect a probe to a marker
  636  * @name: marker name
  637  * @format: format string
  638  * @probe: probe handler
  639  * @probe_private: probe private data
  640  *
  641  * private data must be a valid allocated memory address, or NULL.
  642  * Returns 0 if ok, error value on error.
  643  * The probe address must at least be aligned on the architecture pointer size.
  644  */
  645 int marker_probe_register(const char *name, const char *format,
  646                         marker_probe_func *probe, void *probe_private)
  647 {
  648         struct marker_entry *entry;
  649         int ret = 0;
  650         struct marker_probe_closure *old;
  651 
  652         mutex_lock(&markers_mutex);
  653         entry = get_marker(name);
  654         if (!entry) {
  655                 entry = add_marker(name, format);
  656                 if (IS_ERR(entry))
  657                         ret = PTR_ERR(entry);
  658         } else if (format) {
  659                 if (!entry->format)
  660                         ret = marker_set_format(&entry, format);
  661                 else if (strcmp(entry->format, format))
  662                         ret = -EPERM;
  663         }
  664         if (ret)
  665                 goto end;
  666 
  667         /*
  668          * If we detect that a call_rcu is pending for this marker,
  669          * make sure it's executed now.
  670          */
  671         if (entry->rcu_pending)
  672                 rcu_barrier_sched();
  673         old = marker_entry_add_probe(entry, probe, probe_private);
  674         if (IS_ERR(old)) {
  675                 ret = PTR_ERR(old);
  676                 goto end;
  677         }
  678         mutex_unlock(&markers_mutex);
  679         marker_update_probes();         /* may update entry */
  680         mutex_lock(&markers_mutex);
  681         entry = get_marker(name);
  682         WARN_ON(!entry);
  683         if (entry->rcu_pending)
  684                 rcu_barrier_sched();
  685         entry->oldptr = old;
  686         entry->rcu_pending = 1;
  687         /* write rcu_pending before calling the RCU callback */
  688         smp_wmb();
  689         call_rcu_sched(&entry->rcu, free_old_closure);
  690 end:
  691         mutex_unlock(&markers_mutex);
  692         return ret;
  693 }
  694 EXPORT_SYMBOL_GPL(marker_probe_register);
  695 
  696 /**
  697  * marker_probe_unregister -  Disconnect a probe from a marker
  698  * @name: marker name
  699  * @probe: probe function pointer
  700  * @probe_private: probe private data
  701  *
  702  * Returns the private data given to marker_probe_register, or an ERR_PTR().
  703  * We do not need to call a synchronize_sched to make sure the probes have
  704  * finished running before doing a module unload, because the module unload
  705  * itself uses stop_machine(), which insures that every preempt disabled section
  706  * have finished.
  707  */
  708 int marker_probe_unregister(const char *name,
  709         marker_probe_func *probe, void *probe_private)
  710 {
  711         struct marker_entry *entry;
  712         struct marker_probe_closure *old;
  713         int ret = -ENOENT;
  714 
  715         mutex_lock(&markers_mutex);
  716         entry = get_marker(name);
  717         if (!entry)
  718                 goto end;
  719         if (entry->rcu_pending)
  720                 rcu_barrier_sched();
  721         old = marker_entry_remove_probe(entry, probe, probe_private);
  722         mutex_unlock(&markers_mutex);
  723         marker_update_probes();         /* may update entry */
  724         mutex_lock(&markers_mutex);
  725         entry = get_marker(name);
  726         if (!entry)
  727                 goto end;
  728         if (entry->rcu_pending)
  729                 rcu_barrier_sched();
  730         entry->oldptr = old;
  731         entry->rcu_pending = 1;
  732         /* write rcu_pending before calling the RCU callback */
  733         smp_wmb();
  734         call_rcu_sched(&entry->rcu, free_old_closure);
  735         remove_marker(name);    /* Ignore busy error message */
  736         ret = 0;
  737 end:
  738         mutex_unlock(&markers_mutex);
  739         return ret;
  740 }
  741 EXPORT_SYMBOL_GPL(marker_probe_unregister);
  742 
  743 static struct marker_entry *
  744 get_marker_from_private_data(marker_probe_func *probe, void *probe_private)
  745 {
  746         struct marker_entry *entry;
  747         unsigned int i;
  748         struct hlist_head *head;
  749         struct hlist_node *node;
  750 
  751         for (i = 0; i < MARKER_TABLE_SIZE; i++) {
  752                 head = &marker_table[i];
  753                 hlist_for_each_entry(entry, node, head, hlist) {
  754                         if (!entry->ptype) {
  755                                 if (entry->single.func == probe
  756                                                 && entry->single.probe_private
  757                                                 == probe_private)
  758                                         return entry;
  759                         } else {
  760                                 struct marker_probe_closure *closure;
  761                                 closure = entry->multi;
  762                                 for (i = 0; closure[i].func; i++) {
  763                                         if (closure[i].func == probe &&
  764                                                         closure[i].probe_private
  765                                                         == probe_private)
  766                                                 return entry;
  767                                 }
  768                         }
  769                 }
  770         }
  771         return NULL;
  772 }
  773 
  774 /**
  775  * marker_probe_unregister_private_data -  Disconnect a probe from a marker
  776  * @probe: probe function
  777  * @probe_private: probe private data
  778  *
  779  * Unregister a probe by providing the registered private data.
  780  * Only removes the first marker found in hash table.
  781  * Return 0 on success or error value.
  782  * We do not need to call a synchronize_sched to make sure the probes have
  783  * finished running before doing a module unload, because the module unload
  784  * itself uses stop_machine(), which insures that every preempt disabled section
  785  * have finished.
  786  */
  787 int marker_probe_unregister_private_data(marker_probe_func *probe,
  788                 void *probe_private)
  789 {
  790         struct marker_entry *entry;
  791         int ret = 0;
  792         struct marker_probe_closure *old;
  793 
  794         mutex_lock(&markers_mutex);
  795         entry = get_marker_from_private_data(probe, probe_private);
  796         if (!entry) {
  797                 ret = -ENOENT;
  798                 goto end;
  799         }
  800         if (entry->rcu_pending)
  801                 rcu_barrier_sched();
  802         old = marker_entry_remove_probe(entry, NULL, probe_private);
  803         mutex_unlock(&markers_mutex);
  804         marker_update_probes();         /* may update entry */
  805         mutex_lock(&markers_mutex);
  806         entry = get_marker_from_private_data(probe, probe_private);
  807         WARN_ON(!entry);
  808         if (entry->rcu_pending)
  809                 rcu_barrier_sched();
  810         entry->oldptr = old;
  811         entry->rcu_pending = 1;
  812         /* write rcu_pending before calling the RCU callback */
  813         smp_wmb();
  814         call_rcu_sched(&entry->rcu, free_old_closure);
  815         remove_marker(entry->name);     /* Ignore busy error message */
  816 end:
  817         mutex_unlock(&markers_mutex);
  818         return ret;
  819 }
  820 EXPORT_SYMBOL_GPL(marker_probe_unregister_private_data);
  821 
  822 /**
  823  * marker_get_private_data - Get a marker's probe private data
  824  * @name: marker name
  825  * @probe: probe to match
  826  * @num: get the nth matching probe's private data
  827  *
  828  * Returns the nth private data pointer (starting from 0) matching, or an
  829  * ERR_PTR.
  830  * Returns the private data pointer, or an ERR_PTR.
  831  * The private data pointer should _only_ be dereferenced if the caller is the
  832  * owner of the data, or its content could vanish. This is mostly used to
  833  * confirm that a caller is the owner of a registered probe.
  834  */
  835 void *marker_get_private_data(const char *name, marker_probe_func *probe,
  836                 int num)
  837 {
  838         struct hlist_head *head;
  839         struct hlist_node *node;
  840         struct marker_entry *e;
  841         size_t name_len = strlen(name) + 1;
  842         u32 hash = jhash(name, name_len-1, 0);
  843         int i;
  844 
  845         head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)];
  846         hlist_for_each_entry(e, node, head, hlist) {
  847                 if (!strcmp(name, e->name)) {
  848                         if (!e->ptype) {
  849                                 if (num == 0 && e->single.func == probe)
  850                                         return e->single.probe_private;
  851                                 else
  852                                         break;
  853                         } else {
  854                                 struct marker_probe_closure *closure;
  855                                 int match = 0;
  856                                 closure = e->multi;
  857                                 for (i = 0; closure[i].func; i++) {
  858                                         if (closure[i].func != probe)
  859                                                 continue;
  860                                         if (match++ == num)
  861                                                 return closure[i].probe_private;
  862                                 }
  863                         }
  864                 }
  865         }
  866         return ERR_PTR(-ENOENT);
  867 }
  868 EXPORT_SYMBOL_GPL(marker_get_private_data);

Cache object: 0ef93b3c3d9c003d9702e5d07fbf531d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.