The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kernel/posix-cpu-timers.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Implement CPU time clocks for the POSIX clock interface.
    3  */
    4 
    5 #include <linux/sched.h>
    6 #include <linux/posix-timers.h>
    7 #include <linux/errno.h>
    8 #include <linux/math64.h>
    9 #include <asm/uaccess.h>
   10 #include <linux/kernel_stat.h>
   11 #include <trace/events/timer.h>
   12 #include <linux/random.h>
   13 
   14 /*
   15  * Called after updating RLIMIT_CPU to run cpu timer and update
   16  * tsk->signal->cputime_expires expiration cache if necessary. Needs
   17  * siglock protection since other code may update expiration cache as
   18  * well.
   19  */
   20 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
   21 {
   22         cputime_t cputime = secs_to_cputime(rlim_new);
   23 
   24         spin_lock_irq(&task->sighand->siglock);
   25         set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
   26         spin_unlock_irq(&task->sighand->siglock);
   27 }
   28 
   29 static int check_clock(const clockid_t which_clock)
   30 {
   31         int error = 0;
   32         struct task_struct *p;
   33         const pid_t pid = CPUCLOCK_PID(which_clock);
   34 
   35         if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
   36                 return -EINVAL;
   37 
   38         if (pid == 0)
   39                 return 0;
   40 
   41         rcu_read_lock();
   42         p = find_task_by_vpid(pid);
   43         if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
   44                    same_thread_group(p, current) : has_group_leader_pid(p))) {
   45                 error = -EINVAL;
   46         }
   47         rcu_read_unlock();
   48 
   49         return error;
   50 }
   51 
   52 static inline union cpu_time_count
   53 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
   54 {
   55         union cpu_time_count ret;
   56         ret.sched = 0;          /* high half always zero when .cpu used */
   57         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
   58                 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
   59         } else {
   60                 ret.cpu = timespec_to_cputime(tp);
   61         }
   62         return ret;
   63 }
   64 
   65 static void sample_to_timespec(const clockid_t which_clock,
   66                                union cpu_time_count cpu,
   67                                struct timespec *tp)
   68 {
   69         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
   70                 *tp = ns_to_timespec(cpu.sched);
   71         else
   72                 cputime_to_timespec(cpu.cpu, tp);
   73 }
   74 
   75 static inline int cpu_time_before(const clockid_t which_clock,
   76                                   union cpu_time_count now,
   77                                   union cpu_time_count then)
   78 {
   79         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
   80                 return now.sched < then.sched;
   81         }  else {
   82                 return now.cpu < then.cpu;
   83         }
   84 }
   85 static inline void cpu_time_add(const clockid_t which_clock,
   86                                 union cpu_time_count *acc,
   87                                 union cpu_time_count val)
   88 {
   89         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
   90                 acc->sched += val.sched;
   91         }  else {
   92                 acc->cpu += val.cpu;
   93         }
   94 }
   95 static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
   96                                                 union cpu_time_count a,
   97                                                 union cpu_time_count b)
   98 {
   99         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  100                 a.sched -= b.sched;
  101         }  else {
  102                 a.cpu -= b.cpu;
  103         }
  104         return a;
  105 }
  106 
  107 /*
  108  * Update expiry time from increment, and increase overrun count,
  109  * given the current clock sample.
  110  */
  111 static void bump_cpu_timer(struct k_itimer *timer,
  112                                   union cpu_time_count now)
  113 {
  114         int i;
  115 
  116         if (timer->it.cpu.incr.sched == 0)
  117                 return;
  118 
  119         if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
  120                 unsigned long long delta, incr;
  121 
  122                 if (now.sched < timer->it.cpu.expires.sched)
  123                         return;
  124                 incr = timer->it.cpu.incr.sched;
  125                 delta = now.sched + incr - timer->it.cpu.expires.sched;
  126                 /* Don't use (incr*2 < delta), incr*2 might overflow. */
  127                 for (i = 0; incr < delta - incr; i++)
  128                         incr = incr << 1;
  129                 for (; i >= 0; incr >>= 1, i--) {
  130                         if (delta < incr)
  131                                 continue;
  132                         timer->it.cpu.expires.sched += incr;
  133                         timer->it_overrun += 1 << i;
  134                         delta -= incr;
  135                 }
  136         } else {
  137                 cputime_t delta, incr;
  138 
  139                 if (now.cpu < timer->it.cpu.expires.cpu)
  140                         return;
  141                 incr = timer->it.cpu.incr.cpu;
  142                 delta = now.cpu + incr - timer->it.cpu.expires.cpu;
  143                 /* Don't use (incr*2 < delta), incr*2 might overflow. */
  144                 for (i = 0; incr < delta - incr; i++)
  145                              incr += incr;
  146                 for (; i >= 0; incr = incr >> 1, i--) {
  147                         if (delta < incr)
  148                                 continue;
  149                         timer->it.cpu.expires.cpu += incr;
  150                         timer->it_overrun += 1 << i;
  151                         delta -= incr;
  152                 }
  153         }
  154 }
  155 
  156 static inline cputime_t prof_ticks(struct task_struct *p)
  157 {
  158         return p->utime + p->stime;
  159 }
  160 static inline cputime_t virt_ticks(struct task_struct *p)
  161 {
  162         return p->utime;
  163 }
  164 
  165 static int
  166 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
  167 {
  168         int error = check_clock(which_clock);
  169         if (!error) {
  170                 tp->tv_sec = 0;
  171                 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
  172                 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  173                         /*
  174                          * If sched_clock is using a cycle counter, we
  175                          * don't have any idea of its true resolution
  176                          * exported, but it is much more than 1s/HZ.
  177                          */
  178                         tp->tv_nsec = 1;
  179                 }
  180         }
  181         return error;
  182 }
  183 
  184 static int
  185 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
  186 {
  187         /*
  188          * You can never reset a CPU clock, but we check for other errors
  189          * in the call before failing with EPERM.
  190          */
  191         int error = check_clock(which_clock);
  192         if (error == 0) {
  193                 error = -EPERM;
  194         }
  195         return error;
  196 }
  197 
  198 
  199 /*
  200  * Sample a per-thread clock for the given task.
  201  */
  202 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
  203                             union cpu_time_count *cpu)
  204 {
  205         switch (CPUCLOCK_WHICH(which_clock)) {
  206         default:
  207                 return -EINVAL;
  208         case CPUCLOCK_PROF:
  209                 cpu->cpu = prof_ticks(p);
  210                 break;
  211         case CPUCLOCK_VIRT:
  212                 cpu->cpu = virt_ticks(p);
  213                 break;
  214         case CPUCLOCK_SCHED:
  215                 cpu->sched = task_sched_runtime(p);
  216                 break;
  217         }
  218         return 0;
  219 }
  220 
  221 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
  222 {
  223         if (b->utime > a->utime)
  224                 a->utime = b->utime;
  225 
  226         if (b->stime > a->stime)
  227                 a->stime = b->stime;
  228 
  229         if (b->sum_exec_runtime > a->sum_exec_runtime)
  230                 a->sum_exec_runtime = b->sum_exec_runtime;
  231 }
  232 
  233 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
  234 {
  235         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
  236         struct task_cputime sum;
  237         unsigned long flags;
  238 
  239         if (!cputimer->running) {
  240                 /*
  241                  * The POSIX timer interface allows for absolute time expiry
  242                  * values through the TIMER_ABSTIME flag, therefore we have
  243                  * to synchronize the timer to the clock every time we start
  244                  * it.
  245                  */
  246                 thread_group_cputime(tsk, &sum);
  247                 raw_spin_lock_irqsave(&cputimer->lock, flags);
  248                 cputimer->running = 1;
  249                 update_gt_cputime(&cputimer->cputime, &sum);
  250         } else
  251                 raw_spin_lock_irqsave(&cputimer->lock, flags);
  252         *times = cputimer->cputime;
  253         raw_spin_unlock_irqrestore(&cputimer->lock, flags);
  254 }
  255 
  256 /*
  257  * Sample a process (thread group) clock for the given group_leader task.
  258  * Must be called with tasklist_lock held for reading.
  259  */
  260 static int cpu_clock_sample_group(const clockid_t which_clock,
  261                                   struct task_struct *p,
  262                                   union cpu_time_count *cpu)
  263 {
  264         struct task_cputime cputime;
  265 
  266         switch (CPUCLOCK_WHICH(which_clock)) {
  267         default:
  268                 return -EINVAL;
  269         case CPUCLOCK_PROF:
  270                 thread_group_cputime(p, &cputime);
  271                 cpu->cpu = cputime.utime + cputime.stime;
  272                 break;
  273         case CPUCLOCK_VIRT:
  274                 thread_group_cputime(p, &cputime);
  275                 cpu->cpu = cputime.utime;
  276                 break;
  277         case CPUCLOCK_SCHED:
  278                 thread_group_cputime(p, &cputime);
  279                 cpu->sched = cputime.sum_exec_runtime;
  280                 break;
  281         }
  282         return 0;
  283 }
  284 
  285 
  286 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
  287 {
  288         const pid_t pid = CPUCLOCK_PID(which_clock);
  289         int error = -EINVAL;
  290         union cpu_time_count rtn;
  291 
  292         if (pid == 0) {
  293                 /*
  294                  * Special case constant value for our own clocks.
  295                  * We don't have to do any lookup to find ourselves.
  296                  */
  297                 if (CPUCLOCK_PERTHREAD(which_clock)) {
  298                         /*
  299                          * Sampling just ourselves we can do with no locking.
  300                          */
  301                         error = cpu_clock_sample(which_clock,
  302                                                  current, &rtn);
  303                 } else {
  304                         read_lock(&tasklist_lock);
  305                         error = cpu_clock_sample_group(which_clock,
  306                                                        current, &rtn);
  307                         read_unlock(&tasklist_lock);
  308                 }
  309         } else {
  310                 /*
  311                  * Find the given PID, and validate that the caller
  312                  * should be able to see it.
  313                  */
  314                 struct task_struct *p;
  315                 rcu_read_lock();
  316                 p = find_task_by_vpid(pid);
  317                 if (p) {
  318                         if (CPUCLOCK_PERTHREAD(which_clock)) {
  319                                 if (same_thread_group(p, current)) {
  320                                         error = cpu_clock_sample(which_clock,
  321                                                                  p, &rtn);
  322                                 }
  323                         } else {
  324                                 read_lock(&tasklist_lock);
  325                                 if (thread_group_leader(p) && p->sighand) {
  326                                         error =
  327                                             cpu_clock_sample_group(which_clock,
  328                                                                    p, &rtn);
  329                                 }
  330                                 read_unlock(&tasklist_lock);
  331                         }
  332                 }
  333                 rcu_read_unlock();
  334         }
  335 
  336         if (error)
  337                 return error;
  338         sample_to_timespec(which_clock, rtn, tp);
  339         return 0;
  340 }
  341 
  342 
  343 /*
  344  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
  345  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
  346  * new timer already all-zeros initialized.
  347  */
  348 static int posix_cpu_timer_create(struct k_itimer *new_timer)
  349 {
  350         int ret = 0;
  351         const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
  352         struct task_struct *p;
  353 
  354         if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
  355                 return -EINVAL;
  356 
  357         INIT_LIST_HEAD(&new_timer->it.cpu.entry);
  358 
  359         rcu_read_lock();
  360         if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
  361                 if (pid == 0) {
  362                         p = current;
  363                 } else {
  364                         p = find_task_by_vpid(pid);
  365                         if (p && !same_thread_group(p, current))
  366                                 p = NULL;
  367                 }
  368         } else {
  369                 if (pid == 0) {
  370                         p = current->group_leader;
  371                 } else {
  372                         p = find_task_by_vpid(pid);
  373                         if (p && !has_group_leader_pid(p))
  374                                 p = NULL;
  375                 }
  376         }
  377         new_timer->it.cpu.task = p;
  378         if (p) {
  379                 get_task_struct(p);
  380         } else {
  381                 ret = -EINVAL;
  382         }
  383         rcu_read_unlock();
  384 
  385         return ret;
  386 }
  387 
  388 /*
  389  * Clean up a CPU-clock timer that is about to be destroyed.
  390  * This is called from timer deletion with the timer already locked.
  391  * If we return TIMER_RETRY, it's necessary to release the timer's lock
  392  * and try again.  (This happens when the timer is in the middle of firing.)
  393  */
  394 static int posix_cpu_timer_del(struct k_itimer *timer)
  395 {
  396         struct task_struct *p = timer->it.cpu.task;
  397         int ret = 0;
  398 
  399         if (likely(p != NULL)) {
  400                 read_lock(&tasklist_lock);
  401                 if (unlikely(p->sighand == NULL)) {
  402                         /*
  403                          * We raced with the reaping of the task.
  404                          * The deletion should have cleared us off the list.
  405                          */
  406                         BUG_ON(!list_empty(&timer->it.cpu.entry));
  407                 } else {
  408                         spin_lock(&p->sighand->siglock);
  409                         if (timer->it.cpu.firing)
  410                                 ret = TIMER_RETRY;
  411                         else
  412                                 list_del(&timer->it.cpu.entry);
  413                         spin_unlock(&p->sighand->siglock);
  414                 }
  415                 read_unlock(&tasklist_lock);
  416 
  417                 if (!ret)
  418                         put_task_struct(p);
  419         }
  420 
  421         return ret;
  422 }
  423 
  424 /*
  425  * Clean out CPU timers still ticking when a thread exited.  The task
  426  * pointer is cleared, and the expiry time is replaced with the residual
  427  * time for later timer_gettime calls to return.
  428  * This must be called with the siglock held.
  429  */
  430 static void cleanup_timers(struct list_head *head,
  431                            cputime_t utime, cputime_t stime,
  432                            unsigned long long sum_exec_runtime)
  433 {
  434         struct cpu_timer_list *timer, *next;
  435         cputime_t ptime = utime + stime;
  436 
  437         list_for_each_entry_safe(timer, next, head, entry) {
  438                 list_del_init(&timer->entry);
  439                 if (timer->expires.cpu < ptime) {
  440                         timer->expires.cpu = 0;
  441                 } else {
  442                         timer->expires.cpu -= ptime;
  443                 }
  444         }
  445 
  446         ++head;
  447         list_for_each_entry_safe(timer, next, head, entry) {
  448                 list_del_init(&timer->entry);
  449                 if (timer->expires.cpu < utime) {
  450                         timer->expires.cpu = 0;
  451                 } else {
  452                         timer->expires.cpu -= utime;
  453                 }
  454         }
  455 
  456         ++head;
  457         list_for_each_entry_safe(timer, next, head, entry) {
  458                 list_del_init(&timer->entry);
  459                 if (timer->expires.sched < sum_exec_runtime) {
  460                         timer->expires.sched = 0;
  461                 } else {
  462                         timer->expires.sched -= sum_exec_runtime;
  463                 }
  464         }
  465 }
  466 
  467 /*
  468  * These are both called with the siglock held, when the current thread
  469  * is being reaped.  When the final (leader) thread in the group is reaped,
  470  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
  471  */
  472 void posix_cpu_timers_exit(struct task_struct *tsk)
  473 {
  474         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
  475                                                 sizeof(unsigned long long));
  476         cleanup_timers(tsk->cpu_timers,
  477                        tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
  478 
  479 }
  480 void posix_cpu_timers_exit_group(struct task_struct *tsk)
  481 {
  482         struct signal_struct *const sig = tsk->signal;
  483 
  484         cleanup_timers(tsk->signal->cpu_timers,
  485                        tsk->utime + sig->utime, tsk->stime + sig->stime,
  486                        tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
  487 }
  488 
  489 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
  490 {
  491         /*
  492          * That's all for this thread or process.
  493          * We leave our residual in expires to be reported.
  494          */
  495         put_task_struct(timer->it.cpu.task);
  496         timer->it.cpu.task = NULL;
  497         timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
  498                                              timer->it.cpu.expires,
  499                                              now);
  500 }
  501 
  502 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
  503 {
  504         return expires == 0 || expires > new_exp;
  505 }
  506 
  507 /*
  508  * Insert the timer on the appropriate list before any timers that
  509  * expire later.  This must be called with the tasklist_lock held
  510  * for reading, interrupts disabled and p->sighand->siglock taken.
  511  */
  512 static void arm_timer(struct k_itimer *timer)
  513 {
  514         struct task_struct *p = timer->it.cpu.task;
  515         struct list_head *head, *listpos;
  516         struct task_cputime *cputime_expires;
  517         struct cpu_timer_list *const nt = &timer->it.cpu;
  518         struct cpu_timer_list *next;
  519 
  520         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  521                 head = p->cpu_timers;
  522                 cputime_expires = &p->cputime_expires;
  523         } else {
  524                 head = p->signal->cpu_timers;
  525                 cputime_expires = &p->signal->cputime_expires;
  526         }
  527         head += CPUCLOCK_WHICH(timer->it_clock);
  528 
  529         listpos = head;
  530         list_for_each_entry(next, head, entry) {
  531                 if (cpu_time_before(timer->it_clock, nt->expires, next->expires))
  532                         break;
  533                 listpos = &next->entry;
  534         }
  535         list_add(&nt->entry, listpos);
  536 
  537         if (listpos == head) {
  538                 union cpu_time_count *exp = &nt->expires;
  539 
  540                 /*
  541                  * We are the new earliest-expiring POSIX 1.b timer, hence
  542                  * need to update expiration cache. Take into account that
  543                  * for process timers we share expiration cache with itimers
  544                  * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
  545                  */
  546 
  547                 switch (CPUCLOCK_WHICH(timer->it_clock)) {
  548                 case CPUCLOCK_PROF:
  549                         if (expires_gt(cputime_expires->prof_exp, exp->cpu))
  550                                 cputime_expires->prof_exp = exp->cpu;
  551                         break;
  552                 case CPUCLOCK_VIRT:
  553                         if (expires_gt(cputime_expires->virt_exp, exp->cpu))
  554                                 cputime_expires->virt_exp = exp->cpu;
  555                         break;
  556                 case CPUCLOCK_SCHED:
  557                         if (cputime_expires->sched_exp == 0 ||
  558                             cputime_expires->sched_exp > exp->sched)
  559                                 cputime_expires->sched_exp = exp->sched;
  560                         break;
  561                 }
  562         }
  563 }
  564 
  565 /*
  566  * The timer is locked, fire it and arrange for its reload.
  567  */
  568 static void cpu_timer_fire(struct k_itimer *timer)
  569 {
  570         if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
  571                 /*
  572                  * User don't want any signal.
  573                  */
  574                 timer->it.cpu.expires.sched = 0;
  575         } else if (unlikely(timer->sigq == NULL)) {
  576                 /*
  577                  * This a special case for clock_nanosleep,
  578                  * not a normal timer from sys_timer_create.
  579                  */
  580                 wake_up_process(timer->it_process);
  581                 timer->it.cpu.expires.sched = 0;
  582         } else if (timer->it.cpu.incr.sched == 0) {
  583                 /*
  584                  * One-shot timer.  Clear it as soon as it's fired.
  585                  */
  586                 posix_timer_event(timer, 0);
  587                 timer->it.cpu.expires.sched = 0;
  588         } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
  589                 /*
  590                  * The signal did not get queued because the signal
  591                  * was ignored, so we won't get any callback to
  592                  * reload the timer.  But we need to keep it
  593                  * ticking in case the signal is deliverable next time.
  594                  */
  595                 posix_cpu_timer_schedule(timer);
  596         }
  597 }
  598 
  599 /*
  600  * Sample a process (thread group) timer for the given group_leader task.
  601  * Must be called with tasklist_lock held for reading.
  602  */
  603 static int cpu_timer_sample_group(const clockid_t which_clock,
  604                                   struct task_struct *p,
  605                                   union cpu_time_count *cpu)
  606 {
  607         struct task_cputime cputime;
  608 
  609         thread_group_cputimer(p, &cputime);
  610         switch (CPUCLOCK_WHICH(which_clock)) {
  611         default:
  612                 return -EINVAL;
  613         case CPUCLOCK_PROF:
  614                 cpu->cpu = cputime.utime + cputime.stime;
  615                 break;
  616         case CPUCLOCK_VIRT:
  617                 cpu->cpu = cputime.utime;
  618                 break;
  619         case CPUCLOCK_SCHED:
  620                 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
  621                 break;
  622         }
  623         return 0;
  624 }
  625 
  626 /*
  627  * Guts of sys_timer_settime for CPU timers.
  628  * This is called with the timer locked and interrupts disabled.
  629  * If we return TIMER_RETRY, it's necessary to release the timer's lock
  630  * and try again.  (This happens when the timer is in the middle of firing.)
  631  */
  632 static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
  633                                struct itimerspec *new, struct itimerspec *old)
  634 {
  635         struct task_struct *p = timer->it.cpu.task;
  636         union cpu_time_count old_expires, new_expires, old_incr, val;
  637         int ret;
  638 
  639         if (unlikely(p == NULL)) {
  640                 /*
  641                  * Timer refers to a dead task's clock.
  642                  */
  643                 return -ESRCH;
  644         }
  645 
  646         new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
  647 
  648         read_lock(&tasklist_lock);
  649         /*
  650          * We need the tasklist_lock to protect against reaping that
  651          * clears p->sighand.  If p has just been reaped, we can no
  652          * longer get any information about it at all.
  653          */
  654         if (unlikely(p->sighand == NULL)) {
  655                 read_unlock(&tasklist_lock);
  656                 put_task_struct(p);
  657                 timer->it.cpu.task = NULL;
  658                 return -ESRCH;
  659         }
  660 
  661         /*
  662          * Disarm any old timer after extracting its expiry time.
  663          */
  664         BUG_ON(!irqs_disabled());
  665 
  666         ret = 0;
  667         old_incr = timer->it.cpu.incr;
  668         spin_lock(&p->sighand->siglock);
  669         old_expires = timer->it.cpu.expires;
  670         if (unlikely(timer->it.cpu.firing)) {
  671                 timer->it.cpu.firing = -1;
  672                 ret = TIMER_RETRY;
  673         } else
  674                 list_del_init(&timer->it.cpu.entry);
  675 
  676         /*
  677          * We need to sample the current value to convert the new
  678          * value from to relative and absolute, and to convert the
  679          * old value from absolute to relative.  To set a process
  680          * timer, we need a sample to balance the thread expiry
  681          * times (in arm_timer).  With an absolute time, we must
  682          * check if it's already passed.  In short, we need a sample.
  683          */
  684         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  685                 cpu_clock_sample(timer->it_clock, p, &val);
  686         } else {
  687                 cpu_timer_sample_group(timer->it_clock, p, &val);
  688         }
  689 
  690         if (old) {
  691                 if (old_expires.sched == 0) {
  692                         old->it_value.tv_sec = 0;
  693                         old->it_value.tv_nsec = 0;
  694                 } else {
  695                         /*
  696                          * Update the timer in case it has
  697                          * overrun already.  If it has,
  698                          * we'll report it as having overrun
  699                          * and with the next reloaded timer
  700                          * already ticking, though we are
  701                          * swallowing that pending
  702                          * notification here to install the
  703                          * new setting.
  704                          */
  705                         bump_cpu_timer(timer, val);
  706                         if (cpu_time_before(timer->it_clock, val,
  707                                             timer->it.cpu.expires)) {
  708                                 old_expires = cpu_time_sub(
  709                                         timer->it_clock,
  710                                         timer->it.cpu.expires, val);
  711                                 sample_to_timespec(timer->it_clock,
  712                                                    old_expires,
  713                                                    &old->it_value);
  714                         } else {
  715                                 old->it_value.tv_nsec = 1;
  716                                 old->it_value.tv_sec = 0;
  717                         }
  718                 }
  719         }
  720 
  721         if (unlikely(ret)) {
  722                 /*
  723                  * We are colliding with the timer actually firing.
  724                  * Punt after filling in the timer's old value, and
  725                  * disable this firing since we are already reporting
  726                  * it as an overrun (thanks to bump_cpu_timer above).
  727                  */
  728                 spin_unlock(&p->sighand->siglock);
  729                 read_unlock(&tasklist_lock);
  730                 goto out;
  731         }
  732 
  733         if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
  734                 cpu_time_add(timer->it_clock, &new_expires, val);
  735         }
  736 
  737         /*
  738          * Install the new expiry time (or zero).
  739          * For a timer with no notification action, we don't actually
  740          * arm the timer (we'll just fake it for timer_gettime).
  741          */
  742         timer->it.cpu.expires = new_expires;
  743         if (new_expires.sched != 0 &&
  744             cpu_time_before(timer->it_clock, val, new_expires)) {
  745                 arm_timer(timer);
  746         }
  747 
  748         spin_unlock(&p->sighand->siglock);
  749         read_unlock(&tasklist_lock);
  750 
  751         /*
  752          * Install the new reload setting, and
  753          * set up the signal and overrun bookkeeping.
  754          */
  755         timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
  756                                                 &new->it_interval);
  757 
  758         /*
  759          * This acts as a modification timestamp for the timer,
  760          * so any automatic reload attempt will punt on seeing
  761          * that we have reset the timer manually.
  762          */
  763         timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
  764                 ~REQUEUE_PENDING;
  765         timer->it_overrun_last = 0;
  766         timer->it_overrun = -1;
  767 
  768         if (new_expires.sched != 0 &&
  769             !cpu_time_before(timer->it_clock, val, new_expires)) {
  770                 /*
  771                  * The designated time already passed, so we notify
  772                  * immediately, even if the thread never runs to
  773                  * accumulate more time on this clock.
  774                  */
  775                 cpu_timer_fire(timer);
  776         }
  777 
  778         ret = 0;
  779  out:
  780         if (old) {
  781                 sample_to_timespec(timer->it_clock,
  782                                    old_incr, &old->it_interval);
  783         }
  784         return ret;
  785 }
  786 
  787 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
  788 {
  789         union cpu_time_count now;
  790         struct task_struct *p = timer->it.cpu.task;
  791         int clear_dead;
  792 
  793         /*
  794          * Easy part: convert the reload time.
  795          */
  796         sample_to_timespec(timer->it_clock,
  797                            timer->it.cpu.incr, &itp->it_interval);
  798 
  799         if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all.  */
  800                 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
  801                 return;
  802         }
  803 
  804         if (unlikely(p == NULL)) {
  805                 /*
  806                  * This task already died and the timer will never fire.
  807                  * In this case, expires is actually the dead value.
  808                  */
  809         dead:
  810                 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
  811                                    &itp->it_value);
  812                 return;
  813         }
  814 
  815         /*
  816          * Sample the clock to take the difference with the expiry time.
  817          */
  818         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  819                 cpu_clock_sample(timer->it_clock, p, &now);
  820                 clear_dead = p->exit_state;
  821         } else {
  822                 read_lock(&tasklist_lock);
  823                 if (unlikely(p->sighand == NULL)) {
  824                         /*
  825                          * The process has been reaped.
  826                          * We can't even collect a sample any more.
  827                          * Call the timer disarmed, nothing else to do.
  828                          */
  829                         put_task_struct(p);
  830                         timer->it.cpu.task = NULL;
  831                         timer->it.cpu.expires.sched = 0;
  832                         read_unlock(&tasklist_lock);
  833                         goto dead;
  834                 } else {
  835                         cpu_timer_sample_group(timer->it_clock, p, &now);
  836                         clear_dead = (unlikely(p->exit_state) &&
  837                                       thread_group_empty(p));
  838                 }
  839                 read_unlock(&tasklist_lock);
  840         }
  841 
  842         if (unlikely(clear_dead)) {
  843                 /*
  844                  * We've noticed that the thread is dead, but
  845                  * not yet reaped.  Take this opportunity to
  846                  * drop our task ref.
  847                  */
  848                 clear_dead_task(timer, now);
  849                 goto dead;
  850         }
  851 
  852         if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
  853                 sample_to_timespec(timer->it_clock,
  854                                    cpu_time_sub(timer->it_clock,
  855                                                 timer->it.cpu.expires, now),
  856                                    &itp->it_value);
  857         } else {
  858                 /*
  859                  * The timer should have expired already, but the firing
  860                  * hasn't taken place yet.  Say it's just about to expire.
  861                  */
  862                 itp->it_value.tv_nsec = 1;
  863                 itp->it_value.tv_sec = 0;
  864         }
  865 }
  866 
  867 /*
  868  * Check for any per-thread CPU timers that have fired and move them off
  869  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
  870  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
  871  */
  872 static void check_thread_timers(struct task_struct *tsk,
  873                                 struct list_head *firing)
  874 {
  875         int maxfire;
  876         struct list_head *timers = tsk->cpu_timers;
  877         struct signal_struct *const sig = tsk->signal;
  878         unsigned long soft;
  879 
  880         maxfire = 20;
  881         tsk->cputime_expires.prof_exp = 0;
  882         while (!list_empty(timers)) {
  883                 struct cpu_timer_list *t = list_first_entry(timers,
  884                                                       struct cpu_timer_list,
  885                                                       entry);
  886                 if (!--maxfire || prof_ticks(tsk) < t->expires.cpu) {
  887                         tsk->cputime_expires.prof_exp = t->expires.cpu;
  888                         break;
  889                 }
  890                 t->firing = 1;
  891                 list_move_tail(&t->entry, firing);
  892         }
  893 
  894         ++timers;
  895         maxfire = 20;
  896         tsk->cputime_expires.virt_exp = 0;
  897         while (!list_empty(timers)) {
  898                 struct cpu_timer_list *t = list_first_entry(timers,
  899                                                       struct cpu_timer_list,
  900                                                       entry);
  901                 if (!--maxfire || virt_ticks(tsk) < t->expires.cpu) {
  902                         tsk->cputime_expires.virt_exp = t->expires.cpu;
  903                         break;
  904                 }
  905                 t->firing = 1;
  906                 list_move_tail(&t->entry, firing);
  907         }
  908 
  909         ++timers;
  910         maxfire = 20;
  911         tsk->cputime_expires.sched_exp = 0;
  912         while (!list_empty(timers)) {
  913                 struct cpu_timer_list *t = list_first_entry(timers,
  914                                                       struct cpu_timer_list,
  915                                                       entry);
  916                 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
  917                         tsk->cputime_expires.sched_exp = t->expires.sched;
  918                         break;
  919                 }
  920                 t->firing = 1;
  921                 list_move_tail(&t->entry, firing);
  922         }
  923 
  924         /*
  925          * Check for the special case thread timers.
  926          */
  927         soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
  928         if (soft != RLIM_INFINITY) {
  929                 unsigned long hard =
  930                         ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
  931 
  932                 if (hard != RLIM_INFINITY &&
  933                     tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
  934                         /*
  935                          * At the hard limit, we just die.
  936                          * No need to calculate anything else now.
  937                          */
  938                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
  939                         return;
  940                 }
  941                 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
  942                         /*
  943                          * At the soft limit, send a SIGXCPU every second.
  944                          */
  945                         if (soft < hard) {
  946                                 soft += USEC_PER_SEC;
  947                                 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
  948                         }
  949                         printk(KERN_INFO
  950                                 "RT Watchdog Timeout: %s[%d]\n",
  951                                 tsk->comm, task_pid_nr(tsk));
  952                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
  953                 }
  954         }
  955 }
  956 
  957 static void stop_process_timers(struct signal_struct *sig)
  958 {
  959         struct thread_group_cputimer *cputimer = &sig->cputimer;
  960         unsigned long flags;
  961 
  962         raw_spin_lock_irqsave(&cputimer->lock, flags);
  963         cputimer->running = 0;
  964         raw_spin_unlock_irqrestore(&cputimer->lock, flags);
  965 }
  966 
  967 static u32 onecputick;
  968 
  969 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
  970                              cputime_t *expires, cputime_t cur_time, int signo)
  971 {
  972         if (!it->expires)
  973                 return;
  974 
  975         if (cur_time >= it->expires) {
  976                 if (it->incr) {
  977                         it->expires += it->incr;
  978                         it->error += it->incr_error;
  979                         if (it->error >= onecputick) {
  980                                 it->expires -= cputime_one_jiffy;
  981                                 it->error -= onecputick;
  982                         }
  983                 } else {
  984                         it->expires = 0;
  985                 }
  986 
  987                 trace_itimer_expire(signo == SIGPROF ?
  988                                     ITIMER_PROF : ITIMER_VIRTUAL,
  989                                     tsk->signal->leader_pid, cur_time);
  990                 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
  991         }
  992 
  993         if (it->expires && (!*expires || it->expires < *expires)) {
  994                 *expires = it->expires;
  995         }
  996 }
  997 
  998 /**
  999  * task_cputime_zero - Check a task_cputime struct for all zero fields.
 1000  *
 1001  * @cputime:    The struct to compare.
 1002  *
 1003  * Checks @cputime to see if all fields are zero.  Returns true if all fields
 1004  * are zero, false if any field is nonzero.
 1005  */
 1006 static inline int task_cputime_zero(const struct task_cputime *cputime)
 1007 {
 1008         if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
 1009                 return 1;
 1010         return 0;
 1011 }
 1012 
 1013 /*
 1014  * Check for any per-thread CPU timers that have fired and move them
 1015  * off the tsk->*_timers list onto the firing list.  Per-thread timers
 1016  * have already been taken off.
 1017  */
 1018 static void check_process_timers(struct task_struct *tsk,
 1019                                  struct list_head *firing)
 1020 {
 1021         int maxfire;
 1022         struct signal_struct *const sig = tsk->signal;
 1023         cputime_t utime, ptime, virt_expires, prof_expires;
 1024         unsigned long long sum_sched_runtime, sched_expires;
 1025         struct list_head *timers = sig->cpu_timers;
 1026         struct task_cputime cputime;
 1027         unsigned long soft;
 1028 
 1029         /*
 1030          * Collect the current process totals.
 1031          */
 1032         thread_group_cputimer(tsk, &cputime);
 1033         utime = cputime.utime;
 1034         ptime = utime + cputime.stime;
 1035         sum_sched_runtime = cputime.sum_exec_runtime;
 1036         maxfire = 20;
 1037         prof_expires = 0;
 1038         while (!list_empty(timers)) {
 1039                 struct cpu_timer_list *tl = list_first_entry(timers,
 1040                                                       struct cpu_timer_list,
 1041                                                       entry);
 1042                 if (!--maxfire || ptime < tl->expires.cpu) {
 1043                         prof_expires = tl->expires.cpu;
 1044                         break;
 1045                 }
 1046                 tl->firing = 1;
 1047                 list_move_tail(&tl->entry, firing);
 1048         }
 1049 
 1050         ++timers;
 1051         maxfire = 20;
 1052         virt_expires = 0;
 1053         while (!list_empty(timers)) {
 1054                 struct cpu_timer_list *tl = list_first_entry(timers,
 1055                                                       struct cpu_timer_list,
 1056                                                       entry);
 1057                 if (!--maxfire || utime < tl->expires.cpu) {
 1058                         virt_expires = tl->expires.cpu;
 1059                         break;
 1060                 }
 1061                 tl->firing = 1;
 1062                 list_move_tail(&tl->entry, firing);
 1063         }
 1064 
 1065         ++timers;
 1066         maxfire = 20;
 1067         sched_expires = 0;
 1068         while (!list_empty(timers)) {
 1069                 struct cpu_timer_list *tl = list_first_entry(timers,
 1070                                                       struct cpu_timer_list,
 1071                                                       entry);
 1072                 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
 1073                         sched_expires = tl->expires.sched;
 1074                         break;
 1075                 }
 1076                 tl->firing = 1;
 1077                 list_move_tail(&tl->entry, firing);
 1078         }
 1079 
 1080         /*
 1081          * Check for the special case process timers.
 1082          */
 1083         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
 1084                          SIGPROF);
 1085         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
 1086                          SIGVTALRM);
 1087         soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
 1088         if (soft != RLIM_INFINITY) {
 1089                 unsigned long psecs = cputime_to_secs(ptime);
 1090                 unsigned long hard =
 1091                         ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
 1092                 cputime_t x;
 1093                 if (psecs >= hard) {
 1094                         /*
 1095                          * At the hard limit, we just die.
 1096                          * No need to calculate anything else now.
 1097                          */
 1098                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 1099                         return;
 1100                 }
 1101                 if (psecs >= soft) {
 1102                         /*
 1103                          * At the soft limit, send a SIGXCPU every second.
 1104                          */
 1105                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 1106                         if (soft < hard) {
 1107                                 soft++;
 1108                                 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
 1109                         }
 1110                 }
 1111                 x = secs_to_cputime(soft);
 1112                 if (!prof_expires || x < prof_expires) {
 1113                         prof_expires = x;
 1114                 }
 1115         }
 1116 
 1117         sig->cputime_expires.prof_exp = prof_expires;
 1118         sig->cputime_expires.virt_exp = virt_expires;
 1119         sig->cputime_expires.sched_exp = sched_expires;
 1120         if (task_cputime_zero(&sig->cputime_expires))
 1121                 stop_process_timers(sig);
 1122 }
 1123 
 1124 /*
 1125  * This is called from the signal code (via do_schedule_next_timer)
 1126  * when the last timer signal was delivered and we have to reload the timer.
 1127  */
 1128 void posix_cpu_timer_schedule(struct k_itimer *timer)
 1129 {
 1130         struct task_struct *p = timer->it.cpu.task;
 1131         union cpu_time_count now;
 1132 
 1133         if (unlikely(p == NULL))
 1134                 /*
 1135                  * The task was cleaned up already, no future firings.
 1136                  */
 1137                 goto out;
 1138 
 1139         /*
 1140          * Fetch the current sample and update the timer's expiry time.
 1141          */
 1142         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 1143                 cpu_clock_sample(timer->it_clock, p, &now);
 1144                 bump_cpu_timer(timer, now);
 1145                 if (unlikely(p->exit_state)) {
 1146                         clear_dead_task(timer, now);
 1147                         goto out;
 1148                 }
 1149                 read_lock(&tasklist_lock); /* arm_timer needs it.  */
 1150                 spin_lock(&p->sighand->siglock);
 1151         } else {
 1152                 read_lock(&tasklist_lock);
 1153                 if (unlikely(p->sighand == NULL)) {
 1154                         /*
 1155                          * The process has been reaped.
 1156                          * We can't even collect a sample any more.
 1157                          */
 1158                         put_task_struct(p);
 1159                         timer->it.cpu.task = p = NULL;
 1160                         timer->it.cpu.expires.sched = 0;
 1161                         goto out_unlock;
 1162                 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
 1163                         /*
 1164                          * We've noticed that the thread is dead, but
 1165                          * not yet reaped.  Take this opportunity to
 1166                          * drop our task ref.
 1167                          */
 1168                         clear_dead_task(timer, now);
 1169                         goto out_unlock;
 1170                 }
 1171                 spin_lock(&p->sighand->siglock);
 1172                 cpu_timer_sample_group(timer->it_clock, p, &now);
 1173                 bump_cpu_timer(timer, now);
 1174                 /* Leave the tasklist_lock locked for the call below.  */
 1175         }
 1176 
 1177         /*
 1178          * Now re-arm for the new expiry time.
 1179          */
 1180         BUG_ON(!irqs_disabled());
 1181         arm_timer(timer);
 1182         spin_unlock(&p->sighand->siglock);
 1183 
 1184 out_unlock:
 1185         read_unlock(&tasklist_lock);
 1186 
 1187 out:
 1188         timer->it_overrun_last = timer->it_overrun;
 1189         timer->it_overrun = -1;
 1190         ++timer->it_requeue_pending;
 1191 }
 1192 
 1193 /**
 1194  * task_cputime_expired - Compare two task_cputime entities.
 1195  *
 1196  * @sample:     The task_cputime structure to be checked for expiration.
 1197  * @expires:    Expiration times, against which @sample will be checked.
 1198  *
 1199  * Checks @sample against @expires to see if any field of @sample has expired.
 1200  * Returns true if any field of the former is greater than the corresponding
 1201  * field of the latter if the latter field is set.  Otherwise returns false.
 1202  */
 1203 static inline int task_cputime_expired(const struct task_cputime *sample,
 1204                                         const struct task_cputime *expires)
 1205 {
 1206         if (expires->utime && sample->utime >= expires->utime)
 1207                 return 1;
 1208         if (expires->stime && sample->utime + sample->stime >= expires->stime)
 1209                 return 1;
 1210         if (expires->sum_exec_runtime != 0 &&
 1211             sample->sum_exec_runtime >= expires->sum_exec_runtime)
 1212                 return 1;
 1213         return 0;
 1214 }
 1215 
 1216 /**
 1217  * fastpath_timer_check - POSIX CPU timers fast path.
 1218  *
 1219  * @tsk:        The task (thread) being checked.
 1220  *
 1221  * Check the task and thread group timers.  If both are zero (there are no
 1222  * timers set) return false.  Otherwise snapshot the task and thread group
 1223  * timers and compare them with the corresponding expiration times.  Return
 1224  * true if a timer has expired, else return false.
 1225  */
 1226 static inline int fastpath_timer_check(struct task_struct *tsk)
 1227 {
 1228         struct signal_struct *sig;
 1229 
 1230         if (!task_cputime_zero(&tsk->cputime_expires)) {
 1231                 struct task_cputime task_sample = {
 1232                         .utime = tsk->utime,
 1233                         .stime = tsk->stime,
 1234                         .sum_exec_runtime = tsk->se.sum_exec_runtime
 1235                 };
 1236 
 1237                 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
 1238                         return 1;
 1239         }
 1240 
 1241         sig = tsk->signal;
 1242         if (sig->cputimer.running) {
 1243                 struct task_cputime group_sample;
 1244 
 1245                 raw_spin_lock(&sig->cputimer.lock);
 1246                 group_sample = sig->cputimer.cputime;
 1247                 raw_spin_unlock(&sig->cputimer.lock);
 1248 
 1249                 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
 1250                         return 1;
 1251         }
 1252 
 1253         return 0;
 1254 }
 1255 
 1256 /*
 1257  * This is called from the timer interrupt handler.  The irq handler has
 1258  * already updated our counts.  We need to check if any timers fire now.
 1259  * Interrupts are disabled.
 1260  */
 1261 void run_posix_cpu_timers(struct task_struct *tsk)
 1262 {
 1263         LIST_HEAD(firing);
 1264         struct k_itimer *timer, *next;
 1265         unsigned long flags;
 1266 
 1267         BUG_ON(!irqs_disabled());
 1268 
 1269         /*
 1270          * The fast path checks that there are no expired thread or thread
 1271          * group timers.  If that's so, just return.
 1272          */
 1273         if (!fastpath_timer_check(tsk))
 1274                 return;
 1275 
 1276         if (!lock_task_sighand(tsk, &flags))
 1277                 return;
 1278         /*
 1279          * Here we take off tsk->signal->cpu_timers[N] and
 1280          * tsk->cpu_timers[N] all the timers that are firing, and
 1281          * put them on the firing list.
 1282          */
 1283         check_thread_timers(tsk, &firing);
 1284         /*
 1285          * If there are any active process wide timers (POSIX 1.b, itimers,
 1286          * RLIMIT_CPU) cputimer must be running.
 1287          */
 1288         if (tsk->signal->cputimer.running)
 1289                 check_process_timers(tsk, &firing);
 1290 
 1291         /*
 1292          * We must release these locks before taking any timer's lock.
 1293          * There is a potential race with timer deletion here, as the
 1294          * siglock now protects our private firing list.  We have set
 1295          * the firing flag in each timer, so that a deletion attempt
 1296          * that gets the timer lock before we do will give it up and
 1297          * spin until we've taken care of that timer below.
 1298          */
 1299         unlock_task_sighand(tsk, &flags);
 1300 
 1301         /*
 1302          * Now that all the timers on our list have the firing flag,
 1303          * no one will touch their list entries but us.  We'll take
 1304          * each timer's lock before clearing its firing flag, so no
 1305          * timer call will interfere.
 1306          */
 1307         list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
 1308                 int cpu_firing;
 1309 
 1310                 spin_lock(&timer->it_lock);
 1311                 list_del_init(&timer->it.cpu.entry);
 1312                 cpu_firing = timer->it.cpu.firing;
 1313                 timer->it.cpu.firing = 0;
 1314                 /*
 1315                  * The firing flag is -1 if we collided with a reset
 1316                  * of the timer, which already reported this
 1317                  * almost-firing as an overrun.  So don't generate an event.
 1318                  */
 1319                 if (likely(cpu_firing >= 0))
 1320                         cpu_timer_fire(timer);
 1321                 spin_unlock(&timer->it_lock);
 1322         }
 1323 }
 1324 
 1325 /*
 1326  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
 1327  * The tsk->sighand->siglock must be held by the caller.
 1328  */
 1329 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
 1330                            cputime_t *newval, cputime_t *oldval)
 1331 {
 1332         union cpu_time_count now;
 1333 
 1334         BUG_ON(clock_idx == CPUCLOCK_SCHED);
 1335         cpu_timer_sample_group(clock_idx, tsk, &now);
 1336 
 1337         if (oldval) {
 1338                 /*
 1339                  * We are setting itimer. The *oldval is absolute and we update
 1340                  * it to be relative, *newval argument is relative and we update
 1341                  * it to be absolute.
 1342                  */
 1343                 if (*oldval) {
 1344                         if (*oldval <= now.cpu) {
 1345                                 /* Just about to fire. */
 1346                                 *oldval = cputime_one_jiffy;
 1347                         } else {
 1348                                 *oldval -= now.cpu;
 1349                         }
 1350                 }
 1351 
 1352                 if (!*newval)
 1353                         return;
 1354                 *newval += now.cpu;
 1355         }
 1356 
 1357         /*
 1358          * Update expiration cache if we are the earliest timer, or eventually
 1359          * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
 1360          */
 1361         switch (clock_idx) {
 1362         case CPUCLOCK_PROF:
 1363                 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
 1364                         tsk->signal->cputime_expires.prof_exp = *newval;
 1365                 break;
 1366         case CPUCLOCK_VIRT:
 1367                 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
 1368                         tsk->signal->cputime_expires.virt_exp = *newval;
 1369                 break;
 1370         }
 1371 }
 1372 
 1373 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
 1374                             struct timespec *rqtp, struct itimerspec *it)
 1375 {
 1376         struct k_itimer timer;
 1377         int error;
 1378 
 1379         /*
 1380          * Set up a temporary timer and then wait for it to go off.
 1381          */
 1382         memset(&timer, 0, sizeof timer);
 1383         spin_lock_init(&timer.it_lock);
 1384         timer.it_clock = which_clock;
 1385         timer.it_overrun = -1;
 1386         error = posix_cpu_timer_create(&timer);
 1387         timer.it_process = current;
 1388         if (!error) {
 1389                 static struct itimerspec zero_it;
 1390 
 1391                 memset(it, 0, sizeof *it);
 1392                 it->it_value = *rqtp;
 1393 
 1394                 spin_lock_irq(&timer.it_lock);
 1395                 error = posix_cpu_timer_set(&timer, flags, it, NULL);
 1396                 if (error) {
 1397                         spin_unlock_irq(&timer.it_lock);
 1398                         return error;
 1399                 }
 1400 
 1401                 while (!signal_pending(current)) {
 1402                         if (timer.it.cpu.expires.sched == 0) {
 1403                                 /*
 1404                                  * Our timer fired and was reset.
 1405                                  */
 1406                                 spin_unlock_irq(&timer.it_lock);
 1407                                 return 0;
 1408                         }
 1409 
 1410                         /*
 1411                          * Block until cpu_timer_fire (or a signal) wakes us.
 1412                          */
 1413                         __set_current_state(TASK_INTERRUPTIBLE);
 1414                         spin_unlock_irq(&timer.it_lock);
 1415                         schedule();
 1416                         spin_lock_irq(&timer.it_lock);
 1417                 }
 1418 
 1419                 /*
 1420                  * We were interrupted by a signal.
 1421                  */
 1422                 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
 1423                 posix_cpu_timer_set(&timer, 0, &zero_it, it);
 1424                 spin_unlock_irq(&timer.it_lock);
 1425 
 1426                 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
 1427                         /*
 1428                          * It actually did fire already.
 1429                          */
 1430                         return 0;
 1431                 }
 1432 
 1433                 error = -ERESTART_RESTARTBLOCK;
 1434         }
 1435 
 1436         return error;
 1437 }
 1438 
 1439 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
 1440 
 1441 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
 1442                             struct timespec *rqtp, struct timespec __user *rmtp)
 1443 {
 1444         struct restart_block *restart_block =
 1445                 &current_thread_info()->restart_block;
 1446         struct itimerspec it;
 1447         int error;
 1448 
 1449         /*
 1450          * Diagnose required errors first.
 1451          */
 1452         if (CPUCLOCK_PERTHREAD(which_clock) &&
 1453             (CPUCLOCK_PID(which_clock) == 0 ||
 1454              CPUCLOCK_PID(which_clock) == current->pid))
 1455                 return -EINVAL;
 1456 
 1457         error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
 1458 
 1459         if (error == -ERESTART_RESTARTBLOCK) {
 1460 
 1461                 if (flags & TIMER_ABSTIME)
 1462                         return -ERESTARTNOHAND;
 1463                 /*
 1464                  * Report back to the user the time still remaining.
 1465                  */
 1466                 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
 1467                         return -EFAULT;
 1468 
 1469                 restart_block->fn = posix_cpu_nsleep_restart;
 1470                 restart_block->nanosleep.clockid = which_clock;
 1471                 restart_block->nanosleep.rmtp = rmtp;
 1472                 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
 1473         }
 1474         return error;
 1475 }
 1476 
 1477 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
 1478 {
 1479         clockid_t which_clock = restart_block->nanosleep.clockid;
 1480         struct timespec t;
 1481         struct itimerspec it;
 1482         int error;
 1483 
 1484         t = ns_to_timespec(restart_block->nanosleep.expires);
 1485 
 1486         error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
 1487 
 1488         if (error == -ERESTART_RESTARTBLOCK) {
 1489                 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
 1490                 /*
 1491                  * Report back to the user the time still remaining.
 1492                  */
 1493                 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
 1494                         return -EFAULT;
 1495 
 1496                 restart_block->nanosleep.expires = timespec_to_ns(&t);
 1497         }
 1498         return error;
 1499 
 1500 }
 1501 
 1502 #define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
 1503 #define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
 1504 
 1505 static int process_cpu_clock_getres(const clockid_t which_clock,
 1506                                     struct timespec *tp)
 1507 {
 1508         return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
 1509 }
 1510 static int process_cpu_clock_get(const clockid_t which_clock,
 1511                                  struct timespec *tp)
 1512 {
 1513         return posix_cpu_clock_get(PROCESS_CLOCK, tp);
 1514 }
 1515 static int process_cpu_timer_create(struct k_itimer *timer)
 1516 {
 1517         timer->it_clock = PROCESS_CLOCK;
 1518         return posix_cpu_timer_create(timer);
 1519 }
 1520 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
 1521                               struct timespec *rqtp,
 1522                               struct timespec __user *rmtp)
 1523 {
 1524         return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
 1525 }
 1526 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
 1527 {
 1528         return -EINVAL;
 1529 }
 1530 static int thread_cpu_clock_getres(const clockid_t which_clock,
 1531                                    struct timespec *tp)
 1532 {
 1533         return posix_cpu_clock_getres(THREAD_CLOCK, tp);
 1534 }
 1535 static int thread_cpu_clock_get(const clockid_t which_clock,
 1536                                 struct timespec *tp)
 1537 {
 1538         return posix_cpu_clock_get(THREAD_CLOCK, tp);
 1539 }
 1540 static int thread_cpu_timer_create(struct k_itimer *timer)
 1541 {
 1542         timer->it_clock = THREAD_CLOCK;
 1543         return posix_cpu_timer_create(timer);
 1544 }
 1545 
 1546 struct k_clock clock_posix_cpu = {
 1547         .clock_getres   = posix_cpu_clock_getres,
 1548         .clock_set      = posix_cpu_clock_set,
 1549         .clock_get      = posix_cpu_clock_get,
 1550         .timer_create   = posix_cpu_timer_create,
 1551         .nsleep         = posix_cpu_nsleep,
 1552         .nsleep_restart = posix_cpu_nsleep_restart,
 1553         .timer_set      = posix_cpu_timer_set,
 1554         .timer_del      = posix_cpu_timer_del,
 1555         .timer_get      = posix_cpu_timer_get,
 1556 };
 1557 
 1558 static __init int init_posix_cpu_timers(void)
 1559 {
 1560         struct k_clock process = {
 1561                 .clock_getres   = process_cpu_clock_getres,
 1562                 .clock_get      = process_cpu_clock_get,
 1563                 .timer_create   = process_cpu_timer_create,
 1564                 .nsleep         = process_cpu_nsleep,
 1565                 .nsleep_restart = process_cpu_nsleep_restart,
 1566         };
 1567         struct k_clock thread = {
 1568                 .clock_getres   = thread_cpu_clock_getres,
 1569                 .clock_get      = thread_cpu_clock_get,
 1570                 .timer_create   = thread_cpu_timer_create,
 1571         };
 1572         struct timespec ts;
 1573 
 1574         posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
 1575         posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
 1576 
 1577         cputime_to_timespec(cputime_one_jiffy, &ts);
 1578         onecputick = ts.tv_nsec;
 1579         WARN_ON(ts.tv_sec != 0);
 1580 
 1581         return 0;
 1582 }
 1583 __initcall(init_posix_cpu_timers);

Cache object: 59a2229b076ff6e6b042759a7e672435


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.