The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kernel/pid.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Generic pidhash and scalable, time-bounded PID allocator
    3  *
    4  * (C) 2002-2003 Nadia Yvette Chambers, IBM
    5  * (C) 2004 Nadia Yvette Chambers, Oracle
    6  * (C) 2002-2004 Ingo Molnar, Red Hat
    7  *
    8  * pid-structures are backing objects for tasks sharing a given ID to chain
    9  * against. There is very little to them aside from hashing them and
   10  * parking tasks using given ID's on a list.
   11  *
   12  * The hash is always changed with the tasklist_lock write-acquired,
   13  * and the hash is only accessed with the tasklist_lock at least
   14  * read-acquired, so there's no additional SMP locking needed here.
   15  *
   16  * We have a list of bitmap pages, which bitmaps represent the PID space.
   17  * Allocating and freeing PIDs is completely lockless. The worst-case
   18  * allocation scenario when all but one out of 1 million PIDs possible are
   19  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
   20  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
   21  *
   22  * Pid namespaces:
   23  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
   24  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
   25  *     Many thanks to Oleg Nesterov for comments and help
   26  *
   27  */
   28 
   29 #include <linux/mm.h>
   30 #include <linux/export.h>
   31 #include <linux/slab.h>
   32 #include <linux/init.h>
   33 #include <linux/rculist.h>
   34 #include <linux/bootmem.h>
   35 #include <linux/hash.h>
   36 #include <linux/pid_namespace.h>
   37 #include <linux/init_task.h>
   38 #include <linux/syscalls.h>
   39 #include <linux/proc_fs.h>
   40 
   41 #define pid_hashfn(nr, ns)      \
   42         hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
   43 static struct hlist_head *pid_hash;
   44 static unsigned int pidhash_shift = 4;
   45 struct pid init_struct_pid = INIT_STRUCT_PID;
   46 
   47 int pid_max = PID_MAX_DEFAULT;
   48 
   49 #define RESERVED_PIDS           300
   50 
   51 int pid_max_min = RESERVED_PIDS + 1;
   52 int pid_max_max = PID_MAX_LIMIT;
   53 
   54 #define BITS_PER_PAGE           (PAGE_SIZE*8)
   55 #define BITS_PER_PAGE_MASK      (BITS_PER_PAGE-1)
   56 
   57 static inline int mk_pid(struct pid_namespace *pid_ns,
   58                 struct pidmap *map, int off)
   59 {
   60         return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
   61 }
   62 
   63 #define find_next_offset(map, off)                                      \
   64                 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
   65 
   66 /*
   67  * PID-map pages start out as NULL, they get allocated upon
   68  * first use and are never deallocated. This way a low pid_max
   69  * value does not cause lots of bitmaps to be allocated, but
   70  * the scheme scales to up to 4 million PIDs, runtime.
   71  */
   72 struct pid_namespace init_pid_ns = {
   73         .kref = {
   74                 .refcount       = ATOMIC_INIT(2),
   75         },
   76         .pidmap = {
   77                 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
   78         },
   79         .last_pid = 0,
   80         .level = 0,
   81         .child_reaper = &init_task,
   82         .user_ns = &init_user_ns,
   83         .proc_inum = PROC_PID_INIT_INO,
   84 };
   85 EXPORT_SYMBOL_GPL(init_pid_ns);
   86 
   87 /*
   88  * Note: disable interrupts while the pidmap_lock is held as an
   89  * interrupt might come in and do read_lock(&tasklist_lock).
   90  *
   91  * If we don't disable interrupts there is a nasty deadlock between
   92  * detach_pid()->free_pid() and another cpu that does
   93  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
   94  * read_lock(&tasklist_lock);
   95  *
   96  * After we clean up the tasklist_lock and know there are no
   97  * irq handlers that take it we can leave the interrupts enabled.
   98  * For now it is easier to be safe than to prove it can't happen.
   99  */
  100 
  101 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  102 
  103 static void free_pidmap(struct upid *upid)
  104 {
  105         int nr = upid->nr;
  106         struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
  107         int offset = nr & BITS_PER_PAGE_MASK;
  108 
  109         clear_bit(offset, map->page);
  110         atomic_inc(&map->nr_free);
  111 }
  112 
  113 /*
  114  * If we started walking pids at 'base', is 'a' seen before 'b'?
  115  */
  116 static int pid_before(int base, int a, int b)
  117 {
  118         /*
  119          * This is the same as saying
  120          *
  121          * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
  122          * and that mapping orders 'a' and 'b' with respect to 'base'.
  123          */
  124         return (unsigned)(a - base) < (unsigned)(b - base);
  125 }
  126 
  127 /*
  128  * We might be racing with someone else trying to set pid_ns->last_pid
  129  * at the pid allocation time (there's also a sysctl for this, but racing
  130  * with this one is OK, see comment in kernel/pid_namespace.c about it).
  131  * We want the winner to have the "later" value, because if the
  132  * "earlier" value prevails, then a pid may get reused immediately.
  133  *
  134  * Since pids rollover, it is not sufficient to just pick the bigger
  135  * value.  We have to consider where we started counting from.
  136  *
  137  * 'base' is the value of pid_ns->last_pid that we observed when
  138  * we started looking for a pid.
  139  *
  140  * 'pid' is the pid that we eventually found.
  141  */
  142 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
  143 {
  144         int prev;
  145         int last_write = base;
  146         do {
  147                 prev = last_write;
  148                 last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
  149         } while ((prev != last_write) && (pid_before(base, last_write, pid)));
  150 }
  151 
  152 static int alloc_pidmap(struct pid_namespace *pid_ns)
  153 {
  154         int i, offset, max_scan, pid, last = pid_ns->last_pid;
  155         struct pidmap *map;
  156 
  157         pid = last + 1;
  158         if (pid >= pid_max)
  159                 pid = RESERVED_PIDS;
  160         offset = pid & BITS_PER_PAGE_MASK;
  161         map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
  162         /*
  163          * If last_pid points into the middle of the map->page we
  164          * want to scan this bitmap block twice, the second time
  165          * we start with offset == 0 (or RESERVED_PIDS).
  166          */
  167         max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
  168         for (i = 0; i <= max_scan; ++i) {
  169                 if (unlikely(!map->page)) {
  170                         void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  171                         /*
  172                          * Free the page if someone raced with us
  173                          * installing it:
  174                          */
  175                         spin_lock_irq(&pidmap_lock);
  176                         if (!map->page) {
  177                                 map->page = page;
  178                                 page = NULL;
  179                         }
  180                         spin_unlock_irq(&pidmap_lock);
  181                         kfree(page);
  182                         if (unlikely(!map->page))
  183                                 break;
  184                 }
  185                 if (likely(atomic_read(&map->nr_free))) {
  186                         do {
  187                                 if (!test_and_set_bit(offset, map->page)) {
  188                                         atomic_dec(&map->nr_free);
  189                                         set_last_pid(pid_ns, last, pid);
  190                                         return pid;
  191                                 }
  192                                 offset = find_next_offset(map, offset);
  193                                 pid = mk_pid(pid_ns, map, offset);
  194                         } while (offset < BITS_PER_PAGE && pid < pid_max);
  195                 }
  196                 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  197                         ++map;
  198                         offset = 0;
  199                 } else {
  200                         map = &pid_ns->pidmap[0];
  201                         offset = RESERVED_PIDS;
  202                         if (unlikely(last == offset))
  203                                 break;
  204                 }
  205                 pid = mk_pid(pid_ns, map, offset);
  206         }
  207         return -1;
  208 }
  209 
  210 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
  211 {
  212         int offset;
  213         struct pidmap *map, *end;
  214 
  215         if (last >= PID_MAX_LIMIT)
  216                 return -1;
  217 
  218         offset = (last + 1) & BITS_PER_PAGE_MASK;
  219         map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
  220         end = &pid_ns->pidmap[PIDMAP_ENTRIES];
  221         for (; map < end; map++, offset = 0) {
  222                 if (unlikely(!map->page))
  223                         continue;
  224                 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  225                 if (offset < BITS_PER_PAGE)
  226                         return mk_pid(pid_ns, map, offset);
  227         }
  228         return -1;
  229 }
  230 
  231 void put_pid(struct pid *pid)
  232 {
  233         struct pid_namespace *ns;
  234 
  235         if (!pid)
  236                 return;
  237 
  238         ns = pid->numbers[pid->level].ns;
  239         if ((atomic_read(&pid->count) == 1) ||
  240              atomic_dec_and_test(&pid->count)) {
  241                 kmem_cache_free(ns->pid_cachep, pid);
  242                 put_pid_ns(ns);
  243         }
  244 }
  245 EXPORT_SYMBOL_GPL(put_pid);
  246 
  247 static void delayed_put_pid(struct rcu_head *rhp)
  248 {
  249         struct pid *pid = container_of(rhp, struct pid, rcu);
  250         put_pid(pid);
  251 }
  252 
  253 void free_pid(struct pid *pid)
  254 {
  255         /* We can be called with write_lock_irq(&tasklist_lock) held */
  256         int i;
  257         unsigned long flags;
  258 
  259         spin_lock_irqsave(&pidmap_lock, flags);
  260         for (i = 0; i <= pid->level; i++) {
  261                 struct upid *upid = pid->numbers + i;
  262                 struct pid_namespace *ns = upid->ns;
  263                 hlist_del_rcu(&upid->pid_chain);
  264                 switch(--ns->nr_hashed) {
  265                 case 1:
  266                         /* When all that is left in the pid namespace
  267                          * is the reaper wake up the reaper.  The reaper
  268                          * may be sleeping in zap_pid_ns_processes().
  269                          */
  270                         wake_up_process(ns->child_reaper);
  271                         break;
  272                 case 0:
  273                         schedule_work(&ns->proc_work);
  274                         break;
  275                 }
  276         }
  277         spin_unlock_irqrestore(&pidmap_lock, flags);
  278 
  279         for (i = 0; i <= pid->level; i++)
  280                 free_pidmap(pid->numbers + i);
  281 
  282         call_rcu(&pid->rcu, delayed_put_pid);
  283 }
  284 
  285 struct pid *alloc_pid(struct pid_namespace *ns)
  286 {
  287         struct pid *pid;
  288         enum pid_type type;
  289         int i, nr;
  290         struct pid_namespace *tmp;
  291         struct upid *upid;
  292 
  293         pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  294         if (!pid)
  295                 goto out;
  296 
  297         tmp = ns;
  298         pid->level = ns->level;
  299         for (i = ns->level; i >= 0; i--) {
  300                 nr = alloc_pidmap(tmp);
  301                 if (nr < 0)
  302                         goto out_free;
  303 
  304                 pid->numbers[i].nr = nr;
  305                 pid->numbers[i].ns = tmp;
  306                 tmp = tmp->parent;
  307         }
  308 
  309         if (unlikely(is_child_reaper(pid))) {
  310                 if (pid_ns_prepare_proc(ns))
  311                         goto out_free;
  312         }
  313 
  314         get_pid_ns(ns);
  315         atomic_set(&pid->count, 1);
  316         for (type = 0; type < PIDTYPE_MAX; ++type)
  317                 INIT_HLIST_HEAD(&pid->tasks[type]);
  318 
  319         upid = pid->numbers + ns->level;
  320         spin_lock_irq(&pidmap_lock);
  321         if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
  322                 goto out_unlock;
  323         for ( ; upid >= pid->numbers; --upid) {
  324                 hlist_add_head_rcu(&upid->pid_chain,
  325                                 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
  326                 upid->ns->nr_hashed++;
  327         }
  328         spin_unlock_irq(&pidmap_lock);
  329 
  330 out:
  331         return pid;
  332 
  333 out_unlock:
  334         spin_unlock(&pidmap_lock);
  335 out_free:
  336         while (++i <= ns->level)
  337                 free_pidmap(pid->numbers + i);
  338 
  339         kmem_cache_free(ns->pid_cachep, pid);
  340         pid = NULL;
  341         goto out;
  342 }
  343 
  344 void disable_pid_allocation(struct pid_namespace *ns)
  345 {
  346         spin_lock_irq(&pidmap_lock);
  347         ns->nr_hashed &= ~PIDNS_HASH_ADDING;
  348         spin_unlock_irq(&pidmap_lock);
  349 }
  350 
  351 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  352 {
  353         struct hlist_node *elem;
  354         struct upid *pnr;
  355 
  356         hlist_for_each_entry_rcu(pnr, elem,
  357                         &pid_hash[pid_hashfn(nr, ns)], pid_chain)
  358                 if (pnr->nr == nr && pnr->ns == ns)
  359                         return container_of(pnr, struct pid,
  360                                         numbers[ns->level]);
  361 
  362         return NULL;
  363 }
  364 EXPORT_SYMBOL_GPL(find_pid_ns);
  365 
  366 struct pid *find_vpid(int nr)
  367 {
  368         return find_pid_ns(nr, task_active_pid_ns(current));
  369 }
  370 EXPORT_SYMBOL_GPL(find_vpid);
  371 
  372 /*
  373  * attach_pid() must be called with the tasklist_lock write-held.
  374  */
  375 void attach_pid(struct task_struct *task, enum pid_type type,
  376                 struct pid *pid)
  377 {
  378         struct pid_link *link;
  379 
  380         link = &task->pids[type];
  381         link->pid = pid;
  382         hlist_add_head_rcu(&link->node, &pid->tasks[type]);
  383 }
  384 
  385 static void __change_pid(struct task_struct *task, enum pid_type type,
  386                         struct pid *new)
  387 {
  388         struct pid_link *link;
  389         struct pid *pid;
  390         int tmp;
  391 
  392         link = &task->pids[type];
  393         pid = link->pid;
  394 
  395         hlist_del_rcu(&link->node);
  396         link->pid = new;
  397 
  398         for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  399                 if (!hlist_empty(&pid->tasks[tmp]))
  400                         return;
  401 
  402         free_pid(pid);
  403 }
  404 
  405 void detach_pid(struct task_struct *task, enum pid_type type)
  406 {
  407         __change_pid(task, type, NULL);
  408 }
  409 
  410 void change_pid(struct task_struct *task, enum pid_type type,
  411                 struct pid *pid)
  412 {
  413         __change_pid(task, type, pid);
  414         attach_pid(task, type, pid);
  415 }
  416 
  417 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  418 void transfer_pid(struct task_struct *old, struct task_struct *new,
  419                            enum pid_type type)
  420 {
  421         new->pids[type].pid = old->pids[type].pid;
  422         hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  423 }
  424 
  425 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  426 {
  427         struct task_struct *result = NULL;
  428         if (pid) {
  429                 struct hlist_node *first;
  430                 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
  431                                               lockdep_tasklist_lock_is_held());
  432                 if (first)
  433                         result = hlist_entry(first, struct task_struct, pids[(type)].node);
  434         }
  435         return result;
  436 }
  437 EXPORT_SYMBOL(pid_task);
  438 
  439 /*
  440  * Must be called under rcu_read_lock().
  441  */
  442 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  443 {
  444         rcu_lockdep_assert(rcu_read_lock_held(),
  445                            "find_task_by_pid_ns() needs rcu_read_lock()"
  446                            " protection");
  447         return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
  448 }
  449 
  450 struct task_struct *find_task_by_vpid(pid_t vnr)
  451 {
  452         return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
  453 }
  454 
  455 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  456 {
  457         struct pid *pid;
  458         rcu_read_lock();
  459         if (type != PIDTYPE_PID)
  460                 task = task->group_leader;
  461         pid = get_pid(task->pids[type].pid);
  462         rcu_read_unlock();
  463         return pid;
  464 }
  465 EXPORT_SYMBOL_GPL(get_task_pid);
  466 
  467 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  468 {
  469         struct task_struct *result;
  470         rcu_read_lock();
  471         result = pid_task(pid, type);
  472         if (result)
  473                 get_task_struct(result);
  474         rcu_read_unlock();
  475         return result;
  476 }
  477 EXPORT_SYMBOL_GPL(get_pid_task);
  478 
  479 struct pid *find_get_pid(pid_t nr)
  480 {
  481         struct pid *pid;
  482 
  483         rcu_read_lock();
  484         pid = get_pid(find_vpid(nr));
  485         rcu_read_unlock();
  486 
  487         return pid;
  488 }
  489 EXPORT_SYMBOL_GPL(find_get_pid);
  490 
  491 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  492 {
  493         struct upid *upid;
  494         pid_t nr = 0;
  495 
  496         if (pid && ns->level <= pid->level) {
  497                 upid = &pid->numbers[ns->level];
  498                 if (upid->ns == ns)
  499                         nr = upid->nr;
  500         }
  501         return nr;
  502 }
  503 EXPORT_SYMBOL_GPL(pid_nr_ns);
  504 
  505 pid_t pid_vnr(struct pid *pid)
  506 {
  507         return pid_nr_ns(pid, task_active_pid_ns(current));
  508 }
  509 EXPORT_SYMBOL_GPL(pid_vnr);
  510 
  511 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
  512                         struct pid_namespace *ns)
  513 {
  514         pid_t nr = 0;
  515 
  516         rcu_read_lock();
  517         if (!ns)
  518                 ns = task_active_pid_ns(current);
  519         if (likely(pid_alive(task))) {
  520                 if (type != PIDTYPE_PID)
  521                         task = task->group_leader;
  522                 nr = pid_nr_ns(task->pids[type].pid, ns);
  523         }
  524         rcu_read_unlock();
  525 
  526         return nr;
  527 }
  528 EXPORT_SYMBOL(__task_pid_nr_ns);
  529 
  530 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  531 {
  532         return pid_nr_ns(task_tgid(tsk), ns);
  533 }
  534 EXPORT_SYMBOL(task_tgid_nr_ns);
  535 
  536 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
  537 {
  538         return ns_of_pid(task_pid(tsk));
  539 }
  540 EXPORT_SYMBOL_GPL(task_active_pid_ns);
  541 
  542 /*
  543  * Used by proc to find the first pid that is greater than or equal to nr.
  544  *
  545  * If there is a pid at nr this function is exactly the same as find_pid_ns.
  546  */
  547 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  548 {
  549         struct pid *pid;
  550 
  551         do {
  552                 pid = find_pid_ns(nr, ns);
  553                 if (pid)
  554                         break;
  555                 nr = next_pidmap(ns, nr);
  556         } while (nr > 0);
  557 
  558         return pid;
  559 }
  560 
  561 /*
  562  * The pid hash table is scaled according to the amount of memory in the
  563  * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
  564  * more.
  565  */
  566 void __init pidhash_init(void)
  567 {
  568         unsigned int i, pidhash_size;
  569 
  570         pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
  571                                            HASH_EARLY | HASH_SMALL,
  572                                            &pidhash_shift, NULL,
  573                                            0, 4096);
  574         pidhash_size = 1U << pidhash_shift;
  575 
  576         for (i = 0; i < pidhash_size; i++)
  577                 INIT_HLIST_HEAD(&pid_hash[i]);
  578 }
  579 
  580 void __init pidmap_init(void)
  581 {
  582         /* Veryify no one has done anything silly */
  583         BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
  584 
  585         /* bump default and minimum pid_max based on number of cpus */
  586         pid_max = min(pid_max_max, max_t(int, pid_max,
  587                                 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
  588         pid_max_min = max_t(int, pid_max_min,
  589                                 PIDS_PER_CPU_MIN * num_possible_cpus());
  590         pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
  591 
  592         init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  593         /* Reserve PID 0. We never call free_pidmap(0) */
  594         set_bit(0, init_pid_ns.pidmap[0].page);
  595         atomic_dec(&init_pid_ns.pidmap[0].nr_free);
  596         init_pid_ns.nr_hashed = PIDNS_HASH_ADDING;
  597 
  598         init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  599                         SLAB_HWCACHE_ALIGN | SLAB_PANIC);
  600 }

Cache object: ebba0c1894b4bd2e2bda67fddb8bc686


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.