The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kernel/rcupreempt.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Read-Copy Update mechanism for mutual exclusion, realtime implementation
    3  *
    4  * This program is free software; you can redistribute it and/or modify
    5  * it under the terms of the GNU General Public License as published by
    6  * the Free Software Foundation; either version 2 of the License, or
    7  * (at your option) any later version.
    8  *
    9  * This program is distributed in the hope that it will be useful,
   10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
   11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   12  * GNU General Public License for more details.
   13  *
   14  * You should have received a copy of the GNU General Public License
   15  * along with this program; if not, write to the Free Software
   16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
   17  *
   18  * Copyright IBM Corporation, 2006
   19  *
   20  * Authors: Paul E. McKenney <paulmck@us.ibm.com>
   21  *              With thanks to Esben Nielsen, Bill Huey, and Ingo Molnar
   22  *              for pushing me away from locks and towards counters, and
   23  *              to Suparna Bhattacharya for pushing me completely away
   24  *              from atomic instructions on the read side.
   25  *
   26  *  - Added handling of Dynamic Ticks
   27  *      Copyright 2007 - Paul E. Mckenney <paulmck@us.ibm.com>
   28  *                     - Steven Rostedt <srostedt@redhat.com>
   29  *
   30  * Papers:  http://www.rdrop.com/users/paulmck/RCU
   31  *
   32  * Design Document: http://lwn.net/Articles/253651/
   33  *
   34  * For detailed explanation of Read-Copy Update mechanism see -
   35  *              Documentation/RCU/ *.txt
   36  *
   37  */
   38 #include <linux/types.h>
   39 #include <linux/kernel.h>
   40 #include <linux/init.h>
   41 #include <linux/spinlock.h>
   42 #include <linux/smp.h>
   43 #include <linux/rcupdate.h>
   44 #include <linux/interrupt.h>
   45 #include <linux/sched.h>
   46 #include <asm/atomic.h>
   47 #include <linux/bitops.h>
   48 #include <linux/module.h>
   49 #include <linux/kthread.h>
   50 #include <linux/completion.h>
   51 #include <linux/moduleparam.h>
   52 #include <linux/percpu.h>
   53 #include <linux/notifier.h>
   54 #include <linux/cpu.h>
   55 #include <linux/random.h>
   56 #include <linux/delay.h>
   57 #include <linux/cpumask.h>
   58 #include <linux/rcupreempt_trace.h>
   59 #include <asm/byteorder.h>
   60 
   61 /*
   62  * PREEMPT_RCU data structures.
   63  */
   64 
   65 /*
   66  * GP_STAGES specifies the number of times the state machine has
   67  * to go through the all the rcu_try_flip_states (see below)
   68  * in a single Grace Period.
   69  *
   70  * GP in GP_STAGES stands for Grace Period ;)
   71  */
   72 #define GP_STAGES    2
   73 struct rcu_data {
   74         spinlock_t      lock;           /* Protect rcu_data fields. */
   75         long            completed;      /* Number of last completed batch. */
   76         int             waitlistcount;
   77         struct rcu_head *nextlist;
   78         struct rcu_head **nexttail;
   79         struct rcu_head *waitlist[GP_STAGES];
   80         struct rcu_head **waittail[GP_STAGES];
   81         struct rcu_head *donelist;      /* from waitlist & waitschedlist */
   82         struct rcu_head **donetail;
   83         long rcu_flipctr[2];
   84         struct rcu_head *nextschedlist;
   85         struct rcu_head **nextschedtail;
   86         struct rcu_head *waitschedlist;
   87         struct rcu_head **waitschedtail;
   88         int rcu_sched_sleeping;
   89 #ifdef CONFIG_RCU_TRACE
   90         struct rcupreempt_trace trace;
   91 #endif /* #ifdef CONFIG_RCU_TRACE */
   92 };
   93 
   94 /*
   95  * States for rcu_try_flip() and friends.
   96  */
   97 
   98 enum rcu_try_flip_states {
   99 
  100         /*
  101          * Stay here if nothing is happening. Flip the counter if somthing
  102          * starts happening. Denoted by "I"
  103          */
  104         rcu_try_flip_idle_state,
  105 
  106         /*
  107          * Wait here for all CPUs to notice that the counter has flipped. This
  108          * prevents the old set of counters from ever being incremented once
  109          * we leave this state, which in turn is necessary because we cannot
  110          * test any individual counter for zero -- we can only check the sum.
  111          * Denoted by "A".
  112          */
  113         rcu_try_flip_waitack_state,
  114 
  115         /*
  116          * Wait here for the sum of the old per-CPU counters to reach zero.
  117          * Denoted by "Z".
  118          */
  119         rcu_try_flip_waitzero_state,
  120 
  121         /*
  122          * Wait here for each of the other CPUs to execute a memory barrier.
  123          * This is necessary to ensure that these other CPUs really have
  124          * completed executing their RCU read-side critical sections, despite
  125          * their CPUs wildly reordering memory. Denoted by "M".
  126          */
  127         rcu_try_flip_waitmb_state,
  128 };
  129 
  130 /*
  131  * States for rcu_ctrlblk.rcu_sched_sleep.
  132  */
  133 
  134 enum rcu_sched_sleep_states {
  135         rcu_sched_not_sleeping, /* Not sleeping, callbacks need GP.  */
  136         rcu_sched_sleep_prep,   /* Thinking of sleeping, rechecking. */
  137         rcu_sched_sleeping,     /* Sleeping, awaken if GP needed. */
  138 };
  139 
  140 struct rcu_ctrlblk {
  141         spinlock_t      fliplock;       /* Protect state-machine transitions. */
  142         long            completed;      /* Number of last completed batch. */
  143         enum rcu_try_flip_states rcu_try_flip_state; /* The current state of
  144                                                         the rcu state machine */
  145         spinlock_t      schedlock;      /* Protect rcu_sched sleep state. */
  146         enum rcu_sched_sleep_states sched_sleep; /* rcu_sched state. */
  147         wait_queue_head_t sched_wq;     /* Place for rcu_sched to sleep. */
  148 };
  149 
  150 static DEFINE_PER_CPU(struct rcu_data, rcu_data);
  151 static struct rcu_ctrlblk rcu_ctrlblk = {
  152         .fliplock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.fliplock),
  153         .completed = 0,
  154         .rcu_try_flip_state = rcu_try_flip_idle_state,
  155         .schedlock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.schedlock),
  156         .sched_sleep = rcu_sched_not_sleeping,
  157         .sched_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rcu_ctrlblk.sched_wq),
  158 };
  159 
  160 static struct task_struct *rcu_sched_grace_period_task;
  161 
  162 #ifdef CONFIG_RCU_TRACE
  163 static char *rcu_try_flip_state_names[] =
  164         { "idle", "waitack", "waitzero", "waitmb" };
  165 #endif /* #ifdef CONFIG_RCU_TRACE */
  166 
  167 static cpumask_t rcu_cpu_online_map __read_mostly = CPU_MASK_NONE;
  168 
  169 /*
  170  * Enum and per-CPU flag to determine when each CPU has seen
  171  * the most recent counter flip.
  172  */
  173 
  174 enum rcu_flip_flag_values {
  175         rcu_flip_seen,          /* Steady/initial state, last flip seen. */
  176                                 /* Only GP detector can update. */
  177         rcu_flipped             /* Flip just completed, need confirmation. */
  178                                 /* Only corresponding CPU can update. */
  179 };
  180 static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_flip_flag_values, rcu_flip_flag)
  181                                                                 = rcu_flip_seen;
  182 
  183 /*
  184  * Enum and per-CPU flag to determine when each CPU has executed the
  185  * needed memory barrier to fence in memory references from its last RCU
  186  * read-side critical section in the just-completed grace period.
  187  */
  188 
  189 enum rcu_mb_flag_values {
  190         rcu_mb_done,            /* Steady/initial state, no mb()s required. */
  191                                 /* Only GP detector can update. */
  192         rcu_mb_needed           /* Flip just completed, need an mb(). */
  193                                 /* Only corresponding CPU can update. */
  194 };
  195 static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_mb_flag_values, rcu_mb_flag)
  196                                                                 = rcu_mb_done;
  197 
  198 /*
  199  * RCU_DATA_ME: find the current CPU's rcu_data structure.
  200  * RCU_DATA_CPU: find the specified CPU's rcu_data structure.
  201  */
  202 #define RCU_DATA_ME()           (&__get_cpu_var(rcu_data))
  203 #define RCU_DATA_CPU(cpu)       (&per_cpu(rcu_data, cpu))
  204 
  205 /*
  206  * Helper macro for tracing when the appropriate rcu_data is not
  207  * cached in a local variable, but where the CPU number is so cached.
  208  */
  209 #define RCU_TRACE_CPU(f, cpu) RCU_TRACE(f, &(RCU_DATA_CPU(cpu)->trace));
  210 
  211 /*
  212  * Helper macro for tracing when the appropriate rcu_data is not
  213  * cached in a local variable.
  214  */
  215 #define RCU_TRACE_ME(f) RCU_TRACE(f, &(RCU_DATA_ME()->trace));
  216 
  217 /*
  218  * Helper macro for tracing when the appropriate rcu_data is pointed
  219  * to by a local variable.
  220  */
  221 #define RCU_TRACE_RDP(f, rdp) RCU_TRACE(f, &((rdp)->trace));
  222 
  223 #define RCU_SCHED_BATCH_TIME (HZ / 50)
  224 
  225 /*
  226  * Return the number of RCU batches processed thus far.  Useful
  227  * for debug and statistics.
  228  */
  229 long rcu_batches_completed(void)
  230 {
  231         return rcu_ctrlblk.completed;
  232 }
  233 EXPORT_SYMBOL_GPL(rcu_batches_completed);
  234 
  235 void __rcu_read_lock(void)
  236 {
  237         int idx;
  238         struct task_struct *t = current;
  239         int nesting;
  240 
  241         nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
  242         if (nesting != 0) {
  243 
  244                 /* An earlier rcu_read_lock() covers us, just count it. */
  245 
  246                 t->rcu_read_lock_nesting = nesting + 1;
  247 
  248         } else {
  249                 unsigned long flags;
  250 
  251                 /*
  252                  * We disable interrupts for the following reasons:
  253                  * - If we get scheduling clock interrupt here, and we
  254                  *   end up acking the counter flip, it's like a promise
  255                  *   that we will never increment the old counter again.
  256                  *   Thus we will break that promise if that
  257                  *   scheduling clock interrupt happens between the time
  258                  *   we pick the .completed field and the time that we
  259                  *   increment our counter.
  260                  *
  261                  * - We don't want to be preempted out here.
  262                  *
  263                  * NMIs can still occur, of course, and might themselves
  264                  * contain rcu_read_lock().
  265                  */
  266 
  267                 local_irq_save(flags);
  268 
  269                 /*
  270                  * Outermost nesting of rcu_read_lock(), so increment
  271                  * the current counter for the current CPU.  Use volatile
  272                  * casts to prevent the compiler from reordering.
  273                  */
  274 
  275                 idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1;
  276                 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++;
  277 
  278                 /*
  279                  * Now that the per-CPU counter has been incremented, we
  280                  * are protected from races with rcu_read_lock() invoked
  281                  * from NMI handlers on this CPU.  We can therefore safely
  282                  * increment the nesting counter, relieving further NMIs
  283                  * of the need to increment the per-CPU counter.
  284                  */
  285 
  286                 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1;
  287 
  288                 /*
  289                  * Now that we have preventing any NMIs from storing
  290                  * to the ->rcu_flipctr_idx, we can safely use it to
  291                  * remember which counter to decrement in the matching
  292                  * rcu_read_unlock().
  293                  */
  294 
  295                 ACCESS_ONCE(t->rcu_flipctr_idx) = idx;
  296                 local_irq_restore(flags);
  297         }
  298 }
  299 EXPORT_SYMBOL_GPL(__rcu_read_lock);
  300 
  301 void __rcu_read_unlock(void)
  302 {
  303         int idx;
  304         struct task_struct *t = current;
  305         int nesting;
  306 
  307         nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
  308         if (nesting > 1) {
  309 
  310                 /*
  311                  * We are still protected by the enclosing rcu_read_lock(),
  312                  * so simply decrement the counter.
  313                  */
  314 
  315                 t->rcu_read_lock_nesting = nesting - 1;
  316 
  317         } else {
  318                 unsigned long flags;
  319 
  320                 /*
  321                  * Disable local interrupts to prevent the grace-period
  322                  * detection state machine from seeing us half-done.
  323                  * NMIs can still occur, of course, and might themselves
  324                  * contain rcu_read_lock() and rcu_read_unlock().
  325                  */
  326 
  327                 local_irq_save(flags);
  328 
  329                 /*
  330                  * Outermost nesting of rcu_read_unlock(), so we must
  331                  * decrement the current counter for the current CPU.
  332                  * This must be done carefully, because NMIs can
  333                  * occur at any point in this code, and any rcu_read_lock()
  334                  * and rcu_read_unlock() pairs in the NMI handlers
  335                  * must interact non-destructively with this code.
  336                  * Lots of volatile casts, and -very- careful ordering.
  337                  *
  338                  * Changes to this code, including this one, must be
  339                  * inspected, validated, and tested extremely carefully!!!
  340                  */
  341 
  342                 /*
  343                  * First, pick up the index.
  344                  */
  345 
  346                 idx = ACCESS_ONCE(t->rcu_flipctr_idx);
  347 
  348                 /*
  349                  * Now that we have fetched the counter index, it is
  350                  * safe to decrement the per-task RCU nesting counter.
  351                  * After this, any interrupts or NMIs will increment and
  352                  * decrement the per-CPU counters.
  353                  */
  354                 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1;
  355 
  356                 /*
  357                  * It is now safe to decrement this task's nesting count.
  358                  * NMIs that occur after this statement will route their
  359                  * rcu_read_lock() calls through this "else" clause, and
  360                  * will thus start incrementing the per-CPU counter on
  361                  * their own.  They will also clobber ->rcu_flipctr_idx,
  362                  * but that is OK, since we have already fetched it.
  363                  */
  364 
  365                 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--;
  366                 local_irq_restore(flags);
  367         }
  368 }
  369 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
  370 
  371 /*
  372  * If a global counter flip has occurred since the last time that we
  373  * advanced callbacks, advance them.  Hardware interrupts must be
  374  * disabled when calling this function.
  375  */
  376 static void __rcu_advance_callbacks(struct rcu_data *rdp)
  377 {
  378         int cpu;
  379         int i;
  380         int wlc = 0;
  381 
  382         if (rdp->completed != rcu_ctrlblk.completed) {
  383                 if (rdp->waitlist[GP_STAGES - 1] != NULL) {
  384                         *rdp->donetail = rdp->waitlist[GP_STAGES - 1];
  385                         rdp->donetail = rdp->waittail[GP_STAGES - 1];
  386                         RCU_TRACE_RDP(rcupreempt_trace_move2done, rdp);
  387                 }
  388                 for (i = GP_STAGES - 2; i >= 0; i--) {
  389                         if (rdp->waitlist[i] != NULL) {
  390                                 rdp->waitlist[i + 1] = rdp->waitlist[i];
  391                                 rdp->waittail[i + 1] = rdp->waittail[i];
  392                                 wlc++;
  393                         } else {
  394                                 rdp->waitlist[i + 1] = NULL;
  395                                 rdp->waittail[i + 1] =
  396                                         &rdp->waitlist[i + 1];
  397                         }
  398                 }
  399                 if (rdp->nextlist != NULL) {
  400                         rdp->waitlist[0] = rdp->nextlist;
  401                         rdp->waittail[0] = rdp->nexttail;
  402                         wlc++;
  403                         rdp->nextlist = NULL;
  404                         rdp->nexttail = &rdp->nextlist;
  405                         RCU_TRACE_RDP(rcupreempt_trace_move2wait, rdp);
  406                 } else {
  407                         rdp->waitlist[0] = NULL;
  408                         rdp->waittail[0] = &rdp->waitlist[0];
  409                 }
  410                 rdp->waitlistcount = wlc;
  411                 rdp->completed = rcu_ctrlblk.completed;
  412         }
  413 
  414         /*
  415          * Check to see if this CPU needs to report that it has seen
  416          * the most recent counter flip, thereby declaring that all
  417          * subsequent rcu_read_lock() invocations will respect this flip.
  418          */
  419 
  420         cpu = raw_smp_processor_id();
  421         if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
  422                 smp_mb();  /* Subsequent counter accesses must see new value */
  423                 per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
  424                 smp_mb();  /* Subsequent RCU read-side critical sections */
  425                            /*  seen -after- acknowledgement. */
  426         }
  427 }
  428 
  429 DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_dyntick_sched, rcu_dyntick_sched) = {
  430         .dynticks = 1,
  431 };
  432 
  433 #ifdef CONFIG_NO_HZ
  434 static DEFINE_PER_CPU(int, rcu_update_flag);
  435 
  436 /**
  437  * rcu_irq_enter - Called from Hard irq handlers and NMI/SMI.
  438  *
  439  * If the CPU was idle with dynamic ticks active, this updates the
  440  * rcu_dyntick_sched.dynticks to let the RCU handling know that the
  441  * CPU is active.
  442  */
  443 void rcu_irq_enter(void)
  444 {
  445         int cpu = smp_processor_id();
  446         struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
  447 
  448         if (per_cpu(rcu_update_flag, cpu))
  449                 per_cpu(rcu_update_flag, cpu)++;
  450 
  451         /*
  452          * Only update if we are coming from a stopped ticks mode
  453          * (rcu_dyntick_sched.dynticks is even).
  454          */
  455         if (!in_interrupt() &&
  456             (rdssp->dynticks & 0x1) == 0) {
  457                 /*
  458                  * The following might seem like we could have a race
  459                  * with NMI/SMIs. But this really isn't a problem.
  460                  * Here we do a read/modify/write, and the race happens
  461                  * when an NMI/SMI comes in after the read and before
  462                  * the write. But NMI/SMIs will increment this counter
  463                  * twice before returning, so the zero bit will not
  464                  * be corrupted by the NMI/SMI which is the most important
  465                  * part.
  466                  *
  467                  * The only thing is that we would bring back the counter
  468                  * to a postion that it was in during the NMI/SMI.
  469                  * But the zero bit would be set, so the rest of the
  470                  * counter would again be ignored.
  471                  *
  472                  * On return from the IRQ, the counter may have the zero
  473                  * bit be 0 and the counter the same as the return from
  474                  * the NMI/SMI. If the state machine was so unlucky to
  475                  * see that, it still doesn't matter, since all
  476                  * RCU read-side critical sections on this CPU would
  477                  * have already completed.
  478                  */
  479                 rdssp->dynticks++;
  480                 /*
  481                  * The following memory barrier ensures that any
  482                  * rcu_read_lock() primitives in the irq handler
  483                  * are seen by other CPUs to follow the above
  484                  * increment to rcu_dyntick_sched.dynticks. This is
  485                  * required in order for other CPUs to correctly
  486                  * determine when it is safe to advance the RCU
  487                  * grace-period state machine.
  488                  */
  489                 smp_mb(); /* see above block comment. */
  490                 /*
  491                  * Since we can't determine the dynamic tick mode from
  492                  * the rcu_dyntick_sched.dynticks after this routine,
  493                  * we use a second flag to acknowledge that we came
  494                  * from an idle state with ticks stopped.
  495                  */
  496                 per_cpu(rcu_update_flag, cpu)++;
  497                 /*
  498                  * If we take an NMI/SMI now, they will also increment
  499                  * the rcu_update_flag, and will not update the
  500                  * rcu_dyntick_sched.dynticks on exit. That is for
  501                  * this IRQ to do.
  502                  */
  503         }
  504 }
  505 
  506 /**
  507  * rcu_irq_exit - Called from exiting Hard irq context.
  508  *
  509  * If the CPU was idle with dynamic ticks active, update the
  510  * rcu_dyntick_sched.dynticks to put let the RCU handling be
  511  * aware that the CPU is going back to idle with no ticks.
  512  */
  513 void rcu_irq_exit(void)
  514 {
  515         int cpu = smp_processor_id();
  516         struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
  517 
  518         /*
  519          * rcu_update_flag is set if we interrupted the CPU
  520          * when it was idle with ticks stopped.
  521          * Once this occurs, we keep track of interrupt nesting
  522          * because a NMI/SMI could also come in, and we still
  523          * only want the IRQ that started the increment of the
  524          * rcu_dyntick_sched.dynticks to be the one that modifies
  525          * it on exit.
  526          */
  527         if (per_cpu(rcu_update_flag, cpu)) {
  528                 if (--per_cpu(rcu_update_flag, cpu))
  529                         return;
  530 
  531                 /* This must match the interrupt nesting */
  532                 WARN_ON(in_interrupt());
  533 
  534                 /*
  535                  * If an NMI/SMI happens now we are still
  536                  * protected by the rcu_dyntick_sched.dynticks being odd.
  537                  */
  538 
  539                 /*
  540                  * The following memory barrier ensures that any
  541                  * rcu_read_unlock() primitives in the irq handler
  542                  * are seen by other CPUs to preceed the following
  543                  * increment to rcu_dyntick_sched.dynticks. This
  544                  * is required in order for other CPUs to determine
  545                  * when it is safe to advance the RCU grace-period
  546                  * state machine.
  547                  */
  548                 smp_mb(); /* see above block comment. */
  549                 rdssp->dynticks++;
  550                 WARN_ON(rdssp->dynticks & 0x1);
  551         }
  552 }
  553 
  554 static void dyntick_save_progress_counter(int cpu)
  555 {
  556         struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
  557 
  558         rdssp->dynticks_snap = rdssp->dynticks;
  559 }
  560 
  561 static inline int
  562 rcu_try_flip_waitack_needed(int cpu)
  563 {
  564         long curr;
  565         long snap;
  566         struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
  567 
  568         curr = rdssp->dynticks;
  569         snap = rdssp->dynticks_snap;
  570         smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
  571 
  572         /*
  573          * If the CPU remained in dynticks mode for the entire time
  574          * and didn't take any interrupts, NMIs, SMIs, or whatever,
  575          * then it cannot be in the middle of an rcu_read_lock(), so
  576          * the next rcu_read_lock() it executes must use the new value
  577          * of the counter.  So we can safely pretend that this CPU
  578          * already acknowledged the counter.
  579          */
  580 
  581         if ((curr == snap) && ((curr & 0x1) == 0))
  582                 return 0;
  583 
  584         /*
  585          * If the CPU passed through or entered a dynticks idle phase with
  586          * no active irq handlers, then, as above, we can safely pretend
  587          * that this CPU already acknowledged the counter.
  588          */
  589 
  590         if ((curr - snap) > 2 || (curr & 0x1) == 0)
  591                 return 0;
  592 
  593         /* We need this CPU to explicitly acknowledge the counter flip. */
  594 
  595         return 1;
  596 }
  597 
  598 static inline int
  599 rcu_try_flip_waitmb_needed(int cpu)
  600 {
  601         long curr;
  602         long snap;
  603         struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
  604 
  605         curr = rdssp->dynticks;
  606         snap = rdssp->dynticks_snap;
  607         smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
  608 
  609         /*
  610          * If the CPU remained in dynticks mode for the entire time
  611          * and didn't take any interrupts, NMIs, SMIs, or whatever,
  612          * then it cannot have executed an RCU read-side critical section
  613          * during that time, so there is no need for it to execute a
  614          * memory barrier.
  615          */
  616 
  617         if ((curr == snap) && ((curr & 0x1) == 0))
  618                 return 0;
  619 
  620         /*
  621          * If the CPU either entered or exited an outermost interrupt,
  622          * SMI, NMI, or whatever handler, then we know that it executed
  623          * a memory barrier when doing so.  So we don't need another one.
  624          */
  625         if (curr != snap)
  626                 return 0;
  627 
  628         /* We need the CPU to execute a memory barrier. */
  629 
  630         return 1;
  631 }
  632 
  633 static void dyntick_save_progress_counter_sched(int cpu)
  634 {
  635         struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
  636 
  637         rdssp->sched_dynticks_snap = rdssp->dynticks;
  638 }
  639 
  640 static int rcu_qsctr_inc_needed_dyntick(int cpu)
  641 {
  642         long curr;
  643         long snap;
  644         struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
  645 
  646         curr = rdssp->dynticks;
  647         snap = rdssp->sched_dynticks_snap;
  648         smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
  649 
  650         /*
  651          * If the CPU remained in dynticks mode for the entire time
  652          * and didn't take any interrupts, NMIs, SMIs, or whatever,
  653          * then it cannot be in the middle of an rcu_read_lock(), so
  654          * the next rcu_read_lock() it executes must use the new value
  655          * of the counter.  Therefore, this CPU has been in a quiescent
  656          * state the entire time, and we don't need to wait for it.
  657          */
  658 
  659         if ((curr == snap) && ((curr & 0x1) == 0))
  660                 return 0;
  661 
  662         /*
  663          * If the CPU passed through or entered a dynticks idle phase with
  664          * no active irq handlers, then, as above, this CPU has already
  665          * passed through a quiescent state.
  666          */
  667 
  668         if ((curr - snap) > 2 || (snap & 0x1) == 0)
  669                 return 0;
  670 
  671         /* We need this CPU to go through a quiescent state. */
  672 
  673         return 1;
  674 }
  675 
  676 #else /* !CONFIG_NO_HZ */
  677 
  678 # define dyntick_save_progress_counter(cpu)             do { } while (0)
  679 # define rcu_try_flip_waitack_needed(cpu)               (1)
  680 # define rcu_try_flip_waitmb_needed(cpu)                (1)
  681 
  682 # define dyntick_save_progress_counter_sched(cpu)       do { } while (0)
  683 # define rcu_qsctr_inc_needed_dyntick(cpu)              (1)
  684 
  685 #endif /* CONFIG_NO_HZ */
  686 
  687 static void save_qsctr_sched(int cpu)
  688 {
  689         struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
  690 
  691         rdssp->sched_qs_snap = rdssp->sched_qs;
  692 }
  693 
  694 static inline int rcu_qsctr_inc_needed(int cpu)
  695 {
  696         struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
  697 
  698         /*
  699          * If there has been a quiescent state, no more need to wait
  700          * on this CPU.
  701          */
  702 
  703         if (rdssp->sched_qs != rdssp->sched_qs_snap) {
  704                 smp_mb(); /* force ordering with cpu entering schedule(). */
  705                 return 0;
  706         }
  707 
  708         /* We need this CPU to go through a quiescent state. */
  709 
  710         return 1;
  711 }
  712 
  713 /*
  714  * Get here when RCU is idle.  Decide whether we need to
  715  * move out of idle state, and return non-zero if so.
  716  * "Straightforward" approach for the moment, might later
  717  * use callback-list lengths, grace-period duration, or
  718  * some such to determine when to exit idle state.
  719  * Might also need a pre-idle test that does not acquire
  720  * the lock, but let's get the simple case working first...
  721  */
  722 
  723 static int
  724 rcu_try_flip_idle(void)
  725 {
  726         int cpu;
  727 
  728         RCU_TRACE_ME(rcupreempt_trace_try_flip_i1);
  729         if (!rcu_pending(smp_processor_id())) {
  730                 RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1);
  731                 return 0;
  732         }
  733 
  734         /*
  735          * Do the flip.
  736          */
  737 
  738         RCU_TRACE_ME(rcupreempt_trace_try_flip_g1);
  739         rcu_ctrlblk.completed++;  /* stands in for rcu_try_flip_g2 */
  740 
  741         /*
  742          * Need a memory barrier so that other CPUs see the new
  743          * counter value before they see the subsequent change of all
  744          * the rcu_flip_flag instances to rcu_flipped.
  745          */
  746 
  747         smp_mb();       /* see above block comment. */
  748 
  749         /* Now ask each CPU for acknowledgement of the flip. */
  750 
  751         for_each_cpu_mask_nr(cpu, rcu_cpu_online_map) {
  752                 per_cpu(rcu_flip_flag, cpu) = rcu_flipped;
  753                 dyntick_save_progress_counter(cpu);
  754         }
  755 
  756         return 1;
  757 }
  758 
  759 /*
  760  * Wait for CPUs to acknowledge the flip.
  761  */
  762 
  763 static int
  764 rcu_try_flip_waitack(void)
  765 {
  766         int cpu;
  767 
  768         RCU_TRACE_ME(rcupreempt_trace_try_flip_a1);
  769         for_each_cpu_mask_nr(cpu, rcu_cpu_online_map)
  770                 if (rcu_try_flip_waitack_needed(cpu) &&
  771                     per_cpu(rcu_flip_flag, cpu) != rcu_flip_seen) {
  772                         RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1);
  773                         return 0;
  774                 }
  775 
  776         /*
  777          * Make sure our checks above don't bleed into subsequent
  778          * waiting for the sum of the counters to reach zero.
  779          */
  780 
  781         smp_mb();       /* see above block comment. */
  782         RCU_TRACE_ME(rcupreempt_trace_try_flip_a2);
  783         return 1;
  784 }
  785 
  786 /*
  787  * Wait for collective ``last'' counter to reach zero,
  788  * then tell all CPUs to do an end-of-grace-period memory barrier.
  789  */
  790 
  791 static int
  792 rcu_try_flip_waitzero(void)
  793 {
  794         int cpu;
  795         int lastidx = !(rcu_ctrlblk.completed & 0x1);
  796         int sum = 0;
  797 
  798         /* Check to see if the sum of the "last" counters is zero. */
  799 
  800         RCU_TRACE_ME(rcupreempt_trace_try_flip_z1);
  801         for_each_cpu_mask_nr(cpu, rcu_cpu_online_map)
  802                 sum += RCU_DATA_CPU(cpu)->rcu_flipctr[lastidx];
  803         if (sum != 0) {
  804                 RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1);
  805                 return 0;
  806         }
  807 
  808         /*
  809          * This ensures that the other CPUs see the call for
  810          * memory barriers -after- the sum to zero has been
  811          * detected here
  812          */
  813         smp_mb();  /*  ^^^^^^^^^^^^ */
  814 
  815         /* Call for a memory barrier from each CPU. */
  816         for_each_cpu_mask_nr(cpu, rcu_cpu_online_map) {
  817                 per_cpu(rcu_mb_flag, cpu) = rcu_mb_needed;
  818                 dyntick_save_progress_counter(cpu);
  819         }
  820 
  821         RCU_TRACE_ME(rcupreempt_trace_try_flip_z2);
  822         return 1;
  823 }
  824 
  825 /*
  826  * Wait for all CPUs to do their end-of-grace-period memory barrier.
  827  * Return 0 once all CPUs have done so.
  828  */
  829 
  830 static int
  831 rcu_try_flip_waitmb(void)
  832 {
  833         int cpu;
  834 
  835         RCU_TRACE_ME(rcupreempt_trace_try_flip_m1);
  836         for_each_cpu_mask_nr(cpu, rcu_cpu_online_map)
  837                 if (rcu_try_flip_waitmb_needed(cpu) &&
  838                     per_cpu(rcu_mb_flag, cpu) != rcu_mb_done) {
  839                         RCU_TRACE_ME(rcupreempt_trace_try_flip_me1);
  840                         return 0;
  841                 }
  842 
  843         smp_mb(); /* Ensure that the above checks precede any following flip. */
  844         RCU_TRACE_ME(rcupreempt_trace_try_flip_m2);
  845         return 1;
  846 }
  847 
  848 /*
  849  * Attempt a single flip of the counters.  Remember, a single flip does
  850  * -not- constitute a grace period.  Instead, the interval between
  851  * at least GP_STAGES consecutive flips is a grace period.
  852  *
  853  * If anyone is nuts enough to run this CONFIG_PREEMPT_RCU implementation
  854  * on a large SMP, they might want to use a hierarchical organization of
  855  * the per-CPU-counter pairs.
  856  */
  857 static void rcu_try_flip(void)
  858 {
  859         unsigned long flags;
  860 
  861         RCU_TRACE_ME(rcupreempt_trace_try_flip_1);
  862         if (unlikely(!spin_trylock_irqsave(&rcu_ctrlblk.fliplock, flags))) {
  863                 RCU_TRACE_ME(rcupreempt_trace_try_flip_e1);
  864                 return;
  865         }
  866 
  867         /*
  868          * Take the next transition(s) through the RCU grace-period
  869          * flip-counter state machine.
  870          */
  871 
  872         switch (rcu_ctrlblk.rcu_try_flip_state) {
  873         case rcu_try_flip_idle_state:
  874                 if (rcu_try_flip_idle())
  875                         rcu_ctrlblk.rcu_try_flip_state =
  876                                 rcu_try_flip_waitack_state;
  877                 break;
  878         case rcu_try_flip_waitack_state:
  879                 if (rcu_try_flip_waitack())
  880                         rcu_ctrlblk.rcu_try_flip_state =
  881                                 rcu_try_flip_waitzero_state;
  882                 break;
  883         case rcu_try_flip_waitzero_state:
  884                 if (rcu_try_flip_waitzero())
  885                         rcu_ctrlblk.rcu_try_flip_state =
  886                                 rcu_try_flip_waitmb_state;
  887                 break;
  888         case rcu_try_flip_waitmb_state:
  889                 if (rcu_try_flip_waitmb())
  890                         rcu_ctrlblk.rcu_try_flip_state =
  891                                 rcu_try_flip_idle_state;
  892         }
  893         spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
  894 }
  895 
  896 /*
  897  * Check to see if this CPU needs to do a memory barrier in order to
  898  * ensure that any prior RCU read-side critical sections have committed
  899  * their counter manipulations and critical-section memory references
  900  * before declaring the grace period to be completed.
  901  */
  902 static void rcu_check_mb(int cpu)
  903 {
  904         if (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed) {
  905                 smp_mb();  /* Ensure RCU read-side accesses are visible. */
  906                 per_cpu(rcu_mb_flag, cpu) = rcu_mb_done;
  907         }
  908 }
  909 
  910 void rcu_check_callbacks(int cpu, int user)
  911 {
  912         unsigned long flags;
  913         struct rcu_data *rdp = RCU_DATA_CPU(cpu);
  914 
  915         /*
  916          * If this CPU took its interrupt from user mode or from the
  917          * idle loop, and this is not a nested interrupt, then
  918          * this CPU has to have exited all prior preept-disable
  919          * sections of code.  So increment the counter to note this.
  920          *
  921          * The memory barrier is needed to handle the case where
  922          * writes from a preempt-disable section of code get reordered
  923          * into schedule() by this CPU's write buffer.  So the memory
  924          * barrier makes sure that the rcu_qsctr_inc() is seen by other
  925          * CPUs to happen after any such write.
  926          */
  927 
  928         if (user ||
  929             (idle_cpu(cpu) && !in_softirq() &&
  930              hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
  931                 smp_mb();       /* Guard against aggressive schedule(). */
  932                 rcu_qsctr_inc(cpu);
  933         }
  934 
  935         rcu_check_mb(cpu);
  936         if (rcu_ctrlblk.completed == rdp->completed)
  937                 rcu_try_flip();
  938         spin_lock_irqsave(&rdp->lock, flags);
  939         RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
  940         __rcu_advance_callbacks(rdp);
  941         if (rdp->donelist == NULL) {
  942                 spin_unlock_irqrestore(&rdp->lock, flags);
  943         } else {
  944                 spin_unlock_irqrestore(&rdp->lock, flags);
  945                 raise_softirq(RCU_SOFTIRQ);
  946         }
  947 }
  948 
  949 /*
  950  * Needed by dynticks, to make sure all RCU processing has finished
  951  * when we go idle:
  952  */
  953 void rcu_advance_callbacks(int cpu, int user)
  954 {
  955         unsigned long flags;
  956         struct rcu_data *rdp = RCU_DATA_CPU(cpu);
  957 
  958         if (rcu_ctrlblk.completed == rdp->completed) {
  959                 rcu_try_flip();
  960                 if (rcu_ctrlblk.completed == rdp->completed)
  961                         return;
  962         }
  963         spin_lock_irqsave(&rdp->lock, flags);
  964         RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
  965         __rcu_advance_callbacks(rdp);
  966         spin_unlock_irqrestore(&rdp->lock, flags);
  967 }
  968 
  969 #ifdef CONFIG_HOTPLUG_CPU
  970 #define rcu_offline_cpu_enqueue(srclist, srctail, dstlist, dsttail) do { \
  971                 *dsttail = srclist; \
  972                 if (srclist != NULL) { \
  973                         dsttail = srctail; \
  974                         srclist = NULL; \
  975                         srctail = &srclist;\
  976                 } \
  977         } while (0)
  978 
  979 void rcu_offline_cpu(int cpu)
  980 {
  981         int i;
  982         struct rcu_head *list = NULL;
  983         unsigned long flags;
  984         struct rcu_data *rdp = RCU_DATA_CPU(cpu);
  985         struct rcu_head *schedlist = NULL;
  986         struct rcu_head **schedtail = &schedlist;
  987         struct rcu_head **tail = &list;
  988 
  989         /*
  990          * Remove all callbacks from the newly dead CPU, retaining order.
  991          * Otherwise rcu_barrier() will fail
  992          */
  993 
  994         spin_lock_irqsave(&rdp->lock, flags);
  995         rcu_offline_cpu_enqueue(rdp->donelist, rdp->donetail, list, tail);
  996         for (i = GP_STAGES - 1; i >= 0; i--)
  997                 rcu_offline_cpu_enqueue(rdp->waitlist[i], rdp->waittail[i],
  998                                                 list, tail);
  999         rcu_offline_cpu_enqueue(rdp->nextlist, rdp->nexttail, list, tail);
 1000         rcu_offline_cpu_enqueue(rdp->waitschedlist, rdp->waitschedtail,
 1001                                 schedlist, schedtail);
 1002         rcu_offline_cpu_enqueue(rdp->nextschedlist, rdp->nextschedtail,
 1003                                 schedlist, schedtail);
 1004         rdp->rcu_sched_sleeping = 0;
 1005         spin_unlock_irqrestore(&rdp->lock, flags);
 1006         rdp->waitlistcount = 0;
 1007 
 1008         /* Disengage the newly dead CPU from the grace-period computation. */
 1009 
 1010         spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
 1011         rcu_check_mb(cpu);
 1012         if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
 1013                 smp_mb();  /* Subsequent counter accesses must see new value */
 1014                 per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
 1015                 smp_mb();  /* Subsequent RCU read-side critical sections */
 1016                            /*  seen -after- acknowledgement. */
 1017         }
 1018 
 1019         RCU_DATA_ME()->rcu_flipctr[0] += RCU_DATA_CPU(cpu)->rcu_flipctr[0];
 1020         RCU_DATA_ME()->rcu_flipctr[1] += RCU_DATA_CPU(cpu)->rcu_flipctr[1];
 1021 
 1022         RCU_DATA_CPU(cpu)->rcu_flipctr[0] = 0;
 1023         RCU_DATA_CPU(cpu)->rcu_flipctr[1] = 0;
 1024 
 1025         cpu_clear(cpu, rcu_cpu_online_map);
 1026 
 1027         spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
 1028 
 1029         /*
 1030          * Place the removed callbacks on the current CPU's queue.
 1031          * Make them all start a new grace period: simple approach,
 1032          * in theory could starve a given set of callbacks, but
 1033          * you would need to be doing some serious CPU hotplugging
 1034          * to make this happen.  If this becomes a problem, adding
 1035          * a synchronize_rcu() to the hotplug path would be a simple
 1036          * fix.
 1037          */
 1038 
 1039         local_irq_save(flags);  /* disable preempt till we know what lock. */
 1040         rdp = RCU_DATA_ME();
 1041         spin_lock(&rdp->lock);
 1042         *rdp->nexttail = list;
 1043         if (list)
 1044                 rdp->nexttail = tail;
 1045         *rdp->nextschedtail = schedlist;
 1046         if (schedlist)
 1047                 rdp->nextschedtail = schedtail;
 1048         spin_unlock_irqrestore(&rdp->lock, flags);
 1049 }
 1050 
 1051 #else /* #ifdef CONFIG_HOTPLUG_CPU */
 1052 
 1053 void rcu_offline_cpu(int cpu)
 1054 {
 1055 }
 1056 
 1057 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
 1058 
 1059 void __cpuinit rcu_online_cpu(int cpu)
 1060 {
 1061         unsigned long flags;
 1062         struct rcu_data *rdp;
 1063 
 1064         spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
 1065         cpu_set(cpu, rcu_cpu_online_map);
 1066         spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
 1067 
 1068         /*
 1069          * The rcu_sched grace-period processing might have bypassed
 1070          * this CPU, given that it was not in the rcu_cpu_online_map
 1071          * when the grace-period scan started.  This means that the
 1072          * grace-period task might sleep.  So make sure that if this
 1073          * should happen, the first callback posted to this CPU will
 1074          * wake up the grace-period task if need be.
 1075          */
 1076 
 1077         rdp = RCU_DATA_CPU(cpu);
 1078         spin_lock_irqsave(&rdp->lock, flags);
 1079         rdp->rcu_sched_sleeping = 1;
 1080         spin_unlock_irqrestore(&rdp->lock, flags);
 1081 }
 1082 
 1083 static void rcu_process_callbacks(struct softirq_action *unused)
 1084 {
 1085         unsigned long flags;
 1086         struct rcu_head *next, *list;
 1087         struct rcu_data *rdp;
 1088 
 1089         local_irq_save(flags);
 1090         rdp = RCU_DATA_ME();
 1091         spin_lock(&rdp->lock);
 1092         list = rdp->donelist;
 1093         if (list == NULL) {
 1094                 spin_unlock_irqrestore(&rdp->lock, flags);
 1095                 return;
 1096         }
 1097         rdp->donelist = NULL;
 1098         rdp->donetail = &rdp->donelist;
 1099         RCU_TRACE_RDP(rcupreempt_trace_done_remove, rdp);
 1100         spin_unlock_irqrestore(&rdp->lock, flags);
 1101         while (list) {
 1102                 next = list->next;
 1103                 list->func(list);
 1104                 list = next;
 1105                 RCU_TRACE_ME(rcupreempt_trace_invoke);
 1106         }
 1107 }
 1108 
 1109 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
 1110 {
 1111         unsigned long flags;
 1112         struct rcu_data *rdp;
 1113 
 1114         head->func = func;
 1115         head->next = NULL;
 1116         local_irq_save(flags);
 1117         rdp = RCU_DATA_ME();
 1118         spin_lock(&rdp->lock);
 1119         __rcu_advance_callbacks(rdp);
 1120         *rdp->nexttail = head;
 1121         rdp->nexttail = &head->next;
 1122         RCU_TRACE_RDP(rcupreempt_trace_next_add, rdp);
 1123         spin_unlock_irqrestore(&rdp->lock, flags);
 1124 }
 1125 EXPORT_SYMBOL_GPL(call_rcu);
 1126 
 1127 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
 1128 {
 1129         unsigned long flags;
 1130         struct rcu_data *rdp;
 1131         int wake_gp = 0;
 1132 
 1133         head->func = func;
 1134         head->next = NULL;
 1135         local_irq_save(flags);
 1136         rdp = RCU_DATA_ME();
 1137         spin_lock(&rdp->lock);
 1138         *rdp->nextschedtail = head;
 1139         rdp->nextschedtail = &head->next;
 1140         if (rdp->rcu_sched_sleeping) {
 1141 
 1142                 /* Grace-period processing might be sleeping... */
 1143 
 1144                 rdp->rcu_sched_sleeping = 0;
 1145                 wake_gp = 1;
 1146         }
 1147         spin_unlock_irqrestore(&rdp->lock, flags);
 1148         if (wake_gp) {
 1149 
 1150                 /* Wake up grace-period processing, unless someone beat us. */
 1151 
 1152                 spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags);
 1153                 if (rcu_ctrlblk.sched_sleep != rcu_sched_sleeping)
 1154                         wake_gp = 0;
 1155                 rcu_ctrlblk.sched_sleep = rcu_sched_not_sleeping;
 1156                 spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
 1157                 if (wake_gp)
 1158                         wake_up_interruptible(&rcu_ctrlblk.sched_wq);
 1159         }
 1160 }
 1161 EXPORT_SYMBOL_GPL(call_rcu_sched);
 1162 
 1163 /*
 1164  * Wait until all currently running preempt_disable() code segments
 1165  * (including hardware-irq-disable segments) complete.  Note that
 1166  * in -rt this does -not- necessarily result in all currently executing
 1167  * interrupt -handlers- having completed.
 1168  */
 1169 synchronize_rcu_xxx(__synchronize_sched, call_rcu_sched)
 1170 EXPORT_SYMBOL_GPL(__synchronize_sched);
 1171 
 1172 /*
 1173  * kthread function that manages call_rcu_sched grace periods.
 1174  */
 1175 static int rcu_sched_grace_period(void *arg)
 1176 {
 1177         int couldsleep;         /* might sleep after current pass. */
 1178         int couldsleepnext = 0; /* might sleep after next pass. */
 1179         int cpu;
 1180         unsigned long flags;
 1181         struct rcu_data *rdp;
 1182         int ret;
 1183 
 1184         /*
 1185          * Each pass through the following loop handles one
 1186          * rcu_sched grace period cycle.
 1187          */
 1188         do {
 1189                 /* Save each CPU's current state. */
 1190 
 1191                 for_each_online_cpu(cpu) {
 1192                         dyntick_save_progress_counter_sched(cpu);
 1193                         save_qsctr_sched(cpu);
 1194                 }
 1195 
 1196                 /*
 1197                  * Sleep for about an RCU grace-period's worth to
 1198                  * allow better batching and to consume less CPU.
 1199                  */
 1200                 schedule_timeout_interruptible(RCU_SCHED_BATCH_TIME);
 1201 
 1202                 /*
 1203                  * If there was nothing to do last time, prepare to
 1204                  * sleep at the end of the current grace period cycle.
 1205                  */
 1206                 couldsleep = couldsleepnext;
 1207                 couldsleepnext = 1;
 1208                 if (couldsleep) {
 1209                         spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags);
 1210                         rcu_ctrlblk.sched_sleep = rcu_sched_sleep_prep;
 1211                         spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
 1212                 }
 1213 
 1214                 /*
 1215                  * Wait on each CPU in turn to have either visited
 1216                  * a quiescent state or been in dynticks-idle mode.
 1217                  */
 1218                 for_each_online_cpu(cpu) {
 1219                         while (rcu_qsctr_inc_needed(cpu) &&
 1220                                rcu_qsctr_inc_needed_dyntick(cpu)) {
 1221                                 /* resched_cpu(cpu); @@@ */
 1222                                 schedule_timeout_interruptible(1);
 1223                         }
 1224                 }
 1225 
 1226                 /* Advance callbacks for each CPU.  */
 1227 
 1228                 for_each_online_cpu(cpu) {
 1229 
 1230                         rdp = RCU_DATA_CPU(cpu);
 1231                         spin_lock_irqsave(&rdp->lock, flags);
 1232 
 1233                         /*
 1234                          * We are running on this CPU irq-disabled, so no
 1235                          * CPU can go offline until we re-enable irqs.
 1236                          * The current CPU might have already gone
 1237                          * offline (between the for_each_offline_cpu and
 1238                          * the spin_lock_irqsave), but in that case all its
 1239                          * callback lists will be empty, so no harm done.
 1240                          *
 1241                          * Advance the callbacks!  We share normal RCU's
 1242                          * donelist, since callbacks are invoked the
 1243                          * same way in either case.
 1244                          */
 1245                         if (rdp->waitschedlist != NULL) {
 1246                                 *rdp->donetail = rdp->waitschedlist;
 1247                                 rdp->donetail = rdp->waitschedtail;
 1248 
 1249                                 /*
 1250                                  * Next rcu_check_callbacks() will
 1251                                  * do the required raise_softirq().
 1252                                  */
 1253                         }
 1254                         if (rdp->nextschedlist != NULL) {
 1255                                 rdp->waitschedlist = rdp->nextschedlist;
 1256                                 rdp->waitschedtail = rdp->nextschedtail;
 1257                                 couldsleep = 0;
 1258                                 couldsleepnext = 0;
 1259                         } else {
 1260                                 rdp->waitschedlist = NULL;
 1261                                 rdp->waitschedtail = &rdp->waitschedlist;
 1262                         }
 1263                         rdp->nextschedlist = NULL;
 1264                         rdp->nextschedtail = &rdp->nextschedlist;
 1265 
 1266                         /* Mark sleep intention. */
 1267 
 1268                         rdp->rcu_sched_sleeping = couldsleep;
 1269 
 1270                         spin_unlock_irqrestore(&rdp->lock, flags);
 1271                 }
 1272 
 1273                 /* If we saw callbacks on the last scan, go deal with them. */
 1274 
 1275                 if (!couldsleep)
 1276                         continue;
 1277 
 1278                 /* Attempt to block... */
 1279 
 1280                 spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags);
 1281                 if (rcu_ctrlblk.sched_sleep != rcu_sched_sleep_prep) {
 1282 
 1283                         /*
 1284                          * Someone posted a callback after we scanned.
 1285                          * Go take care of it.
 1286                          */
 1287                         spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
 1288                         couldsleepnext = 0;
 1289                         continue;
 1290                 }
 1291 
 1292                 /* Block until the next person posts a callback. */
 1293 
 1294                 rcu_ctrlblk.sched_sleep = rcu_sched_sleeping;
 1295                 spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
 1296                 ret = 0;
 1297                 __wait_event_interruptible(rcu_ctrlblk.sched_wq,
 1298                         rcu_ctrlblk.sched_sleep != rcu_sched_sleeping,
 1299                         ret);
 1300 
 1301                 /*
 1302                  * Signals would prevent us from sleeping, and we cannot
 1303                  * do much with them in any case.  So flush them.
 1304                  */
 1305                 if (ret)
 1306                         flush_signals(current);
 1307                 couldsleepnext = 0;
 1308 
 1309         } while (!kthread_should_stop());
 1310 
 1311         return (0);
 1312 }
 1313 
 1314 /*
 1315  * Check to see if any future RCU-related work will need to be done
 1316  * by the current CPU, even if none need be done immediately, returning
 1317  * 1 if so.  Assumes that notifiers would take care of handling any
 1318  * outstanding requests from the RCU core.
 1319  *
 1320  * This function is part of the RCU implementation; it is -not-
 1321  * an exported member of the RCU API.
 1322  */
 1323 int rcu_needs_cpu(int cpu)
 1324 {
 1325         struct rcu_data *rdp = RCU_DATA_CPU(cpu);
 1326 
 1327         return (rdp->donelist != NULL ||
 1328                 !!rdp->waitlistcount ||
 1329                 rdp->nextlist != NULL ||
 1330                 rdp->nextschedlist != NULL ||
 1331                 rdp->waitschedlist != NULL);
 1332 }
 1333 
 1334 int rcu_pending(int cpu)
 1335 {
 1336         struct rcu_data *rdp = RCU_DATA_CPU(cpu);
 1337 
 1338         /* The CPU has at least one callback queued somewhere. */
 1339 
 1340         if (rdp->donelist != NULL ||
 1341             !!rdp->waitlistcount ||
 1342             rdp->nextlist != NULL ||
 1343             rdp->nextschedlist != NULL ||
 1344             rdp->waitschedlist != NULL)
 1345                 return 1;
 1346 
 1347         /* The RCU core needs an acknowledgement from this CPU. */
 1348 
 1349         if ((per_cpu(rcu_flip_flag, cpu) == rcu_flipped) ||
 1350             (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed))
 1351                 return 1;
 1352 
 1353         /* This CPU has fallen behind the global grace-period number. */
 1354 
 1355         if (rdp->completed != rcu_ctrlblk.completed)
 1356                 return 1;
 1357 
 1358         /* Nothing needed from this CPU. */
 1359 
 1360         return 0;
 1361 }
 1362 
 1363 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
 1364                                 unsigned long action, void *hcpu)
 1365 {
 1366         long cpu = (long)hcpu;
 1367 
 1368         switch (action) {
 1369         case CPU_UP_PREPARE:
 1370         case CPU_UP_PREPARE_FROZEN:
 1371                 rcu_online_cpu(cpu);
 1372                 break;
 1373         case CPU_UP_CANCELED:
 1374         case CPU_UP_CANCELED_FROZEN:
 1375         case CPU_DEAD:
 1376         case CPU_DEAD_FROZEN:
 1377                 rcu_offline_cpu(cpu);
 1378                 break;
 1379         default:
 1380                 break;
 1381         }
 1382         return NOTIFY_OK;
 1383 }
 1384 
 1385 static struct notifier_block __cpuinitdata rcu_nb = {
 1386         .notifier_call = rcu_cpu_notify,
 1387 };
 1388 
 1389 void __init __rcu_init(void)
 1390 {
 1391         int cpu;
 1392         int i;
 1393         struct rcu_data *rdp;
 1394 
 1395         printk(KERN_NOTICE "Preemptible RCU implementation.\n");
 1396         for_each_possible_cpu(cpu) {
 1397                 rdp = RCU_DATA_CPU(cpu);
 1398                 spin_lock_init(&rdp->lock);
 1399                 rdp->completed = 0;
 1400                 rdp->waitlistcount = 0;
 1401                 rdp->nextlist = NULL;
 1402                 rdp->nexttail = &rdp->nextlist;
 1403                 for (i = 0; i < GP_STAGES; i++) {
 1404                         rdp->waitlist[i] = NULL;
 1405                         rdp->waittail[i] = &rdp->waitlist[i];
 1406                 }
 1407                 rdp->donelist = NULL;
 1408                 rdp->donetail = &rdp->donelist;
 1409                 rdp->rcu_flipctr[0] = 0;
 1410                 rdp->rcu_flipctr[1] = 0;
 1411                 rdp->nextschedlist = NULL;
 1412                 rdp->nextschedtail = &rdp->nextschedlist;
 1413                 rdp->waitschedlist = NULL;
 1414                 rdp->waitschedtail = &rdp->waitschedlist;
 1415                 rdp->rcu_sched_sleeping = 0;
 1416         }
 1417         register_cpu_notifier(&rcu_nb);
 1418 
 1419         /*
 1420          * We don't need protection against CPU-Hotplug here
 1421          * since
 1422          * a) If a CPU comes online while we are iterating over the
 1423          *    cpu_online_map below, we would only end up making a
 1424          *    duplicate call to rcu_online_cpu() which sets the corresponding
 1425          *    CPU's mask in the rcu_cpu_online_map.
 1426          *
 1427          * b) A CPU cannot go offline at this point in time since the user
 1428          *    does not have access to the sysfs interface, nor do we
 1429          *    suspend the system.
 1430          */
 1431         for_each_online_cpu(cpu)
 1432                 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long) cpu);
 1433 
 1434         open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
 1435 }
 1436 
 1437 /*
 1438  * Late-boot-time RCU initialization that must wait until after scheduler
 1439  * has been initialized.
 1440  */
 1441 void __init rcu_init_sched(void)
 1442 {
 1443         rcu_sched_grace_period_task = kthread_run(rcu_sched_grace_period,
 1444                                                   NULL,
 1445                                                   "rcu_sched_grace_period");
 1446         WARN_ON(IS_ERR(rcu_sched_grace_period_task));
 1447 }
 1448 
 1449 #ifdef CONFIG_RCU_TRACE
 1450 long *rcupreempt_flipctr(int cpu)
 1451 {
 1452         return &RCU_DATA_CPU(cpu)->rcu_flipctr[0];
 1453 }
 1454 EXPORT_SYMBOL_GPL(rcupreempt_flipctr);
 1455 
 1456 int rcupreempt_flip_flag(int cpu)
 1457 {
 1458         return per_cpu(rcu_flip_flag, cpu);
 1459 }
 1460 EXPORT_SYMBOL_GPL(rcupreempt_flip_flag);
 1461 
 1462 int rcupreempt_mb_flag(int cpu)
 1463 {
 1464         return per_cpu(rcu_mb_flag, cpu);
 1465 }
 1466 EXPORT_SYMBOL_GPL(rcupreempt_mb_flag);
 1467 
 1468 char *rcupreempt_try_flip_state_name(void)
 1469 {
 1470         return rcu_try_flip_state_names[rcu_ctrlblk.rcu_try_flip_state];
 1471 }
 1472 EXPORT_SYMBOL_GPL(rcupreempt_try_flip_state_name);
 1473 
 1474 struct rcupreempt_trace *rcupreempt_trace_cpu(int cpu)
 1475 {
 1476         struct rcu_data *rdp = RCU_DATA_CPU(cpu);
 1477 
 1478         return &rdp->trace;
 1479 }
 1480 EXPORT_SYMBOL_GPL(rcupreempt_trace_cpu);
 1481 
 1482 #endif /* #ifdef RCU_TRACE */

Cache object: c4be7468a624616cbbbcb358a369b766


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.