The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kernel/rcupdate.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Read-Copy Update mechanism for mutual exclusion
    3  *
    4  * This program is free software; you can redistribute it and/or modify
    5  * it under the terms of the GNU General Public License as published by
    6  * the Free Software Foundation; either version 2 of the License, or
    7  * (at your option) any later version.
    8  *
    9  * This program is distributed in the hope that it will be useful,
   10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
   11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   12  * GNU General Public License for more details.
   13  *
   14  * You should have received a copy of the GNU General Public License
   15  * along with this program; if not, write to the Free Software
   16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
   17  *
   18  * Copyright IBM Corporation, 2001
   19  *
   20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   21  *          Manfred Spraul <manfred@colorfullife.com>
   22  *
   23  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
   24  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
   25  * Papers:
   26  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
   27  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
   28  *
   29  * For detailed explanation of Read-Copy Update mechanism see -
   30  *              http://lse.sourceforge.net/locking/rcupdate.html
   31  *
   32  */
   33 #include <linux/types.h>
   34 #include <linux/kernel.h>
   35 #include <linux/init.h>
   36 #include <linux/spinlock.h>
   37 #include <linux/smp.h>
   38 #include <linux/interrupt.h>
   39 #include <linux/sched.h>
   40 #include <linux/atomic.h>
   41 #include <linux/bitops.h>
   42 #include <linux/percpu.h>
   43 #include <linux/notifier.h>
   44 #include <linux/cpu.h>
   45 #include <linux/mutex.h>
   46 #include <linux/export.h>
   47 #include <linux/hardirq.h>
   48 #include <linux/delay.h>
   49 #include <linux/module.h>
   50 
   51 #define CREATE_TRACE_POINTS
   52 #include <trace/events/rcu.h>
   53 
   54 #include "rcu.h"
   55 
   56 module_param(rcu_expedited, int, 0);
   57 
   58 #ifdef CONFIG_PREEMPT_RCU
   59 
   60 /*
   61  * Preemptible RCU implementation for rcu_read_lock().
   62  * Just increment ->rcu_read_lock_nesting, shared state will be updated
   63  * if we block.
   64  */
   65 void __rcu_read_lock(void)
   66 {
   67         current->rcu_read_lock_nesting++;
   68         barrier();  /* critical section after entry code. */
   69 }
   70 EXPORT_SYMBOL_GPL(__rcu_read_lock);
   71 
   72 /*
   73  * Preemptible RCU implementation for rcu_read_unlock().
   74  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
   75  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
   76  * invoke rcu_read_unlock_special() to clean up after a context switch
   77  * in an RCU read-side critical section and other special cases.
   78  */
   79 void __rcu_read_unlock(void)
   80 {
   81         struct task_struct *t = current;
   82 
   83         if (t->rcu_read_lock_nesting != 1) {
   84                 --t->rcu_read_lock_nesting;
   85         } else {
   86                 barrier();  /* critical section before exit code. */
   87                 t->rcu_read_lock_nesting = INT_MIN;
   88 #ifdef CONFIG_PROVE_RCU_DELAY
   89                 udelay(10); /* Make preemption more probable. */
   90 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
   91                 barrier();  /* assign before ->rcu_read_unlock_special load */
   92                 if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
   93                         rcu_read_unlock_special(t);
   94                 barrier();  /* ->rcu_read_unlock_special load before assign */
   95                 t->rcu_read_lock_nesting = 0;
   96         }
   97 #ifdef CONFIG_PROVE_LOCKING
   98         {
   99                 int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
  100 
  101                 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
  102         }
  103 #endif /* #ifdef CONFIG_PROVE_LOCKING */
  104 }
  105 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
  106 
  107 /*
  108  * Check for a task exiting while in a preemptible-RCU read-side
  109  * critical section, clean up if so.  No need to issue warnings,
  110  * as debug_check_no_locks_held() already does this if lockdep
  111  * is enabled.
  112  */
  113 void exit_rcu(void)
  114 {
  115         struct task_struct *t = current;
  116 
  117         if (likely(list_empty(&current->rcu_node_entry)))
  118                 return;
  119         t->rcu_read_lock_nesting = 1;
  120         barrier();
  121         t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
  122         __rcu_read_unlock();
  123 }
  124 
  125 #else /* #ifdef CONFIG_PREEMPT_RCU */
  126 
  127 void exit_rcu(void)
  128 {
  129 }
  130 
  131 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  132 
  133 #ifdef CONFIG_DEBUG_LOCK_ALLOC
  134 static struct lock_class_key rcu_lock_key;
  135 struct lockdep_map rcu_lock_map =
  136         STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
  137 EXPORT_SYMBOL_GPL(rcu_lock_map);
  138 
  139 static struct lock_class_key rcu_bh_lock_key;
  140 struct lockdep_map rcu_bh_lock_map =
  141         STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
  142 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
  143 
  144 static struct lock_class_key rcu_sched_lock_key;
  145 struct lockdep_map rcu_sched_lock_map =
  146         STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
  147 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
  148 #endif
  149 
  150 #ifdef CONFIG_DEBUG_LOCK_ALLOC
  151 
  152 int debug_lockdep_rcu_enabled(void)
  153 {
  154         return rcu_scheduler_active && debug_locks &&
  155                current->lockdep_recursion == 0;
  156 }
  157 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
  158 
  159 /**
  160  * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
  161  *
  162  * Check for bottom half being disabled, which covers both the
  163  * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
  164  * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
  165  * will show the situation.  This is useful for debug checks in functions
  166  * that require that they be called within an RCU read-side critical
  167  * section.
  168  *
  169  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
  170  *
  171  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
  172  * offline from an RCU perspective, so check for those as well.
  173  */
  174 int rcu_read_lock_bh_held(void)
  175 {
  176         if (!debug_lockdep_rcu_enabled())
  177                 return 1;
  178         if (rcu_is_cpu_idle())
  179                 return 0;
  180         if (!rcu_lockdep_current_cpu_online())
  181                 return 0;
  182         return in_softirq() || irqs_disabled();
  183 }
  184 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
  185 
  186 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
  187 
  188 struct rcu_synchronize {
  189         struct rcu_head head;
  190         struct completion completion;
  191 };
  192 
  193 /*
  194  * Awaken the corresponding synchronize_rcu() instance now that a
  195  * grace period has elapsed.
  196  */
  197 static void wakeme_after_rcu(struct rcu_head  *head)
  198 {
  199         struct rcu_synchronize *rcu;
  200 
  201         rcu = container_of(head, struct rcu_synchronize, head);
  202         complete(&rcu->completion);
  203 }
  204 
  205 void wait_rcu_gp(call_rcu_func_t crf)
  206 {
  207         struct rcu_synchronize rcu;
  208 
  209         init_rcu_head_on_stack(&rcu.head);
  210         init_completion(&rcu.completion);
  211         /* Will wake me after RCU finished. */
  212         crf(&rcu.head, wakeme_after_rcu);
  213         /* Wait for it. */
  214         wait_for_completion(&rcu.completion);
  215         destroy_rcu_head_on_stack(&rcu.head);
  216 }
  217 EXPORT_SYMBOL_GPL(wait_rcu_gp);
  218 
  219 #ifdef CONFIG_PROVE_RCU
  220 /*
  221  * wrapper function to avoid #include problems.
  222  */
  223 int rcu_my_thread_group_empty(void)
  224 {
  225         return thread_group_empty(current);
  226 }
  227 EXPORT_SYMBOL_GPL(rcu_my_thread_group_empty);
  228 #endif /* #ifdef CONFIG_PROVE_RCU */
  229 
  230 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
  231 static inline void debug_init_rcu_head(struct rcu_head *head)
  232 {
  233         debug_object_init(head, &rcuhead_debug_descr);
  234 }
  235 
  236 static inline void debug_rcu_head_free(struct rcu_head *head)
  237 {
  238         debug_object_free(head, &rcuhead_debug_descr);
  239 }
  240 
  241 /*
  242  * fixup_init is called when:
  243  * - an active object is initialized
  244  */
  245 static int rcuhead_fixup_init(void *addr, enum debug_obj_state state)
  246 {
  247         struct rcu_head *head = addr;
  248 
  249         switch (state) {
  250         case ODEBUG_STATE_ACTIVE:
  251                 /*
  252                  * Ensure that queued callbacks are all executed.
  253                  * If we detect that we are nested in a RCU read-side critical
  254                  * section, we should simply fail, otherwise we would deadlock.
  255                  * In !PREEMPT configurations, there is no way to tell if we are
  256                  * in a RCU read-side critical section or not, so we never
  257                  * attempt any fixup and just print a warning.
  258                  */
  259 #ifndef CONFIG_PREEMPT
  260                 WARN_ON_ONCE(1);
  261                 return 0;
  262 #endif
  263                 if (rcu_preempt_depth() != 0 || preempt_count() != 0 ||
  264                     irqs_disabled()) {
  265                         WARN_ON_ONCE(1);
  266                         return 0;
  267                 }
  268                 rcu_barrier();
  269                 rcu_barrier_sched();
  270                 rcu_barrier_bh();
  271                 debug_object_init(head, &rcuhead_debug_descr);
  272                 return 1;
  273         default:
  274                 return 0;
  275         }
  276 }
  277 
  278 /*
  279  * fixup_activate is called when:
  280  * - an active object is activated
  281  * - an unknown object is activated (might be a statically initialized object)
  282  * Activation is performed internally by call_rcu().
  283  */
  284 static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state)
  285 {
  286         struct rcu_head *head = addr;
  287 
  288         switch (state) {
  289 
  290         case ODEBUG_STATE_NOTAVAILABLE:
  291                 /*
  292                  * This is not really a fixup. We just make sure that it is
  293                  * tracked in the object tracker.
  294                  */
  295                 debug_object_init(head, &rcuhead_debug_descr);
  296                 debug_object_activate(head, &rcuhead_debug_descr);
  297                 return 0;
  298 
  299         case ODEBUG_STATE_ACTIVE:
  300                 /*
  301                  * Ensure that queued callbacks are all executed.
  302                  * If we detect that we are nested in a RCU read-side critical
  303                  * section, we should simply fail, otherwise we would deadlock.
  304                  * In !PREEMPT configurations, there is no way to tell if we are
  305                  * in a RCU read-side critical section or not, so we never
  306                  * attempt any fixup and just print a warning.
  307                  */
  308 #ifndef CONFIG_PREEMPT
  309                 WARN_ON_ONCE(1);
  310                 return 0;
  311 #endif
  312                 if (rcu_preempt_depth() != 0 || preempt_count() != 0 ||
  313                     irqs_disabled()) {
  314                         WARN_ON_ONCE(1);
  315                         return 0;
  316                 }
  317                 rcu_barrier();
  318                 rcu_barrier_sched();
  319                 rcu_barrier_bh();
  320                 debug_object_activate(head, &rcuhead_debug_descr);
  321                 return 1;
  322         default:
  323                 return 0;
  324         }
  325 }
  326 
  327 /*
  328  * fixup_free is called when:
  329  * - an active object is freed
  330  */
  331 static int rcuhead_fixup_free(void *addr, enum debug_obj_state state)
  332 {
  333         struct rcu_head *head = addr;
  334 
  335         switch (state) {
  336         case ODEBUG_STATE_ACTIVE:
  337                 /*
  338                  * Ensure that queued callbacks are all executed.
  339                  * If we detect that we are nested in a RCU read-side critical
  340                  * section, we should simply fail, otherwise we would deadlock.
  341                  * In !PREEMPT configurations, there is no way to tell if we are
  342                  * in a RCU read-side critical section or not, so we never
  343                  * attempt any fixup and just print a warning.
  344                  */
  345 #ifndef CONFIG_PREEMPT
  346                 WARN_ON_ONCE(1);
  347                 return 0;
  348 #endif
  349                 if (rcu_preempt_depth() != 0 || preempt_count() != 0 ||
  350                     irqs_disabled()) {
  351                         WARN_ON_ONCE(1);
  352                         return 0;
  353                 }
  354                 rcu_barrier();
  355                 rcu_barrier_sched();
  356                 rcu_barrier_bh();
  357                 debug_object_free(head, &rcuhead_debug_descr);
  358                 return 1;
  359         default:
  360                 return 0;
  361         }
  362 }
  363 
  364 /**
  365  * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
  366  * @head: pointer to rcu_head structure to be initialized
  367  *
  368  * This function informs debugobjects of a new rcu_head structure that
  369  * has been allocated as an auto variable on the stack.  This function
  370  * is not required for rcu_head structures that are statically defined or
  371  * that are dynamically allocated on the heap.  This function has no
  372  * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
  373  */
  374 void init_rcu_head_on_stack(struct rcu_head *head)
  375 {
  376         debug_object_init_on_stack(head, &rcuhead_debug_descr);
  377 }
  378 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
  379 
  380 /**
  381  * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
  382  * @head: pointer to rcu_head structure to be initialized
  383  *
  384  * This function informs debugobjects that an on-stack rcu_head structure
  385  * is about to go out of scope.  As with init_rcu_head_on_stack(), this
  386  * function is not required for rcu_head structures that are statically
  387  * defined or that are dynamically allocated on the heap.  Also as with
  388  * init_rcu_head_on_stack(), this function has no effect for
  389  * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
  390  */
  391 void destroy_rcu_head_on_stack(struct rcu_head *head)
  392 {
  393         debug_object_free(head, &rcuhead_debug_descr);
  394 }
  395 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
  396 
  397 struct debug_obj_descr rcuhead_debug_descr = {
  398         .name = "rcu_head",
  399         .fixup_init = rcuhead_fixup_init,
  400         .fixup_activate = rcuhead_fixup_activate,
  401         .fixup_free = rcuhead_fixup_free,
  402 };
  403 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
  404 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
  405 
  406 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
  407 void do_trace_rcu_torture_read(char *rcutorturename, struct rcu_head *rhp)
  408 {
  409         trace_rcu_torture_read(rcutorturename, rhp);
  410 }
  411 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
  412 #else
  413 #define do_trace_rcu_torture_read(rcutorturename, rhp) do { } while (0)
  414 #endif

Cache object: da5a1109fbb8cff8d3d30cf8c54c52b6


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.