The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kernel/sched.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  *  kernel/sched.c
    3  *
    4  *  Kernel scheduler and related syscalls
    5  *
    6  *  Copyright (C) 1991-2002  Linus Torvalds
    7  *
    8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
    9  *              make semaphores SMP safe
   10  *  1998-11-19  Implemented schedule_timeout() and related stuff
   11  *              by Andrea Arcangeli
   12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
   13  *              hybrid priority-list and round-robin design with
   14  *              an array-switch method of distributing timeslices
   15  *              and per-CPU runqueues.  Cleanups and useful suggestions
   16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
   17  *  2003-09-03  Interactivity tuning by Con Kolivas.
   18  *  2004-04-02  Scheduler domains code by Nick Piggin
   19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
   20  *              fair scheduling design by Con Kolivas.
   21  *  2007-05-05  Load balancing (smp-nice) and other improvements
   22  *              by Peter Williams
   23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
   24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
   25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
   26  *              Thomas Gleixner, Mike Kravetz
   27  */
   28 
   29 #include <linux/mm.h>
   30 #include <linux/module.h>
   31 #include <linux/nmi.h>
   32 #include <linux/init.h>
   33 #include <linux/uaccess.h>
   34 #include <linux/highmem.h>
   35 #include <asm/mmu_context.h>
   36 #include <linux/interrupt.h>
   37 #include <linux/capability.h>
   38 #include <linux/completion.h>
   39 #include <linux/kernel_stat.h>
   40 #include <linux/debug_locks.h>
   41 #include <linux/perf_event.h>
   42 #include <linux/security.h>
   43 #include <linux/notifier.h>
   44 #include <linux/profile.h>
   45 #include <linux/freezer.h>
   46 #include <linux/vmalloc.h>
   47 #include <linux/blkdev.h>
   48 #include <linux/delay.h>
   49 #include <linux/pid_namespace.h>
   50 #include <linux/smp.h>
   51 #include <linux/threads.h>
   52 #include <linux/timer.h>
   53 #include <linux/rcupdate.h>
   54 #include <linux/cpu.h>
   55 #include <linux/cpuset.h>
   56 #include <linux/percpu.h>
   57 #include <linux/proc_fs.h>
   58 #include <linux/seq_file.h>
   59 #include <linux/stop_machine.h>
   60 #include <linux/sysctl.h>
   61 #include <linux/syscalls.h>
   62 #include <linux/times.h>
   63 #include <linux/tsacct_kern.h>
   64 #include <linux/kprobes.h>
   65 #include <linux/delayacct.h>
   66 #include <linux/unistd.h>
   67 #include <linux/pagemap.h>
   68 #include <linux/hrtimer.h>
   69 #include <linux/tick.h>
   70 #include <linux/debugfs.h>
   71 #include <linux/ctype.h>
   72 #include <linux/ftrace.h>
   73 #include <linux/slab.h>
   74 
   75 #include <asm/tlb.h>
   76 #include <asm/irq_regs.h>
   77 #include <asm/mutex.h>
   78 #ifdef CONFIG_PARAVIRT
   79 #include <asm/paravirt.h>
   80 #endif
   81 
   82 #include "sched_cpupri.h"
   83 #include "workqueue_sched.h"
   84 #include "sched_autogroup.h"
   85 
   86 #define CREATE_TRACE_POINTS
   87 #include <trace/events/sched.h>
   88 
   89 /*
   90  * Convert user-nice values [ -20 ... 0 ... 19 ]
   91  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
   92  * and back.
   93  */
   94 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
   95 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
   96 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
   97 
   98 /*
   99  * 'User priority' is the nice value converted to something we
  100  * can work with better when scaling various scheduler parameters,
  101  * it's a [ 0 ... 39 ] range.
  102  */
  103 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
  104 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
  105 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
  106 
  107 /*
  108  * Helpers for converting nanosecond timing to jiffy resolution
  109  */
  110 #define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  111 
  112 #define NICE_0_LOAD             SCHED_LOAD_SCALE
  113 #define NICE_0_SHIFT            SCHED_LOAD_SHIFT
  114 
  115 /*
  116  * These are the 'tuning knobs' of the scheduler:
  117  *
  118  * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  119  * Timeslices get refilled after they expire.
  120  */
  121 #define DEF_TIMESLICE           (100 * HZ / 1000)
  122 
  123 /*
  124  * single value that denotes runtime == period, ie unlimited time.
  125  */
  126 #define RUNTIME_INF     ((u64)~0ULL)
  127 
  128 static inline int rt_policy(int policy)
  129 {
  130         if (policy == SCHED_FIFO || policy == SCHED_RR)
  131                 return 1;
  132         return 0;
  133 }
  134 
  135 static inline int task_has_rt_policy(struct task_struct *p)
  136 {
  137         return rt_policy(p->policy);
  138 }
  139 
  140 /*
  141  * This is the priority-queue data structure of the RT scheduling class:
  142  */
  143 struct rt_prio_array {
  144         DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  145         struct list_head queue[MAX_RT_PRIO];
  146 };
  147 
  148 struct rt_bandwidth {
  149         /* nests inside the rq lock: */
  150         raw_spinlock_t          rt_runtime_lock;
  151         ktime_t                 rt_period;
  152         u64                     rt_runtime;
  153         struct hrtimer          rt_period_timer;
  154 };
  155 
  156 static struct rt_bandwidth def_rt_bandwidth;
  157 
  158 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  159 
  160 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  161 {
  162         struct rt_bandwidth *rt_b =
  163                 container_of(timer, struct rt_bandwidth, rt_period_timer);
  164         ktime_t now;
  165         int overrun;
  166         int idle = 0;
  167 
  168         for (;;) {
  169                 now = hrtimer_cb_get_time(timer);
  170                 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  171 
  172                 if (!overrun)
  173                         break;
  174 
  175                 idle = do_sched_rt_period_timer(rt_b, overrun);
  176         }
  177 
  178         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  179 }
  180 
  181 static
  182 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  183 {
  184         rt_b->rt_period = ns_to_ktime(period);
  185         rt_b->rt_runtime = runtime;
  186 
  187         raw_spin_lock_init(&rt_b->rt_runtime_lock);
  188 
  189         hrtimer_init(&rt_b->rt_period_timer,
  190                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  191         rt_b->rt_period_timer.function = sched_rt_period_timer;
  192 }
  193 
  194 static inline int rt_bandwidth_enabled(void)
  195 {
  196         return sysctl_sched_rt_runtime >= 0;
  197 }
  198 
  199 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  200 {
  201         ktime_t now;
  202 
  203         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  204                 return;
  205 
  206         if (hrtimer_active(&rt_b->rt_period_timer))
  207                 return;
  208 
  209         raw_spin_lock(&rt_b->rt_runtime_lock);
  210         for (;;) {
  211                 unsigned long delta;
  212                 ktime_t soft, hard;
  213 
  214                 if (hrtimer_active(&rt_b->rt_period_timer))
  215                         break;
  216 
  217                 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  218                 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  219 
  220                 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  221                 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  222                 delta = ktime_to_ns(ktime_sub(hard, soft));
  223                 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  224                                 HRTIMER_MODE_ABS_PINNED, 0);
  225         }
  226         raw_spin_unlock(&rt_b->rt_runtime_lock);
  227 }
  228 
  229 #ifdef CONFIG_RT_GROUP_SCHED
  230 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  231 {
  232         hrtimer_cancel(&rt_b->rt_period_timer);
  233 }
  234 #endif
  235 
  236 /*
  237  * sched_domains_mutex serializes calls to init_sched_domains,
  238  * detach_destroy_domains and partition_sched_domains.
  239  */
  240 static DEFINE_MUTEX(sched_domains_mutex);
  241 
  242 #ifdef CONFIG_CGROUP_SCHED
  243 
  244 #include <linux/cgroup.h>
  245 
  246 struct cfs_rq;
  247 
  248 static LIST_HEAD(task_groups);
  249 
  250 /* task group related information */
  251 struct task_group {
  252         struct cgroup_subsys_state css;
  253 
  254 #ifdef CONFIG_FAIR_GROUP_SCHED
  255         /* schedulable entities of this group on each cpu */
  256         struct sched_entity **se;
  257         /* runqueue "owned" by this group on each cpu */
  258         struct cfs_rq **cfs_rq;
  259         unsigned long shares;
  260 
  261         atomic_t load_weight;
  262 #endif
  263 
  264 #ifdef CONFIG_RT_GROUP_SCHED
  265         struct sched_rt_entity **rt_se;
  266         struct rt_rq **rt_rq;
  267 
  268         struct rt_bandwidth rt_bandwidth;
  269 #endif
  270 
  271         struct rcu_head rcu;
  272         struct list_head list;
  273 
  274         struct task_group *parent;
  275         struct list_head siblings;
  276         struct list_head children;
  277 
  278 #ifdef CONFIG_SCHED_AUTOGROUP
  279         struct autogroup *autogroup;
  280 #endif
  281 };
  282 
  283 /* task_group_lock serializes the addition/removal of task groups */
  284 static DEFINE_SPINLOCK(task_group_lock);
  285 
  286 #ifdef CONFIG_FAIR_GROUP_SCHED
  287 
  288 # define ROOT_TASK_GROUP_LOAD   NICE_0_LOAD
  289 
  290 /*
  291  * A weight of 0 or 1 can cause arithmetics problems.
  292  * A weight of a cfs_rq is the sum of weights of which entities
  293  * are queued on this cfs_rq, so a weight of a entity should not be
  294  * too large, so as the shares value of a task group.
  295  * (The default weight is 1024 - so there's no practical
  296  *  limitation from this.)
  297  */
  298 #define MIN_SHARES      (1UL <<  1)
  299 #define MAX_SHARES      (1UL << 18)
  300 
  301 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  302 #endif
  303 
  304 /* Default task group.
  305  *      Every task in system belong to this group at bootup.
  306  */
  307 struct task_group root_task_group;
  308 
  309 #endif  /* CONFIG_CGROUP_SCHED */
  310 
  311 /* CFS-related fields in a runqueue */
  312 struct cfs_rq {
  313         struct load_weight load;
  314         unsigned long nr_running;
  315 
  316         u64 exec_clock;
  317         u64 min_vruntime;
  318 #ifndef CONFIG_64BIT
  319         u64 min_vruntime_copy;
  320 #endif
  321 
  322         struct rb_root tasks_timeline;
  323         struct rb_node *rb_leftmost;
  324 
  325         struct list_head tasks;
  326         struct list_head *balance_iterator;
  327 
  328         /*
  329          * 'curr' points to currently running entity on this cfs_rq.
  330          * It is set to NULL otherwise (i.e when none are currently running).
  331          */
  332         struct sched_entity *curr, *next, *last, *skip;
  333 
  334 #ifdef  CONFIG_SCHED_DEBUG
  335         unsigned int nr_spread_over;
  336 #endif
  337 
  338 #ifdef CONFIG_FAIR_GROUP_SCHED
  339         struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
  340 
  341         /*
  342          * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  343          * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  344          * (like users, containers etc.)
  345          *
  346          * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  347          * list is used during load balance.
  348          */
  349         int on_list;
  350         struct list_head leaf_cfs_rq_list;
  351         struct task_group *tg;  /* group that "owns" this runqueue */
  352 
  353 #ifdef CONFIG_SMP
  354         /*
  355          * the part of load.weight contributed by tasks
  356          */
  357         unsigned long task_weight;
  358 
  359         /*
  360          *   h_load = weight * f(tg)
  361          *
  362          * Where f(tg) is the recursive weight fraction assigned to
  363          * this group.
  364          */
  365         unsigned long h_load;
  366 
  367         /*
  368          * Maintaining per-cpu shares distribution for group scheduling
  369          *
  370          * load_stamp is the last time we updated the load average
  371          * load_last is the last time we updated the load average and saw load
  372          * load_unacc_exec_time is currently unaccounted execution time
  373          */
  374         u64 load_avg;
  375         u64 load_period;
  376         u64 load_stamp, load_last, load_unacc_exec_time;
  377 
  378         unsigned long load_contribution;
  379 #endif
  380 #endif
  381 };
  382 
  383 /* Real-Time classes' related field in a runqueue: */
  384 struct rt_rq {
  385         struct rt_prio_array active;
  386         unsigned long rt_nr_running;
  387 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  388         struct {
  389                 int curr; /* highest queued rt task prio */
  390 #ifdef CONFIG_SMP
  391                 int next; /* next highest */
  392 #endif
  393         } highest_prio;
  394 #endif
  395 #ifdef CONFIG_SMP
  396         unsigned long rt_nr_migratory;
  397         unsigned long rt_nr_total;
  398         int overloaded;
  399         struct plist_head pushable_tasks;
  400 #endif
  401         int rt_throttled;
  402         u64 rt_time;
  403         u64 rt_runtime;
  404         /* Nests inside the rq lock: */
  405         raw_spinlock_t rt_runtime_lock;
  406 
  407 #ifdef CONFIG_RT_GROUP_SCHED
  408         unsigned long rt_nr_boosted;
  409 
  410         struct rq *rq;
  411         struct list_head leaf_rt_rq_list;
  412         struct task_group *tg;
  413 #endif
  414 };
  415 
  416 #ifdef CONFIG_SMP
  417 
  418 /*
  419  * We add the notion of a root-domain which will be used to define per-domain
  420  * variables. Each exclusive cpuset essentially defines an island domain by
  421  * fully partitioning the member cpus from any other cpuset. Whenever a new
  422  * exclusive cpuset is created, we also create and attach a new root-domain
  423  * object.
  424  *
  425  */
  426 struct root_domain {
  427         atomic_t refcount;
  428         atomic_t rto_count;
  429         struct rcu_head rcu;
  430         cpumask_var_t span;
  431         cpumask_var_t online;
  432 
  433         /*
  434          * The "RT overload" flag: it gets set if a CPU has more than
  435          * one runnable RT task.
  436          */
  437         cpumask_var_t rto_mask;
  438         struct cpupri cpupri;
  439 };
  440 
  441 /*
  442  * By default the system creates a single root-domain with all cpus as
  443  * members (mimicking the global state we have today).
  444  */
  445 static struct root_domain def_root_domain;
  446 
  447 #endif /* CONFIG_SMP */
  448 
  449 /*
  450  * This is the main, per-CPU runqueue data structure.
  451  *
  452  * Locking rule: those places that want to lock multiple runqueues
  453  * (such as the load balancing or the thread migration code), lock
  454  * acquire operations must be ordered by ascending &runqueue.
  455  */
  456 struct rq {
  457         /* runqueue lock: */
  458         raw_spinlock_t lock;
  459 
  460         /*
  461          * nr_running and cpu_load should be in the same cacheline because
  462          * remote CPUs use both these fields when doing load calculation.
  463          */
  464         unsigned long nr_running;
  465         #define CPU_LOAD_IDX_MAX 5
  466         unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  467         unsigned long last_load_update_tick;
  468 #ifdef CONFIG_NO_HZ
  469         u64 nohz_stamp;
  470         unsigned char nohz_balance_kick;
  471 #endif
  472         int skip_clock_update;
  473 
  474         /* capture load from *all* tasks on this cpu: */
  475         struct load_weight load;
  476         unsigned long nr_load_updates;
  477         u64 nr_switches;
  478 
  479         struct cfs_rq cfs;
  480         struct rt_rq rt;
  481 
  482 #ifdef CONFIG_FAIR_GROUP_SCHED
  483         /* list of leaf cfs_rq on this cpu: */
  484         struct list_head leaf_cfs_rq_list;
  485 #endif
  486 #ifdef CONFIG_RT_GROUP_SCHED
  487         struct list_head leaf_rt_rq_list;
  488 #endif
  489 
  490         /*
  491          * This is part of a global counter where only the total sum
  492          * over all CPUs matters. A task can increase this counter on
  493          * one CPU and if it got migrated afterwards it may decrease
  494          * it on another CPU. Always updated under the runqueue lock:
  495          */
  496         unsigned long nr_uninterruptible;
  497 
  498         struct task_struct *curr, *idle, *stop;
  499         unsigned long next_balance;
  500         struct mm_struct *prev_mm;
  501 
  502         u64 clock;
  503         u64 clock_task;
  504 
  505         atomic_t nr_iowait;
  506 
  507 #ifdef CONFIG_SMP
  508         struct root_domain *rd;
  509         struct sched_domain *sd;
  510 
  511         unsigned long cpu_power;
  512 
  513         unsigned char idle_at_tick;
  514         /* For active balancing */
  515         int post_schedule;
  516         int active_balance;
  517         int push_cpu;
  518         struct cpu_stop_work active_balance_work;
  519         /* cpu of this runqueue: */
  520         int cpu;
  521         int online;
  522 
  523         unsigned long avg_load_per_task;
  524 
  525         u64 rt_avg;
  526         u64 age_stamp;
  527         u64 idle_stamp;
  528         u64 avg_idle;
  529 #endif
  530 
  531 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  532         u64 prev_irq_time;
  533 #endif
  534 #ifdef CONFIG_PARAVIRT
  535         u64 prev_steal_time;
  536 #endif
  537 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  538         u64 prev_steal_time_rq;
  539 #endif
  540 
  541         /* calc_load related fields */
  542         unsigned long calc_load_update;
  543         long calc_load_active;
  544 
  545 #ifdef CONFIG_SCHED_HRTICK
  546 #ifdef CONFIG_SMP
  547         int hrtick_csd_pending;
  548         struct call_single_data hrtick_csd;
  549 #endif
  550         struct hrtimer hrtick_timer;
  551 #endif
  552 
  553 #ifdef CONFIG_SCHEDSTATS
  554         /* latency stats */
  555         struct sched_info rq_sched_info;
  556         unsigned long long rq_cpu_time;
  557         /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  558 
  559         /* sys_sched_yield() stats */
  560         unsigned int yld_count;
  561 
  562         /* schedule() stats */
  563         unsigned int sched_switch;
  564         unsigned int sched_count;
  565         unsigned int sched_goidle;
  566 
  567         /* try_to_wake_up() stats */
  568         unsigned int ttwu_count;
  569         unsigned int ttwu_local;
  570 #endif
  571 
  572 #ifdef CONFIG_SMP
  573         struct task_struct *wake_list;
  574 #endif
  575 };
  576 
  577 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  578 
  579 
  580 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  581 
  582 static inline int cpu_of(struct rq *rq)
  583 {
  584 #ifdef CONFIG_SMP
  585         return rq->cpu;
  586 #else
  587         return 0;
  588 #endif
  589 }
  590 
  591 #define rcu_dereference_check_sched_domain(p) \
  592         rcu_dereference_check((p), \
  593                               lockdep_is_held(&sched_domains_mutex))
  594 
  595 /*
  596  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  597  * See detach_destroy_domains: synchronize_sched for details.
  598  *
  599  * The domain tree of any CPU may only be accessed from within
  600  * preempt-disabled sections.
  601  */
  602 #define for_each_domain(cpu, __sd) \
  603         for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  604 
  605 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
  606 #define this_rq()               (&__get_cpu_var(runqueues))
  607 #define task_rq(p)              cpu_rq(task_cpu(p))
  608 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
  609 #define raw_rq()                (&__raw_get_cpu_var(runqueues))
  610 
  611 #ifdef CONFIG_CGROUP_SCHED
  612 
  613 /*
  614  * Return the group to which this tasks belongs.
  615  *
  616  * We use task_subsys_state_check() and extend the RCU verification with
  617  * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
  618  * task it moves into the cgroup. Therefore by holding either of those locks,
  619  * we pin the task to the current cgroup.
  620  */
  621 static inline struct task_group *task_group(struct task_struct *p)
  622 {
  623         struct task_group *tg;
  624         struct cgroup_subsys_state *css;
  625 
  626         css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  627                         lockdep_is_held(&p->pi_lock) ||
  628                         lockdep_is_held(&task_rq(p)->lock));
  629         tg = container_of(css, struct task_group, css);
  630 
  631         return autogroup_task_group(p, tg);
  632 }
  633 
  634 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  635 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  636 {
  637 #ifdef CONFIG_FAIR_GROUP_SCHED
  638         p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  639         p->se.parent = task_group(p)->se[cpu];
  640 #endif
  641 
  642 #ifdef CONFIG_RT_GROUP_SCHED
  643         p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
  644         p->rt.parent = task_group(p)->rt_se[cpu];
  645 #endif
  646 }
  647 
  648 #else /* CONFIG_CGROUP_SCHED */
  649 
  650 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  651 static inline struct task_group *task_group(struct task_struct *p)
  652 {
  653         return NULL;
  654 }
  655 
  656 #endif /* CONFIG_CGROUP_SCHED */
  657 
  658 static void update_rq_clock_task(struct rq *rq, s64 delta);
  659 
  660 static void update_rq_clock(struct rq *rq)
  661 {
  662         s64 delta;
  663 
  664         if (rq->skip_clock_update > 0)
  665                 return;
  666 
  667         delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  668         rq->clock += delta;
  669         update_rq_clock_task(rq, delta);
  670 }
  671 
  672 /*
  673  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  674  */
  675 #ifdef CONFIG_SCHED_DEBUG
  676 # define const_debug __read_mostly
  677 #else
  678 # define const_debug static const
  679 #endif
  680 
  681 /**
  682  * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  683  * @cpu: the processor in question.
  684  *
  685  * This interface allows printk to be called with the runqueue lock
  686  * held and know whether or not it is OK to wake up the klogd.
  687  */
  688 int runqueue_is_locked(int cpu)
  689 {
  690         return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  691 }
  692 
  693 /*
  694  * Debugging: various feature bits
  695  */
  696 
  697 #define SCHED_FEAT(name, enabled)       \
  698         __SCHED_FEAT_##name ,
  699 
  700 enum {
  701 #include "sched_features.h"
  702 };
  703 
  704 #undef SCHED_FEAT
  705 
  706 #define SCHED_FEAT(name, enabled)       \
  707         (1UL << __SCHED_FEAT_##name) * enabled |
  708 
  709 const_debug unsigned int sysctl_sched_features =
  710 #include "sched_features.h"
  711         0;
  712 
  713 #undef SCHED_FEAT
  714 
  715 #ifdef CONFIG_SCHED_DEBUG
  716 #define SCHED_FEAT(name, enabled)       \
  717         #name ,
  718 
  719 static __read_mostly char *sched_feat_names[] = {
  720 #include "sched_features.h"
  721         NULL
  722 };
  723 
  724 #undef SCHED_FEAT
  725 
  726 static int sched_feat_show(struct seq_file *m, void *v)
  727 {
  728         int i;
  729 
  730         for (i = 0; sched_feat_names[i]; i++) {
  731                 if (!(sysctl_sched_features & (1UL << i)))
  732                         seq_puts(m, "NO_");
  733                 seq_printf(m, "%s ", sched_feat_names[i]);
  734         }
  735         seq_puts(m, "\n");
  736 
  737         return 0;
  738 }
  739 
  740 static ssize_t
  741 sched_feat_write(struct file *filp, const char __user *ubuf,
  742                 size_t cnt, loff_t *ppos)
  743 {
  744         char buf[64];
  745         char *cmp;
  746         int neg = 0;
  747         int i;
  748 
  749         if (cnt > 63)
  750                 cnt = 63;
  751 
  752         if (copy_from_user(&buf, ubuf, cnt))
  753                 return -EFAULT;
  754 
  755         buf[cnt] = 0;
  756         cmp = strstrip(buf);
  757 
  758         if (strncmp(cmp, "NO_", 3) == 0) {
  759                 neg = 1;
  760                 cmp += 3;
  761         }
  762 
  763         for (i = 0; sched_feat_names[i]; i++) {
  764                 if (strcmp(cmp, sched_feat_names[i]) == 0) {
  765                         if (neg)
  766                                 sysctl_sched_features &= ~(1UL << i);
  767                         else
  768                                 sysctl_sched_features |= (1UL << i);
  769                         break;
  770                 }
  771         }
  772 
  773         if (!sched_feat_names[i])
  774                 return -EINVAL;
  775 
  776         *ppos += cnt;
  777 
  778         return cnt;
  779 }
  780 
  781 static int sched_feat_open(struct inode *inode, struct file *filp)
  782 {
  783         return single_open(filp, sched_feat_show, NULL);
  784 }
  785 
  786 static const struct file_operations sched_feat_fops = {
  787         .open           = sched_feat_open,
  788         .write          = sched_feat_write,
  789         .read           = seq_read,
  790         .llseek         = seq_lseek,
  791         .release        = single_release,
  792 };
  793 
  794 static __init int sched_init_debug(void)
  795 {
  796         debugfs_create_file("sched_features", 0644, NULL, NULL,
  797                         &sched_feat_fops);
  798 
  799         return 0;
  800 }
  801 late_initcall(sched_init_debug);
  802 
  803 #endif
  804 
  805 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  806 
  807 /*
  808  * Number of tasks to iterate in a single balance run.
  809  * Limited because this is done with IRQs disabled.
  810  */
  811 const_debug unsigned int sysctl_sched_nr_migrate = 32;
  812 
  813 /*
  814  * period over which we average the RT time consumption, measured
  815  * in ms.
  816  *
  817  * default: 1s
  818  */
  819 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  820 
  821 /*
  822  * period over which we measure -rt task cpu usage in us.
  823  * default: 1s
  824  */
  825 unsigned int sysctl_sched_rt_period = 1000000;
  826 
  827 static __read_mostly int scheduler_running;
  828 
  829 /*
  830  * part of the period that we allow rt tasks to run in us.
  831  * default: 0.95s
  832  */
  833 int sysctl_sched_rt_runtime = 950000;
  834 
  835 static inline u64 global_rt_period(void)
  836 {
  837         return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  838 }
  839 
  840 static inline u64 global_rt_runtime(void)
  841 {
  842         if (sysctl_sched_rt_runtime < 0)
  843                 return RUNTIME_INF;
  844 
  845         return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  846 }
  847 
  848 #ifndef prepare_arch_switch
  849 # define prepare_arch_switch(next)      do { } while (0)
  850 #endif
  851 #ifndef finish_arch_switch
  852 # define finish_arch_switch(prev)       do { } while (0)
  853 #endif
  854 
  855 static inline int task_current(struct rq *rq, struct task_struct *p)
  856 {
  857         return rq->curr == p;
  858 }
  859 
  860 static inline int task_running(struct rq *rq, struct task_struct *p)
  861 {
  862 #ifdef CONFIG_SMP
  863         return p->on_cpu;
  864 #else
  865         return task_current(rq, p);
  866 #endif
  867 }
  868 
  869 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  870 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  871 {
  872 #ifdef CONFIG_SMP
  873         /*
  874          * We can optimise this out completely for !SMP, because the
  875          * SMP rebalancing from interrupt is the only thing that cares
  876          * here.
  877          */
  878         next->on_cpu = 1;
  879 #endif
  880 }
  881 
  882 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  883 {
  884 #ifdef CONFIG_SMP
  885         /*
  886          * After ->on_cpu is cleared, the task can be moved to a different CPU.
  887          * We must ensure this doesn't happen until the switch is completely
  888          * finished.
  889          */
  890         smp_wmb();
  891         prev->on_cpu = 0;
  892 #endif
  893 #ifdef CONFIG_DEBUG_SPINLOCK
  894         /* this is a valid case when another task releases the spinlock */
  895         rq->lock.owner = current;
  896 #endif
  897         /*
  898          * If we are tracking spinlock dependencies then we have to
  899          * fix up the runqueue lock - which gets 'carried over' from
  900          * prev into current:
  901          */
  902         spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  903 
  904         raw_spin_unlock_irq(&rq->lock);
  905 }
  906 
  907 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  908 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  909 {
  910 #ifdef CONFIG_SMP
  911         /*
  912          * We can optimise this out completely for !SMP, because the
  913          * SMP rebalancing from interrupt is the only thing that cares
  914          * here.
  915          */
  916         next->on_cpu = 1;
  917 #endif
  918 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  919         raw_spin_unlock_irq(&rq->lock);
  920 #else
  921         raw_spin_unlock(&rq->lock);
  922 #endif
  923 }
  924 
  925 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  926 {
  927 #ifdef CONFIG_SMP
  928         /*
  929          * After ->on_cpu is cleared, the task can be moved to a different CPU.
  930          * We must ensure this doesn't happen until the switch is completely
  931          * finished.
  932          */
  933         smp_wmb();
  934         prev->on_cpu = 0;
  935 #endif
  936 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  937         local_irq_enable();
  938 #endif
  939 }
  940 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  941 
  942 /*
  943  * __task_rq_lock - lock the rq @p resides on.
  944  */
  945 static inline struct rq *__task_rq_lock(struct task_struct *p)
  946         __acquires(rq->lock)
  947 {
  948         struct rq *rq;
  949 
  950         lockdep_assert_held(&p->pi_lock);
  951 
  952         for (;;) {
  953                 rq = task_rq(p);
  954                 raw_spin_lock(&rq->lock);
  955                 if (likely(rq == task_rq(p)))
  956                         return rq;
  957                 raw_spin_unlock(&rq->lock);
  958         }
  959 }
  960 
  961 /*
  962  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  963  */
  964 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  965         __acquires(p->pi_lock)
  966         __acquires(rq->lock)
  967 {
  968         struct rq *rq;
  969 
  970         for (;;) {
  971                 raw_spin_lock_irqsave(&p->pi_lock, *flags);
  972                 rq = task_rq(p);
  973                 raw_spin_lock(&rq->lock);
  974                 if (likely(rq == task_rq(p)))
  975                         return rq;
  976                 raw_spin_unlock(&rq->lock);
  977                 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  978         }
  979 }
  980 
  981 static void __task_rq_unlock(struct rq *rq)
  982         __releases(rq->lock)
  983 {
  984         raw_spin_unlock(&rq->lock);
  985 }
  986 
  987 static inline void
  988 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  989         __releases(rq->lock)
  990         __releases(p->pi_lock)
  991 {
  992         raw_spin_unlock(&rq->lock);
  993         raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  994 }
  995 
  996 /*
  997  * this_rq_lock - lock this runqueue and disable interrupts.
  998  */
  999 static struct rq *this_rq_lock(void)
 1000         __acquires(rq->lock)
 1001 {
 1002         struct rq *rq;
 1003 
 1004         local_irq_disable();
 1005         rq = this_rq();
 1006         raw_spin_lock(&rq->lock);
 1007 
 1008         return rq;
 1009 }
 1010 
 1011 #ifdef CONFIG_SCHED_HRTICK
 1012 /*
 1013  * Use HR-timers to deliver accurate preemption points.
 1014  *
 1015  * Its all a bit involved since we cannot program an hrt while holding the
 1016  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 1017  * reschedule event.
 1018  *
 1019  * When we get rescheduled we reprogram the hrtick_timer outside of the
 1020  * rq->lock.
 1021  */
 1022 
 1023 /*
 1024  * Use hrtick when:
 1025  *  - enabled by features
 1026  *  - hrtimer is actually high res
 1027  */
 1028 static inline int hrtick_enabled(struct rq *rq)
 1029 {
 1030         if (!sched_feat(HRTICK))
 1031                 return 0;
 1032         if (!cpu_active(cpu_of(rq)))
 1033                 return 0;
 1034         return hrtimer_is_hres_active(&rq->hrtick_timer);
 1035 }
 1036 
 1037 static void hrtick_clear(struct rq *rq)
 1038 {
 1039         if (hrtimer_active(&rq->hrtick_timer))
 1040                 hrtimer_cancel(&rq->hrtick_timer);
 1041 }
 1042 
 1043 /*
 1044  * High-resolution timer tick.
 1045  * Runs from hardirq context with interrupts disabled.
 1046  */
 1047 static enum hrtimer_restart hrtick(struct hrtimer *timer)
 1048 {
 1049         struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 1050 
 1051         WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 1052 
 1053         raw_spin_lock(&rq->lock);
 1054         update_rq_clock(rq);
 1055         rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 1056         raw_spin_unlock(&rq->lock);
 1057 
 1058         return HRTIMER_NORESTART;
 1059 }
 1060 
 1061 #ifdef CONFIG_SMP
 1062 /*
 1063  * called from hardirq (IPI) context
 1064  */
 1065 static void __hrtick_start(void *arg)
 1066 {
 1067         struct rq *rq = arg;
 1068 
 1069         raw_spin_lock(&rq->lock);
 1070         hrtimer_restart(&rq->hrtick_timer);
 1071         rq->hrtick_csd_pending = 0;
 1072         raw_spin_unlock(&rq->lock);
 1073 }
 1074 
 1075 /*
 1076  * Called to set the hrtick timer state.
 1077  *
 1078  * called with rq->lock held and irqs disabled
 1079  */
 1080 static void hrtick_start(struct rq *rq, u64 delay)
 1081 {
 1082         struct hrtimer *timer = &rq->hrtick_timer;
 1083         ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
 1084 
 1085         hrtimer_set_expires(timer, time);
 1086 
 1087         if (rq == this_rq()) {
 1088                 hrtimer_restart(timer);
 1089         } else if (!rq->hrtick_csd_pending) {
 1090                 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
 1091                 rq->hrtick_csd_pending = 1;
 1092         }
 1093 }
 1094 
 1095 static int
 1096 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
 1097 {
 1098         int cpu = (int)(long)hcpu;
 1099 
 1100         switch (action) {
 1101         case CPU_UP_CANCELED:
 1102         case CPU_UP_CANCELED_FROZEN:
 1103         case CPU_DOWN_PREPARE:
 1104         case CPU_DOWN_PREPARE_FROZEN:
 1105         case CPU_DEAD:
 1106         case CPU_DEAD_FROZEN:
 1107                 hrtick_clear(cpu_rq(cpu));
 1108                 return NOTIFY_OK;
 1109         }
 1110 
 1111         return NOTIFY_DONE;
 1112 }
 1113 
 1114 static __init void init_hrtick(void)
 1115 {
 1116         hotcpu_notifier(hotplug_hrtick, 0);
 1117 }
 1118 #else
 1119 /*
 1120  * Called to set the hrtick timer state.
 1121  *
 1122  * called with rq->lock held and irqs disabled
 1123  */
 1124 static void hrtick_start(struct rq *rq, u64 delay)
 1125 {
 1126         __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
 1127                         HRTIMER_MODE_REL_PINNED, 0);
 1128 }
 1129 
 1130 static inline void init_hrtick(void)
 1131 {
 1132 }
 1133 #endif /* CONFIG_SMP */
 1134 
 1135 static void init_rq_hrtick(struct rq *rq)
 1136 {
 1137 #ifdef CONFIG_SMP
 1138         rq->hrtick_csd_pending = 0;
 1139 
 1140         rq->hrtick_csd.flags = 0;
 1141         rq->hrtick_csd.func = __hrtick_start;
 1142         rq->hrtick_csd.info = rq;
 1143 #endif
 1144 
 1145         hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 1146         rq->hrtick_timer.function = hrtick;
 1147 }
 1148 #else   /* CONFIG_SCHED_HRTICK */
 1149 static inline void hrtick_clear(struct rq *rq)
 1150 {
 1151 }
 1152 
 1153 static inline void init_rq_hrtick(struct rq *rq)
 1154 {
 1155 }
 1156 
 1157 static inline void init_hrtick(void)
 1158 {
 1159 }
 1160 #endif  /* CONFIG_SCHED_HRTICK */
 1161 
 1162 /*
 1163  * resched_task - mark a task 'to be rescheduled now'.
 1164  *
 1165  * On UP this means the setting of the need_resched flag, on SMP it
 1166  * might also involve a cross-CPU call to trigger the scheduler on
 1167  * the target CPU.
 1168  */
 1169 #ifdef CONFIG_SMP
 1170 
 1171 #ifndef tsk_is_polling
 1172 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
 1173 #endif
 1174 
 1175 static void resched_task(struct task_struct *p)
 1176 {
 1177         int cpu;
 1178 
 1179         assert_raw_spin_locked(&task_rq(p)->lock);
 1180 
 1181         if (test_tsk_need_resched(p))
 1182                 return;
 1183 
 1184         set_tsk_need_resched(p);
 1185 
 1186         cpu = task_cpu(p);
 1187         if (cpu == smp_processor_id())
 1188                 return;
 1189 
 1190         /* NEED_RESCHED must be visible before we test polling */
 1191         smp_mb();
 1192         if (!tsk_is_polling(p))
 1193                 smp_send_reschedule(cpu);
 1194 }
 1195 
 1196 static void resched_cpu(int cpu)
 1197 {
 1198         struct rq *rq = cpu_rq(cpu);
 1199         unsigned long flags;
 1200 
 1201         if (!raw_spin_trylock_irqsave(&rq->lock, flags))
 1202                 return;
 1203         resched_task(cpu_curr(cpu));
 1204         raw_spin_unlock_irqrestore(&rq->lock, flags);
 1205 }
 1206 
 1207 #ifdef CONFIG_NO_HZ
 1208 /*
 1209  * In the semi idle case, use the nearest busy cpu for migrating timers
 1210  * from an idle cpu.  This is good for power-savings.
 1211  *
 1212  * We don't do similar optimization for completely idle system, as
 1213  * selecting an idle cpu will add more delays to the timers than intended
 1214  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 1215  */
 1216 int get_nohz_timer_target(void)
 1217 {
 1218         int cpu = smp_processor_id();
 1219         int i;
 1220         struct sched_domain *sd;
 1221 
 1222         rcu_read_lock();
 1223         for_each_domain(cpu, sd) {
 1224                 for_each_cpu(i, sched_domain_span(sd)) {
 1225                         if (!idle_cpu(i)) {
 1226                                 cpu = i;
 1227                                 goto unlock;
 1228                         }
 1229                 }
 1230         }
 1231 unlock:
 1232         rcu_read_unlock();
 1233         return cpu;
 1234 }
 1235 /*
 1236  * When add_timer_on() enqueues a timer into the timer wheel of an
 1237  * idle CPU then this timer might expire before the next timer event
 1238  * which is scheduled to wake up that CPU. In case of a completely
 1239  * idle system the next event might even be infinite time into the
 1240  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 1241  * leaves the inner idle loop so the newly added timer is taken into
 1242  * account when the CPU goes back to idle and evaluates the timer
 1243  * wheel for the next timer event.
 1244  */
 1245 void wake_up_idle_cpu(int cpu)
 1246 {
 1247         struct rq *rq = cpu_rq(cpu);
 1248 
 1249         if (cpu == smp_processor_id())
 1250                 return;
 1251 
 1252         /*
 1253          * This is safe, as this function is called with the timer
 1254          * wheel base lock of (cpu) held. When the CPU is on the way
 1255          * to idle and has not yet set rq->curr to idle then it will
 1256          * be serialized on the timer wheel base lock and take the new
 1257          * timer into account automatically.
 1258          */
 1259         if (rq->curr != rq->idle)
 1260                 return;
 1261 
 1262         /*
 1263          * We can set TIF_RESCHED on the idle task of the other CPU
 1264          * lockless. The worst case is that the other CPU runs the
 1265          * idle task through an additional NOOP schedule()
 1266          */
 1267         set_tsk_need_resched(rq->idle);
 1268 
 1269         /* NEED_RESCHED must be visible before we test polling */
 1270         smp_mb();
 1271         if (!tsk_is_polling(rq->idle))
 1272                 smp_send_reschedule(cpu);
 1273 }
 1274 
 1275 #endif /* CONFIG_NO_HZ */
 1276 
 1277 static u64 sched_avg_period(void)
 1278 {
 1279         return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
 1280 }
 1281 
 1282 static void sched_avg_update(struct rq *rq)
 1283 {
 1284         s64 period = sched_avg_period();
 1285 
 1286         while ((s64)(rq->clock - rq->age_stamp) > period) {
 1287                 /*
 1288                  * Inline assembly required to prevent the compiler
 1289                  * optimising this loop into a divmod call.
 1290                  * See __iter_div_u64_rem() for another example of this.
 1291                  */
 1292                 asm("" : "+rm" (rq->age_stamp));
 1293                 rq->age_stamp += period;
 1294                 rq->rt_avg /= 2;
 1295         }
 1296 }
 1297 
 1298 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
 1299 {
 1300         rq->rt_avg += rt_delta;
 1301         sched_avg_update(rq);
 1302 }
 1303 
 1304 #else /* !CONFIG_SMP */
 1305 static void resched_task(struct task_struct *p)
 1306 {
 1307         assert_raw_spin_locked(&task_rq(p)->lock);
 1308         set_tsk_need_resched(p);
 1309 }
 1310 
 1311 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
 1312 {
 1313 }
 1314 
 1315 static void sched_avg_update(struct rq *rq)
 1316 {
 1317 }
 1318 #endif /* CONFIG_SMP */
 1319 
 1320 #if BITS_PER_LONG == 32
 1321 # define WMULT_CONST    (~0UL)
 1322 #else
 1323 # define WMULT_CONST    (1UL << 32)
 1324 #endif
 1325 
 1326 #define WMULT_SHIFT     32
 1327 
 1328 /*
 1329  * Shift right and round:
 1330  */
 1331 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
 1332 
 1333 /*
 1334  * delta *= weight / lw
 1335  */
 1336 static unsigned long
 1337 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
 1338                 struct load_weight *lw)
 1339 {
 1340         u64 tmp;
 1341 
 1342         /*
 1343          * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
 1344          * entities since MIN_SHARES = 2. Treat weight as 1 if less than
 1345          * 2^SCHED_LOAD_RESOLUTION.
 1346          */
 1347         if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
 1348                 tmp = (u64)delta_exec * scale_load_down(weight);
 1349         else
 1350                 tmp = (u64)delta_exec;
 1351 
 1352         if (!lw->inv_weight) {
 1353                 unsigned long w = scale_load_down(lw->weight);
 1354 
 1355                 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
 1356                         lw->inv_weight = 1;
 1357                 else if (unlikely(!w))
 1358                         lw->inv_weight = WMULT_CONST;
 1359                 else
 1360                         lw->inv_weight = WMULT_CONST / w;
 1361         }
 1362 
 1363         /*
 1364          * Check whether we'd overflow the 64-bit multiplication:
 1365          */
 1366         if (unlikely(tmp > WMULT_CONST))
 1367                 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
 1368                         WMULT_SHIFT/2);
 1369         else
 1370                 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
 1371 
 1372         return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
 1373 }
 1374 
 1375 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
 1376 {
 1377         lw->weight += inc;
 1378         lw->inv_weight = 0;
 1379 }
 1380 
 1381 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
 1382 {
 1383         lw->weight -= dec;
 1384         lw->inv_weight = 0;
 1385 }
 1386 
 1387 static inline void update_load_set(struct load_weight *lw, unsigned long w)
 1388 {
 1389         lw->weight = w;
 1390         lw->inv_weight = 0;
 1391 }
 1392 
 1393 /*
 1394  * To aid in avoiding the subversion of "niceness" due to uneven distribution
 1395  * of tasks with abnormal "nice" values across CPUs the contribution that
 1396  * each task makes to its run queue's load is weighted according to its
 1397  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
 1398  * scaled version of the new time slice allocation that they receive on time
 1399  * slice expiry etc.
 1400  */
 1401 
 1402 #define WEIGHT_IDLEPRIO                3
 1403 #define WMULT_IDLEPRIO         1431655765
 1404 
 1405 /*
 1406  * Nice levels are multiplicative, with a gentle 10% change for every
 1407  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 1408  * nice 1, it will get ~10% less CPU time than another CPU-bound task
 1409  * that remained on nice 0.
 1410  *
 1411  * The "10% effect" is relative and cumulative: from _any_ nice level,
 1412  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 1413  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 1414  * If a task goes up by ~10% and another task goes down by ~10% then
 1415  * the relative distance between them is ~25%.)
 1416  */
 1417 static const int prio_to_weight[40] = {
 1418  /* -20 */     88761,     71755,     56483,     46273,     36291,
 1419  /* -15 */     29154,     23254,     18705,     14949,     11916,
 1420  /* -10 */      9548,      7620,      6100,      4904,      3906,
 1421  /*  -5 */      3121,      2501,      1991,      1586,      1277,
 1422  /*   0 */      1024,       820,       655,       526,       423,
 1423  /*   5 */       335,       272,       215,       172,       137,
 1424  /*  10 */       110,        87,        70,        56,        45,
 1425  /*  15 */        36,        29,        23,        18,        15,
 1426 };
 1427 
 1428 /*
 1429  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 1430  *
 1431  * In cases where the weight does not change often, we can use the
 1432  * precalculated inverse to speed up arithmetics by turning divisions
 1433  * into multiplications:
 1434  */
 1435 static const u32 prio_to_wmult[40] = {
 1436  /* -20 */     48388,     59856,     76040,     92818,    118348,
 1437  /* -15 */    147320,    184698,    229616,    287308,    360437,
 1438  /* -10 */    449829,    563644,    704093,    875809,   1099582,
 1439  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 1440  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 1441  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 1442  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 1443  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
 1444 };
 1445 
 1446 /* Time spent by the tasks of the cpu accounting group executing in ... */
 1447 enum cpuacct_stat_index {
 1448         CPUACCT_STAT_USER,      /* ... user mode */
 1449         CPUACCT_STAT_SYSTEM,    /* ... kernel mode */
 1450 
 1451         CPUACCT_STAT_NSTATS,
 1452 };
 1453 
 1454 #ifdef CONFIG_CGROUP_CPUACCT
 1455 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
 1456 static void cpuacct_update_stats(struct task_struct *tsk,
 1457                 enum cpuacct_stat_index idx, cputime_t val);
 1458 #else
 1459 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
 1460 static inline void cpuacct_update_stats(struct task_struct *tsk,
 1461                 enum cpuacct_stat_index idx, cputime_t val) {}
 1462 #endif
 1463 
 1464 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
 1465 {
 1466         update_load_add(&rq->load, load);
 1467 }
 1468 
 1469 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
 1470 {
 1471         update_load_sub(&rq->load, load);
 1472 }
 1473 
 1474 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
 1475 typedef int (*tg_visitor)(struct task_group *, void *);
 1476 
 1477 /*
 1478  * Iterate the full tree, calling @down when first entering a node and @up when
 1479  * leaving it for the final time.
 1480  */
 1481 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 1482 {
 1483         struct task_group *parent, *child;
 1484         int ret;
 1485 
 1486         rcu_read_lock();
 1487         parent = &root_task_group;
 1488 down:
 1489         ret = (*down)(parent, data);
 1490         if (ret)
 1491                 goto out_unlock;
 1492         list_for_each_entry_rcu(child, &parent->children, siblings) {
 1493                 parent = child;
 1494                 goto down;
 1495 
 1496 up:
 1497                 continue;
 1498         }
 1499         ret = (*up)(parent, data);
 1500         if (ret)
 1501                 goto out_unlock;
 1502 
 1503         child = parent;
 1504         parent = parent->parent;
 1505         if (parent)
 1506                 goto up;
 1507 out_unlock:
 1508         rcu_read_unlock();
 1509 
 1510         return ret;
 1511 }
 1512 
 1513 static int tg_nop(struct task_group *tg, void *data)
 1514 {
 1515         return 0;
 1516 }
 1517 #endif
 1518 
 1519 #ifdef CONFIG_SMP
 1520 /* Used instead of source_load when we know the type == 0 */
 1521 static unsigned long weighted_cpuload(const int cpu)
 1522 {
 1523         return cpu_rq(cpu)->load.weight;
 1524 }
 1525 
 1526 /*
 1527  * Return a low guess at the load of a migration-source cpu weighted
 1528  * according to the scheduling class and "nice" value.
 1529  *
 1530  * We want to under-estimate the load of migration sources, to
 1531  * balance conservatively.
 1532  */
 1533 static unsigned long source_load(int cpu, int type)
 1534 {
 1535         struct rq *rq = cpu_rq(cpu);
 1536         unsigned long total = weighted_cpuload(cpu);
 1537 
 1538         if (type == 0 || !sched_feat(LB_BIAS))
 1539                 return total;
 1540 
 1541         return min(rq->cpu_load[type-1], total);
 1542 }
 1543 
 1544 /*
 1545  * Return a high guess at the load of a migration-target cpu weighted
 1546  * according to the scheduling class and "nice" value.
 1547  */
 1548 static unsigned long target_load(int cpu, int type)
 1549 {
 1550         struct rq *rq = cpu_rq(cpu);
 1551         unsigned long total = weighted_cpuload(cpu);
 1552 
 1553         if (type == 0 || !sched_feat(LB_BIAS))
 1554                 return total;
 1555 
 1556         return max(rq->cpu_load[type-1], total);
 1557 }
 1558 
 1559 static unsigned long power_of(int cpu)
 1560 {
 1561         return cpu_rq(cpu)->cpu_power;
 1562 }
 1563 
 1564 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
 1565 
 1566 static unsigned long cpu_avg_load_per_task(int cpu)
 1567 {
 1568         struct rq *rq = cpu_rq(cpu);
 1569         unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
 1570 
 1571         if (nr_running)
 1572                 rq->avg_load_per_task = rq->load.weight / nr_running;
 1573         else
 1574                 rq->avg_load_per_task = 0;
 1575 
 1576         return rq->avg_load_per_task;
 1577 }
 1578 
 1579 #ifdef CONFIG_PREEMPT
 1580 
 1581 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
 1582 
 1583 /*
 1584  * fair double_lock_balance: Safely acquires both rq->locks in a fair
 1585  * way at the expense of forcing extra atomic operations in all
 1586  * invocations.  This assures that the double_lock is acquired using the
 1587  * same underlying policy as the spinlock_t on this architecture, which
 1588  * reduces latency compared to the unfair variant below.  However, it
 1589  * also adds more overhead and therefore may reduce throughput.
 1590  */
 1591 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
 1592         __releases(this_rq->lock)
 1593         __acquires(busiest->lock)
 1594         __acquires(this_rq->lock)
 1595 {
 1596         raw_spin_unlock(&this_rq->lock);
 1597         double_rq_lock(this_rq, busiest);
 1598 
 1599         return 1;
 1600 }
 1601 
 1602 #else
 1603 /*
 1604  * Unfair double_lock_balance: Optimizes throughput at the expense of
 1605  * latency by eliminating extra atomic operations when the locks are
 1606  * already in proper order on entry.  This favors lower cpu-ids and will
 1607  * grant the double lock to lower cpus over higher ids under contention,
 1608  * regardless of entry order into the function.
 1609  */
 1610 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
 1611         __releases(this_rq->lock)
 1612         __acquires(busiest->lock)
 1613         __acquires(this_rq->lock)
 1614 {
 1615         int ret = 0;
 1616 
 1617         if (unlikely(!raw_spin_trylock(&busiest->lock))) {
 1618                 if (busiest < this_rq) {
 1619                         raw_spin_unlock(&this_rq->lock);
 1620                         raw_spin_lock(&busiest->lock);
 1621                         raw_spin_lock_nested(&this_rq->lock,
 1622                                               SINGLE_DEPTH_NESTING);
 1623                         ret = 1;
 1624                 } else
 1625                         raw_spin_lock_nested(&busiest->lock,
 1626                                               SINGLE_DEPTH_NESTING);
 1627         }
 1628         return ret;
 1629 }
 1630 
 1631 #endif /* CONFIG_PREEMPT */
 1632 
 1633 /*
 1634  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 1635  */
 1636 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
 1637 {
 1638         if (unlikely(!irqs_disabled())) {
 1639                 /* printk() doesn't work good under rq->lock */
 1640                 raw_spin_unlock(&this_rq->lock);
 1641                 BUG_ON(1);
 1642         }
 1643 
 1644         return _double_lock_balance(this_rq, busiest);
 1645 }
 1646 
 1647 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
 1648         __releases(busiest->lock)
 1649 {
 1650         raw_spin_unlock(&busiest->lock);
 1651         lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
 1652 }
 1653 
 1654 /*
 1655  * double_rq_lock - safely lock two runqueues
 1656  *
 1657  * Note this does not disable interrupts like task_rq_lock,
 1658  * you need to do so manually before calling.
 1659  */
 1660 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
 1661         __acquires(rq1->lock)
 1662         __acquires(rq2->lock)
 1663 {
 1664         BUG_ON(!irqs_disabled());
 1665         if (rq1 == rq2) {
 1666                 raw_spin_lock(&rq1->lock);
 1667                 __acquire(rq2->lock);   /* Fake it out ;) */
 1668         } else {
 1669                 if (rq1 < rq2) {
 1670                         raw_spin_lock(&rq1->lock);
 1671                         raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
 1672                 } else {
 1673                         raw_spin_lock(&rq2->lock);
 1674                         raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
 1675                 }
 1676         }
 1677 }
 1678 
 1679 /*
 1680  * double_rq_unlock - safely unlock two runqueues
 1681  *
 1682  * Note this does not restore interrupts like task_rq_unlock,
 1683  * you need to do so manually after calling.
 1684  */
 1685 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
 1686         __releases(rq1->lock)
 1687         __releases(rq2->lock)
 1688 {
 1689         raw_spin_unlock(&rq1->lock);
 1690         if (rq1 != rq2)
 1691                 raw_spin_unlock(&rq2->lock);
 1692         else
 1693                 __release(rq2->lock);
 1694 }
 1695 
 1696 #else /* CONFIG_SMP */
 1697 
 1698 /*
 1699  * double_rq_lock - safely lock two runqueues
 1700  *
 1701  * Note this does not disable interrupts like task_rq_lock,
 1702  * you need to do so manually before calling.
 1703  */
 1704 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
 1705         __acquires(rq1->lock)
 1706         __acquires(rq2->lock)
 1707 {
 1708         BUG_ON(!irqs_disabled());
 1709         BUG_ON(rq1 != rq2);
 1710         raw_spin_lock(&rq1->lock);
 1711         __acquire(rq2->lock);   /* Fake it out ;) */
 1712 }
 1713 
 1714 /*
 1715  * double_rq_unlock - safely unlock two runqueues
 1716  *
 1717  * Note this does not restore interrupts like task_rq_unlock,
 1718  * you need to do so manually after calling.
 1719  */
 1720 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
 1721         __releases(rq1->lock)
 1722         __releases(rq2->lock)
 1723 {
 1724         BUG_ON(rq1 != rq2);
 1725         raw_spin_unlock(&rq1->lock);
 1726         __release(rq2->lock);
 1727 }
 1728 
 1729 #endif
 1730 
 1731 static void calc_load_account_idle(struct rq *this_rq);
 1732 static void update_sysctl(void);
 1733 static int get_update_sysctl_factor(void);
 1734 static void update_cpu_load(struct rq *this_rq);
 1735 
 1736 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
 1737 {
 1738         set_task_rq(p, cpu);
 1739 #ifdef CONFIG_SMP
 1740         /*
 1741          * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
 1742          * successfuly executed on another CPU. We must ensure that updates of
 1743          * per-task data have been completed by this moment.
 1744          */
 1745         smp_wmb();
 1746         task_thread_info(p)->cpu = cpu;
 1747 #endif
 1748 }
 1749 
 1750 static const struct sched_class rt_sched_class;
 1751 
 1752 #define sched_class_highest (&stop_sched_class)
 1753 #define for_each_class(class) \
 1754    for (class = sched_class_highest; class; class = class->next)
 1755 
 1756 #include "sched_stats.h"
 1757 
 1758 static void inc_nr_running(struct rq *rq)
 1759 {
 1760         rq->nr_running++;
 1761 }
 1762 
 1763 static void dec_nr_running(struct rq *rq)
 1764 {
 1765         rq->nr_running--;
 1766 }
 1767 
 1768 static void set_load_weight(struct task_struct *p)
 1769 {
 1770         int prio = p->static_prio - MAX_RT_PRIO;
 1771         struct load_weight *load = &p->se.load;
 1772 
 1773         /*
 1774          * SCHED_IDLE tasks get minimal weight:
 1775          */
 1776         if (p->policy == SCHED_IDLE) {
 1777                 load->weight = scale_load(WEIGHT_IDLEPRIO);
 1778                 load->inv_weight = WMULT_IDLEPRIO;
 1779                 return;
 1780         }
 1781 
 1782         load->weight = scale_load(prio_to_weight[prio]);
 1783         load->inv_weight = prio_to_wmult[prio];
 1784 }
 1785 
 1786 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 1787 {
 1788         update_rq_clock(rq);
 1789         sched_info_queued(p);
 1790         p->sched_class->enqueue_task(rq, p, flags);
 1791 }
 1792 
 1793 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 1794 {
 1795         update_rq_clock(rq);
 1796         sched_info_dequeued(p);
 1797         p->sched_class->dequeue_task(rq, p, flags);
 1798 }
 1799 
 1800 /*
 1801  * activate_task - move a task to the runqueue.
 1802  */
 1803 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
 1804 {
 1805         if (task_contributes_to_load(p))
 1806                 rq->nr_uninterruptible--;
 1807 
 1808         enqueue_task(rq, p, flags);
 1809         inc_nr_running(rq);
 1810 }
 1811 
 1812 /*
 1813  * deactivate_task - remove a task from the runqueue.
 1814  */
 1815 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 1816 {
 1817         if (task_contributes_to_load(p))
 1818                 rq->nr_uninterruptible++;
 1819 
 1820         dequeue_task(rq, p, flags);
 1821         dec_nr_running(rq);
 1822 }
 1823 
 1824 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 1825 
 1826 /*
 1827  * There are no locks covering percpu hardirq/softirq time.
 1828  * They are only modified in account_system_vtime, on corresponding CPU
 1829  * with interrupts disabled. So, writes are safe.
 1830  * They are read and saved off onto struct rq in update_rq_clock().
 1831  * This may result in other CPU reading this CPU's irq time and can
 1832  * race with irq/account_system_vtime on this CPU. We would either get old
 1833  * or new value with a side effect of accounting a slice of irq time to wrong
 1834  * task when irq is in progress while we read rq->clock. That is a worthy
 1835  * compromise in place of having locks on each irq in account_system_time.
 1836  */
 1837 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
 1838 static DEFINE_PER_CPU(u64, cpu_softirq_time);
 1839 
 1840 static DEFINE_PER_CPU(u64, irq_start_time);
 1841 static int sched_clock_irqtime;
 1842 
 1843 void enable_sched_clock_irqtime(void)
 1844 {
 1845         sched_clock_irqtime = 1;
 1846 }
 1847 
 1848 void disable_sched_clock_irqtime(void)
 1849 {
 1850         sched_clock_irqtime = 0;
 1851 }
 1852 
 1853 #ifndef CONFIG_64BIT
 1854 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
 1855 
 1856 static inline void irq_time_write_begin(void)
 1857 {
 1858         __this_cpu_inc(irq_time_seq.sequence);
 1859         smp_wmb();
 1860 }
 1861 
 1862 static inline void irq_time_write_end(void)
 1863 {
 1864         smp_wmb();
 1865         __this_cpu_inc(irq_time_seq.sequence);
 1866 }
 1867 
 1868 static inline u64 irq_time_read(int cpu)
 1869 {
 1870         u64 irq_time;
 1871         unsigned seq;
 1872 
 1873         do {
 1874                 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
 1875                 irq_time = per_cpu(cpu_softirq_time, cpu) +
 1876                            per_cpu(cpu_hardirq_time, cpu);
 1877         } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
 1878 
 1879         return irq_time;
 1880 }
 1881 #else /* CONFIG_64BIT */
 1882 static inline void irq_time_write_begin(void)
 1883 {
 1884 }
 1885 
 1886 static inline void irq_time_write_end(void)
 1887 {
 1888 }
 1889 
 1890 static inline u64 irq_time_read(int cpu)
 1891 {
 1892         return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
 1893 }
 1894 #endif /* CONFIG_64BIT */
 1895 
 1896 /*
 1897  * Called before incrementing preempt_count on {soft,}irq_enter
 1898  * and before decrementing preempt_count on {soft,}irq_exit.
 1899  */
 1900 void account_system_vtime(struct task_struct *curr)
 1901 {
 1902         unsigned long flags;
 1903         s64 delta;
 1904         int cpu;
 1905 
 1906         if (!sched_clock_irqtime)
 1907                 return;
 1908 
 1909         local_irq_save(flags);
 1910 
 1911         cpu = smp_processor_id();
 1912         delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
 1913         __this_cpu_add(irq_start_time, delta);
 1914 
 1915         irq_time_write_begin();
 1916         /*
 1917          * We do not account for softirq time from ksoftirqd here.
 1918          * We want to continue accounting softirq time to ksoftirqd thread
 1919          * in that case, so as not to confuse scheduler with a special task
 1920          * that do not consume any time, but still wants to run.
 1921          */
 1922         if (hardirq_count())
 1923                 __this_cpu_add(cpu_hardirq_time, delta);
 1924         else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 1925                 __this_cpu_add(cpu_softirq_time, delta);
 1926 
 1927         irq_time_write_end();
 1928         local_irq_restore(flags);
 1929 }
 1930 EXPORT_SYMBOL_GPL(account_system_vtime);
 1931 
 1932 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 1933 
 1934 #ifdef CONFIG_PARAVIRT
 1935 static inline u64 steal_ticks(u64 steal)
 1936 {
 1937         if (unlikely(steal > NSEC_PER_SEC))
 1938                 return div_u64(steal, TICK_NSEC);
 1939 
 1940         return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
 1941 }
 1942 #endif
 1943 
 1944 static void update_rq_clock_task(struct rq *rq, s64 delta)
 1945 {
 1946 /*
 1947  * In theory, the compile should just see 0 here, and optimize out the call
 1948  * to sched_rt_avg_update. But I don't trust it...
 1949  */
 1950 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 1951         s64 steal = 0, irq_delta = 0;
 1952 #endif
 1953 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 1954         irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 1955 
 1956         /*
 1957          * Since irq_time is only updated on {soft,}irq_exit, we might run into
 1958          * this case when a previous update_rq_clock() happened inside a
 1959          * {soft,}irq region.
 1960          *
 1961          * When this happens, we stop ->clock_task and only update the
 1962          * prev_irq_time stamp to account for the part that fit, so that a next
 1963          * update will consume the rest. This ensures ->clock_task is
 1964          * monotonic.
 1965          *
 1966          * It does however cause some slight miss-attribution of {soft,}irq
 1967          * time, a more accurate solution would be to update the irq_time using
 1968          * the current rq->clock timestamp, except that would require using
 1969          * atomic ops.
 1970          */
 1971         if (irq_delta > delta)
 1972                 irq_delta = delta;
 1973 
 1974         rq->prev_irq_time += irq_delta;
 1975         delta -= irq_delta;
 1976 #endif
 1977 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 1978         if (static_branch((&paravirt_steal_rq_enabled))) {
 1979                 u64 st;
 1980 
 1981                 steal = paravirt_steal_clock(cpu_of(rq));
 1982                 steal -= rq->prev_steal_time_rq;
 1983 
 1984                 if (unlikely(steal > delta))
 1985                         steal = delta;
 1986 
 1987                 st = steal_ticks(steal);
 1988                 steal = st * TICK_NSEC;
 1989 
 1990                 rq->prev_steal_time_rq += steal;
 1991 
 1992                 delta -= steal;
 1993         }
 1994 #endif
 1995 
 1996         rq->clock_task += delta;
 1997 
 1998 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 1999         if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
 2000                 sched_rt_avg_update(rq, irq_delta + steal);
 2001 #endif
 2002 }
 2003 
 2004 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 2005 static int irqtime_account_hi_update(void)
 2006 {
 2007         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 2008         unsigned long flags;
 2009         u64 latest_ns;
 2010         int ret = 0;
 2011 
 2012         local_irq_save(flags);
 2013         latest_ns = this_cpu_read(cpu_hardirq_time);
 2014         if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
 2015                 ret = 1;
 2016         local_irq_restore(flags);
 2017         return ret;
 2018 }
 2019 
 2020 static int irqtime_account_si_update(void)
 2021 {
 2022         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 2023         unsigned long flags;
 2024         u64 latest_ns;
 2025         int ret = 0;
 2026 
 2027         local_irq_save(flags);
 2028         latest_ns = this_cpu_read(cpu_softirq_time);
 2029         if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
 2030                 ret = 1;
 2031         local_irq_restore(flags);
 2032         return ret;
 2033 }
 2034 
 2035 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
 2036 
 2037 #define sched_clock_irqtime     (0)
 2038 
 2039 #endif
 2040 
 2041 #include "sched_idletask.c"
 2042 #include "sched_fair.c"
 2043 #include "sched_rt.c"
 2044 #include "sched_autogroup.c"
 2045 #include "sched_stoptask.c"
 2046 #ifdef CONFIG_SCHED_DEBUG
 2047 # include "sched_debug.c"
 2048 #endif
 2049 
 2050 void sched_set_stop_task(int cpu, struct task_struct *stop)
 2051 {
 2052         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 2053         struct task_struct *old_stop = cpu_rq(cpu)->stop;
 2054 
 2055         if (stop) {
 2056                 /*
 2057                  * Make it appear like a SCHED_FIFO task, its something
 2058                  * userspace knows about and won't get confused about.
 2059                  *
 2060                  * Also, it will make PI more or less work without too
 2061                  * much confusion -- but then, stop work should not
 2062                  * rely on PI working anyway.
 2063                  */
 2064                 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 2065 
 2066                 stop->sched_class = &stop_sched_class;
 2067         }
 2068 
 2069         cpu_rq(cpu)->stop = stop;
 2070 
 2071         if (old_stop) {
 2072                 /*
 2073                  * Reset it back to a normal scheduling class so that
 2074                  * it can die in pieces.
 2075                  */
 2076                 old_stop->sched_class = &rt_sched_class;
 2077         }
 2078 }
 2079 
 2080 /*
 2081  * __normal_prio - return the priority that is based on the static prio
 2082  */
 2083 static inline int __normal_prio(struct task_struct *p)
 2084 {
 2085         return p->static_prio;
 2086 }
 2087 
 2088 /*
 2089  * Calculate the expected normal priority: i.e. priority
 2090  * without taking RT-inheritance into account. Might be
 2091  * boosted by interactivity modifiers. Changes upon fork,
 2092  * setprio syscalls, and whenever the interactivity
 2093  * estimator recalculates.
 2094  */
 2095 static inline int normal_prio(struct task_struct *p)
 2096 {
 2097         int prio;
 2098 
 2099         if (task_has_rt_policy(p))
 2100                 prio = MAX_RT_PRIO-1 - p->rt_priority;
 2101         else
 2102                 prio = __normal_prio(p);
 2103         return prio;
 2104 }
 2105 
 2106 /*
 2107  * Calculate the current priority, i.e. the priority
 2108  * taken into account by the scheduler. This value might
 2109  * be boosted by RT tasks, or might be boosted by
 2110  * interactivity modifiers. Will be RT if the task got
 2111  * RT-boosted. If not then it returns p->normal_prio.
 2112  */
 2113 static int effective_prio(struct task_struct *p)
 2114 {
 2115         p->normal_prio = normal_prio(p);
 2116         /*
 2117          * If we are RT tasks or we were boosted to RT priority,
 2118          * keep the priority unchanged. Otherwise, update priority
 2119          * to the normal priority:
 2120          */
 2121         if (!rt_prio(p->prio))
 2122                 return p->normal_prio;
 2123         return p->prio;
 2124 }
 2125 
 2126 /**
 2127  * task_curr - is this task currently executing on a CPU?
 2128  * @p: the task in question.
 2129  */
 2130 inline int task_curr(const struct task_struct *p)
 2131 {
 2132         return cpu_curr(task_cpu(p)) == p;
 2133 }
 2134 
 2135 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
 2136                                        const struct sched_class *prev_class,
 2137                                        int oldprio)
 2138 {
 2139         if (prev_class != p->sched_class) {
 2140                 if (prev_class->switched_from)
 2141                         prev_class->switched_from(rq, p);
 2142                 p->sched_class->switched_to(rq, p);
 2143         } else if (oldprio != p->prio)
 2144                 p->sched_class->prio_changed(rq, p, oldprio);
 2145 }
 2146 
 2147 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 2148 {
 2149         const struct sched_class *class;
 2150 
 2151         if (p->sched_class == rq->curr->sched_class) {
 2152                 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
 2153         } else {
 2154                 for_each_class(class) {
 2155                         if (class == rq->curr->sched_class)
 2156                                 break;
 2157                         if (class == p->sched_class) {
 2158                                 resched_task(rq->curr);
 2159                                 break;
 2160                         }
 2161                 }
 2162         }
 2163 
 2164         /*
 2165          * A queue event has occurred, and we're going to schedule.  In
 2166          * this case, we can save a useless back to back clock update.
 2167          */
 2168         if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
 2169                 rq->skip_clock_update = 1;
 2170 }
 2171 
 2172 #ifdef CONFIG_SMP
 2173 /*
 2174  * Is this task likely cache-hot:
 2175  */
 2176 static int
 2177 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
 2178 {
 2179         s64 delta;
 2180 
 2181         if (p->sched_class != &fair_sched_class)
 2182                 return 0;
 2183 
 2184         if (unlikely(p->policy == SCHED_IDLE))
 2185                 return 0;
 2186 
 2187         /*
 2188          * Buddy candidates are cache hot:
 2189          */
 2190         if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
 2191                         (&p->se == cfs_rq_of(&p->se)->next ||
 2192                          &p->se == cfs_rq_of(&p->se)->last))
 2193                 return 1;
 2194 
 2195         if (sysctl_sched_migration_cost == -1)
 2196                 return 1;
 2197         if (sysctl_sched_migration_cost == 0)
 2198                 return 0;
 2199 
 2200         delta = now - p->se.exec_start;
 2201 
 2202         return delta < (s64)sysctl_sched_migration_cost;
 2203 }
 2204 
 2205 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 2206 {
 2207 #ifdef CONFIG_SCHED_DEBUG
 2208         /*
 2209          * We should never call set_task_cpu() on a blocked task,
 2210          * ttwu() will sort out the placement.
 2211          */
 2212         WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
 2213                         !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
 2214 
 2215 #ifdef CONFIG_LOCKDEP
 2216         /*
 2217          * The caller should hold either p->pi_lock or rq->lock, when changing
 2218          * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
 2219          *
 2220          * sched_move_task() holds both and thus holding either pins the cgroup,
 2221          * see set_task_rq().
 2222          *
 2223          * Furthermore, all task_rq users should acquire both locks, see
 2224          * task_rq_lock().
 2225          */
 2226         WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
 2227                                       lockdep_is_held(&task_rq(p)->lock)));
 2228 #endif
 2229 #endif
 2230 
 2231         trace_sched_migrate_task(p, new_cpu);
 2232 
 2233         if (task_cpu(p) != new_cpu) {
 2234                 p->se.nr_migrations++;
 2235                 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
 2236         }
 2237 
 2238         __set_task_cpu(p, new_cpu);
 2239 }
 2240 
 2241 struct migration_arg {
 2242         struct task_struct *task;
 2243         int dest_cpu;
 2244 };
 2245 
 2246 static int migration_cpu_stop(void *data);
 2247 
 2248 /*
 2249  * wait_task_inactive - wait for a thread to unschedule.
 2250  *
 2251  * If @match_state is nonzero, it's the @p->state value just checked and
 2252  * not expected to change.  If it changes, i.e. @p might have woken up,
 2253  * then return zero.  When we succeed in waiting for @p to be off its CPU,
 2254  * we return a positive number (its total switch count).  If a second call
 2255  * a short while later returns the same number, the caller can be sure that
 2256  * @p has remained unscheduled the whole time.
 2257  *
 2258  * The caller must ensure that the task *will* unschedule sometime soon,
 2259  * else this function might spin for a *long* time. This function can't
 2260  * be called with interrupts off, or it may introduce deadlock with
 2261  * smp_call_function() if an IPI is sent by the same process we are
 2262  * waiting to become inactive.
 2263  */
 2264 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
 2265 {
 2266         unsigned long flags;
 2267         int running, on_rq;
 2268         unsigned long ncsw;
 2269         struct rq *rq;
 2270 
 2271         for (;;) {
 2272                 /*
 2273                  * We do the initial early heuristics without holding
 2274                  * any task-queue locks at all. We'll only try to get
 2275                  * the runqueue lock when things look like they will
 2276                  * work out!
 2277                  */
 2278                 rq = task_rq(p);
 2279 
 2280                 /*
 2281                  * If the task is actively running on another CPU
 2282                  * still, just relax and busy-wait without holding
 2283                  * any locks.
 2284                  *
 2285                  * NOTE! Since we don't hold any locks, it's not
 2286                  * even sure that "rq" stays as the right runqueue!
 2287                  * But we don't care, since "task_running()" will
 2288                  * return false if the runqueue has changed and p
 2289                  * is actually now running somewhere else!
 2290                  */
 2291                 while (task_running(rq, p)) {
 2292                         if (match_state && unlikely(p->state != match_state))
 2293                                 return 0;
 2294                         cpu_relax();
 2295                 }
 2296 
 2297                 /*
 2298                  * Ok, time to look more closely! We need the rq
 2299                  * lock now, to be *sure*. If we're wrong, we'll
 2300                  * just go back and repeat.
 2301                  */
 2302                 rq = task_rq_lock(p, &flags);
 2303                 trace_sched_wait_task(p);
 2304                 running = task_running(rq, p);
 2305                 on_rq = p->on_rq;
 2306                 ncsw = 0;
 2307                 if (!match_state || p->state == match_state)
 2308                         ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
 2309                 task_rq_unlock(rq, p, &flags);
 2310 
 2311                 /*
 2312                  * If it changed from the expected state, bail out now.
 2313                  */
 2314                 if (unlikely(!ncsw))
 2315                         break;
 2316 
 2317                 /*
 2318                  * Was it really running after all now that we
 2319                  * checked with the proper locks actually held?
 2320                  *
 2321                  * Oops. Go back and try again..
 2322                  */
 2323                 if (unlikely(running)) {
 2324                         cpu_relax();
 2325                         continue;
 2326                 }
 2327 
 2328                 /*
 2329                  * It's not enough that it's not actively running,
 2330                  * it must be off the runqueue _entirely_, and not
 2331                  * preempted!
 2332                  *
 2333                  * So if it was still runnable (but just not actively
 2334                  * running right now), it's preempted, and we should
 2335                  * yield - it could be a while.
 2336                  */
 2337                 if (unlikely(on_rq)) {
 2338                         ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
 2339 
 2340                         set_current_state(TASK_UNINTERRUPTIBLE);
 2341                         schedule_hrtimeout(&to, HRTIMER_MODE_REL);
 2342                         continue;
 2343                 }
 2344 
 2345                 /*
 2346                  * Ahh, all good. It wasn't running, and it wasn't
 2347                  * runnable, which means that it will never become
 2348                  * running in the future either. We're all done!
 2349                  */
 2350                 break;
 2351         }
 2352 
 2353         return ncsw;
 2354 }
 2355 
 2356 /***
 2357  * kick_process - kick a running thread to enter/exit the kernel
 2358  * @p: the to-be-kicked thread
 2359  *
 2360  * Cause a process which is running on another CPU to enter
 2361  * kernel-mode, without any delay. (to get signals handled.)
 2362  *
 2363  * NOTE: this function doesn't have to take the runqueue lock,
 2364  * because all it wants to ensure is that the remote task enters
 2365  * the kernel. If the IPI races and the task has been migrated
 2366  * to another CPU then no harm is done and the purpose has been
 2367  * achieved as well.
 2368  */
 2369 void kick_process(struct task_struct *p)
 2370 {
 2371         int cpu;
 2372 
 2373         preempt_disable();
 2374         cpu = task_cpu(p);
 2375         if ((cpu != smp_processor_id()) && task_curr(p))
 2376                 smp_send_reschedule(cpu);
 2377         preempt_enable();
 2378 }
 2379 EXPORT_SYMBOL_GPL(kick_process);
 2380 #endif /* CONFIG_SMP */
 2381 
 2382 #ifdef CONFIG_SMP
 2383 /*
 2384  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
 2385  */
 2386 static int select_fallback_rq(int cpu, struct task_struct *p)
 2387 {
 2388         int dest_cpu;
 2389         const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
 2390 
 2391         /* Look for allowed, online CPU in same node. */
 2392         for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
 2393                 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
 2394                         return dest_cpu;
 2395 
 2396         /* Any allowed, online CPU? */
 2397         dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
 2398         if (dest_cpu < nr_cpu_ids)
 2399                 return dest_cpu;
 2400 
 2401         /* No more Mr. Nice Guy. */
 2402         dest_cpu = cpuset_cpus_allowed_fallback(p);
 2403         /*
 2404          * Don't tell them about moving exiting tasks or
 2405          * kernel threads (both mm NULL), since they never
 2406          * leave kernel.
 2407          */
 2408         if (p->mm && printk_ratelimit()) {
 2409                 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
 2410                                 task_pid_nr(p), p->comm, cpu);
 2411         }
 2412 
 2413         return dest_cpu;
 2414 }
 2415 
 2416 /*
 2417  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
 2418  */
 2419 static inline
 2420 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
 2421 {
 2422         int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
 2423 
 2424         /*
 2425          * In order not to call set_task_cpu() on a blocking task we need
 2426          * to rely on ttwu() to place the task on a valid ->cpus_allowed
 2427          * cpu.
 2428          *
 2429          * Since this is common to all placement strategies, this lives here.
 2430          *
 2431          * [ this allows ->select_task() to simply return task_cpu(p) and
 2432          *   not worry about this generic constraint ]
 2433          */
 2434         if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
 2435                      !cpu_online(cpu)))
 2436                 cpu = select_fallback_rq(task_cpu(p), p);
 2437 
 2438         return cpu;
 2439 }
 2440 
 2441 static void update_avg(u64 *avg, u64 sample)
 2442 {
 2443         s64 diff = sample - *avg;
 2444         *avg += diff >> 3;
 2445 }
 2446 #endif
 2447 
 2448 static void
 2449 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
 2450 {
 2451 #ifdef CONFIG_SCHEDSTATS
 2452         struct rq *rq = this_rq();
 2453 
 2454 #ifdef CONFIG_SMP
 2455         int this_cpu = smp_processor_id();
 2456 
 2457         if (cpu == this_cpu) {
 2458                 schedstat_inc(rq, ttwu_local);
 2459                 schedstat_inc(p, se.statistics.nr_wakeups_local);
 2460         } else {
 2461                 struct sched_domain *sd;
 2462 
 2463                 schedstat_inc(p, se.statistics.nr_wakeups_remote);
 2464                 rcu_read_lock();
 2465                 for_each_domain(this_cpu, sd) {
 2466                         if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
 2467                                 schedstat_inc(sd, ttwu_wake_remote);
 2468                                 break;
 2469                         }
 2470                 }
 2471                 rcu_read_unlock();
 2472         }
 2473 
 2474         if (wake_flags & WF_MIGRATED)
 2475                 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
 2476 
 2477 #endif /* CONFIG_SMP */
 2478 
 2479         schedstat_inc(rq, ttwu_count);
 2480         schedstat_inc(p, se.statistics.nr_wakeups);
 2481 
 2482         if (wake_flags & WF_SYNC)
 2483                 schedstat_inc(p, se.statistics.nr_wakeups_sync);
 2484 
 2485 #endif /* CONFIG_SCHEDSTATS */
 2486 }
 2487 
 2488 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
 2489 {
 2490         activate_task(rq, p, en_flags);
 2491         p->on_rq = 1;
 2492 
 2493         /* if a worker is waking up, notify workqueue */
 2494         if (p->flags & PF_WQ_WORKER)
 2495                 wq_worker_waking_up(p, cpu_of(rq));
 2496 }
 2497 
 2498 /*
 2499  * Mark the task runnable and perform wakeup-preemption.
 2500  */
 2501 static void
 2502 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
 2503 {
 2504         trace_sched_wakeup(p, true);
 2505         check_preempt_curr(rq, p, wake_flags);
 2506 
 2507         p->state = TASK_RUNNING;
 2508 #ifdef CONFIG_SMP
 2509         if (p->sched_class->task_woken)
 2510                 p->sched_class->task_woken(rq, p);
 2511 
 2512         if (rq->idle_stamp) {
 2513                 u64 delta = rq->clock - rq->idle_stamp;
 2514                 u64 max = 2*sysctl_sched_migration_cost;
 2515 
 2516                 if (delta > max)
 2517                         rq->avg_idle = max;
 2518                 else
 2519                         update_avg(&rq->avg_idle, delta);
 2520                 rq->idle_stamp = 0;
 2521         }
 2522 #endif
 2523 }
 2524 
 2525 static void
 2526 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
 2527 {
 2528 #ifdef CONFIG_SMP
 2529         if (p->sched_contributes_to_load)
 2530                 rq->nr_uninterruptible--;
 2531 #endif
 2532 
 2533         ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
 2534         ttwu_do_wakeup(rq, p, wake_flags);
 2535 }
 2536 
 2537 /*
 2538  * Called in case the task @p isn't fully descheduled from its runqueue,
 2539  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 2540  * since all we need to do is flip p->state to TASK_RUNNING, since
 2541  * the task is still ->on_rq.
 2542  */
 2543 static int ttwu_remote(struct task_struct *p, int wake_flags)
 2544 {
 2545         struct rq *rq;
 2546         int ret = 0;
 2547 
 2548         rq = __task_rq_lock(p);
 2549         if (p->on_rq) {
 2550                 ttwu_do_wakeup(rq, p, wake_flags);
 2551                 ret = 1;
 2552         }
 2553         __task_rq_unlock(rq);
 2554 
 2555         return ret;
 2556 }
 2557 
 2558 #ifdef CONFIG_SMP
 2559 static void sched_ttwu_do_pending(struct task_struct *list)
 2560 {
 2561         struct rq *rq = this_rq();
 2562 
 2563         raw_spin_lock(&rq->lock);
 2564 
 2565         while (list) {
 2566                 struct task_struct *p = list;
 2567                 list = list->wake_entry;
 2568                 ttwu_do_activate(rq, p, 0);
 2569         }
 2570 
 2571         raw_spin_unlock(&rq->lock);
 2572 }
 2573 
 2574 #ifdef CONFIG_HOTPLUG_CPU
 2575 
 2576 static void sched_ttwu_pending(void)
 2577 {
 2578         struct rq *rq = this_rq();
 2579         struct task_struct *list = xchg(&rq->wake_list, NULL);
 2580 
 2581         if (!list)
 2582                 return;
 2583 
 2584         sched_ttwu_do_pending(list);
 2585 }
 2586 
 2587 #endif /* CONFIG_HOTPLUG_CPU */
 2588 
 2589 void scheduler_ipi(void)
 2590 {
 2591         struct rq *rq = this_rq();
 2592         struct task_struct *list = xchg(&rq->wake_list, NULL);
 2593 
 2594         if (!list)
 2595                 return;
 2596 
 2597         /*
 2598          * Not all reschedule IPI handlers call irq_enter/irq_exit, since
 2599          * traditionally all their work was done from the interrupt return
 2600          * path. Now that we actually do some work, we need to make sure
 2601          * we do call them.
 2602          *
 2603          * Some archs already do call them, luckily irq_enter/exit nest
 2604          * properly.
 2605          *
 2606          * Arguably we should visit all archs and update all handlers,
 2607          * however a fair share of IPIs are still resched only so this would
 2608          * somewhat pessimize the simple resched case.
 2609          */
 2610         irq_enter();
 2611         sched_ttwu_do_pending(list);
 2612         irq_exit();
 2613 }
 2614 
 2615 static void ttwu_queue_remote(struct task_struct *p, int cpu)
 2616 {
 2617         struct rq *rq = cpu_rq(cpu);
 2618         struct task_struct *next = rq->wake_list;
 2619 
 2620         for (;;) {
 2621                 struct task_struct *old = next;
 2622 
 2623                 p->wake_entry = next;
 2624                 next = cmpxchg(&rq->wake_list, old, p);
 2625                 if (next == old)
 2626                         break;
 2627         }
 2628 
 2629         if (!next)
 2630                 smp_send_reschedule(cpu);
 2631 }
 2632 
 2633 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 2634 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
 2635 {
 2636         struct rq *rq;
 2637         int ret = 0;
 2638 
 2639         rq = __task_rq_lock(p);
 2640         if (p->on_cpu) {
 2641                 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
 2642                 ttwu_do_wakeup(rq, p, wake_flags);
 2643                 ret = 1;
 2644         }
 2645         __task_rq_unlock(rq);
 2646 
 2647         return ret;
 2648 
 2649 }
 2650 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
 2651 #endif /* CONFIG_SMP */
 2652 
 2653 static void ttwu_queue(struct task_struct *p, int cpu)
 2654 {
 2655         struct rq *rq = cpu_rq(cpu);
 2656 
 2657 #if defined(CONFIG_SMP)
 2658         if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
 2659                 sched_clock_cpu(cpu); /* sync clocks x-cpu */
 2660                 ttwu_queue_remote(p, cpu);
 2661                 return;
 2662         }
 2663 #endif
 2664 
 2665         raw_spin_lock(&rq->lock);
 2666         ttwu_do_activate(rq, p, 0);
 2667         raw_spin_unlock(&rq->lock);
 2668 }
 2669 
 2670 /**
 2671  * try_to_wake_up - wake up a thread
 2672  * @p: the thread to be awakened
 2673  * @state: the mask of task states that can be woken
 2674  * @wake_flags: wake modifier flags (WF_*)
 2675  *
 2676  * Put it on the run-queue if it's not already there. The "current"
 2677  * thread is always on the run-queue (except when the actual
 2678  * re-schedule is in progress), and as such you're allowed to do
 2679  * the simpler "current->state = TASK_RUNNING" to mark yourself
 2680  * runnable without the overhead of this.
 2681  *
 2682  * Returns %true if @p was woken up, %false if it was already running
 2683  * or @state didn't match @p's state.
 2684  */
 2685 static int
 2686 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
 2687 {
 2688         unsigned long flags;
 2689         int cpu, success = 0;
 2690 
 2691         smp_wmb();
 2692         raw_spin_lock_irqsave(&p->pi_lock, flags);
 2693         if (!(p->state & state))
 2694                 goto out;
 2695 
 2696         success = 1; /* we're going to change ->state */
 2697         cpu = task_cpu(p);
 2698 
 2699         if (p->on_rq && ttwu_remote(p, wake_flags))
 2700                 goto stat;
 2701 
 2702 #ifdef CONFIG_SMP
 2703         /*
 2704          * If the owning (remote) cpu is still in the middle of schedule() with
 2705          * this task as prev, wait until its done referencing the task.
 2706          */
 2707         while (p->on_cpu) {
 2708 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 2709                 /*
 2710                  * In case the architecture enables interrupts in
 2711                  * context_switch(), we cannot busy wait, since that
 2712                  * would lead to deadlocks when an interrupt hits and
 2713                  * tries to wake up @prev. So bail and do a complete
 2714                  * remote wakeup.
 2715                  */
 2716                 if (ttwu_activate_remote(p, wake_flags))
 2717                         goto stat;
 2718 #else
 2719                 cpu_relax();
 2720 #endif
 2721         }
 2722         /*
 2723          * Pairs with the smp_wmb() in finish_lock_switch().
 2724          */
 2725         smp_rmb();
 2726 
 2727         p->sched_contributes_to_load = !!task_contributes_to_load(p);
 2728         p->state = TASK_WAKING;
 2729 
 2730         if (p->sched_class->task_waking)
 2731                 p->sched_class->task_waking(p);
 2732 
 2733         cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
 2734         if (task_cpu(p) != cpu) {
 2735                 wake_flags |= WF_MIGRATED;
 2736                 set_task_cpu(p, cpu);
 2737         }
 2738 #endif /* CONFIG_SMP */
 2739 
 2740         ttwu_queue(p, cpu);
 2741 stat:
 2742         ttwu_stat(p, cpu, wake_flags);
 2743 out:
 2744         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 2745 
 2746         return success;
 2747 }
 2748 
 2749 /**
 2750  * try_to_wake_up_local - try to wake up a local task with rq lock held
 2751  * @p: the thread to be awakened
 2752  *
 2753  * Put @p on the run-queue if it's not already there. The caller must
 2754  * ensure that this_rq() is locked, @p is bound to this_rq() and not
 2755  * the current task.
 2756  */
 2757 static void try_to_wake_up_local(struct task_struct *p)
 2758 {
 2759         struct rq *rq = task_rq(p);
 2760 
 2761         BUG_ON(rq != this_rq());
 2762         BUG_ON(p == current);
 2763         lockdep_assert_held(&rq->lock);
 2764 
 2765         if (!raw_spin_trylock(&p->pi_lock)) {
 2766                 raw_spin_unlock(&rq->lock);
 2767                 raw_spin_lock(&p->pi_lock);
 2768                 raw_spin_lock(&rq->lock);
 2769         }
 2770 
 2771         if (!(p->state & TASK_NORMAL))
 2772                 goto out;
 2773 
 2774         if (!p->on_rq)
 2775                 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
 2776 
 2777         ttwu_do_wakeup(rq, p, 0);
 2778         ttwu_stat(p, smp_processor_id(), 0);
 2779 out:
 2780         raw_spin_unlock(&p->pi_lock);
 2781 }
 2782 
 2783 /**
 2784  * wake_up_process - Wake up a specific process
 2785  * @p: The process to be woken up.
 2786  *
 2787  * Attempt to wake up the nominated process and move it to the set of runnable
 2788  * processes.  Returns 1 if the process was woken up, 0 if it was already
 2789  * running.
 2790  *
 2791  * It may be assumed that this function implies a write memory barrier before
 2792  * changing the task state if and only if any tasks are woken up.
 2793  */
 2794 int wake_up_process(struct task_struct *p)
 2795 {
 2796         return try_to_wake_up(p, TASK_ALL, 0);
 2797 }
 2798 EXPORT_SYMBOL(wake_up_process);
 2799 
 2800 int wake_up_state(struct task_struct *p, unsigned int state)
 2801 {
 2802         return try_to_wake_up(p, state, 0);
 2803 }
 2804 
 2805 /*
 2806  * Perform scheduler related setup for a newly forked process p.
 2807  * p is forked by current.
 2808  *
 2809  * __sched_fork() is basic setup used by init_idle() too:
 2810  */
 2811 static void __sched_fork(struct task_struct *p)
 2812 {
 2813         p->on_rq                        = 0;
 2814 
 2815         p->se.on_rq                     = 0;
 2816         p->se.exec_start                = 0;
 2817         p->se.sum_exec_runtime          = 0;
 2818         p->se.prev_sum_exec_runtime     = 0;
 2819         p->se.nr_migrations             = 0;
 2820         p->se.vruntime                  = 0;
 2821         INIT_LIST_HEAD(&p->se.group_node);
 2822 
 2823 #ifdef CONFIG_SCHEDSTATS
 2824         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
 2825 #endif
 2826 
 2827         INIT_LIST_HEAD(&p->rt.run_list);
 2828 
 2829 #ifdef CONFIG_PREEMPT_NOTIFIERS
 2830         INIT_HLIST_HEAD(&p->preempt_notifiers);
 2831 #endif
 2832 }
 2833 
 2834 /*
 2835  * fork()/clone()-time setup:
 2836  */
 2837 void sched_fork(struct task_struct *p)
 2838 {
 2839         unsigned long flags;
 2840         int cpu = get_cpu();
 2841 
 2842         __sched_fork(p);
 2843         /*
 2844          * We mark the process as running here. This guarantees that
 2845          * nobody will actually run it, and a signal or other external
 2846          * event cannot wake it up and insert it on the runqueue either.
 2847          */
 2848         p->state = TASK_RUNNING;
 2849 
 2850         /*
 2851          * Revert to default priority/policy on fork if requested.
 2852          */
 2853         if (unlikely(p->sched_reset_on_fork)) {
 2854                 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
 2855                         p->policy = SCHED_NORMAL;
 2856                         p->normal_prio = p->static_prio;
 2857                 }
 2858 
 2859                 if (PRIO_TO_NICE(p->static_prio) < 0) {
 2860                         p->static_prio = NICE_TO_PRIO(0);
 2861                         p->normal_prio = p->static_prio;
 2862                         set_load_weight(p);
 2863                 }
 2864 
 2865                 /*
 2866                  * We don't need the reset flag anymore after the fork. It has
 2867                  * fulfilled its duty:
 2868                  */
 2869                 p->sched_reset_on_fork = 0;
 2870         }
 2871 
 2872         /*
 2873          * Make sure we do not leak PI boosting priority to the child.
 2874          */
 2875         p->prio = current->normal_prio;
 2876 
 2877         if (!rt_prio(p->prio))
 2878                 p->sched_class = &fair_sched_class;
 2879 
 2880         if (p->sched_class->task_fork)
 2881                 p->sched_class->task_fork(p);
 2882 
 2883         /*
 2884          * The child is not yet in the pid-hash so no cgroup attach races,
 2885          * and the cgroup is pinned to this child due to cgroup_fork()
 2886          * is ran before sched_fork().
 2887          *
 2888          * Silence PROVE_RCU.
 2889          */
 2890         raw_spin_lock_irqsave(&p->pi_lock, flags);
 2891         set_task_cpu(p, cpu);
 2892         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 2893 
 2894 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 2895         if (likely(sched_info_on()))
 2896                 memset(&p->sched_info, 0, sizeof(p->sched_info));
 2897 #endif
 2898 #if defined(CONFIG_SMP)
 2899         p->on_cpu = 0;
 2900 #endif
 2901 #ifdef CONFIG_PREEMPT_COUNT
 2902         /* Want to start with kernel preemption disabled. */
 2903         task_thread_info(p)->preempt_count = 1;
 2904 #endif
 2905 #ifdef CONFIG_SMP
 2906         plist_node_init(&p->pushable_tasks, MAX_PRIO);
 2907 #endif
 2908 
 2909         put_cpu();
 2910 }
 2911 
 2912 /*
 2913  * wake_up_new_task - wake up a newly created task for the first time.
 2914  *
 2915  * This function will do some initial scheduler statistics housekeeping
 2916  * that must be done for every newly created context, then puts the task
 2917  * on the runqueue and wakes it.
 2918  */
 2919 void wake_up_new_task(struct task_struct *p)
 2920 {
 2921         unsigned long flags;
 2922         struct rq *rq;
 2923 
 2924         raw_spin_lock_irqsave(&p->pi_lock, flags);
 2925 #ifdef CONFIG_SMP
 2926         /*
 2927          * Fork balancing, do it here and not earlier because:
 2928          *  - cpus_allowed can change in the fork path
 2929          *  - any previously selected cpu might disappear through hotplug
 2930          */
 2931         set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
 2932 #endif
 2933 
 2934         rq = __task_rq_lock(p);
 2935         activate_task(rq, p, 0);
 2936         p->on_rq = 1;
 2937         trace_sched_wakeup_new(p, true);
 2938         check_preempt_curr(rq, p, WF_FORK);
 2939 #ifdef CONFIG_SMP
 2940         if (p->sched_class->task_woken)
 2941                 p->sched_class->task_woken(rq, p);
 2942 #endif
 2943         task_rq_unlock(rq, p, &flags);
 2944 }
 2945 
 2946 #ifdef CONFIG_PREEMPT_NOTIFIERS
 2947 
 2948 /**
 2949  * preempt_notifier_register - tell me when current is being preempted & rescheduled
 2950  * @notifier: notifier struct to register
 2951  */
 2952 void preempt_notifier_register(struct preempt_notifier *notifier)
 2953 {
 2954         hlist_add_head(&notifier->link, &current->preempt_notifiers);
 2955 }
 2956 EXPORT_SYMBOL_GPL(preempt_notifier_register);
 2957 
 2958 /**
 2959  * preempt_notifier_unregister - no longer interested in preemption notifications
 2960  * @notifier: notifier struct to unregister
 2961  *
 2962  * This is safe to call from within a preemption notifier.
 2963  */
 2964 void preempt_notifier_unregister(struct preempt_notifier *notifier)
 2965 {
 2966         hlist_del(&notifier->link);
 2967 }
 2968 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
 2969 
 2970 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
 2971 {
 2972         struct preempt_notifier *notifier;
 2973         struct hlist_node *node;
 2974 
 2975         hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
 2976                 notifier->ops->sched_in(notifier, raw_smp_processor_id());
 2977 }
 2978 
 2979 static void
 2980 fire_sched_out_preempt_notifiers(struct task_struct *curr,
 2981                                  struct task_struct *next)
 2982 {
 2983         struct preempt_notifier *notifier;
 2984         struct hlist_node *node;
 2985 
 2986         hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
 2987                 notifier->ops->sched_out(notifier, next);
 2988 }
 2989 
 2990 #else /* !CONFIG_PREEMPT_NOTIFIERS */
 2991 
 2992 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
 2993 {
 2994 }
 2995 
 2996 static void
 2997 fire_sched_out_preempt_notifiers(struct task_struct *curr,
 2998                                  struct task_struct *next)
 2999 {
 3000 }
 3001 
 3002 #endif /* CONFIG_PREEMPT_NOTIFIERS */
 3003 
 3004 /**
 3005  * prepare_task_switch - prepare to switch tasks
 3006  * @rq: the runqueue preparing to switch
 3007  * @prev: the current task that is being switched out
 3008  * @next: the task we are going to switch to.
 3009  *
 3010  * This is called with the rq lock held and interrupts off. It must
 3011  * be paired with a subsequent finish_task_switch after the context
 3012  * switch.
 3013  *
 3014  * prepare_task_switch sets up locking and calls architecture specific
 3015  * hooks.
 3016  */
 3017 static inline void
 3018 prepare_task_switch(struct rq *rq, struct task_struct *prev,
 3019                     struct task_struct *next)
 3020 {
 3021         sched_info_switch(prev, next);
 3022         perf_event_task_sched_out(prev, next);
 3023         fire_sched_out_preempt_notifiers(prev, next);
 3024         prepare_lock_switch(rq, next);
 3025         prepare_arch_switch(next);
 3026         trace_sched_switch(prev, next);
 3027 }
 3028 
 3029 /**
 3030  * finish_task_switch - clean up after a task-switch
 3031  * @rq: runqueue associated with task-switch
 3032  * @prev: the thread we just switched away from.
 3033  *
 3034  * finish_task_switch must be called after the context switch, paired
 3035  * with a prepare_task_switch call before the context switch.
 3036  * finish_task_switch will reconcile locking set up by prepare_task_switch,
 3037  * and do any other architecture-specific cleanup actions.
 3038  *
 3039  * Note that we may have delayed dropping an mm in context_switch(). If
 3040  * so, we finish that here outside of the runqueue lock. (Doing it
 3041  * with the lock held can cause deadlocks; see schedule() for
 3042  * details.)
 3043  */
 3044 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
 3045         __releases(rq->lock)
 3046 {
 3047         struct mm_struct *mm = rq->prev_mm;
 3048         long prev_state;
 3049 
 3050         rq->prev_mm = NULL;
 3051 
 3052         /*
 3053          * A task struct has one reference for the use as "current".
 3054          * If a task dies, then it sets TASK_DEAD in tsk->state and calls
 3055          * schedule one last time. The schedule call will never return, and
 3056          * the scheduled task must drop that reference.
 3057          * The test for TASK_DEAD must occur while the runqueue locks are
 3058          * still held, otherwise prev could be scheduled on another cpu, die
 3059          * there before we look at prev->state, and then the reference would
 3060          * be dropped twice.
 3061          *              Manfred Spraul <manfred@colorfullife.com>
 3062          */
 3063         prev_state = prev->state;
 3064         finish_arch_switch(prev);
 3065 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 3066         local_irq_disable();
 3067 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
 3068         perf_event_task_sched_in(current);
 3069 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 3070         local_irq_enable();
 3071 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
 3072         finish_lock_switch(rq, prev);
 3073 
 3074         fire_sched_in_preempt_notifiers(current);
 3075         if (mm)
 3076                 mmdrop(mm);
 3077         if (unlikely(prev_state == TASK_DEAD)) {
 3078                 /*
 3079                  * Remove function-return probe instances associated with this
 3080                  * task and put them back on the free list.
 3081                  */
 3082                 kprobe_flush_task(prev);
 3083                 put_task_struct(prev);
 3084         }
 3085 }
 3086 
 3087 #ifdef CONFIG_SMP
 3088 
 3089 /* assumes rq->lock is held */
 3090 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
 3091 {
 3092         if (prev->sched_class->pre_schedule)
 3093                 prev->sched_class->pre_schedule(rq, prev);
 3094 }
 3095 
 3096 /* rq->lock is NOT held, but preemption is disabled */
 3097 static inline void post_schedule(struct rq *rq)
 3098 {
 3099         if (rq->post_schedule) {
 3100                 unsigned long flags;
 3101 
 3102                 raw_spin_lock_irqsave(&rq->lock, flags);
 3103                 if (rq->curr->sched_class->post_schedule)
 3104                         rq->curr->sched_class->post_schedule(rq);
 3105                 raw_spin_unlock_irqrestore(&rq->lock, flags);
 3106 
 3107                 rq->post_schedule = 0;
 3108         }
 3109 }
 3110 
 3111 #else
 3112 
 3113 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
 3114 {
 3115 }
 3116 
 3117 static inline void post_schedule(struct rq *rq)
 3118 {
 3119 }
 3120 
 3121 #endif
 3122 
 3123 /**
 3124  * schedule_tail - first thing a freshly forked thread must call.
 3125  * @prev: the thread we just switched away from.
 3126  */
 3127 asmlinkage void schedule_tail(struct task_struct *prev)
 3128         __releases(rq->lock)
 3129 {
 3130         struct rq *rq = this_rq();
 3131 
 3132         finish_task_switch(rq, prev);
 3133 
 3134         /*
 3135          * FIXME: do we need to worry about rq being invalidated by the
 3136          * task_switch?
 3137          */
 3138         post_schedule(rq);
 3139 
 3140 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
 3141         /* In this case, finish_task_switch does not reenable preemption */
 3142         preempt_enable();
 3143 #endif
 3144         if (current->set_child_tid)
 3145                 put_user(task_pid_vnr(current), current->set_child_tid);
 3146 }
 3147 
 3148 /*
 3149  * context_switch - switch to the new MM and the new
 3150  * thread's register state.
 3151  */
 3152 static inline void
 3153 context_switch(struct rq *rq, struct task_struct *prev,
 3154                struct task_struct *next)
 3155 {
 3156         struct mm_struct *mm, *oldmm;
 3157 
 3158         prepare_task_switch(rq, prev, next);
 3159 
 3160         mm = next->mm;
 3161         oldmm = prev->active_mm;
 3162         /*
 3163          * For paravirt, this is coupled with an exit in switch_to to
 3164          * combine the page table reload and the switch backend into
 3165          * one hypercall.
 3166          */
 3167         arch_start_context_switch(prev);
 3168 
 3169         if (!mm) {
 3170                 next->active_mm = oldmm;
 3171                 atomic_inc(&oldmm->mm_count);
 3172                 enter_lazy_tlb(oldmm, next);
 3173         } else
 3174                 switch_mm(oldmm, mm, next);
 3175 
 3176         if (!prev->mm) {
 3177                 prev->active_mm = NULL;
 3178                 rq->prev_mm = oldmm;
 3179         }
 3180         /*
 3181          * Since the runqueue lock will be released by the next
 3182          * task (which is an invalid locking op but in the case
 3183          * of the scheduler it's an obvious special-case), so we
 3184          * do an early lockdep release here:
 3185          */
 3186 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
 3187         spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
 3188 #endif
 3189 
 3190         /* Here we just switch the register state and the stack. */
 3191         switch_to(prev, next, prev);
 3192 
 3193         barrier();
 3194         /*
 3195          * this_rq must be evaluated again because prev may have moved
 3196          * CPUs since it called schedule(), thus the 'rq' on its stack
 3197          * frame will be invalid.
 3198          */
 3199         finish_task_switch(this_rq(), prev);
 3200 }
 3201 
 3202 /*
 3203  * nr_running, nr_uninterruptible and nr_context_switches:
 3204  *
 3205  * externally visible scheduler statistics: current number of runnable
 3206  * threads, current number of uninterruptible-sleeping threads, total
 3207  * number of context switches performed since bootup.
 3208  */
 3209 unsigned long nr_running(void)
 3210 {
 3211         unsigned long i, sum = 0;
 3212 
 3213         for_each_online_cpu(i)
 3214                 sum += cpu_rq(i)->nr_running;
 3215 
 3216         return sum;
 3217 }
 3218 
 3219 unsigned long nr_uninterruptible(void)
 3220 {
 3221         unsigned long i, sum = 0;
 3222 
 3223         for_each_possible_cpu(i)
 3224                 sum += cpu_rq(i)->nr_uninterruptible;
 3225 
 3226         /*
 3227          * Since we read the counters lockless, it might be slightly
 3228          * inaccurate. Do not allow it to go below zero though:
 3229          */
 3230         if (unlikely((long)sum < 0))
 3231                 sum = 0;
 3232 
 3233         return sum;
 3234 }
 3235 
 3236 unsigned long long nr_context_switches(void)
 3237 {
 3238         int i;
 3239         unsigned long long sum = 0;
 3240 
 3241         for_each_possible_cpu(i)
 3242                 sum += cpu_rq(i)->nr_switches;
 3243 
 3244         return sum;
 3245 }
 3246 
 3247 unsigned long nr_iowait(void)
 3248 {
 3249         unsigned long i, sum = 0;
 3250 
 3251         for_each_possible_cpu(i)
 3252                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
 3253 
 3254         return sum;
 3255 }
 3256 
 3257 unsigned long nr_iowait_cpu(int cpu)
 3258 {
 3259         struct rq *this = cpu_rq(cpu);
 3260         return atomic_read(&this->nr_iowait);
 3261 }
 3262 
 3263 unsigned long this_cpu_load(void)
 3264 {
 3265         struct rq *this = this_rq();
 3266         return this->cpu_load[0];
 3267 }
 3268 
 3269 
 3270 /* Variables and functions for calc_load */
 3271 static atomic_long_t calc_load_tasks;
 3272 static unsigned long calc_load_update;
 3273 unsigned long avenrun[3];
 3274 EXPORT_SYMBOL(avenrun);
 3275 
 3276 static long calc_load_fold_active(struct rq *this_rq)
 3277 {
 3278         long nr_active, delta = 0;
 3279 
 3280         nr_active = this_rq->nr_running;
 3281         nr_active += (long) this_rq->nr_uninterruptible;
 3282 
 3283         if (nr_active != this_rq->calc_load_active) {
 3284                 delta = nr_active - this_rq->calc_load_active;
 3285                 this_rq->calc_load_active = nr_active;
 3286         }
 3287 
 3288         return delta;
 3289 }
 3290 
 3291 static unsigned long
 3292 calc_load(unsigned long load, unsigned long exp, unsigned long active)
 3293 {
 3294         load *= exp;
 3295         load += active * (FIXED_1 - exp);
 3296         load += 1UL << (FSHIFT - 1);
 3297         return load >> FSHIFT;
 3298 }
 3299 
 3300 #ifdef CONFIG_NO_HZ
 3301 /*
 3302  * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 3303  *
 3304  * When making the ILB scale, we should try to pull this in as well.
 3305  */
 3306 static atomic_long_t calc_load_tasks_idle;
 3307 
 3308 static void calc_load_account_idle(struct rq *this_rq)
 3309 {
 3310         long delta;
 3311 
 3312         delta = calc_load_fold_active(this_rq);
 3313         if (delta)
 3314                 atomic_long_add(delta, &calc_load_tasks_idle);
 3315 }
 3316 
 3317 static long calc_load_fold_idle(void)
 3318 {
 3319         long delta = 0;
 3320 
 3321         /*
 3322          * Its got a race, we don't care...
 3323          */
 3324         if (atomic_long_read(&calc_load_tasks_idle))
 3325                 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
 3326 
 3327         return delta;
 3328 }
 3329 
 3330 /**
 3331  * fixed_power_int - compute: x^n, in O(log n) time
 3332  *
 3333  * @x:         base of the power
 3334  * @frac_bits: fractional bits of @x
 3335  * @n:         power to raise @x to.
 3336  *
 3337  * By exploiting the relation between the definition of the natural power
 3338  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 3339  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 3340  * (where: n_i \elem {0, 1}, the binary vector representing n),
 3341  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 3342  * of course trivially computable in O(log_2 n), the length of our binary
 3343  * vector.
 3344  */
 3345 static unsigned long
 3346 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
 3347 {
 3348         unsigned long result = 1UL << frac_bits;
 3349 
 3350         if (n) for (;;) {
 3351                 if (n & 1) {
 3352                         result *= x;
 3353                         result += 1UL << (frac_bits - 1);
 3354                         result >>= frac_bits;
 3355                 }
 3356                 n >>= 1;
 3357                 if (!n)
 3358                         break;
 3359                 x *= x;
 3360                 x += 1UL << (frac_bits - 1);
 3361                 x >>= frac_bits;
 3362         }
 3363 
 3364         return result;
 3365 }
 3366 
 3367 /*
 3368  * a1 = a0 * e + a * (1 - e)
 3369  *
 3370  * a2 = a1 * e + a * (1 - e)
 3371  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 3372  *    = a0 * e^2 + a * (1 - e) * (1 + e)
 3373  *
 3374  * a3 = a2 * e + a * (1 - e)
 3375  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 3376  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 3377  *
 3378  *  ...
 3379  *
 3380  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 3381  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 3382  *    = a0 * e^n + a * (1 - e^n)
 3383  *
 3384  * [1] application of the geometric series:
 3385  *
 3386  *              n         1 - x^(n+1)
 3387  *     S_n := \Sum x^i = -------------
 3388  *             i=0          1 - x
 3389  */
 3390 static unsigned long
 3391 calc_load_n(unsigned long load, unsigned long exp,
 3392             unsigned long active, unsigned int n)
 3393 {
 3394 
 3395         return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
 3396 }
 3397 
 3398 /*
 3399  * NO_HZ can leave us missing all per-cpu ticks calling
 3400  * calc_load_account_active(), but since an idle CPU folds its delta into
 3401  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 3402  * in the pending idle delta if our idle period crossed a load cycle boundary.
 3403  *
 3404  * Once we've updated the global active value, we need to apply the exponential
 3405  * weights adjusted to the number of cycles missed.
 3406  */
 3407 static void calc_global_nohz(unsigned long ticks)
 3408 {
 3409         long delta, active, n;
 3410 
 3411         if (time_before(jiffies, calc_load_update))
 3412                 return;
 3413 
 3414         /*
 3415          * If we crossed a calc_load_update boundary, make sure to fold
 3416          * any pending idle changes, the respective CPUs might have
 3417          * missed the tick driven calc_load_account_active() update
 3418          * due to NO_HZ.
 3419          */
 3420         delta = calc_load_fold_idle();
 3421         if (delta)
 3422                 atomic_long_add(delta, &calc_load_tasks);
 3423 
 3424         /*
 3425          * If we were idle for multiple load cycles, apply them.
 3426          */
 3427         if (ticks >= LOAD_FREQ) {
 3428                 n = ticks / LOAD_FREQ;
 3429 
 3430                 active = atomic_long_read(&calc_load_tasks);
 3431                 active = active > 0 ? active * FIXED_1 : 0;
 3432 
 3433                 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
 3434                 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
 3435                 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
 3436 
 3437                 calc_load_update += n * LOAD_FREQ;
 3438         }
 3439 
 3440         /*
 3441          * Its possible the remainder of the above division also crosses
 3442          * a LOAD_FREQ period, the regular check in calc_global_load()
 3443          * which comes after this will take care of that.
 3444          *
 3445          * Consider us being 11 ticks before a cycle completion, and us
 3446          * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
 3447          * age us 4 cycles, and the test in calc_global_load() will
 3448          * pick up the final one.
 3449          */
 3450 }
 3451 #else
 3452 static void calc_load_account_idle(struct rq *this_rq)
 3453 {
 3454 }
 3455 
 3456 static inline long calc_load_fold_idle(void)
 3457 {
 3458         return 0;
 3459 }
 3460 
 3461 static void calc_global_nohz(unsigned long ticks)
 3462 {
 3463 }
 3464 #endif
 3465 
 3466 /**
 3467  * get_avenrun - get the load average array
 3468  * @loads:      pointer to dest load array
 3469  * @offset:     offset to add
 3470  * @shift:      shift count to shift the result left
 3471  *
 3472  * These values are estimates at best, so no need for locking.
 3473  */
 3474 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
 3475 {
 3476         loads[0] = (avenrun[0] + offset) << shift;
 3477         loads[1] = (avenrun[1] + offset) << shift;
 3478         loads[2] = (avenrun[2] + offset) << shift;
 3479 }
 3480 
 3481 /*
 3482  * calc_load - update the avenrun load estimates 10 ticks after the
 3483  * CPUs have updated calc_load_tasks.
 3484  */
 3485 void calc_global_load(unsigned long ticks)
 3486 {
 3487         long active;
 3488 
 3489         calc_global_nohz(ticks);
 3490 
 3491         if (time_before(jiffies, calc_load_update + 10))
 3492                 return;
 3493 
 3494         active = atomic_long_read(&calc_load_tasks);
 3495         active = active > 0 ? active * FIXED_1 : 0;
 3496 
 3497         avenrun[0] = calc_load(avenrun[0], EXP_1, active);
 3498         avenrun[1] = calc_load(avenrun[1], EXP_5, active);
 3499         avenrun[2] = calc_load(avenrun[2], EXP_15, active);
 3500 
 3501         calc_load_update += LOAD_FREQ;
 3502 }
 3503 
 3504 /*
 3505  * Called from update_cpu_load() to periodically update this CPU's
 3506  * active count.
 3507  */
 3508 static void calc_load_account_active(struct rq *this_rq)
 3509 {
 3510         long delta;
 3511 
 3512         if (time_before(jiffies, this_rq->calc_load_update))
 3513                 return;
 3514 
 3515         delta  = calc_load_fold_active(this_rq);
 3516         delta += calc_load_fold_idle();
 3517         if (delta)
 3518                 atomic_long_add(delta, &calc_load_tasks);
 3519 
 3520         this_rq->calc_load_update += LOAD_FREQ;
 3521 }
 3522 
 3523 /*
 3524  * The exact cpuload at various idx values, calculated at every tick would be
 3525  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 3526  *
 3527  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 3528  * on nth tick when cpu may be busy, then we have:
 3529  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 3530  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 3531  *
 3532  * decay_load_missed() below does efficient calculation of
 3533  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 3534  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 3535  *
 3536  * The calculation is approximated on a 128 point scale.
 3537  * degrade_zero_ticks is the number of ticks after which load at any
 3538  * particular idx is approximated to be zero.
 3539  * degrade_factor is a precomputed table, a row for each load idx.
 3540  * Each column corresponds to degradation factor for a power of two ticks,
 3541  * based on 128 point scale.
 3542  * Example:
 3543  * row 2, col 3 (=12) says that the degradation at load idx 2 after
 3544  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 3545  *
 3546  * With this power of 2 load factors, we can degrade the load n times
 3547  * by looking at 1 bits in n and doing as many mult/shift instead of
 3548  * n mult/shifts needed by the exact degradation.
 3549  */
 3550 #define DEGRADE_SHIFT           7
 3551 static const unsigned char
 3552                 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
 3553 static const unsigned char
 3554                 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
 3555                                         {0, 0, 0, 0, 0, 0, 0, 0},
 3556                                         {64, 32, 8, 0, 0, 0, 0, 0},
 3557                                         {96, 72, 40, 12, 1, 0, 0},
 3558                                         {112, 98, 75, 43, 15, 1, 0},
 3559                                         {120, 112, 98, 76, 45, 16, 2} };
 3560 
 3561 /*
 3562  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 3563  * would be when CPU is idle and so we just decay the old load without
 3564  * adding any new load.
 3565  */
 3566 static unsigned long
 3567 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
 3568 {
 3569         int j = 0;
 3570 
 3571         if (!missed_updates)
 3572                 return load;
 3573 
 3574         if (missed_updates >= degrade_zero_ticks[idx])
 3575                 return 0;
 3576 
 3577         if (idx == 1)
 3578                 return load >> missed_updates;
 3579 
 3580         while (missed_updates) {
 3581                 if (missed_updates % 2)
 3582                         load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
 3583 
 3584                 missed_updates >>= 1;
 3585                 j++;
 3586         }
 3587         return load;
 3588 }
 3589 
 3590 /*
 3591  * Update rq->cpu_load[] statistics. This function is usually called every
 3592  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 3593  * every tick. We fix it up based on jiffies.
 3594  */
 3595 static void update_cpu_load(struct rq *this_rq)
 3596 {
 3597         unsigned long this_load = this_rq->load.weight;
 3598         unsigned long curr_jiffies = jiffies;
 3599         unsigned long pending_updates;
 3600         int i, scale;
 3601 
 3602         this_rq->nr_load_updates++;
 3603 
 3604         /* Avoid repeated calls on same jiffy, when moving in and out of idle */
 3605         if (curr_jiffies == this_rq->last_load_update_tick)
 3606                 return;
 3607 
 3608         pending_updates = curr_jiffies - this_rq->last_load_update_tick;
 3609         this_rq->last_load_update_tick = curr_jiffies;
 3610 
 3611         /* Update our load: */
 3612         this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
 3613         for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
 3614                 unsigned long old_load, new_load;
 3615 
 3616                 /* scale is effectively 1 << i now, and >> i divides by scale */
 3617 
 3618                 old_load = this_rq->cpu_load[i];
 3619                 old_load = decay_load_missed(old_load, pending_updates - 1, i);
 3620                 new_load = this_load;
 3621                 /*
 3622                  * Round up the averaging division if load is increasing. This
 3623                  * prevents us from getting stuck on 9 if the load is 10, for
 3624                  * example.
 3625                  */
 3626                 if (new_load > old_load)
 3627                         new_load += scale - 1;
 3628 
 3629                 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
 3630         }
 3631 
 3632         sched_avg_update(this_rq);
 3633 }
 3634 
 3635 static void update_cpu_load_active(struct rq *this_rq)
 3636 {
 3637         update_cpu_load(this_rq);
 3638 
 3639         calc_load_account_active(this_rq);
 3640 }
 3641 
 3642 #ifdef CONFIG_SMP
 3643 
 3644 /*
 3645  * sched_exec - execve() is a valuable balancing opportunity, because at
 3646  * this point the task has the smallest effective memory and cache footprint.
 3647  */
 3648 void sched_exec(void)
 3649 {
 3650         struct task_struct *p = current;
 3651         unsigned long flags;
 3652         int dest_cpu;
 3653 
 3654         raw_spin_lock_irqsave(&p->pi_lock, flags);
 3655         dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
 3656         if (dest_cpu == smp_processor_id())
 3657                 goto unlock;
 3658 
 3659         if (likely(cpu_active(dest_cpu))) {
 3660                 struct migration_arg arg = { p, dest_cpu };
 3661 
 3662                 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 3663                 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
 3664                 return;
 3665         }
 3666 unlock:
 3667         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 3668 }
 3669 
 3670 #endif
 3671 
 3672 DEFINE_PER_CPU(struct kernel_stat, kstat);
 3673 
 3674 EXPORT_PER_CPU_SYMBOL(kstat);
 3675 
 3676 /*
 3677  * Return any ns on the sched_clock that have not yet been accounted in
 3678  * @p in case that task is currently running.
 3679  *
 3680  * Called with task_rq_lock() held on @rq.
 3681  */
 3682 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
 3683 {
 3684         u64 ns = 0;
 3685 
 3686         if (task_current(rq, p)) {
 3687                 update_rq_clock(rq);
 3688                 ns = rq->clock_task - p->se.exec_start;
 3689                 if ((s64)ns < 0)
 3690                         ns = 0;
 3691         }
 3692 
 3693         return ns;
 3694 }
 3695 
 3696 unsigned long long task_delta_exec(struct task_struct *p)
 3697 {
 3698         unsigned long flags;
 3699         struct rq *rq;
 3700         u64 ns = 0;
 3701 
 3702         rq = task_rq_lock(p, &flags);
 3703         ns = do_task_delta_exec(p, rq);
 3704         task_rq_unlock(rq, p, &flags);
 3705 
 3706         return ns;
 3707 }
 3708 
 3709 /*
 3710  * Return accounted runtime for the task.
 3711  * In case the task is currently running, return the runtime plus current's
 3712  * pending runtime that have not been accounted yet.
 3713  */
 3714 unsigned long long task_sched_runtime(struct task_struct *p)
 3715 {
 3716         unsigned long flags;
 3717         struct rq *rq;
 3718         u64 ns = 0;
 3719 
 3720         rq = task_rq_lock(p, &flags);
 3721         ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
 3722         task_rq_unlock(rq, p, &flags);
 3723 
 3724         return ns;
 3725 }
 3726 
 3727 /*
 3728  * Return sum_exec_runtime for the thread group.
 3729  * In case the task is currently running, return the sum plus current's
 3730  * pending runtime that have not been accounted yet.
 3731  *
 3732  * Note that the thread group might have other running tasks as well,
 3733  * so the return value not includes other pending runtime that other
 3734  * running tasks might have.
 3735  */
 3736 unsigned long long thread_group_sched_runtime(struct task_struct *p)
 3737 {
 3738         struct task_cputime totals;
 3739         unsigned long flags;
 3740         struct rq *rq;
 3741         u64 ns;
 3742 
 3743         rq = task_rq_lock(p, &flags);
 3744         thread_group_cputime(p, &totals);
 3745         ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
 3746         task_rq_unlock(rq, p, &flags);
 3747 
 3748         return ns;
 3749 }
 3750 
 3751 /*
 3752  * Account user cpu time to a process.
 3753  * @p: the process that the cpu time gets accounted to
 3754  * @cputime: the cpu time spent in user space since the last update
 3755  * @cputime_scaled: cputime scaled by cpu frequency
 3756  */
 3757 void account_user_time(struct task_struct *p, cputime_t cputime,
 3758                        cputime_t cputime_scaled)
 3759 {
 3760         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 3761         cputime64_t tmp;
 3762 
 3763         /* Add user time to process. */
 3764         p->utime = cputime_add(p->utime, cputime);
 3765         p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
 3766         account_group_user_time(p, cputime);
 3767 
 3768         /* Add user time to cpustat. */
 3769         tmp = cputime_to_cputime64(cputime);
 3770         if (TASK_NICE(p) > 0)
 3771                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
 3772         else
 3773                 cpustat->user = cputime64_add(cpustat->user, tmp);
 3774 
 3775         cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
 3776         /* Account for user time used */
 3777         acct_update_integrals(p);
 3778 }
 3779 
 3780 /*
 3781  * Account guest cpu time to a process.
 3782  * @p: the process that the cpu time gets accounted to
 3783  * @cputime: the cpu time spent in virtual machine since the last update
 3784  * @cputime_scaled: cputime scaled by cpu frequency
 3785  */
 3786 static void account_guest_time(struct task_struct *p, cputime_t cputime,
 3787                                cputime_t cputime_scaled)
 3788 {
 3789         cputime64_t tmp;
 3790         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 3791 
 3792         tmp = cputime_to_cputime64(cputime);
 3793 
 3794         /* Add guest time to process. */
 3795         p->utime = cputime_add(p->utime, cputime);
 3796         p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
 3797         account_group_user_time(p, cputime);
 3798         p->gtime = cputime_add(p->gtime, cputime);
 3799 
 3800         /* Add guest time to cpustat. */
 3801         if (TASK_NICE(p) > 0) {
 3802                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
 3803                 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
 3804         } else {
 3805                 cpustat->user = cputime64_add(cpustat->user, tmp);
 3806                 cpustat->guest = cputime64_add(cpustat->guest, tmp);
 3807         }
 3808 }
 3809 
 3810 /*
 3811  * Account system cpu time to a process and desired cpustat field
 3812  * @p: the process that the cpu time gets accounted to
 3813  * @cputime: the cpu time spent in kernel space since the last update
 3814  * @cputime_scaled: cputime scaled by cpu frequency
 3815  * @target_cputime64: pointer to cpustat field that has to be updated
 3816  */
 3817 static inline
 3818 void __account_system_time(struct task_struct *p, cputime_t cputime,
 3819                         cputime_t cputime_scaled, cputime64_t *target_cputime64)
 3820 {
 3821         cputime64_t tmp = cputime_to_cputime64(cputime);
 3822 
 3823         /* Add system time to process. */
 3824         p->stime = cputime_add(p->stime, cputime);
 3825         p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
 3826         account_group_system_time(p, cputime);
 3827 
 3828         /* Add system time to cpustat. */
 3829         *target_cputime64 = cputime64_add(*target_cputime64, tmp);
 3830         cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
 3831 
 3832         /* Account for system time used */
 3833         acct_update_integrals(p);
 3834 }
 3835 
 3836 /*
 3837  * Account system cpu time to a process.
 3838  * @p: the process that the cpu time gets accounted to
 3839  * @hardirq_offset: the offset to subtract from hardirq_count()
 3840  * @cputime: the cpu time spent in kernel space since the last update
 3841  * @cputime_scaled: cputime scaled by cpu frequency
 3842  */
 3843 void account_system_time(struct task_struct *p, int hardirq_offset,
 3844                          cputime_t cputime, cputime_t cputime_scaled)
 3845 {
 3846         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 3847         cputime64_t *target_cputime64;
 3848 
 3849         if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
 3850                 account_guest_time(p, cputime, cputime_scaled);
 3851                 return;
 3852         }
 3853 
 3854         if (hardirq_count() - hardirq_offset)
 3855                 target_cputime64 = &cpustat->irq;
 3856         else if (in_serving_softirq())
 3857                 target_cputime64 = &cpustat->softirq;
 3858         else
 3859                 target_cputime64 = &cpustat->system;
 3860 
 3861         __account_system_time(p, cputime, cputime_scaled, target_cputime64);
 3862 }
 3863 
 3864 /*
 3865  * Account for involuntary wait time.
 3866  * @cputime: the cpu time spent in involuntary wait
 3867  */
 3868 void account_steal_time(cputime_t cputime)
 3869 {
 3870         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 3871         cputime64_t cputime64 = cputime_to_cputime64(cputime);
 3872 
 3873         cpustat->steal = cputime64_add(cpustat->steal, cputime64);
 3874 }
 3875 
 3876 /*
 3877  * Account for idle time.
 3878  * @cputime: the cpu time spent in idle wait
 3879  */
 3880 void account_idle_time(cputime_t cputime)
 3881 {
 3882         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 3883         cputime64_t cputime64 = cputime_to_cputime64(cputime);
 3884         struct rq *rq = this_rq();
 3885 
 3886         if (atomic_read(&rq->nr_iowait) > 0)
 3887                 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
 3888         else
 3889                 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
 3890 }
 3891 
 3892 static __always_inline bool steal_account_process_tick(void)
 3893 {
 3894 #ifdef CONFIG_PARAVIRT
 3895         if (static_branch(&paravirt_steal_enabled)) {
 3896                 u64 steal, st = 0;
 3897 
 3898                 steal = paravirt_steal_clock(smp_processor_id());
 3899                 steal -= this_rq()->prev_steal_time;
 3900 
 3901                 st = steal_ticks(steal);
 3902                 this_rq()->prev_steal_time += st * TICK_NSEC;
 3903 
 3904                 account_steal_time(st);
 3905                 return st;
 3906         }
 3907 #endif
 3908         return false;
 3909 }
 3910 
 3911 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
 3912 
 3913 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 3914 /*
 3915  * Account a tick to a process and cpustat
 3916  * @p: the process that the cpu time gets accounted to
 3917  * @user_tick: is the tick from userspace
 3918  * @rq: the pointer to rq
 3919  *
 3920  * Tick demultiplexing follows the order
 3921  * - pending hardirq update
 3922  * - pending softirq update
 3923  * - user_time
 3924  * - idle_time
 3925  * - system time
 3926  *   - check for guest_time
 3927  *   - else account as system_time
 3928  *
 3929  * Check for hardirq is done both for system and user time as there is
 3930  * no timer going off while we are on hardirq and hence we may never get an
 3931  * opportunity to update it solely in system time.
 3932  * p->stime and friends are only updated on system time and not on irq
 3933  * softirq as those do not count in task exec_runtime any more.
 3934  */
 3935 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 3936                                                 struct rq *rq)
 3937 {
 3938         cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
 3939         cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
 3940         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 3941 
 3942         if (steal_account_process_tick())
 3943                 return;
 3944 
 3945         if (irqtime_account_hi_update()) {
 3946                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
 3947         } else if (irqtime_account_si_update()) {
 3948                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
 3949         } else if (this_cpu_ksoftirqd() == p) {
 3950                 /*
 3951                  * ksoftirqd time do not get accounted in cpu_softirq_time.
 3952                  * So, we have to handle it separately here.
 3953                  * Also, p->stime needs to be updated for ksoftirqd.
 3954                  */
 3955                 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
 3956                                         &cpustat->softirq);
 3957         } else if (user_tick) {
 3958                 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
 3959         } else if (p == rq->idle) {
 3960                 account_idle_time(cputime_one_jiffy);
 3961         } else if (p->flags & PF_VCPU) { /* System time or guest time */
 3962                 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
 3963         } else {
 3964                 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
 3965                                         &cpustat->system);
 3966         }
 3967 }
 3968 
 3969 static void irqtime_account_idle_ticks(int ticks)
 3970 {
 3971         int i;
 3972         struct rq *rq = this_rq();
 3973 
 3974         for (i = 0; i < ticks; i++)
 3975                 irqtime_account_process_tick(current, 0, rq);
 3976 }
 3977 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
 3978 static void irqtime_account_idle_ticks(int ticks) {}
 3979 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 3980                                                 struct rq *rq) {}
 3981 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 3982 
 3983 /*
 3984  * Account a single tick of cpu time.
 3985  * @p: the process that the cpu time gets accounted to
 3986  * @user_tick: indicates if the tick is a user or a system tick
 3987  */
 3988 void account_process_tick(struct task_struct *p, int user_tick)
 3989 {
 3990         cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
 3991         struct rq *rq = this_rq();
 3992 
 3993         if (sched_clock_irqtime) {
 3994                 irqtime_account_process_tick(p, user_tick, rq);
 3995                 return;
 3996         }
 3997 
 3998         if (steal_account_process_tick())
 3999                 return;
 4000 
 4001         if (user_tick)
 4002                 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
 4003         else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
 4004                 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
 4005                                     one_jiffy_scaled);
 4006         else
 4007                 account_idle_time(cputime_one_jiffy);
 4008 }
 4009 
 4010 /*
 4011  * Account multiple ticks of steal time.
 4012  * @p: the process from which the cpu time has been stolen
 4013  * @ticks: number of stolen ticks
 4014  */
 4015 void account_steal_ticks(unsigned long ticks)
 4016 {
 4017         account_steal_time(jiffies_to_cputime(ticks));
 4018 }
 4019 
 4020 /*
 4021  * Account multiple ticks of idle time.
 4022  * @ticks: number of stolen ticks
 4023  */
 4024 void account_idle_ticks(unsigned long ticks)
 4025 {
 4026 
 4027         if (sched_clock_irqtime) {
 4028                 irqtime_account_idle_ticks(ticks);
 4029                 return;
 4030         }
 4031 
 4032         account_idle_time(jiffies_to_cputime(ticks));
 4033 }
 4034 
 4035 #endif
 4036 
 4037 /*
 4038  * Use precise platform statistics if available:
 4039  */
 4040 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
 4041 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
 4042 {
 4043         *ut = p->utime;
 4044         *st = p->stime;
 4045 }
 4046 
 4047 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
 4048 {
 4049         struct task_cputime cputime;
 4050 
 4051         thread_group_cputime(p, &cputime);
 4052 
 4053         *ut = cputime.utime;
 4054         *st = cputime.stime;
 4055 }
 4056 #else
 4057 
 4058 #ifndef nsecs_to_cputime
 4059 # define nsecs_to_cputime(__nsecs)      nsecs_to_jiffies(__nsecs)
 4060 #endif
 4061 
 4062 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
 4063 {
 4064         cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
 4065 
 4066         /*
 4067          * Use CFS's precise accounting:
 4068          */
 4069         rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
 4070 
 4071         if (total) {
 4072                 u64 temp = rtime;
 4073 
 4074                 temp *= utime;
 4075                 do_div(temp, total);
 4076                 utime = (cputime_t)temp;
 4077         } else
 4078                 utime = rtime;
 4079 
 4080         /*
 4081          * Compare with previous values, to keep monotonicity:
 4082          */
 4083         p->prev_utime = max(p->prev_utime, utime);
 4084         p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
 4085 
 4086         *ut = p->prev_utime;
 4087         *st = p->prev_stime;
 4088 }
 4089 
 4090 /*
 4091  * Must be called with siglock held.
 4092  */
 4093 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
 4094 {
 4095         struct signal_struct *sig = p->signal;
 4096         struct task_cputime cputime;
 4097         cputime_t rtime, utime, total;
 4098 
 4099         thread_group_cputime(p, &cputime);
 4100 
 4101         total = cputime_add(cputime.utime, cputime.stime);
 4102         rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
 4103 
 4104         if (total) {
 4105                 u64 temp = rtime;
 4106 
 4107                 temp *= cputime.utime;
 4108                 do_div(temp, total);
 4109                 utime = (cputime_t)temp;
 4110         } else
 4111                 utime = rtime;
 4112 
 4113         sig->prev_utime = max(sig->prev_utime, utime);
 4114         sig->prev_stime = max(sig->prev_stime,
 4115                               cputime_sub(rtime, sig->prev_utime));
 4116 
 4117         *ut = sig->prev_utime;
 4118         *st = sig->prev_stime;
 4119 }
 4120 #endif
 4121 
 4122 /*
 4123  * This function gets called by the timer code, with HZ frequency.
 4124  * We call it with interrupts disabled.
 4125  */
 4126 void scheduler_tick(void)
 4127 {
 4128         int cpu = smp_processor_id();
 4129         struct rq *rq = cpu_rq(cpu);
 4130         struct task_struct *curr = rq->curr;
 4131 
 4132         sched_clock_tick();
 4133 
 4134         raw_spin_lock(&rq->lock);
 4135         update_rq_clock(rq);
 4136         update_cpu_load_active(rq);
 4137         curr->sched_class->task_tick(rq, curr, 0);
 4138         raw_spin_unlock(&rq->lock);
 4139 
 4140         perf_event_task_tick();
 4141 
 4142 #ifdef CONFIG_SMP
 4143         rq->idle_at_tick = idle_cpu(cpu);
 4144         trigger_load_balance(rq, cpu);
 4145 #endif
 4146 }
 4147 
 4148 notrace unsigned long get_parent_ip(unsigned long addr)
 4149 {
 4150         if (in_lock_functions(addr)) {
 4151                 addr = CALLER_ADDR2;
 4152                 if (in_lock_functions(addr))
 4153                         addr = CALLER_ADDR3;
 4154         }
 4155         return addr;
 4156 }
 4157 
 4158 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
 4159                                 defined(CONFIG_PREEMPT_TRACER))
 4160 
 4161 void __kprobes add_preempt_count(int val)
 4162 {
 4163 #ifdef CONFIG_DEBUG_PREEMPT
 4164         /*
 4165          * Underflow?
 4166          */
 4167         if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
 4168                 return;
 4169 #endif
 4170         preempt_count() += val;
 4171 #ifdef CONFIG_DEBUG_PREEMPT
 4172         /*
 4173          * Spinlock count overflowing soon?
 4174          */
 4175         DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
 4176                                 PREEMPT_MASK - 10);
 4177 #endif
 4178         if (preempt_count() == val)
 4179                 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
 4180 }
 4181 EXPORT_SYMBOL(add_preempt_count);
 4182 
 4183 void __kprobes sub_preempt_count(int val)
 4184 {
 4185 #ifdef CONFIG_DEBUG_PREEMPT
 4186         /*
 4187          * Underflow?
 4188          */
 4189         if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
 4190                 return;
 4191         /*
 4192          * Is the spinlock portion underflowing?
 4193          */
 4194         if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
 4195                         !(preempt_count() & PREEMPT_MASK)))
 4196                 return;
 4197 #endif
 4198 
 4199         if (preempt_count() == val)
 4200                 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
 4201         preempt_count() -= val;
 4202 }
 4203 EXPORT_SYMBOL(sub_preempt_count);
 4204 
 4205 #endif
 4206 
 4207 /*
 4208  * Print scheduling while atomic bug:
 4209  */
 4210 static noinline void __schedule_bug(struct task_struct *prev)
 4211 {
 4212         struct pt_regs *regs = get_irq_regs();
 4213 
 4214         printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
 4215                 prev->comm, prev->pid, preempt_count());
 4216 
 4217         debug_show_held_locks(prev);
 4218         print_modules();
 4219         if (irqs_disabled())
 4220                 print_irqtrace_events(prev);
 4221 
 4222         if (regs)
 4223                 show_regs(regs);
 4224         else
 4225                 dump_stack();
 4226 }
 4227 
 4228 /*
 4229  * Various schedule()-time debugging checks and statistics:
 4230  */
 4231 static inline void schedule_debug(struct task_struct *prev)
 4232 {
 4233         /*
 4234          * Test if we are atomic. Since do_exit() needs to call into
 4235          * schedule() atomically, we ignore that path for now.
 4236          * Otherwise, whine if we are scheduling when we should not be.
 4237          */
 4238         if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
 4239                 __schedule_bug(prev);
 4240 
 4241         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
 4242 
 4243         schedstat_inc(this_rq(), sched_count);
 4244 }
 4245 
 4246 static void put_prev_task(struct rq *rq, struct task_struct *prev)
 4247 {
 4248         if (prev->on_rq || rq->skip_clock_update < 0)
 4249                 update_rq_clock(rq);
 4250         prev->sched_class->put_prev_task(rq, prev);
 4251 }
 4252 
 4253 /*
 4254  * Pick up the highest-prio task:
 4255  */
 4256 static inline struct task_struct *
 4257 pick_next_task(struct rq *rq)
 4258 {
 4259         const struct sched_class *class;
 4260         struct task_struct *p;
 4261 
 4262         /*
 4263          * Optimization: we know that if all tasks are in
 4264          * the fair class we can call that function directly:
 4265          */
 4266         if (likely(rq->nr_running == rq->cfs.nr_running)) {
 4267                 p = fair_sched_class.pick_next_task(rq);
 4268                 if (likely(p))
 4269                         return p;
 4270         }
 4271 
 4272         for_each_class(class) {
 4273                 p = class->pick_next_task(rq);
 4274                 if (p)
 4275                         return p;
 4276         }
 4277 
 4278         BUG(); /* the idle class will always have a runnable task */
 4279 }
 4280 
 4281 /*
 4282  * schedule() is the main scheduler function.
 4283  */
 4284 asmlinkage void __sched schedule(void)
 4285 {
 4286         struct task_struct *prev, *next;
 4287         unsigned long *switch_count;
 4288         struct rq *rq;
 4289         int cpu;
 4290 
 4291 need_resched:
 4292         preempt_disable();
 4293         cpu = smp_processor_id();
 4294         rq = cpu_rq(cpu);
 4295         rcu_note_context_switch(cpu);
 4296         prev = rq->curr;
 4297 
 4298         schedule_debug(prev);
 4299 
 4300         if (sched_feat(HRTICK))
 4301                 hrtick_clear(rq);
 4302 
 4303         raw_spin_lock_irq(&rq->lock);
 4304 
 4305         switch_count = &prev->nivcsw;
 4306         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
 4307                 if (unlikely(signal_pending_state(prev->state, prev))) {
 4308                         prev->state = TASK_RUNNING;
 4309                 } else {
 4310                         deactivate_task(rq, prev, DEQUEUE_SLEEP);
 4311                         prev->on_rq = 0;
 4312 
 4313                         /*
 4314                          * If a worker went to sleep, notify and ask workqueue
 4315                          * whether it wants to wake up a task to maintain
 4316                          * concurrency.
 4317                          */
 4318                         if (prev->flags & PF_WQ_WORKER) {
 4319                                 struct task_struct *to_wakeup;
 4320 
 4321                                 to_wakeup = wq_worker_sleeping(prev, cpu);
 4322                                 if (to_wakeup)
 4323                                         try_to_wake_up_local(to_wakeup);
 4324                         }
 4325 
 4326                         /*
 4327                          * If we are going to sleep and we have plugged IO
 4328                          * queued, make sure to submit it to avoid deadlocks.
 4329                          */
 4330                         if (blk_needs_flush_plug(prev)) {
 4331                                 raw_spin_unlock(&rq->lock);
 4332                                 blk_schedule_flush_plug(prev);
 4333                                 raw_spin_lock(&rq->lock);
 4334                         }
 4335                 }
 4336                 switch_count = &prev->nvcsw;
 4337         }
 4338 
 4339         pre_schedule(rq, prev);
 4340 
 4341         if (unlikely(!rq->nr_running))
 4342                 idle_balance(cpu, rq);
 4343 
 4344         put_prev_task(rq, prev);
 4345         next = pick_next_task(rq);
 4346         clear_tsk_need_resched(prev);
 4347         rq->skip_clock_update = 0;
 4348 
 4349         if (likely(prev != next)) {
 4350                 rq->nr_switches++;
 4351                 rq->curr = next;
 4352                 ++*switch_count;
 4353 
 4354                 context_switch(rq, prev, next); /* unlocks the rq */
 4355                 /*
 4356                  * The context switch have flipped the stack from under us
 4357                  * and restored the local variables which were saved when
 4358                  * this task called schedule() in the past. prev == current
 4359                  * is still correct, but it can be moved to another cpu/rq.
 4360                  */
 4361                 cpu = smp_processor_id();
 4362                 rq = cpu_rq(cpu);
 4363         } else
 4364                 raw_spin_unlock_irq(&rq->lock);
 4365 
 4366         post_schedule(rq);
 4367 
 4368         preempt_enable_no_resched();
 4369         if (need_resched())
 4370                 goto need_resched;
 4371 }
 4372 EXPORT_SYMBOL(schedule);
 4373 
 4374 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
 4375 
 4376 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
 4377 {
 4378         if (lock->owner != owner)
 4379                 return false;
 4380 
 4381         /*
 4382          * Ensure we emit the owner->on_cpu, dereference _after_ checking
 4383          * lock->owner still matches owner, if that fails, owner might
 4384          * point to free()d memory, if it still matches, the rcu_read_lock()
 4385          * ensures the memory stays valid.
 4386          */
 4387         barrier();
 4388 
 4389         return owner->on_cpu;
 4390 }
 4391 
 4392 /*
 4393  * Look out! "owner" is an entirely speculative pointer
 4394  * access and not reliable.
 4395  */
 4396 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
 4397 {
 4398         if (!sched_feat(OWNER_SPIN))
 4399                 return 0;
 4400 
 4401         rcu_read_lock();
 4402         while (owner_running(lock, owner)) {
 4403                 if (need_resched())
 4404                         break;
 4405 
 4406                 arch_mutex_cpu_relax();
 4407         }
 4408         rcu_read_unlock();
 4409 
 4410         /*
 4411          * We break out the loop above on need_resched() and when the
 4412          * owner changed, which is a sign for heavy contention. Return
 4413          * success only when lock->owner is NULL.
 4414          */
 4415         return lock->owner == NULL;
 4416 }
 4417 #endif
 4418 
 4419 #ifdef CONFIG_PREEMPT
 4420 /*
 4421  * this is the entry point to schedule() from in-kernel preemption
 4422  * off of preempt_enable. Kernel preemptions off return from interrupt
 4423  * occur there and call schedule directly.
 4424  */
 4425 asmlinkage void __sched notrace preempt_schedule(void)
 4426 {
 4427         struct thread_info *ti = current_thread_info();
 4428 
 4429         /*
 4430          * If there is a non-zero preempt_count or interrupts are disabled,
 4431          * we do not want to preempt the current task. Just return..
 4432          */
 4433         if (likely(ti->preempt_count || irqs_disabled()))
 4434                 return;
 4435 
 4436         do {
 4437                 add_preempt_count_notrace(PREEMPT_ACTIVE);
 4438                 schedule();
 4439                 sub_preempt_count_notrace(PREEMPT_ACTIVE);
 4440 
 4441                 /*
 4442                  * Check again in case we missed a preemption opportunity
 4443                  * between schedule and now.
 4444                  */
 4445                 barrier();
 4446         } while (need_resched());
 4447 }
 4448 EXPORT_SYMBOL(preempt_schedule);
 4449 
 4450 /*
 4451  * this is the entry point to schedule() from kernel preemption
 4452  * off of irq context.
 4453  * Note, that this is called and return with irqs disabled. This will
 4454  * protect us against recursive calling from irq.
 4455  */
 4456 asmlinkage void __sched preempt_schedule_irq(void)
 4457 {
 4458         struct thread_info *ti = current_thread_info();
 4459 
 4460         /* Catch callers which need to be fixed */
 4461         BUG_ON(ti->preempt_count || !irqs_disabled());
 4462 
 4463         do {
 4464                 add_preempt_count(PREEMPT_ACTIVE);
 4465                 local_irq_enable();
 4466                 schedule();
 4467                 local_irq_disable();
 4468                 sub_preempt_count(PREEMPT_ACTIVE);
 4469 
 4470                 /*
 4471                  * Check again in case we missed a preemption opportunity
 4472                  * between schedule and now.
 4473                  */
 4474                 barrier();
 4475         } while (need_resched());
 4476 }
 4477 
 4478 #endif /* CONFIG_PREEMPT */
 4479 
 4480 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
 4481                           void *key)
 4482 {
 4483         return try_to_wake_up(curr->private, mode, wake_flags);
 4484 }
 4485 EXPORT_SYMBOL(default_wake_function);
 4486 
 4487 /*
 4488  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 4489  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
 4490  * number) then we wake all the non-exclusive tasks and one exclusive task.
 4491  *
 4492  * There are circumstances in which we can try to wake a task which has already
 4493  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
 4494  * zero in this (rare) case, and we handle it by continuing to scan the queue.
 4495  */
 4496 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
 4497                         int nr_exclusive, int wake_flags, void *key)
 4498 {
 4499         wait_queue_t *curr, *next;
 4500 
 4501         list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
 4502                 unsigned flags = curr->flags;
 4503 
 4504                 if (curr->func(curr, mode, wake_flags, key) &&
 4505                                 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
 4506                         break;
 4507         }
 4508 }
 4509 
 4510 /**
 4511  * __wake_up - wake up threads blocked on a waitqueue.
 4512  * @q: the waitqueue
 4513  * @mode: which threads
 4514  * @nr_exclusive: how many wake-one or wake-many threads to wake up
 4515  * @key: is directly passed to the wakeup function
 4516  *
 4517  * It may be assumed that this function implies a write memory barrier before
 4518  * changing the task state if and only if any tasks are woken up.
 4519  */
 4520 void __wake_up(wait_queue_head_t *q, unsigned int mode,
 4521                         int nr_exclusive, void *key)
 4522 {
 4523         unsigned long flags;
 4524 
 4525         spin_lock_irqsave(&q->lock, flags);
 4526         __wake_up_common(q, mode, nr_exclusive, 0, key);
 4527         spin_unlock_irqrestore(&q->lock, flags);
 4528 }
 4529 EXPORT_SYMBOL(__wake_up);
 4530 
 4531 /*
 4532  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 4533  */
 4534 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
 4535 {
 4536         __wake_up_common(q, mode, 1, 0, NULL);
 4537 }
 4538 EXPORT_SYMBOL_GPL(__wake_up_locked);
 4539 
 4540 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
 4541 {
 4542         __wake_up_common(q, mode, 1, 0, key);
 4543 }
 4544 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
 4545 
 4546 /**
 4547  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
 4548  * @q: the waitqueue
 4549  * @mode: which threads
 4550  * @nr_exclusive: how many wake-one or wake-many threads to wake up
 4551  * @key: opaque value to be passed to wakeup targets
 4552  *
 4553  * The sync wakeup differs that the waker knows that it will schedule
 4554  * away soon, so while the target thread will be woken up, it will not
 4555  * be migrated to another CPU - ie. the two threads are 'synchronized'
 4556  * with each other. This can prevent needless bouncing between CPUs.
 4557  *
 4558  * On UP it can prevent extra preemption.
 4559  *
 4560  * It may be assumed that this function implies a write memory barrier before
 4561  * changing the task state if and only if any tasks are woken up.
 4562  */
 4563 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
 4564                         int nr_exclusive, void *key)
 4565 {
 4566         unsigned long flags;
 4567         int wake_flags = WF_SYNC;
 4568 
 4569         if (unlikely(!q))
 4570                 return;
 4571 
 4572         if (unlikely(!nr_exclusive))
 4573                 wake_flags = 0;
 4574 
 4575         spin_lock_irqsave(&q->lock, flags);
 4576         __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
 4577         spin_unlock_irqrestore(&q->lock, flags);
 4578 }
 4579 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
 4580 
 4581 /*
 4582  * __wake_up_sync - see __wake_up_sync_key()
 4583  */
 4584 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
 4585 {
 4586         __wake_up_sync_key(q, mode, nr_exclusive, NULL);
 4587 }
 4588 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
 4589 
 4590 /**
 4591  * complete: - signals a single thread waiting on this completion
 4592  * @x:  holds the state of this particular completion
 4593  *
 4594  * This will wake up a single thread waiting on this completion. Threads will be
 4595  * awakened in the same order in which they were queued.
 4596  *
 4597  * See also complete_all(), wait_for_completion() and related routines.
 4598  *
 4599  * It may be assumed that this function implies a write memory barrier before
 4600  * changing the task state if and only if any tasks are woken up.
 4601  */
 4602 void complete(struct completion *x)
 4603 {
 4604         unsigned long flags;
 4605 
 4606         spin_lock_irqsave(&x->wait.lock, flags);
 4607         x->done++;
 4608         __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
 4609         spin_unlock_irqrestore(&x->wait.lock, flags);
 4610 }
 4611 EXPORT_SYMBOL(complete);
 4612 
 4613 /**
 4614  * complete_all: - signals all threads waiting on this completion
 4615  * @x:  holds the state of this particular completion
 4616  *
 4617  * This will wake up all threads waiting on this particular completion event.
 4618  *
 4619  * It may be assumed that this function implies a write memory barrier before
 4620  * changing the task state if and only if any tasks are woken up.
 4621  */
 4622 void complete_all(struct completion *x)
 4623 {
 4624         unsigned long flags;
 4625 
 4626         spin_lock_irqsave(&x->wait.lock, flags);
 4627         x->done += UINT_MAX/2;
 4628         __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
 4629         spin_unlock_irqrestore(&x->wait.lock, flags);
 4630 }
 4631 EXPORT_SYMBOL(complete_all);
 4632 
 4633 static inline long __sched
 4634 do_wait_for_common(struct completion *x, long timeout, int state)
 4635 {
 4636         if (!x->done) {
 4637                 DECLARE_WAITQUEUE(wait, current);
 4638 
 4639                 __add_wait_queue_tail_exclusive(&x->wait, &wait);
 4640                 do {
 4641                         if (signal_pending_state(state, current)) {
 4642                                 timeout = -ERESTARTSYS;
 4643                                 break;
 4644                         }
 4645                         __set_current_state(state);
 4646                         spin_unlock_irq(&x->wait.lock);
 4647                         timeout = schedule_timeout(timeout);
 4648                         spin_lock_irq(&x->wait.lock);
 4649                 } while (!x->done && timeout);
 4650                 __remove_wait_queue(&x->wait, &wait);
 4651                 if (!x->done)
 4652                         return timeout;
 4653         }
 4654         x->done--;
 4655         return timeout ?: 1;
 4656 }
 4657 
 4658 static long __sched
 4659 wait_for_common(struct completion *x, long timeout, int state)
 4660 {
 4661         might_sleep();
 4662 
 4663         spin_lock_irq(&x->wait.lock);
 4664         timeout = do_wait_for_common(x, timeout, state);
 4665         spin_unlock_irq(&x->wait.lock);
 4666         return timeout;
 4667 }
 4668 
 4669 /**
 4670  * wait_for_completion: - waits for completion of a task
 4671  * @x:  holds the state of this particular completion
 4672  *
 4673  * This waits to be signaled for completion of a specific task. It is NOT
 4674  * interruptible and there is no timeout.
 4675  *
 4676  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 4677  * and interrupt capability. Also see complete().
 4678  */
 4679 void __sched wait_for_completion(struct completion *x)
 4680 {
 4681         wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
 4682 }
 4683 EXPORT_SYMBOL(wait_for_completion);
 4684 
 4685 /**
 4686  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 4687  * @x:  holds the state of this particular completion
 4688  * @timeout:  timeout value in jiffies
 4689  *
 4690  * This waits for either a completion of a specific task to be signaled or for a
 4691  * specified timeout to expire. The timeout is in jiffies. It is not
 4692  * interruptible.
 4693  */
 4694 unsigned long __sched
 4695 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
 4696 {
 4697         return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
 4698 }
 4699 EXPORT_SYMBOL(wait_for_completion_timeout);
 4700 
 4701 /**
 4702  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 4703  * @x:  holds the state of this particular completion
 4704  *
 4705  * This waits for completion of a specific task to be signaled. It is
 4706  * interruptible.
 4707  */
 4708 int __sched wait_for_completion_interruptible(struct completion *x)
 4709 {
 4710         long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
 4711         if (t == -ERESTARTSYS)
 4712                 return t;
 4713         return 0;
 4714 }
 4715 EXPORT_SYMBOL(wait_for_completion_interruptible);
 4716 
 4717 /**
 4718  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 4719  * @x:  holds the state of this particular completion
 4720  * @timeout:  timeout value in jiffies
 4721  *
 4722  * This waits for either a completion of a specific task to be signaled or for a
 4723  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 4724  */
 4725 long __sched
 4726 wait_for_completion_interruptible_timeout(struct completion *x,
 4727                                           unsigned long timeout)
 4728 {
 4729         return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
 4730 }
 4731 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
 4732 
 4733 /**
 4734  * wait_for_completion_killable: - waits for completion of a task (killable)
 4735  * @x:  holds the state of this particular completion
 4736  *
 4737  * This waits to be signaled for completion of a specific task. It can be
 4738  * interrupted by a kill signal.
 4739  */
 4740 int __sched wait_for_completion_killable(struct completion *x)
 4741 {
 4742         long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
 4743         if (t == -ERESTARTSYS)
 4744                 return t;
 4745         return 0;
 4746 }
 4747 EXPORT_SYMBOL(wait_for_completion_killable);
 4748 
 4749 /**
 4750  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 4751  * @x:  holds the state of this particular completion
 4752  * @timeout:  timeout value in jiffies
 4753  *
 4754  * This waits for either a completion of a specific task to be
 4755  * signaled or for a specified timeout to expire. It can be
 4756  * interrupted by a kill signal. The timeout is in jiffies.
 4757  */
 4758 long __sched
 4759 wait_for_completion_killable_timeout(struct completion *x,
 4760                                      unsigned long timeout)
 4761 {
 4762         return wait_for_common(x, timeout, TASK_KILLABLE);
 4763 }
 4764 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
 4765 
 4766 /**
 4767  *      try_wait_for_completion - try to decrement a completion without blocking
 4768  *      @x:     completion structure
 4769  *
 4770  *      Returns: 0 if a decrement cannot be done without blocking
 4771  *               1 if a decrement succeeded.
 4772  *
 4773  *      If a completion is being used as a counting completion,
 4774  *      attempt to decrement the counter without blocking. This
 4775  *      enables us to avoid waiting if the resource the completion
 4776  *      is protecting is not available.
 4777  */
 4778 bool try_wait_for_completion(struct completion *x)
 4779 {
 4780         unsigned long flags;
 4781         int ret = 1;
 4782 
 4783         spin_lock_irqsave(&x->wait.lock, flags);
 4784         if (!x->done)
 4785                 ret = 0;
 4786         else
 4787                 x->done--;
 4788         spin_unlock_irqrestore(&x->wait.lock, flags);
 4789         return ret;
 4790 }
 4791 EXPORT_SYMBOL(try_wait_for_completion);
 4792 
 4793 /**
 4794  *      completion_done - Test to see if a completion has any waiters
 4795  *      @x:     completion structure
 4796  *
 4797  *      Returns: 0 if there are waiters (wait_for_completion() in progress)
 4798  *               1 if there are no waiters.
 4799  *
 4800  */
 4801 bool completion_done(struct completion *x)
 4802 {
 4803         unsigned long flags;
 4804         int ret = 1;
 4805 
 4806         spin_lock_irqsave(&x->wait.lock, flags);
 4807         if (!x->done)
 4808                 ret = 0;
 4809         spin_unlock_irqrestore(&x->wait.lock, flags);
 4810         return ret;
 4811 }
 4812 EXPORT_SYMBOL(completion_done);
 4813 
 4814 static long __sched
 4815 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
 4816 {
 4817         unsigned long flags;
 4818         wait_queue_t wait;
 4819 
 4820         init_waitqueue_entry(&wait, current);
 4821 
 4822         __set_current_state(state);
 4823 
 4824         spin_lock_irqsave(&q->lock, flags);
 4825         __add_wait_queue(q, &wait);
 4826         spin_unlock(&q->lock);
 4827         timeout = schedule_timeout(timeout);
 4828         spin_lock_irq(&q->lock);
 4829         __remove_wait_queue(q, &wait);
 4830         spin_unlock_irqrestore(&q->lock, flags);
 4831 
 4832         return timeout;
 4833 }
 4834 
 4835 void __sched interruptible_sleep_on(wait_queue_head_t *q)
 4836 {
 4837         sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
 4838 }
 4839 EXPORT_SYMBOL(interruptible_sleep_on);
 4840 
 4841 long __sched
 4842 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
 4843 {
 4844         return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
 4845 }
 4846 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
 4847 
 4848 void __sched sleep_on(wait_queue_head_t *q)
 4849 {
 4850         sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
 4851 }
 4852 EXPORT_SYMBOL(sleep_on);
 4853 
 4854 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
 4855 {
 4856         return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
 4857 }
 4858 EXPORT_SYMBOL(sleep_on_timeout);
 4859 
 4860 #ifdef CONFIG_RT_MUTEXES
 4861 
 4862 /*
 4863  * rt_mutex_setprio - set the current priority of a task
 4864  * @p: task
 4865  * @prio: prio value (kernel-internal form)
 4866  *
 4867  * This function changes the 'effective' priority of a task. It does
 4868  * not touch ->normal_prio like __setscheduler().
 4869  *
 4870  * Used by the rt_mutex code to implement priority inheritance logic.
 4871  */
 4872 void rt_mutex_setprio(struct task_struct *p, int prio)
 4873 {
 4874         int oldprio, on_rq, running;
 4875         struct rq *rq;
 4876         const struct sched_class *prev_class;
 4877 
 4878         BUG_ON(prio < 0 || prio > MAX_PRIO);
 4879 
 4880         rq = __task_rq_lock(p);
 4881 
 4882         trace_sched_pi_setprio(p, prio);
 4883         oldprio = p->prio;
 4884         prev_class = p->sched_class;
 4885         on_rq = p->on_rq;
 4886         running = task_current(rq, p);
 4887         if (on_rq)
 4888                 dequeue_task(rq, p, 0);
 4889         if (running)
 4890                 p->sched_class->put_prev_task(rq, p);
 4891 
 4892         if (rt_prio(prio))
 4893                 p->sched_class = &rt_sched_class;
 4894         else
 4895                 p->sched_class = &fair_sched_class;
 4896 
 4897         p->prio = prio;
 4898 
 4899         if (running)
 4900                 p->sched_class->set_curr_task(rq);
 4901         if (on_rq)
 4902                 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
 4903 
 4904         check_class_changed(rq, p, prev_class, oldprio);
 4905         __task_rq_unlock(rq);
 4906 }
 4907 
 4908 #endif
 4909 
 4910 void set_user_nice(struct task_struct *p, long nice)
 4911 {
 4912         int old_prio, delta, on_rq;
 4913         unsigned long flags;
 4914         struct rq *rq;
 4915 
 4916         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
 4917                 return;
 4918         /*
 4919          * We have to be careful, if called from sys_setpriority(),
 4920          * the task might be in the middle of scheduling on another CPU.
 4921          */
 4922         rq = task_rq_lock(p, &flags);
 4923         /*
 4924          * The RT priorities are set via sched_setscheduler(), but we still
 4925          * allow the 'normal' nice value to be set - but as expected
 4926          * it wont have any effect on scheduling until the task is
 4927          * SCHED_FIFO/SCHED_RR:
 4928          */
 4929         if (task_has_rt_policy(p)) {
 4930                 p->static_prio = NICE_TO_PRIO(nice);
 4931                 goto out_unlock;
 4932         }
 4933         on_rq = p->on_rq;
 4934         if (on_rq)
 4935                 dequeue_task(rq, p, 0);
 4936 
 4937         p->static_prio = NICE_TO_PRIO(nice);
 4938         set_load_weight(p);
 4939         old_prio = p->prio;
 4940         p->prio = effective_prio(p);
 4941         delta = p->prio - old_prio;
 4942 
 4943         if (on_rq) {
 4944                 enqueue_task(rq, p, 0);
 4945                 /*
 4946                  * If the task increased its priority or is running and
 4947                  * lowered its priority, then reschedule its CPU:
 4948                  */
 4949                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
 4950                         resched_task(rq->curr);
 4951         }
 4952 out_unlock:
 4953         task_rq_unlock(rq, p, &flags);
 4954 }
 4955 EXPORT_SYMBOL(set_user_nice);
 4956 
 4957 /*
 4958  * can_nice - check if a task can reduce its nice value
 4959  * @p: task
 4960  * @nice: nice value
 4961  */
 4962 int can_nice(const struct task_struct *p, const int nice)
 4963 {
 4964         /* convert nice value [19,-20] to rlimit style value [1,40] */
 4965         int nice_rlim = 20 - nice;
 4966 
 4967         return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
 4968                 capable(CAP_SYS_NICE));
 4969 }
 4970 
 4971 #ifdef __ARCH_WANT_SYS_NICE
 4972 
 4973 /*
 4974  * sys_nice - change the priority of the current process.
 4975  * @increment: priority increment
 4976  *
 4977  * sys_setpriority is a more generic, but much slower function that
 4978  * does similar things.
 4979  */
 4980 SYSCALL_DEFINE1(nice, int, increment)
 4981 {
 4982         long nice, retval;
 4983 
 4984         /*
 4985          * Setpriority might change our priority at the same moment.
 4986          * We don't have to worry. Conceptually one call occurs first
 4987          * and we have a single winner.
 4988          */
 4989         if (increment < -40)
 4990                 increment = -40;
 4991         if (increment > 40)
 4992                 increment = 40;
 4993 
 4994         nice = TASK_NICE(current) + increment;
 4995         if (nice < -20)
 4996                 nice = -20;
 4997         if (nice > 19)
 4998                 nice = 19;
 4999 
 5000         if (increment < 0 && !can_nice(current, nice))
 5001                 return -EPERM;
 5002 
 5003         retval = security_task_setnice(current, nice);
 5004         if (retval)
 5005                 return retval;
 5006 
 5007         set_user_nice(current, nice);
 5008         return 0;
 5009 }
 5010 
 5011 #endif
 5012 
 5013 /**
 5014  * task_prio - return the priority value of a given task.
 5015  * @p: the task in question.
 5016  *
 5017  * This is the priority value as seen by users in /proc.
 5018  * RT tasks are offset by -200. Normal tasks are centered
 5019  * around 0, value goes from -16 to +15.
 5020  */
 5021 int task_prio(const struct task_struct *p)
 5022 {
 5023         return p->prio - MAX_RT_PRIO;
 5024 }
 5025 
 5026 /**
 5027  * task_nice - return the nice value of a given task.
 5028  * @p: the task in question.
 5029  */
 5030 int task_nice(const struct task_struct *p)
 5031 {
 5032         return TASK_NICE(p);
 5033 }
 5034 EXPORT_SYMBOL(task_nice);
 5035 
 5036 /**
 5037  * idle_cpu - is a given cpu idle currently?
 5038  * @cpu: the processor in question.
 5039  */
 5040 int idle_cpu(int cpu)
 5041 {
 5042         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
 5043 }
 5044 
 5045 /**
 5046  * idle_task - return the idle task for a given cpu.
 5047  * @cpu: the processor in question.
 5048  */
 5049 struct task_struct *idle_task(int cpu)
 5050 {
 5051         return cpu_rq(cpu)->idle;
 5052 }
 5053 
 5054 /**
 5055  * find_process_by_pid - find a process with a matching PID value.
 5056  * @pid: the pid in question.
 5057  */
 5058 static struct task_struct *find_process_by_pid(pid_t pid)
 5059 {
 5060         return pid ? find_task_by_vpid(pid) : current;
 5061 }
 5062 
 5063 /* Actually do priority change: must hold rq lock. */
 5064 static void
 5065 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
 5066 {
 5067         p->policy = policy;
 5068         p->rt_priority = prio;
 5069         p->normal_prio = normal_prio(p);
 5070         /* we are holding p->pi_lock already */
 5071         p->prio = rt_mutex_getprio(p);
 5072         if (rt_prio(p->prio))
 5073                 p->sched_class = &rt_sched_class;
 5074         else
 5075                 p->sched_class = &fair_sched_class;
 5076         set_load_weight(p);
 5077 }
 5078 
 5079 /*
 5080  * check the target process has a UID that matches the current process's
 5081  */
 5082 static bool check_same_owner(struct task_struct *p)
 5083 {
 5084         const struct cred *cred = current_cred(), *pcred;
 5085         bool match;
 5086 
 5087         rcu_read_lock();
 5088         pcred = __task_cred(p);
 5089         if (cred->user->user_ns == pcred->user->user_ns)
 5090                 match = (cred->euid == pcred->euid ||
 5091                          cred->euid == pcred->uid);
 5092         else
 5093                 match = false;
 5094         rcu_read_unlock();
 5095         return match;
 5096 }
 5097 
 5098 static int __sched_setscheduler(struct task_struct *p, int policy,
 5099                                 const struct sched_param *param, bool user)
 5100 {
 5101         int retval, oldprio, oldpolicy = -1, on_rq, running;
 5102         unsigned long flags;
 5103         const struct sched_class *prev_class;
 5104         struct rq *rq;
 5105         int reset_on_fork;
 5106 
 5107         /* may grab non-irq protected spin_locks */
 5108         BUG_ON(in_interrupt());
 5109 recheck:
 5110         /* double check policy once rq lock held */
 5111         if (policy < 0) {
 5112                 reset_on_fork = p->sched_reset_on_fork;
 5113                 policy = oldpolicy = p->policy;
 5114         } else {
 5115                 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
 5116                 policy &= ~SCHED_RESET_ON_FORK;
 5117 
 5118                 if (policy != SCHED_FIFO && policy != SCHED_RR &&
 5119                                 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
 5120                                 policy != SCHED_IDLE)
 5121                         return -EINVAL;
 5122         }
 5123 
 5124         /*
 5125          * Valid priorities for SCHED_FIFO and SCHED_RR are
 5126          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
 5127          * SCHED_BATCH and SCHED_IDLE is 0.
 5128          */
 5129         if (param->sched_priority < 0 ||
 5130             (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
 5131             (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
 5132                 return -EINVAL;
 5133         if (rt_policy(policy) != (param->sched_priority != 0))
 5134                 return -EINVAL;
 5135 
 5136         /*
 5137          * Allow unprivileged RT tasks to decrease priority:
 5138          */
 5139         if (user && !capable(CAP_SYS_NICE)) {
 5140                 if (rt_policy(policy)) {
 5141                         unsigned long rlim_rtprio =
 5142                                         task_rlimit(p, RLIMIT_RTPRIO);
 5143 
 5144                         /* can't set/change the rt policy */
 5145                         if (policy != p->policy && !rlim_rtprio)
 5146                                 return -EPERM;
 5147 
 5148                         /* can't increase priority */
 5149                         if (param->sched_priority > p->rt_priority &&
 5150                             param->sched_priority > rlim_rtprio)
 5151                                 return -EPERM;
 5152                 }
 5153 
 5154                 /*
 5155                  * Treat SCHED_IDLE as nice 20. Only allow a switch to
 5156                  * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
 5157                  */
 5158                 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
 5159                         if (!can_nice(p, TASK_NICE(p)))
 5160                                 return -EPERM;
 5161                 }
 5162 
 5163                 /* can't change other user's priorities */
 5164                 if (!check_same_owner(p))
 5165                         return -EPERM;
 5166 
 5167                 /* Normal users shall not reset the sched_reset_on_fork flag */
 5168                 if (p->sched_reset_on_fork && !reset_on_fork)
 5169                         return -EPERM;
 5170         }
 5171 
 5172         if (user) {
 5173                 retval = security_task_setscheduler(p);
 5174                 if (retval)
 5175                         return retval;
 5176         }
 5177 
 5178         /*
 5179          * make sure no PI-waiters arrive (or leave) while we are
 5180          * changing the priority of the task:
 5181          *
 5182          * To be able to change p->policy safely, the appropriate
 5183          * runqueue lock must be held.
 5184          */
 5185         rq = task_rq_lock(p, &flags);
 5186 
 5187         /*
 5188          * Changing the policy of the stop threads its a very bad idea
 5189          */
 5190         if (p == rq->stop) {
 5191                 task_rq_unlock(rq, p, &flags);
 5192                 return -EINVAL;
 5193         }
 5194 
 5195         /*
 5196          * If not changing anything there's no need to proceed further:
 5197          */
 5198         if (unlikely(policy == p->policy && (!rt_policy(policy) ||
 5199                         param->sched_priority == p->rt_priority))) {
 5200 
 5201                 __task_rq_unlock(rq);
 5202                 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 5203                 return 0;
 5204         }
 5205 
 5206 #ifdef CONFIG_RT_GROUP_SCHED
 5207         if (user) {
 5208                 /*
 5209                  * Do not allow realtime tasks into groups that have no runtime
 5210                  * assigned.
 5211                  */
 5212                 if (rt_bandwidth_enabled() && rt_policy(policy) &&
 5213                                 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
 5214                                 !task_group_is_autogroup(task_group(p))) {
 5215                         task_rq_unlock(rq, p, &flags);
 5216                         return -EPERM;
 5217                 }
 5218         }
 5219 #endif
 5220 
 5221         /* recheck policy now with rq lock held */
 5222         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
 5223                 policy = oldpolicy = -1;
 5224                 task_rq_unlock(rq, p, &flags);
 5225                 goto recheck;
 5226         }
 5227         on_rq = p->on_rq;
 5228         running = task_current(rq, p);
 5229         if (on_rq)
 5230                 deactivate_task(rq, p, 0);
 5231         if (running)
 5232                 p->sched_class->put_prev_task(rq, p);
 5233 
 5234         p->sched_reset_on_fork = reset_on_fork;
 5235 
 5236         oldprio = p->prio;
 5237         prev_class = p->sched_class;
 5238         __setscheduler(rq, p, policy, param->sched_priority);
 5239 
 5240         if (running)
 5241                 p->sched_class->set_curr_task(rq);
 5242         if (on_rq)
 5243                 activate_task(rq, p, 0);
 5244 
 5245         check_class_changed(rq, p, prev_class, oldprio);
 5246         task_rq_unlock(rq, p, &flags);
 5247 
 5248         rt_mutex_adjust_pi(p);
 5249 
 5250         return 0;
 5251 }
 5252 
 5253 /**
 5254  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 5255  * @p: the task in question.
 5256  * @policy: new policy.
 5257  * @param: structure containing the new RT priority.
 5258  *
 5259  * NOTE that the task may be already dead.
 5260  */
 5261 int sched_setscheduler(struct task_struct *p, int policy,
 5262                        const struct sched_param *param)
 5263 {
 5264         return __sched_setscheduler(p, policy, param, true);
 5265 }
 5266 EXPORT_SYMBOL_GPL(sched_setscheduler);
 5267 
 5268 /**
 5269  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 5270  * @p: the task in question.
 5271  * @policy: new policy.
 5272  * @param: structure containing the new RT priority.
 5273  *
 5274  * Just like sched_setscheduler, only don't bother checking if the
 5275  * current context has permission.  For example, this is needed in
 5276  * stop_machine(): we create temporary high priority worker threads,
 5277  * but our caller might not have that capability.
 5278  */
 5279 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
 5280                                const struct sched_param *param)
 5281 {
 5282         return __sched_setscheduler(p, policy, param, false);
 5283 }
 5284 
 5285 static int
 5286 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
 5287 {
 5288         struct sched_param lparam;
 5289         struct task_struct *p;
 5290         int retval;
 5291 
 5292         if (!param || pid < 0)
 5293                 return -EINVAL;
 5294         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
 5295                 return -EFAULT;
 5296 
 5297         rcu_read_lock();
 5298         retval = -ESRCH;
 5299         p = find_process_by_pid(pid);
 5300         if (p != NULL)
 5301                 retval = sched_setscheduler(p, policy, &lparam);
 5302         rcu_read_unlock();
 5303 
 5304         return retval;
 5305 }
 5306 
 5307 /**
 5308  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 5309  * @pid: the pid in question.
 5310  * @policy: new policy.
 5311  * @param: structure containing the new RT priority.
 5312  */
 5313 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
 5314                 struct sched_param __user *, param)
 5315 {
 5316         /* negative values for policy are not valid */
 5317         if (policy < 0)
 5318                 return -EINVAL;
 5319 
 5320         return do_sched_setscheduler(pid, policy, param);
 5321 }
 5322 
 5323 /**
 5324  * sys_sched_setparam - set/change the RT priority of a thread
 5325  * @pid: the pid in question.
 5326  * @param: structure containing the new RT priority.
 5327  */
 5328 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
 5329 {
 5330         return do_sched_setscheduler(pid, -1, param);
 5331 }
 5332 
 5333 /**
 5334  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 5335  * @pid: the pid in question.
 5336  */
 5337 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
 5338 {
 5339         struct task_struct *p;
 5340         int retval;
 5341 
 5342         if (pid < 0)
 5343                 return -EINVAL;
 5344 
 5345         retval = -ESRCH;
 5346         rcu_read_lock();
 5347         p = find_process_by_pid(pid);
 5348         if (p) {
 5349                 retval = security_task_getscheduler(p);
 5350                 if (!retval)
 5351                         retval = p->policy
 5352                                 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
 5353         }
 5354         rcu_read_unlock();
 5355         return retval;
 5356 }
 5357 
 5358 /**
 5359  * sys_sched_getparam - get the RT priority of a thread
 5360  * @pid: the pid in question.
 5361  * @param: structure containing the RT priority.
 5362  */
 5363 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
 5364 {
 5365         struct sched_param lp;
 5366         struct task_struct *p;
 5367         int retval;
 5368 
 5369         if (!param || pid < 0)
 5370                 return -EINVAL;
 5371 
 5372         rcu_read_lock();
 5373         p = find_process_by_pid(pid);
 5374         retval = -ESRCH;
 5375         if (!p)
 5376                 goto out_unlock;
 5377 
 5378         retval = security_task_getscheduler(p);
 5379         if (retval)
 5380                 goto out_unlock;
 5381 
 5382         lp.sched_priority = p->rt_priority;
 5383         rcu_read_unlock();
 5384 
 5385         /*
 5386          * This one might sleep, we cannot do it with a spinlock held ...
 5387          */
 5388         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
 5389 
 5390         return retval;
 5391 
 5392 out_unlock:
 5393         rcu_read_unlock();
 5394         return retval;
 5395 }
 5396 
 5397 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
 5398 {
 5399         cpumask_var_t cpus_allowed, new_mask;
 5400         struct task_struct *p;
 5401         int retval;
 5402 
 5403         get_online_cpus();
 5404         rcu_read_lock();
 5405 
 5406         p = find_process_by_pid(pid);
 5407         if (!p) {
 5408                 rcu_read_unlock();
 5409                 put_online_cpus();
 5410                 return -ESRCH;
 5411         }
 5412 
 5413         /* Prevent p going away */
 5414         get_task_struct(p);
 5415         rcu_read_unlock();
 5416 
 5417         if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
 5418                 retval = -ENOMEM;
 5419                 goto out_put_task;
 5420         }
 5421         if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
 5422                 retval = -ENOMEM;
 5423                 goto out_free_cpus_allowed;
 5424         }
 5425         retval = -EPERM;
 5426         if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
 5427                 goto out_unlock;
 5428 
 5429         retval = security_task_setscheduler(p);
 5430         if (retval)
 5431                 goto out_unlock;
 5432 
 5433         cpuset_cpus_allowed(p, cpus_allowed);
 5434         cpumask_and(new_mask, in_mask, cpus_allowed);
 5435 again:
 5436         retval = set_cpus_allowed_ptr(p, new_mask);
 5437 
 5438         if (!retval) {
 5439                 cpuset_cpus_allowed(p, cpus_allowed);
 5440                 if (!cpumask_subset(new_mask, cpus_allowed)) {
 5441                         /*
 5442                          * We must have raced with a concurrent cpuset
 5443                          * update. Just reset the cpus_allowed to the
 5444                          * cpuset's cpus_allowed
 5445                          */
 5446                         cpumask_copy(new_mask, cpus_allowed);
 5447                         goto again;
 5448                 }
 5449         }
 5450 out_unlock:
 5451         free_cpumask_var(new_mask);
 5452 out_free_cpus_allowed:
 5453         free_cpumask_var(cpus_allowed);
 5454 out_put_task:
 5455         put_task_struct(p);
 5456         put_online_cpus();
 5457         return retval;
 5458 }
 5459 
 5460 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
 5461                              struct cpumask *new_mask)
 5462 {
 5463         if (len < cpumask_size())
 5464                 cpumask_clear(new_mask);
 5465         else if (len > cpumask_size())
 5466                 len = cpumask_size();
 5467 
 5468         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
 5469 }
 5470 
 5471 /**
 5472  * sys_sched_setaffinity - set the cpu affinity of a process
 5473  * @pid: pid of the process
 5474  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 5475  * @user_mask_ptr: user-space pointer to the new cpu mask
 5476  */
 5477 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
 5478                 unsigned long __user *, user_mask_ptr)
 5479 {
 5480         cpumask_var_t new_mask;
 5481         int retval;
 5482 
 5483         if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
 5484                 return -ENOMEM;
 5485 
 5486         retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
 5487         if (retval == 0)
 5488                 retval = sched_setaffinity(pid, new_mask);
 5489         free_cpumask_var(new_mask);
 5490         return retval;
 5491 }
 5492 
 5493 long sched_getaffinity(pid_t pid, struct cpumask *mask)
 5494 {
 5495         struct task_struct *p;
 5496         unsigned long flags;
 5497         int retval;
 5498 
 5499         get_online_cpus();
 5500         rcu_read_lock();
 5501 
 5502         retval = -ESRCH;
 5503         p = find_process_by_pid(pid);
 5504         if (!p)
 5505                 goto out_unlock;
 5506 
 5507         retval = security_task_getscheduler(p);
 5508         if (retval)
 5509                 goto out_unlock;
 5510 
 5511         raw_spin_lock_irqsave(&p->pi_lock, flags);
 5512         cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
 5513         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 5514 
 5515 out_unlock:
 5516         rcu_read_unlock();
 5517         put_online_cpus();
 5518 
 5519         return retval;
 5520 }
 5521 
 5522 /**
 5523  * sys_sched_getaffinity - get the cpu affinity of a process
 5524  * @pid: pid of the process
 5525  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 5526  * @user_mask_ptr: user-space pointer to hold the current cpu mask
 5527  */
 5528 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
 5529                 unsigned long __user *, user_mask_ptr)
 5530 {
 5531         int ret;
 5532         cpumask_var_t mask;
 5533 
 5534         if ((len * BITS_PER_BYTE) < nr_cpu_ids)
 5535                 return -EINVAL;
 5536         if (len & (sizeof(unsigned long)-1))
 5537                 return -EINVAL;
 5538 
 5539         if (!alloc_cpumask_var(&mask, GFP_KERNEL))
 5540                 return -ENOMEM;
 5541 
 5542         ret = sched_getaffinity(pid, mask);
 5543         if (ret == 0) {
 5544                 size_t retlen = min_t(size_t, len, cpumask_size());
 5545 
 5546                 if (copy_to_user(user_mask_ptr, mask, retlen))
 5547                         ret = -EFAULT;
 5548                 else
 5549                         ret = retlen;
 5550         }
 5551         free_cpumask_var(mask);
 5552 
 5553         return ret;
 5554 }
 5555 
 5556 /**
 5557  * sys_sched_yield - yield the current processor to other threads.
 5558  *
 5559  * This function yields the current CPU to other tasks. If there are no
 5560  * other threads running on this CPU then this function will return.
 5561  */
 5562 SYSCALL_DEFINE0(sched_yield)
 5563 {
 5564         struct rq *rq = this_rq_lock();
 5565 
 5566         schedstat_inc(rq, yld_count);
 5567         current->sched_class->yield_task(rq);
 5568 
 5569         /*
 5570          * Since we are going to call schedule() anyway, there's
 5571          * no need to preempt or enable interrupts:
 5572          */
 5573         __release(rq->lock);
 5574         spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
 5575         do_raw_spin_unlock(&rq->lock);
 5576         preempt_enable_no_resched();
 5577 
 5578         schedule();
 5579 
 5580         return 0;
 5581 }
 5582 
 5583 static inline int should_resched(void)
 5584 {
 5585         return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
 5586 }
 5587 
 5588 static void __cond_resched(void)
 5589 {
 5590         add_preempt_count(PREEMPT_ACTIVE);
 5591         schedule();
 5592         sub_preempt_count(PREEMPT_ACTIVE);
 5593 }
 5594 
 5595 int __sched _cond_resched(void)
 5596 {
 5597         if (should_resched()) {
 5598                 __cond_resched();
 5599                 return 1;
 5600         }
 5601         return 0;
 5602 }
 5603 EXPORT_SYMBOL(_cond_resched);
 5604 
 5605 /*
 5606  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
 5607  * call schedule, and on return reacquire the lock.
 5608  *
 5609  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
 5610  * operations here to prevent schedule() from being called twice (once via
 5611  * spin_unlock(), once by hand).
 5612  */
 5613 int __cond_resched_lock(spinlock_t *lock)
 5614 {
 5615         int resched = should_resched();
 5616         int ret = 0;
 5617 
 5618         lockdep_assert_held(lock);
 5619 
 5620         if (spin_needbreak(lock) || resched) {
 5621                 spin_unlock(lock);
 5622                 if (resched)
 5623                         __cond_resched();
 5624                 else
 5625                         cpu_relax();
 5626                 ret = 1;
 5627                 spin_lock(lock);
 5628         }
 5629         return ret;
 5630 }
 5631 EXPORT_SYMBOL(__cond_resched_lock);
 5632 
 5633 int __sched __cond_resched_softirq(void)
 5634 {
 5635         BUG_ON(!in_softirq());
 5636 
 5637         if (should_resched()) {
 5638                 local_bh_enable();
 5639                 __cond_resched();
 5640                 local_bh_disable();
 5641                 return 1;
 5642         }
 5643         return 0;
 5644 }
 5645 EXPORT_SYMBOL(__cond_resched_softirq);
 5646 
 5647 /**
 5648  * yield - yield the current processor to other threads.
 5649  *
 5650  * This is a shortcut for kernel-space yielding - it marks the
 5651  * thread runnable and calls sys_sched_yield().
 5652  */
 5653 void __sched yield(void)
 5654 {
 5655         set_current_state(TASK_RUNNING);
 5656         sys_sched_yield();
 5657 }
 5658 EXPORT_SYMBOL(yield);
 5659 
 5660 /**
 5661  * yield_to - yield the current processor to another thread in
 5662  * your thread group, or accelerate that thread toward the
 5663  * processor it's on.
 5664  * @p: target task
 5665  * @preempt: whether task preemption is allowed or not
 5666  *
 5667  * It's the caller's job to ensure that the target task struct
 5668  * can't go away on us before we can do any checks.
 5669  *
 5670  * Returns true if we indeed boosted the target task.
 5671  */
 5672 bool __sched yield_to(struct task_struct *p, bool preempt)
 5673 {
 5674         struct task_struct *curr = current;
 5675         struct rq *rq, *p_rq;
 5676         unsigned long flags;
 5677         bool yielded = 0;
 5678 
 5679         local_irq_save(flags);
 5680         rq = this_rq();
 5681 
 5682 again:
 5683         p_rq = task_rq(p);
 5684         double_rq_lock(rq, p_rq);
 5685         while (task_rq(p) != p_rq) {
 5686                 double_rq_unlock(rq, p_rq);
 5687                 goto again;
 5688         }
 5689 
 5690         if (!curr->sched_class->yield_to_task)
 5691                 goto out;
 5692 
 5693         if (curr->sched_class != p->sched_class)
 5694                 goto out;
 5695 
 5696         if (task_running(p_rq, p) || p->state)
 5697                 goto out;
 5698 
 5699         yielded = curr->sched_class->yield_to_task(rq, p, preempt);
 5700         if (yielded) {
 5701                 schedstat_inc(rq, yld_count);
 5702                 /*
 5703                  * Make p's CPU reschedule; pick_next_entity takes care of
 5704                  * fairness.
 5705                  */
 5706                 if (preempt && rq != p_rq)
 5707                         resched_task(p_rq->curr);
 5708         }
 5709 
 5710 out:
 5711         double_rq_unlock(rq, p_rq);
 5712         local_irq_restore(flags);
 5713 
 5714         if (yielded)
 5715                 schedule();
 5716 
 5717         return yielded;
 5718 }
 5719 EXPORT_SYMBOL_GPL(yield_to);
 5720 
 5721 /*
 5722  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
 5723  * that process accounting knows that this is a task in IO wait state.
 5724  */
 5725 void __sched io_schedule(void)
 5726 {
 5727         struct rq *rq = raw_rq();
 5728 
 5729         delayacct_blkio_start();
 5730         atomic_inc(&rq->nr_iowait);
 5731         blk_flush_plug(current);
 5732         current->in_iowait = 1;
 5733         schedule();
 5734         current->in_iowait = 0;
 5735         atomic_dec(&rq->nr_iowait);
 5736         delayacct_blkio_end();
 5737 }
 5738 EXPORT_SYMBOL(io_schedule);
 5739 
 5740 long __sched io_schedule_timeout(long timeout)
 5741 {
 5742         struct rq *rq = raw_rq();
 5743         long ret;
 5744 
 5745         delayacct_blkio_start();
 5746         atomic_inc(&rq->nr_iowait);
 5747         blk_flush_plug(current);
 5748         current->in_iowait = 1;
 5749         ret = schedule_timeout(timeout);
 5750         current->in_iowait = 0;
 5751         atomic_dec(&rq->nr_iowait);
 5752         delayacct_blkio_end();
 5753         return ret;
 5754 }
 5755 
 5756 /**
 5757  * sys_sched_get_priority_max - return maximum RT priority.
 5758  * @policy: scheduling class.
 5759  *
 5760  * this syscall returns the maximum rt_priority that can be used
 5761  * by a given scheduling class.
 5762  */
 5763 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
 5764 {
 5765         int ret = -EINVAL;
 5766 
 5767         switch (policy) {
 5768         case SCHED_FIFO:
 5769         case SCHED_RR:
 5770                 ret = MAX_USER_RT_PRIO-1;
 5771                 break;
 5772         case SCHED_NORMAL:
 5773         case SCHED_BATCH:
 5774         case SCHED_IDLE:
 5775                 ret = 0;
 5776                 break;
 5777         }
 5778         return ret;
 5779 }
 5780 
 5781 /**
 5782  * sys_sched_get_priority_min - return minimum RT priority.
 5783  * @policy: scheduling class.
 5784  *
 5785  * this syscall returns the minimum rt_priority that can be used
 5786  * by a given scheduling class.
 5787  */
 5788 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
 5789 {
 5790         int ret = -EINVAL;
 5791 
 5792         switch (policy) {
 5793         case SCHED_FIFO:
 5794         case SCHED_RR:
 5795                 ret = 1;
 5796                 break;
 5797         case SCHED_NORMAL:
 5798         case SCHED_BATCH:
 5799         case SCHED_IDLE:
 5800                 ret = 0;
 5801         }
 5802         return ret;
 5803 }
 5804 
 5805 /**
 5806  * sys_sched_rr_get_interval - return the default timeslice of a process.
 5807  * @pid: pid of the process.
 5808  * @interval: userspace pointer to the timeslice value.
 5809  *
 5810  * this syscall writes the default timeslice value of a given process
 5811  * into the user-space timespec buffer. A value of '' means infinity.
 5812  */
 5813 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
 5814                 struct timespec __user *, interval)
 5815 {
 5816         struct task_struct *p;
 5817         unsigned int time_slice;
 5818         unsigned long flags;
 5819         struct rq *rq;
 5820         int retval;
 5821         struct timespec t;
 5822 
 5823         if (pid < 0)
 5824                 return -EINVAL;
 5825 
 5826         retval = -ESRCH;
 5827         rcu_read_lock();
 5828         p = find_process_by_pid(pid);
 5829         if (!p)
 5830                 goto out_unlock;
 5831 
 5832         retval = security_task_getscheduler(p);
 5833         if (retval)
 5834                 goto out_unlock;
 5835 
 5836         rq = task_rq_lock(p, &flags);
 5837         time_slice = p->sched_class->get_rr_interval(rq, p);
 5838         task_rq_unlock(rq, p, &flags);
 5839 
 5840         rcu_read_unlock();
 5841         jiffies_to_timespec(time_slice, &t);
 5842         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
 5843         return retval;
 5844 
 5845 out_unlock:
 5846         rcu_read_unlock();
 5847         return retval;
 5848 }
 5849 
 5850 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
 5851 
 5852 void sched_show_task(struct task_struct *p)
 5853 {
 5854         unsigned long free = 0;
 5855         unsigned state;
 5856 
 5857         state = p->state ? __ffs(p->state) + 1 : 0;
 5858         printk(KERN_INFO "%-15.15s %c", p->comm,
 5859                 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
 5860 #if BITS_PER_LONG == 32
 5861         if (state == TASK_RUNNING)
 5862                 printk(KERN_CONT " running  ");
 5863         else
 5864                 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
 5865 #else
 5866         if (state == TASK_RUNNING)
 5867                 printk(KERN_CONT "  running task    ");
 5868         else
 5869                 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
 5870 #endif
 5871 #ifdef CONFIG_DEBUG_STACK_USAGE
 5872         free = stack_not_used(p);
 5873 #endif
 5874         printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
 5875                 task_pid_nr(p), task_pid_nr(p->real_parent),
 5876                 (unsigned long)task_thread_info(p)->flags);
 5877 
 5878         show_stack(p, NULL);
 5879 }
 5880 
 5881 void show_state_filter(unsigned long state_filter)
 5882 {
 5883         struct task_struct *g, *p;
 5884 
 5885 #if BITS_PER_LONG == 32
 5886         printk(KERN_INFO
 5887                 "  task                PC stack   pid father\n");
 5888 #else
 5889         printk(KERN_INFO
 5890                 "  task                        PC stack   pid father\n");
 5891 #endif
 5892         read_lock(&tasklist_lock);
 5893         do_each_thread(g, p) {
 5894                 /*
 5895                  * reset the NMI-timeout, listing all files on a slow
 5896                  * console might take a lot of time:
 5897                  */
 5898                 touch_nmi_watchdog();
 5899                 if (!state_filter || (p->state & state_filter))
 5900                         sched_show_task(p);
 5901         } while_each_thread(g, p);
 5902 
 5903         touch_all_softlockup_watchdogs();
 5904 
 5905 #ifdef CONFIG_SCHED_DEBUG
 5906         sysrq_sched_debug_show();
 5907 #endif
 5908         read_unlock(&tasklist_lock);
 5909         /*
 5910          * Only show locks if all tasks are dumped:
 5911          */
 5912         if (!state_filter)
 5913                 debug_show_all_locks();
 5914 }
 5915 
 5916 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
 5917 {
 5918         idle->sched_class = &idle_sched_class;
 5919 }
 5920 
 5921 /**
 5922  * init_idle - set up an idle thread for a given CPU
 5923  * @idle: task in question
 5924  * @cpu: cpu the idle task belongs to
 5925  *
 5926  * NOTE: this function does not set the idle thread's NEED_RESCHED
 5927  * flag, to make booting more robust.
 5928  */
 5929 void __cpuinit init_idle(struct task_struct *idle, int cpu)
 5930 {
 5931         struct rq *rq = cpu_rq(cpu);
 5932         unsigned long flags;
 5933 
 5934         raw_spin_lock_irqsave(&rq->lock, flags);
 5935 
 5936         __sched_fork(idle);
 5937         idle->state = TASK_RUNNING;
 5938         idle->se.exec_start = sched_clock();
 5939 
 5940         do_set_cpus_allowed(idle, cpumask_of(cpu));
 5941         /*
 5942          * We're having a chicken and egg problem, even though we are
 5943          * holding rq->lock, the cpu isn't yet set to this cpu so the
 5944          * lockdep check in task_group() will fail.
 5945          *
 5946          * Similar case to sched_fork(). / Alternatively we could
 5947          * use task_rq_lock() here and obtain the other rq->lock.
 5948          *
 5949          * Silence PROVE_RCU
 5950          */
 5951         rcu_read_lock();
 5952         __set_task_cpu(idle, cpu);
 5953         rcu_read_unlock();
 5954 
 5955         rq->curr = rq->idle = idle;
 5956 #if defined(CONFIG_SMP)
 5957         idle->on_cpu = 1;
 5958 #endif
 5959         raw_spin_unlock_irqrestore(&rq->lock, flags);
 5960 
 5961         /* Set the preempt count _outside_ the spinlocks! */
 5962         task_thread_info(idle)->preempt_count = 0;
 5963 
 5964         /*
 5965          * The idle tasks have their own, simple scheduling class:
 5966          */
 5967         idle->sched_class = &idle_sched_class;
 5968         ftrace_graph_init_idle_task(idle, cpu);
 5969 }
 5970 
 5971 /*
 5972  * In a system that switches off the HZ timer nohz_cpu_mask
 5973  * indicates which cpus entered this state. This is used
 5974  * in the rcu update to wait only for active cpus. For system
 5975  * which do not switch off the HZ timer nohz_cpu_mask should
 5976  * always be CPU_BITS_NONE.
 5977  */
 5978 cpumask_var_t nohz_cpu_mask;
 5979 
 5980 /*
 5981  * Increase the granularity value when there are more CPUs,
 5982  * because with more CPUs the 'effective latency' as visible
 5983  * to users decreases. But the relationship is not linear,
 5984  * so pick a second-best guess by going with the log2 of the
 5985  * number of CPUs.
 5986  *
 5987  * This idea comes from the SD scheduler of Con Kolivas:
 5988  */
 5989 static int get_update_sysctl_factor(void)
 5990 {
 5991         unsigned int cpus = min_t(int, num_online_cpus(), 8);
 5992         unsigned int factor;
 5993 
 5994         switch (sysctl_sched_tunable_scaling) {
 5995         case SCHED_TUNABLESCALING_NONE:
 5996                 factor = 1;
 5997                 break;
 5998         case SCHED_TUNABLESCALING_LINEAR:
 5999                 factor = cpus;
 6000                 break;
 6001         case SCHED_TUNABLESCALING_LOG:
 6002         default:
 6003                 factor = 1 + ilog2(cpus);
 6004                 break;
 6005         }
 6006 
 6007         return factor;
 6008 }
 6009 
 6010 static void update_sysctl(void)
 6011 {
 6012         unsigned int factor = get_update_sysctl_factor();
 6013 
 6014 #define SET_SYSCTL(name) \
 6015         (sysctl_##name = (factor) * normalized_sysctl_##name)
 6016         SET_SYSCTL(sched_min_granularity);
 6017         SET_SYSCTL(sched_latency);
 6018         SET_SYSCTL(sched_wakeup_granularity);
 6019 #undef SET_SYSCTL
 6020 }
 6021 
 6022 static inline void sched_init_granularity(void)
 6023 {
 6024         update_sysctl();
 6025 }
 6026 
 6027 #ifdef CONFIG_SMP
 6028 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
 6029 {
 6030         if (p->sched_class && p->sched_class->set_cpus_allowed)
 6031                 p->sched_class->set_cpus_allowed(p, new_mask);
 6032         else {
 6033                 cpumask_copy(&p->cpus_allowed, new_mask);
 6034                 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
 6035         }
 6036 }
 6037 
 6038 /*
 6039  * This is how migration works:
 6040  *
 6041  * 1) we invoke migration_cpu_stop() on the target CPU using
 6042  *    stop_one_cpu().
 6043  * 2) stopper starts to run (implicitly forcing the migrated thread
 6044  *    off the CPU)
 6045  * 3) it checks whether the migrated task is still in the wrong runqueue.
 6046  * 4) if it's in the wrong runqueue then the migration thread removes
 6047  *    it and puts it into the right queue.
 6048  * 5) stopper completes and stop_one_cpu() returns and the migration
 6049  *    is done.
 6050  */
 6051 
 6052 /*
 6053  * Change a given task's CPU affinity. Migrate the thread to a
 6054  * proper CPU and schedule it away if the CPU it's executing on
 6055  * is removed from the allowed bitmask.
 6056  *
 6057  * NOTE: the caller must have a valid reference to the task, the
 6058  * task must not exit() & deallocate itself prematurely. The
 6059  * call is not atomic; no spinlocks may be held.
 6060  */
 6061 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
 6062 {
 6063         unsigned long flags;
 6064         struct rq *rq;
 6065         unsigned int dest_cpu;
 6066         int ret = 0;
 6067 
 6068         rq = task_rq_lock(p, &flags);
 6069 
 6070         if (cpumask_equal(&p->cpus_allowed, new_mask))
 6071                 goto out;
 6072 
 6073         if (!cpumask_intersects(new_mask, cpu_active_mask)) {
 6074                 ret = -EINVAL;
 6075                 goto out;
 6076         }
 6077 
 6078         if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
 6079                 ret = -EINVAL;
 6080                 goto out;
 6081         }
 6082 
 6083         do_set_cpus_allowed(p, new_mask);
 6084 
 6085         /* Can the task run on the task's current CPU? If so, we're done */
 6086         if (cpumask_test_cpu(task_cpu(p), new_mask))
 6087                 goto out;
 6088 
 6089         dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
 6090         if (p->on_rq) {
 6091                 struct migration_arg arg = { p, dest_cpu };
 6092                 /* Need help from migration thread: drop lock and wait. */
 6093                 task_rq_unlock(rq, p, &flags);
 6094                 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
 6095                 tlb_migrate_finish(p->mm);
 6096                 return 0;
 6097         }
 6098 out:
 6099         task_rq_unlock(rq, p, &flags);
 6100 
 6101         return ret;
 6102 }
 6103 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
 6104 
 6105 /*
 6106  * Move (not current) task off this cpu, onto dest cpu. We're doing
 6107  * this because either it can't run here any more (set_cpus_allowed()
 6108  * away from this CPU, or CPU going down), or because we're
 6109  * attempting to rebalance this task on exec (sched_exec).
 6110  *
 6111  * So we race with normal scheduler movements, but that's OK, as long
 6112  * as the task is no longer on this CPU.
 6113  *
 6114  * Returns non-zero if task was successfully migrated.
 6115  */
 6116 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
 6117 {
 6118         struct rq *rq_dest, *rq_src;
 6119         int ret = 0;
 6120 
 6121         if (unlikely(!cpu_active(dest_cpu)))
 6122                 return ret;
 6123 
 6124         rq_src = cpu_rq(src_cpu);
 6125         rq_dest = cpu_rq(dest_cpu);
 6126 
 6127         raw_spin_lock(&p->pi_lock);
 6128         double_rq_lock(rq_src, rq_dest);
 6129         /* Already moved. */
 6130         if (task_cpu(p) != src_cpu)
 6131                 goto done;
 6132         /* Affinity changed (again). */
 6133         if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
 6134                 goto fail;
 6135 
 6136         /*
 6137          * If we're not on a rq, the next wake-up will ensure we're
 6138          * placed properly.
 6139          */
 6140         if (p->on_rq) {
 6141                 deactivate_task(rq_src, p, 0);
 6142                 set_task_cpu(p, dest_cpu);
 6143                 activate_task(rq_dest, p, 0);
 6144                 check_preempt_curr(rq_dest, p, 0);
 6145         }
 6146 done:
 6147         ret = 1;
 6148 fail:
 6149         double_rq_unlock(rq_src, rq_dest);
 6150         raw_spin_unlock(&p->pi_lock);
 6151         return ret;
 6152 }
 6153 
 6154 /*
 6155  * migration_cpu_stop - this will be executed by a highprio stopper thread
 6156  * and performs thread migration by bumping thread off CPU then
 6157  * 'pushing' onto another runqueue.
 6158  */
 6159 static int migration_cpu_stop(void *data)
 6160 {
 6161         struct migration_arg *arg = data;
 6162 
 6163         /*
 6164          * The original target cpu might have gone down and we might
 6165          * be on another cpu but it doesn't matter.
 6166          */
 6167         local_irq_disable();
 6168         __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
 6169         local_irq_enable();
 6170         return 0;
 6171 }
 6172 
 6173 #ifdef CONFIG_HOTPLUG_CPU
 6174 
 6175 /*
 6176  * Ensures that the idle task is using init_mm right before its cpu goes
 6177  * offline.
 6178  */
 6179 void idle_task_exit(void)
 6180 {
 6181         struct mm_struct *mm = current->active_mm;
 6182 
 6183         BUG_ON(cpu_online(smp_processor_id()));
 6184 
 6185         if (mm != &init_mm)
 6186                 switch_mm(mm, &init_mm, current);
 6187         mmdrop(mm);
 6188 }
 6189 
 6190 /*
 6191  * While a dead CPU has no uninterruptible tasks queued at this point,
 6192  * it might still have a nonzero ->nr_uninterruptible counter, because
 6193  * for performance reasons the counter is not stricly tracking tasks to
 6194  * their home CPUs. So we just add the counter to another CPU's counter,
 6195  * to keep the global sum constant after CPU-down:
 6196  */
 6197 static void migrate_nr_uninterruptible(struct rq *rq_src)
 6198 {
 6199         struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
 6200 
 6201         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
 6202         rq_src->nr_uninterruptible = 0;
 6203 }
 6204 
 6205 /*
 6206  * remove the tasks which were accounted by rq from calc_load_tasks.
 6207  */
 6208 static void calc_global_load_remove(struct rq *rq)
 6209 {
 6210         atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
 6211         rq->calc_load_active = 0;
 6212 }
 6213 
 6214 /*
 6215  * Migrate all tasks from the rq, sleeping tasks will be migrated by
 6216  * try_to_wake_up()->select_task_rq().
 6217  *
 6218  * Called with rq->lock held even though we'er in stop_machine() and
 6219  * there's no concurrency possible, we hold the required locks anyway
 6220  * because of lock validation efforts.
 6221  */
 6222 static void migrate_tasks(unsigned int dead_cpu)
 6223 {
 6224         struct rq *rq = cpu_rq(dead_cpu);
 6225         struct task_struct *next, *stop = rq->stop;
 6226         int dest_cpu;
 6227 
 6228         /*
 6229          * Fudge the rq selection such that the below task selection loop
 6230          * doesn't get stuck on the currently eligible stop task.
 6231          *
 6232          * We're currently inside stop_machine() and the rq is either stuck
 6233          * in the stop_machine_cpu_stop() loop, or we're executing this code,
 6234          * either way we should never end up calling schedule() until we're
 6235          * done here.
 6236          */
 6237         rq->stop = NULL;
 6238 
 6239         for ( ; ; ) {
 6240                 /*
 6241                  * There's this thread running, bail when that's the only
 6242                  * remaining thread.
 6243                  */
 6244                 if (rq->nr_running == 1)
 6245                         break;
 6246 
 6247                 next = pick_next_task(rq);
 6248                 BUG_ON(!next);
 6249                 next->sched_class->put_prev_task(rq, next);
 6250 
 6251                 /* Find suitable destination for @next, with force if needed. */
 6252                 dest_cpu = select_fallback_rq(dead_cpu, next);
 6253                 raw_spin_unlock(&rq->lock);
 6254 
 6255                 __migrate_task(next, dead_cpu, dest_cpu);
 6256 
 6257                 raw_spin_lock(&rq->lock);
 6258         }
 6259 
 6260         rq->stop = stop;
 6261 }
 6262 
 6263 #endif /* CONFIG_HOTPLUG_CPU */
 6264 
 6265 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
 6266 
 6267 static struct ctl_table sd_ctl_dir[] = {
 6268         {
 6269                 .procname       = "sched_domain",
 6270                 .mode           = 0555,
 6271         },
 6272         {}
 6273 };
 6274 
 6275 static struct ctl_table sd_ctl_root[] = {
 6276         {
 6277                 .procname       = "kernel",
 6278                 .mode           = 0555,
 6279                 .child          = sd_ctl_dir,
 6280         },
 6281         {}
 6282 };
 6283 
 6284 static struct ctl_table *sd_alloc_ctl_entry(int n)
 6285 {
 6286         struct ctl_table *entry =
 6287                 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
 6288 
 6289         return entry;
 6290 }
 6291 
 6292 static void sd_free_ctl_entry(struct ctl_table **tablep)
 6293 {
 6294         struct ctl_table *entry;
 6295 
 6296         /*
 6297          * In the intermediate directories, both the child directory and
 6298          * procname are dynamically allocated and could fail but the mode
 6299          * will always be set. In the lowest directory the names are
 6300          * static strings and all have proc handlers.
 6301          */
 6302         for (entry = *tablep; entry->mode; entry++) {
 6303                 if (entry->child)
 6304                         sd_free_ctl_entry(&entry->child);
 6305                 if (entry->proc_handler == NULL)
 6306                         kfree(entry->procname);
 6307         }
 6308 
 6309         kfree(*tablep);
 6310         *tablep = NULL;
 6311 }
 6312 
 6313 static void
 6314 set_table_entry(struct ctl_table *entry,
 6315                 const char *procname, void *data, int maxlen,
 6316                 mode_t mode, proc_handler *proc_handler)
 6317 {
 6318         entry->procname = procname;
 6319         entry->data = data;
 6320         entry->maxlen = maxlen;
 6321         entry->mode = mode;
 6322         entry->proc_handler = proc_handler;
 6323 }
 6324 
 6325 static struct ctl_table *
 6326 sd_alloc_ctl_domain_table(struct sched_domain *sd)
 6327 {
 6328         struct ctl_table *table = sd_alloc_ctl_entry(13);
 6329 
 6330         if (table == NULL)
 6331                 return NULL;
 6332 
 6333         set_table_entry(&table[0], "min_interval", &sd->min_interval,
 6334                 sizeof(long), 0644, proc_doulongvec_minmax);
 6335         set_table_entry(&table[1], "max_interval", &sd->max_interval,
 6336                 sizeof(long), 0644, proc_doulongvec_minmax);
 6337         set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
 6338                 sizeof(int), 0644, proc_dointvec_minmax);
 6339         set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
 6340                 sizeof(int), 0644, proc_dointvec_minmax);
 6341         set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
 6342                 sizeof(int), 0644, proc_dointvec_minmax);
 6343         set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
 6344                 sizeof(int), 0644, proc_dointvec_minmax);
 6345         set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
 6346                 sizeof(int), 0644, proc_dointvec_minmax);
 6347         set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
 6348                 sizeof(int), 0644, proc_dointvec_minmax);
 6349         set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
 6350                 sizeof(int), 0644, proc_dointvec_minmax);
 6351         set_table_entry(&table[9], "cache_nice_tries",
 6352                 &sd->cache_nice_tries,
 6353                 sizeof(int), 0644, proc_dointvec_minmax);
 6354         set_table_entry(&table[10], "flags", &sd->flags,
 6355                 sizeof(int), 0644, proc_dointvec_minmax);
 6356         set_table_entry(&table[11], "name", sd->name,
 6357                 CORENAME_MAX_SIZE, 0444, proc_dostring);
 6358         /* &table[12] is terminator */
 6359 
 6360         return table;
 6361 }
 6362 
 6363 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
 6364 {
 6365         struct ctl_table *entry, *table;
 6366         struct sched_domain *sd;
 6367         int domain_num = 0, i;
 6368         char buf[32];
 6369 
 6370         for_each_domain(cpu, sd)
 6371                 domain_num++;
 6372         entry = table = sd_alloc_ctl_entry(domain_num + 1);
 6373         if (table == NULL)
 6374                 return NULL;
 6375 
 6376         i = 0;
 6377         for_each_domain(cpu, sd) {
 6378                 snprintf(buf, 32, "domain%d", i);
 6379                 entry->procname = kstrdup(buf, GFP_KERNEL);
 6380                 entry->mode = 0555;
 6381                 entry->child = sd_alloc_ctl_domain_table(sd);
 6382                 entry++;
 6383                 i++;
 6384         }
 6385         return table;
 6386 }
 6387 
 6388 static struct ctl_table_header *sd_sysctl_header;
 6389 static void register_sched_domain_sysctl(void)
 6390 {
 6391         int i, cpu_num = num_possible_cpus();
 6392         struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
 6393         char buf[32];
 6394 
 6395         WARN_ON(sd_ctl_dir[0].child);
 6396         sd_ctl_dir[0].child = entry;
 6397 
 6398         if (entry == NULL)
 6399                 return;
 6400 
 6401         for_each_possible_cpu(i) {
 6402                 snprintf(buf, 32, "cpu%d", i);
 6403                 entry->procname = kstrdup(buf, GFP_KERNEL);
 6404                 entry->mode = 0555;
 6405                 entry->child = sd_alloc_ctl_cpu_table(i);
 6406                 entry++;
 6407         }
 6408 
 6409         WARN_ON(sd_sysctl_header);
 6410         sd_sysctl_header = register_sysctl_table(sd_ctl_root);
 6411 }
 6412 
 6413 /* may be called multiple times per register */
 6414 static void unregister_sched_domain_sysctl(void)
 6415 {
 6416         if (sd_sysctl_header)
 6417                 unregister_sysctl_table(sd_sysctl_header);
 6418         sd_sysctl_header = NULL;
 6419         if (sd_ctl_dir[0].child)
 6420                 sd_free_ctl_entry(&sd_ctl_dir[0].child);
 6421 }
 6422 #else
 6423 static void register_sched_domain_sysctl(void)
 6424 {
 6425 }
 6426 static void unregister_sched_domain_sysctl(void)
 6427 {
 6428 }
 6429 #endif
 6430 
 6431 static void set_rq_online(struct rq *rq)
 6432 {
 6433         if (!rq->online) {
 6434                 const struct sched_class *class;
 6435 
 6436                 cpumask_set_cpu(rq->cpu, rq->rd->online);
 6437                 rq->online = 1;
 6438 
 6439                 for_each_class(class) {
 6440                         if (class->rq_online)
 6441                                 class->rq_online(rq);
 6442                 }
 6443         }
 6444 }
 6445 
 6446 static void set_rq_offline(struct rq *rq)
 6447 {
 6448         if (rq->online) {
 6449                 const struct sched_class *class;
 6450 
 6451                 for_each_class(class) {
 6452                         if (class->rq_offline)
 6453                                 class->rq_offline(rq);
 6454                 }
 6455 
 6456                 cpumask_clear_cpu(rq->cpu, rq->rd->online);
 6457                 rq->online = 0;
 6458         }
 6459 }
 6460 
 6461 /*
 6462  * migration_call - callback that gets triggered when a CPU is added.
 6463  * Here we can start up the necessary migration thread for the new CPU.
 6464  */
 6465 static int __cpuinit
 6466 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
 6467 {
 6468         int cpu = (long)hcpu;
 6469         unsigned long flags;
 6470         struct rq *rq = cpu_rq(cpu);
 6471 
 6472         switch (action & ~CPU_TASKS_FROZEN) {
 6473 
 6474         case CPU_UP_PREPARE:
 6475                 rq->calc_load_update = calc_load_update;
 6476                 break;
 6477 
 6478         case CPU_ONLINE:
 6479                 /* Update our root-domain */
 6480                 raw_spin_lock_irqsave(&rq->lock, flags);
 6481                 if (rq->rd) {
 6482                         BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
 6483 
 6484                         set_rq_online(rq);
 6485                 }
 6486                 raw_spin_unlock_irqrestore(&rq->lock, flags);
 6487                 break;
 6488 
 6489 #ifdef CONFIG_HOTPLUG_CPU
 6490         case CPU_DYING:
 6491                 sched_ttwu_pending();
 6492                 /* Update our root-domain */
 6493                 raw_spin_lock_irqsave(&rq->lock, flags);
 6494                 if (rq->rd) {
 6495                         BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
 6496                         set_rq_offline(rq);
 6497                 }
 6498                 migrate_tasks(cpu);
 6499                 BUG_ON(rq->nr_running != 1); /* the migration thread */
 6500                 raw_spin_unlock_irqrestore(&rq->lock, flags);
 6501 
 6502                 migrate_nr_uninterruptible(rq);
 6503                 calc_global_load_remove(rq);
 6504                 break;
 6505 #endif
 6506         }
 6507 
 6508         update_max_interval();
 6509 
 6510         return NOTIFY_OK;
 6511 }
 6512 
 6513 /*
 6514  * Register at high priority so that task migration (migrate_all_tasks)
 6515  * happens before everything else.  This has to be lower priority than
 6516  * the notifier in the perf_event subsystem, though.
 6517  */
 6518 static struct notifier_block __cpuinitdata migration_notifier = {
 6519         .notifier_call = migration_call,
 6520         .priority = CPU_PRI_MIGRATION,
 6521 };
 6522 
 6523 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
 6524                                       unsigned long action, void *hcpu)
 6525 {
 6526         switch (action & ~CPU_TASKS_FROZEN) {
 6527         case CPU_ONLINE:
 6528         case CPU_DOWN_FAILED:
 6529                 set_cpu_active((long)hcpu, true);
 6530                 return NOTIFY_OK;
 6531         default:
 6532                 return NOTIFY_DONE;
 6533         }
 6534 }
 6535 
 6536 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
 6537                                         unsigned long action, void *hcpu)
 6538 {
 6539         switch (action & ~CPU_TASKS_FROZEN) {
 6540         case CPU_DOWN_PREPARE:
 6541                 set_cpu_active((long)hcpu, false);
 6542                 return NOTIFY_OK;
 6543         default:
 6544                 return NOTIFY_DONE;
 6545         }
 6546 }
 6547 
 6548 static int __init migration_init(void)
 6549 {
 6550         void *cpu = (void *)(long)smp_processor_id();
 6551         int err;
 6552 
 6553         /* Initialize migration for the boot CPU */
 6554         err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
 6555         BUG_ON(err == NOTIFY_BAD);
 6556         migration_call(&migration_notifier, CPU_ONLINE, cpu);
 6557         register_cpu_notifier(&migration_notifier);
 6558 
 6559         /* Register cpu active notifiers */
 6560         cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
 6561         cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
 6562 
 6563         return 0;
 6564 }
 6565 early_initcall(migration_init);
 6566 #endif
 6567 
 6568 #ifdef CONFIG_SMP
 6569 
 6570 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
 6571 
 6572 #ifdef CONFIG_SCHED_DEBUG
 6573 
 6574 static __read_mostly int sched_domain_debug_enabled;
 6575 
 6576 static int __init sched_domain_debug_setup(char *str)
 6577 {
 6578         sched_domain_debug_enabled = 1;
 6579 
 6580         return 0;
 6581 }
 6582 early_param("sched_debug", sched_domain_debug_setup);
 6583 
 6584 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
 6585                                   struct cpumask *groupmask)
 6586 {
 6587         struct sched_group *group = sd->groups;
 6588         char str[256];
 6589 
 6590         cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
 6591         cpumask_clear(groupmask);
 6592 
 6593         printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
 6594 
 6595         if (!(sd->flags & SD_LOAD_BALANCE)) {
 6596                 printk("does not load-balance\n");
 6597                 if (sd->parent)
 6598                         printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
 6599                                         " has parent");
 6600                 return -1;
 6601         }
 6602 
 6603         printk(KERN_CONT "span %s level %s\n", str, sd->name);
 6604 
 6605         if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
 6606                 printk(KERN_ERR "ERROR: domain->span does not contain "
 6607                                 "CPU%d\n", cpu);
 6608         }
 6609         if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
 6610                 printk(KERN_ERR "ERROR: domain->groups does not contain"
 6611                                 " CPU%d\n", cpu);
 6612         }
 6613 
 6614         printk(KERN_DEBUG "%*s groups:", level + 1, "");
 6615         do {
 6616                 if (!group) {
 6617                         printk("\n");
 6618                         printk(KERN_ERR "ERROR: group is NULL\n");
 6619                         break;
 6620                 }
 6621 
 6622                 if (!group->sgp->power) {
 6623                         printk(KERN_CONT "\n");
 6624                         printk(KERN_ERR "ERROR: domain->cpu_power not "
 6625                                         "set\n");
 6626                         break;
 6627                 }
 6628 
 6629                 if (!cpumask_weight(sched_group_cpus(group))) {
 6630                         printk(KERN_CONT "\n");
 6631                         printk(KERN_ERR "ERROR: empty group\n");
 6632                         break;
 6633                 }
 6634 
 6635                 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
 6636                         printk(KERN_CONT "\n");
 6637                         printk(KERN_ERR "ERROR: repeated CPUs\n");
 6638                         break;
 6639                 }
 6640 
 6641                 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
 6642 
 6643                 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
 6644 
 6645                 printk(KERN_CONT " %s", str);
 6646                 if (group->sgp->power != SCHED_POWER_SCALE) {
 6647                         printk(KERN_CONT " (cpu_power = %d)",
 6648                                 group->sgp->power);
 6649                 }
 6650 
 6651                 group = group->next;
 6652         } while (group != sd->groups);
 6653         printk(KERN_CONT "\n");
 6654 
 6655         if (!cpumask_equal(sched_domain_span(sd), groupmask))
 6656                 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 6657 
 6658         if (sd->parent &&
 6659             !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
 6660                 printk(KERN_ERR "ERROR: parent span is not a superset "
 6661                         "of domain->span\n");
 6662         return 0;
 6663 }
 6664 
 6665 static void sched_domain_debug(struct sched_domain *sd, int cpu)
 6666 {
 6667         int level = 0;
 6668 
 6669         if (!sched_domain_debug_enabled)
 6670                 return;
 6671 
 6672         if (!sd) {
 6673                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
 6674                 return;
 6675         }
 6676 
 6677         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
 6678 
 6679         for (;;) {
 6680                 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
 6681                         break;
 6682                 level++;
 6683                 sd = sd->parent;
 6684                 if (!sd)
 6685                         break;
 6686         }
 6687 }
 6688 #else /* !CONFIG_SCHED_DEBUG */
 6689 # define sched_domain_debug(sd, cpu) do { } while (0)
 6690 #endif /* CONFIG_SCHED_DEBUG */
 6691 
 6692 static int sd_degenerate(struct sched_domain *sd)
 6693 {
 6694         if (cpumask_weight(sched_domain_span(sd)) == 1)
 6695                 return 1;
 6696 
 6697         /* Following flags need at least 2 groups */
 6698         if (sd->flags & (SD_LOAD_BALANCE |
 6699                          SD_BALANCE_NEWIDLE |
 6700                          SD_BALANCE_FORK |
 6701                          SD_BALANCE_EXEC |
 6702                          SD_SHARE_CPUPOWER |
 6703                          SD_SHARE_PKG_RESOURCES)) {
 6704                 if (sd->groups != sd->groups->next)
 6705                         return 0;
 6706         }
 6707 
 6708         /* Following flags don't use groups */
 6709         if (sd->flags & (SD_WAKE_AFFINE))
 6710                 return 0;
 6711 
 6712         return 1;
 6713 }
 6714 
 6715 static int
 6716 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
 6717 {
 6718         unsigned long cflags = sd->flags, pflags = parent->flags;
 6719 
 6720         if (sd_degenerate(parent))
 6721                 return 1;
 6722 
 6723         if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
 6724                 return 0;
 6725 
 6726         /* Flags needing groups don't count if only 1 group in parent */
 6727         if (parent->groups == parent->groups->next) {
 6728                 pflags &= ~(SD_LOAD_BALANCE |
 6729                                 SD_BALANCE_NEWIDLE |
 6730                                 SD_BALANCE_FORK |
 6731                                 SD_BALANCE_EXEC |
 6732                                 SD_SHARE_CPUPOWER |
 6733                                 SD_SHARE_PKG_RESOURCES);
 6734                 if (nr_node_ids == 1)
 6735                         pflags &= ~SD_SERIALIZE;
 6736         }
 6737         if (~cflags & pflags)
 6738                 return 0;
 6739 
 6740         return 1;
 6741 }
 6742 
 6743 static void free_rootdomain(struct rcu_head *rcu)
 6744 {
 6745         struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
 6746 
 6747         cpupri_cleanup(&rd->cpupri);
 6748         free_cpumask_var(rd->rto_mask);
 6749         free_cpumask_var(rd->online);
 6750         free_cpumask_var(rd->span);
 6751         kfree(rd);
 6752 }
 6753 
 6754 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
 6755 {
 6756         struct root_domain *old_rd = NULL;
 6757         unsigned long flags;
 6758 
 6759         raw_spin_lock_irqsave(&rq->lock, flags);
 6760 
 6761         if (rq->rd) {
 6762                 old_rd = rq->rd;
 6763 
 6764                 if (cpumask_test_cpu(rq->cpu, old_rd->online))
 6765                         set_rq_offline(rq);
 6766 
 6767                 cpumask_clear_cpu(rq->cpu, old_rd->span);
 6768 
 6769                 /*
 6770                  * If we dont want to free the old_rt yet then
 6771                  * set old_rd to NULL to skip the freeing later
 6772                  * in this function:
 6773                  */
 6774                 if (!atomic_dec_and_test(&old_rd->refcount))
 6775                         old_rd = NULL;
 6776         }
 6777 
 6778         atomic_inc(&rd->refcount);
 6779         rq->rd = rd;
 6780 
 6781         cpumask_set_cpu(rq->cpu, rd->span);
 6782         if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
 6783                 set_rq_online(rq);
 6784 
 6785         raw_spin_unlock_irqrestore(&rq->lock, flags);
 6786 
 6787         if (old_rd)
 6788                 call_rcu_sched(&old_rd->rcu, free_rootdomain);
 6789 }
 6790 
 6791 static int init_rootdomain(struct root_domain *rd)
 6792 {
 6793         memset(rd, 0, sizeof(*rd));
 6794 
 6795         if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
 6796                 goto out;
 6797         if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
 6798                 goto free_span;
 6799         if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
 6800                 goto free_online;
 6801 
 6802         if (cpupri_init(&rd->cpupri) != 0)
 6803                 goto free_rto_mask;
 6804         return 0;
 6805 
 6806 free_rto_mask:
 6807         free_cpumask_var(rd->rto_mask);
 6808 free_online:
 6809         free_cpumask_var(rd->online);
 6810 free_span:
 6811         free_cpumask_var(rd->span);
 6812 out:
 6813         return -ENOMEM;
 6814 }
 6815 
 6816 static void init_defrootdomain(void)
 6817 {
 6818         init_rootdomain(&def_root_domain);
 6819 
 6820         atomic_set(&def_root_domain.refcount, 1);
 6821 }
 6822 
 6823 static struct root_domain *alloc_rootdomain(void)
 6824 {
 6825         struct root_domain *rd;
 6826 
 6827         rd = kmalloc(sizeof(*rd), GFP_KERNEL);
 6828         if (!rd)
 6829                 return NULL;
 6830 
 6831         if (init_rootdomain(rd) != 0) {
 6832                 kfree(rd);
 6833                 return NULL;
 6834         }
 6835 
 6836         return rd;
 6837 }
 6838 
 6839 static void free_sched_groups(struct sched_group *sg, int free_sgp)
 6840 {
 6841         struct sched_group *tmp, *first;
 6842 
 6843         if (!sg)
 6844                 return;
 6845 
 6846         first = sg;
 6847         do {
 6848                 tmp = sg->next;
 6849 
 6850                 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
 6851                         kfree(sg->sgp);
 6852 
 6853                 kfree(sg);
 6854                 sg = tmp;
 6855         } while (sg != first);
 6856 }
 6857 
 6858 static void free_sched_domain(struct rcu_head *rcu)
 6859 {
 6860         struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
 6861 
 6862         /*
 6863          * If its an overlapping domain it has private groups, iterate and
 6864          * nuke them all.
 6865          */
 6866         if (sd->flags & SD_OVERLAP) {
 6867                 free_sched_groups(sd->groups, 1);
 6868         } else if (atomic_dec_and_test(&sd->groups->ref)) {
 6869                 kfree(sd->groups->sgp);
 6870                 kfree(sd->groups);
 6871         }
 6872         kfree(sd);
 6873 }
 6874 
 6875 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
 6876 {
 6877         call_rcu(&sd->rcu, free_sched_domain);
 6878 }
 6879 
 6880 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
 6881 {
 6882         for (; sd; sd = sd->parent)
 6883                 destroy_sched_domain(sd, cpu);
 6884 }
 6885 
 6886 /*
 6887  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
 6888  * hold the hotplug lock.
 6889  */
 6890 static void
 6891 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
 6892 {
 6893         struct rq *rq = cpu_rq(cpu);
 6894         struct sched_domain *tmp;
 6895 
 6896         /* Remove the sched domains which do not contribute to scheduling. */
 6897         for (tmp = sd; tmp; ) {
 6898                 struct sched_domain *parent = tmp->parent;
 6899                 if (!parent)
 6900                         break;
 6901 
 6902                 if (sd_parent_degenerate(tmp, parent)) {
 6903                         tmp->parent = parent->parent;
 6904                         if (parent->parent)
 6905                                 parent->parent->child = tmp;
 6906                         destroy_sched_domain(parent, cpu);
 6907                 } else
 6908                         tmp = tmp->parent;
 6909         }
 6910 
 6911         if (sd && sd_degenerate(sd)) {
 6912                 tmp = sd;
 6913                 sd = sd->parent;
 6914                 destroy_sched_domain(tmp, cpu);
 6915                 if (sd)
 6916                         sd->child = NULL;
 6917         }
 6918 
 6919         sched_domain_debug(sd, cpu);
 6920 
 6921         rq_attach_root(rq, rd);
 6922         tmp = rq->sd;
 6923         rcu_assign_pointer(rq->sd, sd);
 6924         destroy_sched_domains(tmp, cpu);
 6925 }
 6926 
 6927 /* cpus with isolated domains */
 6928 static cpumask_var_t cpu_isolated_map;
 6929 
 6930 /* Setup the mask of cpus configured for isolated domains */
 6931 static int __init isolated_cpu_setup(char *str)
 6932 {
 6933         alloc_bootmem_cpumask_var(&cpu_isolated_map);
 6934         cpulist_parse(str, cpu_isolated_map);
 6935         return 1;
 6936 }
 6937 
 6938 __setup("isolcpus=", isolated_cpu_setup);
 6939 
 6940 #define SD_NODES_PER_DOMAIN 16
 6941 
 6942 #ifdef CONFIG_NUMA
 6943 
 6944 /**
 6945  * find_next_best_node - find the next node to include in a sched_domain
 6946  * @node: node whose sched_domain we're building
 6947  * @used_nodes: nodes already in the sched_domain
 6948  *
 6949  * Find the next node to include in a given scheduling domain. Simply
 6950  * finds the closest node not already in the @used_nodes map.
 6951  *
 6952  * Should use nodemask_t.
 6953  */
 6954 static int find_next_best_node(int node, nodemask_t *used_nodes)
 6955 {
 6956         int i, n, val, min_val, best_node = -1;
 6957 
 6958         min_val = INT_MAX;
 6959 
 6960         for (i = 0; i < nr_node_ids; i++) {
 6961                 /* Start at @node */
 6962                 n = (node + i) % nr_node_ids;
 6963 
 6964                 if (!nr_cpus_node(n))
 6965                         continue;
 6966 
 6967                 /* Skip already used nodes */
 6968                 if (node_isset(n, *used_nodes))
 6969                         continue;
 6970 
 6971                 /* Simple min distance search */
 6972                 val = node_distance(node, n);
 6973 
 6974                 if (val < min_val) {
 6975                         min_val = val;
 6976                         best_node = n;
 6977                 }
 6978         }
 6979 
 6980         if (best_node != -1)
 6981                 node_set(best_node, *used_nodes);
 6982         return best_node;
 6983 }
 6984 
 6985 /**
 6986  * sched_domain_node_span - get a cpumask for a node's sched_domain
 6987  * @node: node whose cpumask we're constructing
 6988  * @span: resulting cpumask
 6989  *
 6990  * Given a node, construct a good cpumask for its sched_domain to span. It
 6991  * should be one that prevents unnecessary balancing, but also spreads tasks
 6992  * out optimally.
 6993  */
 6994 static void sched_domain_node_span(int node, struct cpumask *span)
 6995 {
 6996         nodemask_t used_nodes;
 6997         int i;
 6998 
 6999         cpumask_clear(span);
 7000         nodes_clear(used_nodes);
 7001 
 7002         cpumask_or(span, span, cpumask_of_node(node));
 7003         node_set(node, used_nodes);
 7004 
 7005         for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
 7006                 int next_node = find_next_best_node(node, &used_nodes);
 7007                 if (next_node < 0)
 7008                         break;
 7009                 cpumask_or(span, span, cpumask_of_node(next_node));
 7010         }
 7011 }
 7012 
 7013 static const struct cpumask *cpu_node_mask(int cpu)
 7014 {
 7015         lockdep_assert_held(&sched_domains_mutex);
 7016 
 7017         sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
 7018 
 7019         return sched_domains_tmpmask;
 7020 }
 7021 
 7022 static const struct cpumask *cpu_allnodes_mask(int cpu)
 7023 {
 7024         return cpu_possible_mask;
 7025 }
 7026 #endif /* CONFIG_NUMA */
 7027 
 7028 static const struct cpumask *cpu_cpu_mask(int cpu)
 7029 {
 7030         return cpumask_of_node(cpu_to_node(cpu));
 7031 }
 7032 
 7033 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
 7034 
 7035 struct sd_data {
 7036         struct sched_domain **__percpu sd;
 7037         struct sched_group **__percpu sg;
 7038         struct sched_group_power **__percpu sgp;
 7039 };
 7040 
 7041 struct s_data {
 7042         struct sched_domain ** __percpu sd;
 7043         struct root_domain      *rd;
 7044 };
 7045 
 7046 enum s_alloc {
 7047         sa_rootdomain,
 7048         sa_sd,
 7049         sa_sd_storage,
 7050         sa_none,
 7051 };
 7052 
 7053 struct sched_domain_topology_level;
 7054 
 7055 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
 7056 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
 7057 
 7058 #define SDTL_OVERLAP    0x01
 7059 
 7060 struct sched_domain_topology_level {
 7061         sched_domain_init_f init;
 7062         sched_domain_mask_f mask;
 7063         int                 flags;
 7064         struct sd_data      data;
 7065 };
 7066 
 7067 static int
 7068 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
 7069 {
 7070         struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
 7071         const struct cpumask *span = sched_domain_span(sd);
 7072         struct cpumask *covered = sched_domains_tmpmask;
 7073         struct sd_data *sdd = sd->private;
 7074         struct sched_domain *child;
 7075         int i;
 7076 
 7077         cpumask_clear(covered);
 7078 
 7079         for_each_cpu(i, span) {
 7080                 struct cpumask *sg_span;
 7081 
 7082                 if (cpumask_test_cpu(i, covered))
 7083                         continue;
 7084 
 7085                 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 7086                                 GFP_KERNEL, cpu_to_node(i));
 7087 
 7088                 if (!sg)
 7089                         goto fail;
 7090 
 7091                 sg_span = sched_group_cpus(sg);
 7092 
 7093                 child = *per_cpu_ptr(sdd->sd, i);
 7094                 if (child->child) {
 7095                         child = child->child;
 7096                         cpumask_copy(sg_span, sched_domain_span(child));
 7097                 } else
 7098                         cpumask_set_cpu(i, sg_span);
 7099 
 7100                 cpumask_or(covered, covered, sg_span);
 7101 
 7102                 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
 7103                 atomic_inc(&sg->sgp->ref);
 7104 
 7105                 if (cpumask_test_cpu(cpu, sg_span))
 7106                         groups = sg;
 7107 
 7108                 if (!first)
 7109                         first = sg;
 7110                 if (last)
 7111                         last->next = sg;
 7112                 last = sg;
 7113                 last->next = first;
 7114         }
 7115         sd->groups = groups;
 7116 
 7117         return 0;
 7118 
 7119 fail:
 7120         free_sched_groups(first, 0);
 7121 
 7122         return -ENOMEM;
 7123 }
 7124 
 7125 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
 7126 {
 7127         struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
 7128         struct sched_domain *child = sd->child;
 7129 
 7130         if (child)
 7131                 cpu = cpumask_first(sched_domain_span(child));
 7132 
 7133         if (sg) {
 7134                 *sg = *per_cpu_ptr(sdd->sg, cpu);
 7135                 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
 7136                 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
 7137         }
 7138 
 7139         return cpu;
 7140 }
 7141 
 7142 /*
 7143  * build_sched_groups will build a circular linked list of the groups
 7144  * covered by the given span, and will set each group's ->cpumask correctly,
 7145  * and ->cpu_power to 0.
 7146  *
 7147  * Assumes the sched_domain tree is fully constructed
 7148  */
 7149 static int
 7150 build_sched_groups(struct sched_domain *sd, int cpu)
 7151 {
 7152         struct sched_group *first = NULL, *last = NULL;
 7153         struct sd_data *sdd = sd->private;
 7154         const struct cpumask *span = sched_domain_span(sd);
 7155         struct cpumask *covered;
 7156         int i;
 7157 
 7158         get_group(cpu, sdd, &sd->groups);
 7159         atomic_inc(&sd->groups->ref);
 7160 
 7161         if (cpu != cpumask_first(sched_domain_span(sd)))
 7162                 return 0;
 7163 
 7164         lockdep_assert_held(&sched_domains_mutex);
 7165         covered = sched_domains_tmpmask;
 7166 
 7167         cpumask_clear(covered);
 7168 
 7169         for_each_cpu(i, span) {
 7170                 struct sched_group *sg;
 7171                 int group = get_group(i, sdd, &sg);
 7172                 int j;
 7173 
 7174                 if (cpumask_test_cpu(i, covered))
 7175                         continue;
 7176 
 7177                 cpumask_clear(sched_group_cpus(sg));
 7178                 sg->sgp->power = 0;
 7179 
 7180                 for_each_cpu(j, span) {
 7181                         if (get_group(j, sdd, NULL) != group)
 7182                                 continue;
 7183 
 7184                         cpumask_set_cpu(j, covered);
 7185                         cpumask_set_cpu(j, sched_group_cpus(sg));
 7186                 }
 7187 
 7188                 if (!first)
 7189                         first = sg;
 7190                 if (last)
 7191                         last->next = sg;
 7192                 last = sg;
 7193         }
 7194         last->next = first;
 7195 
 7196         return 0;
 7197 }
 7198 
 7199 /*
 7200  * Initialize sched groups cpu_power.
 7201  *
 7202  * cpu_power indicates the capacity of sched group, which is used while
 7203  * distributing the load between different sched groups in a sched domain.
 7204  * Typically cpu_power for all the groups in a sched domain will be same unless
 7205  * there are asymmetries in the topology. If there are asymmetries, group
 7206  * having more cpu_power will pickup more load compared to the group having
 7207  * less cpu_power.
 7208  */
 7209 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
 7210 {
 7211         struct sched_group *sg = sd->groups;
 7212 
 7213         WARN_ON(!sd || !sg);
 7214 
 7215         do {
 7216                 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
 7217                 sg = sg->next;
 7218         } while (sg != sd->groups);
 7219 
 7220         if (cpu != group_first_cpu(sg))
 7221                 return;
 7222 
 7223         update_group_power(sd, cpu);
 7224 }
 7225 
 7226 /*
 7227  * Initializers for schedule domains
 7228  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 7229  */
 7230 
 7231 #ifdef CONFIG_SCHED_DEBUG
 7232 # define SD_INIT_NAME(sd, type)         sd->name = #type
 7233 #else
 7234 # define SD_INIT_NAME(sd, type)         do { } while (0)
 7235 #endif
 7236 
 7237 #define SD_INIT_FUNC(type)                                              \
 7238 static noinline struct sched_domain *                                   \
 7239 sd_init_##type(struct sched_domain_topology_level *tl, int cpu)         \
 7240 {                                                                       \
 7241         struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);       \
 7242         *sd = SD_##type##_INIT;                                         \
 7243         SD_INIT_NAME(sd, type);                                         \
 7244         sd->private = &tl->data;                                        \
 7245         return sd;                                                      \
 7246 }
 7247 
 7248 SD_INIT_FUNC(CPU)
 7249 #ifdef CONFIG_NUMA
 7250  SD_INIT_FUNC(ALLNODES)
 7251  SD_INIT_FUNC(NODE)
 7252 #endif
 7253 #ifdef CONFIG_SCHED_SMT
 7254  SD_INIT_FUNC(SIBLING)
 7255 #endif
 7256 #ifdef CONFIG_SCHED_MC
 7257  SD_INIT_FUNC(MC)
 7258 #endif
 7259 #ifdef CONFIG_SCHED_BOOK
 7260  SD_INIT_FUNC(BOOK)
 7261 #endif
 7262 
 7263 static int default_relax_domain_level = -1;
 7264 int sched_domain_level_max;
 7265 
 7266 static int __init setup_relax_domain_level(char *str)
 7267 {
 7268         unsigned long val;
 7269 
 7270         val = simple_strtoul(str, NULL, 0);
 7271         if (val < sched_domain_level_max)
 7272                 default_relax_domain_level = val;
 7273 
 7274         return 1;
 7275 }
 7276 __setup("relax_domain_level=", setup_relax_domain_level);
 7277 
 7278 static void set_domain_attribute(struct sched_domain *sd,
 7279                                  struct sched_domain_attr *attr)
 7280 {
 7281         int request;
 7282 
 7283         if (!attr || attr->relax_domain_level < 0) {
 7284                 if (default_relax_domain_level < 0)
 7285                         return;
 7286                 else
 7287                         request = default_relax_domain_level;
 7288         } else
 7289                 request = attr->relax_domain_level;
 7290         if (request < sd->level) {
 7291                 /* turn off idle balance on this domain */
 7292                 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
 7293         } else {
 7294                 /* turn on idle balance on this domain */
 7295                 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
 7296         }
 7297 }
 7298 
 7299 static void __sdt_free(const struct cpumask *cpu_map);
 7300 static int __sdt_alloc(const struct cpumask *cpu_map);
 7301 
 7302 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
 7303                                  const struct cpumask *cpu_map)
 7304 {
 7305         switch (what) {
 7306         case sa_rootdomain:
 7307                 if (!atomic_read(&d->rd->refcount))
 7308                         free_rootdomain(&d->rd->rcu); /* fall through */
 7309         case sa_sd:
 7310                 free_percpu(d->sd); /* fall through */
 7311         case sa_sd_storage:
 7312                 __sdt_free(cpu_map); /* fall through */
 7313         case sa_none:
 7314                 break;
 7315         }
 7316 }
 7317 
 7318 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
 7319                                                    const struct cpumask *cpu_map)
 7320 {
 7321         memset(d, 0, sizeof(*d));
 7322 
 7323         if (__sdt_alloc(cpu_map))
 7324                 return sa_sd_storage;
 7325         d->sd = alloc_percpu(struct sched_domain *);
 7326         if (!d->sd)
 7327                 return sa_sd_storage;
 7328         d->rd = alloc_rootdomain();
 7329         if (!d->rd)
 7330                 return sa_sd;
 7331         return sa_rootdomain;
 7332 }
 7333 
 7334 /*
 7335  * NULL the sd_data elements we've used to build the sched_domain and
 7336  * sched_group structure so that the subsequent __free_domain_allocs()
 7337  * will not free the data we're using.
 7338  */
 7339 static void claim_allocations(int cpu, struct sched_domain *sd)
 7340 {
 7341         struct sd_data *sdd = sd->private;
 7342 
 7343         WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
 7344         *per_cpu_ptr(sdd->sd, cpu) = NULL;
 7345 
 7346         if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
 7347                 *per_cpu_ptr(sdd->sg, cpu) = NULL;
 7348 
 7349         if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
 7350                 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
 7351 }
 7352 
 7353 #ifdef CONFIG_SCHED_SMT
 7354 static const struct cpumask *cpu_smt_mask(int cpu)
 7355 {
 7356         return topology_thread_cpumask(cpu);
 7357 }
 7358 #endif
 7359 
 7360 /*
 7361  * Topology list, bottom-up.
 7362  */
 7363 static struct sched_domain_topology_level default_topology[] = {
 7364 #ifdef CONFIG_SCHED_SMT
 7365         { sd_init_SIBLING, cpu_smt_mask, },
 7366 #endif
 7367 #ifdef CONFIG_SCHED_MC
 7368         { sd_init_MC, cpu_coregroup_mask, },
 7369 #endif
 7370 #ifdef CONFIG_SCHED_BOOK
 7371         { sd_init_BOOK, cpu_book_mask, },
 7372 #endif
 7373         { sd_init_CPU, cpu_cpu_mask, },
 7374 #ifdef CONFIG_NUMA
 7375         { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
 7376         { sd_init_ALLNODES, cpu_allnodes_mask, },
 7377 #endif
 7378         { NULL, },
 7379 };
 7380 
 7381 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
 7382 
 7383 static int __sdt_alloc(const struct cpumask *cpu_map)
 7384 {
 7385         struct sched_domain_topology_level *tl;
 7386         int j;
 7387 
 7388         for (tl = sched_domain_topology; tl->init; tl++) {
 7389                 struct sd_data *sdd = &tl->data;
 7390 
 7391                 sdd->sd = alloc_percpu(struct sched_domain *);
 7392                 if (!sdd->sd)
 7393                         return -ENOMEM;
 7394 
 7395                 sdd->sg = alloc_percpu(struct sched_group *);
 7396                 if (!sdd->sg)
 7397                         return -ENOMEM;
 7398 
 7399                 sdd->sgp = alloc_percpu(struct sched_group_power *);
 7400                 if (!sdd->sgp)
 7401                         return -ENOMEM;
 7402 
 7403                 for_each_cpu(j, cpu_map) {
 7404                         struct sched_domain *sd;
 7405                         struct sched_group *sg;
 7406                         struct sched_group_power *sgp;
 7407 
 7408                         sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
 7409                                         GFP_KERNEL, cpu_to_node(j));
 7410                         if (!sd)
 7411                                 return -ENOMEM;
 7412 
 7413                         *per_cpu_ptr(sdd->sd, j) = sd;
 7414 
 7415                         sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 7416                                         GFP_KERNEL, cpu_to_node(j));
 7417                         if (!sg)
 7418                                 return -ENOMEM;
 7419 
 7420                         *per_cpu_ptr(sdd->sg, j) = sg;
 7421 
 7422                         sgp = kzalloc_node(sizeof(struct sched_group_power),
 7423                                         GFP_KERNEL, cpu_to_node(j));
 7424                         if (!sgp)
 7425                                 return -ENOMEM;
 7426 
 7427                         *per_cpu_ptr(sdd->sgp, j) = sgp;
 7428                 }
 7429         }
 7430 
 7431         return 0;
 7432 }
 7433 
 7434 static void __sdt_free(const struct cpumask *cpu_map)
 7435 {
 7436         struct sched_domain_topology_level *tl;
 7437         int j;
 7438 
 7439         for (tl = sched_domain_topology; tl->init; tl++) {
 7440                 struct sd_data *sdd = &tl->data;
 7441 
 7442                 for_each_cpu(j, cpu_map) {
 7443                         struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
 7444                         if (sd && (sd->flags & SD_OVERLAP))
 7445                                 free_sched_groups(sd->groups, 0);
 7446                         kfree(*per_cpu_ptr(sdd->sg, j));
 7447                         kfree(*per_cpu_ptr(sdd->sgp, j));
 7448                 }
 7449                 free_percpu(sdd->sd);
 7450                 free_percpu(sdd->sg);
 7451                 free_percpu(sdd->sgp);
 7452         }
 7453 }
 7454 
 7455 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
 7456                 struct s_data *d, const struct cpumask *cpu_map,
 7457                 struct sched_domain_attr *attr, struct sched_domain *child,
 7458                 int cpu)
 7459 {
 7460         struct sched_domain *sd = tl->init(tl, cpu);
 7461         if (!sd)
 7462                 return child;
 7463 
 7464         set_domain_attribute(sd, attr);
 7465         cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
 7466         if (child) {
 7467                 sd->level = child->level + 1;
 7468                 sched_domain_level_max = max(sched_domain_level_max, sd->level);
 7469                 child->parent = sd;
 7470         }
 7471         sd->child = child;
 7472 
 7473         return sd;
 7474 }
 7475 
 7476 /*
 7477  * Build sched domains for a given set of cpus and attach the sched domains
 7478  * to the individual cpus
 7479  */
 7480 static int build_sched_domains(const struct cpumask *cpu_map,
 7481                                struct sched_domain_attr *attr)
 7482 {
 7483         enum s_alloc alloc_state = sa_none;
 7484         struct sched_domain *sd;
 7485         struct s_data d;
 7486         int i, ret = -ENOMEM;
 7487 
 7488         alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
 7489         if (alloc_state != sa_rootdomain)
 7490                 goto error;
 7491 
 7492         /* Set up domains for cpus specified by the cpu_map. */
 7493         for_each_cpu(i, cpu_map) {
 7494                 struct sched_domain_topology_level *tl;
 7495 
 7496                 sd = NULL;
 7497                 for (tl = sched_domain_topology; tl->init; tl++) {
 7498                         sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
 7499                         if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
 7500                                 sd->flags |= SD_OVERLAP;
 7501                         if (cpumask_equal(cpu_map, sched_domain_span(sd)))
 7502                                 break;
 7503                 }
 7504 
 7505                 while (sd->child)
 7506                         sd = sd->child;
 7507 
 7508                 *per_cpu_ptr(d.sd, i) = sd;
 7509         }
 7510 
 7511         /* Build the groups for the domains */
 7512         for_each_cpu(i, cpu_map) {
 7513                 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
 7514                         sd->span_weight = cpumask_weight(sched_domain_span(sd));
 7515                         if (sd->flags & SD_OVERLAP) {
 7516                                 if (build_overlap_sched_groups(sd, i))
 7517                                         goto error;
 7518                         } else {
 7519                                 if (build_sched_groups(sd, i))
 7520                                         goto error;
 7521                         }
 7522                 }
 7523         }
 7524 
 7525         /* Calculate CPU power for physical packages and nodes */
 7526         for (i = nr_cpumask_bits-1; i >= 0; i--) {
 7527                 if (!cpumask_test_cpu(i, cpu_map))
 7528                         continue;
 7529 
 7530                 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
 7531                         claim_allocations(i, sd);
 7532                         init_sched_groups_power(i, sd);
 7533                 }
 7534         }
 7535 
 7536         /* Attach the domains */
 7537         rcu_read_lock();
 7538         for_each_cpu(i, cpu_map) {
 7539                 sd = *per_cpu_ptr(d.sd, i);
 7540                 cpu_attach_domain(sd, d.rd, i);
 7541         }
 7542         rcu_read_unlock();
 7543 
 7544         ret = 0;
 7545 error:
 7546         __free_domain_allocs(&d, alloc_state, cpu_map);
 7547         return ret;
 7548 }
 7549 
 7550 static cpumask_var_t *doms_cur; /* current sched domains */
 7551 static int ndoms_cur;           /* number of sched domains in 'doms_cur' */
 7552 static struct sched_domain_attr *dattr_cur;
 7553                                 /* attribues of custom domains in 'doms_cur' */
 7554 
 7555 /*
 7556  * Special case: If a kmalloc of a doms_cur partition (array of
 7557  * cpumask) fails, then fallback to a single sched domain,
 7558  * as determined by the single cpumask fallback_doms.
 7559  */
 7560 static cpumask_var_t fallback_doms;
 7561 
 7562 /*
 7563  * arch_update_cpu_topology lets virtualized architectures update the
 7564  * cpu core maps. It is supposed to return 1 if the topology changed
 7565  * or 0 if it stayed the same.
 7566  */
 7567 int __attribute__((weak)) arch_update_cpu_topology(void)
 7568 {
 7569         return 0;
 7570 }
 7571 
 7572 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
 7573 {
 7574         int i;
 7575         cpumask_var_t *doms;
 7576 
 7577         doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
 7578         if (!doms)
 7579                 return NULL;
 7580         for (i = 0; i < ndoms; i++) {
 7581                 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
 7582                         free_sched_domains(doms, i);
 7583                         return NULL;
 7584                 }
 7585         }
 7586         return doms;
 7587 }
 7588 
 7589 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
 7590 {
 7591         unsigned int i;
 7592         for (i = 0; i < ndoms; i++)
 7593                 free_cpumask_var(doms[i]);
 7594         kfree(doms);
 7595 }
 7596 
 7597 /*
 7598  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
 7599  * For now this just excludes isolated cpus, but could be used to
 7600  * exclude other special cases in the future.
 7601  */
 7602 static int init_sched_domains(const struct cpumask *cpu_map)
 7603 {
 7604         int err;
 7605 
 7606         arch_update_cpu_topology();
 7607         ndoms_cur = 1;
 7608         doms_cur = alloc_sched_domains(ndoms_cur);
 7609         if (!doms_cur)
 7610                 doms_cur = &fallback_doms;
 7611         cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
 7612         dattr_cur = NULL;
 7613         err = build_sched_domains(doms_cur[0], NULL);
 7614         register_sched_domain_sysctl();
 7615 
 7616         return err;
 7617 }
 7618 
 7619 /*
 7620  * Detach sched domains from a group of cpus specified in cpu_map
 7621  * These cpus will now be attached to the NULL domain
 7622  */
 7623 static void detach_destroy_domains(const struct cpumask *cpu_map)
 7624 {
 7625         int i;
 7626 
 7627         rcu_read_lock();
 7628         for_each_cpu(i, cpu_map)
 7629                 cpu_attach_domain(NULL, &def_root_domain, i);
 7630         rcu_read_unlock();
 7631 }
 7632 
 7633 /* handle null as "default" */
 7634 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
 7635                         struct sched_domain_attr *new, int idx_new)
 7636 {
 7637         struct sched_domain_attr tmp;
 7638 
 7639         /* fast path */
 7640         if (!new && !cur)
 7641                 return 1;
 7642 
 7643         tmp = SD_ATTR_INIT;
 7644         return !memcmp(cur ? (cur + idx_cur) : &tmp,
 7645                         new ? (new + idx_new) : &tmp,
 7646                         sizeof(struct sched_domain_attr));
 7647 }
 7648 
 7649 /*
 7650  * Partition sched domains as specified by the 'ndoms_new'
 7651  * cpumasks in the array doms_new[] of cpumasks. This compares
 7652  * doms_new[] to the current sched domain partitioning, doms_cur[].
 7653  * It destroys each deleted domain and builds each new domain.
 7654  *
 7655  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
 7656  * The masks don't intersect (don't overlap.) We should setup one
 7657  * sched domain for each mask. CPUs not in any of the cpumasks will
 7658  * not be load balanced. If the same cpumask appears both in the
 7659  * current 'doms_cur' domains and in the new 'doms_new', we can leave
 7660  * it as it is.
 7661  *
 7662  * The passed in 'doms_new' should be allocated using
 7663  * alloc_sched_domains.  This routine takes ownership of it and will
 7664  * free_sched_domains it when done with it. If the caller failed the
 7665  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 7666  * and partition_sched_domains() will fallback to the single partition
 7667  * 'fallback_doms', it also forces the domains to be rebuilt.
 7668  *
 7669  * If doms_new == NULL it will be replaced with cpu_online_mask.
 7670  * ndoms_new == 0 is a special case for destroying existing domains,
 7671  * and it will not create the default domain.
 7672  *
 7673  * Call with hotplug lock held
 7674  */
 7675 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 7676                              struct sched_domain_attr *dattr_new)
 7677 {
 7678         int i, j, n;
 7679         int new_topology;
 7680 
 7681         mutex_lock(&sched_domains_mutex);
 7682 
 7683         /* always unregister in case we don't destroy any domains */
 7684         unregister_sched_domain_sysctl();
 7685 
 7686         /* Let architecture update cpu core mappings. */
 7687         new_topology = arch_update_cpu_topology();
 7688 
 7689         n = doms_new ? ndoms_new : 0;
 7690 
 7691         /* Destroy deleted domains */
 7692         for (i = 0; i < ndoms_cur; i++) {
 7693                 for (j = 0; j < n && !new_topology; j++) {
 7694                         if (cpumask_equal(doms_cur[i], doms_new[j])
 7695                             && dattrs_equal(dattr_cur, i, dattr_new, j))
 7696                                 goto match1;
 7697                 }
 7698                 /* no match - a current sched domain not in new doms_new[] */
 7699                 detach_destroy_domains(doms_cur[i]);
 7700 match1:
 7701                 ;
 7702         }
 7703 
 7704         if (doms_new == NULL) {
 7705                 ndoms_cur = 0;
 7706                 doms_new = &fallback_doms;
 7707                 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
 7708                 WARN_ON_ONCE(dattr_new);
 7709         }
 7710 
 7711         /* Build new domains */
 7712         for (i = 0; i < ndoms_new; i++) {
 7713                 for (j = 0; j < ndoms_cur && !new_topology; j++) {
 7714                         if (cpumask_equal(doms_new[i], doms_cur[j])
 7715                             && dattrs_equal(dattr_new, i, dattr_cur, j))
 7716                                 goto match2;
 7717                 }
 7718                 /* no match - add a new doms_new */
 7719                 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
 7720 match2:
 7721                 ;
 7722         }
 7723 
 7724         /* Remember the new sched domains */
 7725         if (doms_cur != &fallback_doms)
 7726                 free_sched_domains(doms_cur, ndoms_cur);
 7727         kfree(dattr_cur);       /* kfree(NULL) is safe */
 7728         doms_cur = doms_new;
 7729         dattr_cur = dattr_new;
 7730         ndoms_cur = ndoms_new;
 7731 
 7732         register_sched_domain_sysctl();
 7733 
 7734         mutex_unlock(&sched_domains_mutex);
 7735 }
 7736 
 7737 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
 7738 static void reinit_sched_domains(void)
 7739 {
 7740         get_online_cpus();
 7741 
 7742         /* Destroy domains first to force the rebuild */
 7743         partition_sched_domains(0, NULL, NULL);
 7744 
 7745         rebuild_sched_domains();
 7746         put_online_cpus();
 7747 }
 7748 
 7749 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
 7750 {
 7751         unsigned int level = 0;
 7752 
 7753         if (sscanf(buf, "%u", &level) != 1)
 7754                 return -EINVAL;
 7755 
 7756         /*
 7757          * level is always be positive so don't check for
 7758          * level < POWERSAVINGS_BALANCE_NONE which is 0
 7759          * What happens on 0 or 1 byte write,
 7760          * need to check for count as well?
 7761          */
 7762 
 7763         if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
 7764                 return -EINVAL;
 7765 
 7766         if (smt)
 7767                 sched_smt_power_savings = level;
 7768         else
 7769                 sched_mc_power_savings = level;
 7770 
 7771         reinit_sched_domains();
 7772 
 7773         return count;
 7774 }
 7775 
 7776 #ifdef CONFIG_SCHED_MC
 7777 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
 7778                                            struct sysdev_class_attribute *attr,
 7779                                            char *page)
 7780 {
 7781         return sprintf(page, "%u\n", sched_mc_power_savings);
 7782 }
 7783 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
 7784                                             struct sysdev_class_attribute *attr,
 7785                                             const char *buf, size_t count)
 7786 {
 7787         return sched_power_savings_store(buf, count, 0);
 7788 }
 7789 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
 7790                          sched_mc_power_savings_show,
 7791                          sched_mc_power_savings_store);
 7792 #endif
 7793 
 7794 #ifdef CONFIG_SCHED_SMT
 7795 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
 7796                                             struct sysdev_class_attribute *attr,
 7797                                             char *page)
 7798 {
 7799         return sprintf(page, "%u\n", sched_smt_power_savings);
 7800 }
 7801 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
 7802                                              struct sysdev_class_attribute *attr,
 7803                                              const char *buf, size_t count)
 7804 {
 7805         return sched_power_savings_store(buf, count, 1);
 7806 }
 7807 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
 7808                    sched_smt_power_savings_show,
 7809                    sched_smt_power_savings_store);
 7810 #endif
 7811 
 7812 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
 7813 {
 7814         int err = 0;
 7815 
 7816 #ifdef CONFIG_SCHED_SMT
 7817         if (smt_capable())
 7818                 err = sysfs_create_file(&cls->kset.kobj,
 7819                                         &attr_sched_smt_power_savings.attr);
 7820 #endif
 7821 #ifdef CONFIG_SCHED_MC
 7822         if (!err && mc_capable())
 7823                 err = sysfs_create_file(&cls->kset.kobj,
 7824                                         &attr_sched_mc_power_savings.attr);
 7825 #endif
 7826         return err;
 7827 }
 7828 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
 7829 
 7830 /*
 7831  * Update cpusets according to cpu_active mask.  If cpusets are
 7832  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 7833  * around partition_sched_domains().
 7834  */
 7835 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
 7836                              void *hcpu)
 7837 {
 7838         switch (action & ~CPU_TASKS_FROZEN) {
 7839         case CPU_ONLINE:
 7840         case CPU_DOWN_FAILED:
 7841                 cpuset_update_active_cpus();
 7842                 return NOTIFY_OK;
 7843         default:
 7844                 return NOTIFY_DONE;
 7845         }
 7846 }
 7847 
 7848 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
 7849                                void *hcpu)
 7850 {
 7851         switch (action & ~CPU_TASKS_FROZEN) {
 7852         case CPU_DOWN_PREPARE:
 7853                 cpuset_update_active_cpus();
 7854                 return NOTIFY_OK;
 7855         default:
 7856                 return NOTIFY_DONE;
 7857         }
 7858 }
 7859 
 7860 static int update_runtime(struct notifier_block *nfb,
 7861                                 unsigned long action, void *hcpu)
 7862 {
 7863         int cpu = (int)(long)hcpu;
 7864 
 7865         switch (action) {
 7866         case CPU_DOWN_PREPARE:
 7867         case CPU_DOWN_PREPARE_FROZEN:
 7868                 disable_runtime(cpu_rq(cpu));
 7869                 return NOTIFY_OK;
 7870 
 7871         case CPU_DOWN_FAILED:
 7872         case CPU_DOWN_FAILED_FROZEN:
 7873         case CPU_ONLINE:
 7874         case CPU_ONLINE_FROZEN:
 7875                 enable_runtime(cpu_rq(cpu));
 7876                 return NOTIFY_OK;
 7877 
 7878         default:
 7879                 return NOTIFY_DONE;
 7880         }
 7881 }
 7882 
 7883 void __init sched_init_smp(void)
 7884 {
 7885         cpumask_var_t non_isolated_cpus;
 7886 
 7887         alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
 7888         alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
 7889 
 7890         get_online_cpus();
 7891         mutex_lock(&sched_domains_mutex);
 7892         init_sched_domains(cpu_active_mask);
 7893         cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
 7894         if (cpumask_empty(non_isolated_cpus))
 7895                 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
 7896         mutex_unlock(&sched_domains_mutex);
 7897         put_online_cpus();
 7898 
 7899         hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
 7900         hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
 7901 
 7902         /* RT runtime code needs to handle some hotplug events */
 7903         hotcpu_notifier(update_runtime, 0);
 7904 
 7905         init_hrtick();
 7906 
 7907         /* Move init over to a non-isolated CPU */
 7908         if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
 7909                 BUG();
 7910         sched_init_granularity();
 7911         free_cpumask_var(non_isolated_cpus);
 7912 
 7913         init_sched_rt_class();
 7914 }
 7915 #else
 7916 void __init sched_init_smp(void)
 7917 {
 7918         sched_init_granularity();
 7919 }
 7920 #endif /* CONFIG_SMP */
 7921 
 7922 const_debug unsigned int sysctl_timer_migration = 1;
 7923 
 7924 int in_sched_functions(unsigned long addr)
 7925 {
 7926         return in_lock_functions(addr) ||
 7927                 (addr >= (unsigned long)__sched_text_start
 7928                 && addr < (unsigned long)__sched_text_end);
 7929 }
 7930 
 7931 static void init_cfs_rq(struct cfs_rq *cfs_rq)
 7932 {
 7933         cfs_rq->tasks_timeline = RB_ROOT;
 7934         INIT_LIST_HEAD(&cfs_rq->tasks);
 7935         cfs_rq->min_vruntime = (u64)(-(1LL << 20));
 7936 #ifndef CONFIG_64BIT
 7937         cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 7938 #endif
 7939 }
 7940 
 7941 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
 7942 {
 7943         struct rt_prio_array *array;
 7944         int i;
 7945 
 7946         array = &rt_rq->active;
 7947         for (i = 0; i < MAX_RT_PRIO; i++) {
 7948                 INIT_LIST_HEAD(array->queue + i);
 7949                 __clear_bit(i, array->bitmap);
 7950         }
 7951         /* delimiter for bitsearch: */
 7952         __set_bit(MAX_RT_PRIO, array->bitmap);
 7953 
 7954 #if defined CONFIG_SMP
 7955         rt_rq->highest_prio.curr = MAX_RT_PRIO;
 7956         rt_rq->highest_prio.next = MAX_RT_PRIO;
 7957         rt_rq->rt_nr_migratory = 0;
 7958         rt_rq->overloaded = 0;
 7959         plist_head_init(&rt_rq->pushable_tasks);
 7960 #endif
 7961 
 7962         rt_rq->rt_time = 0;
 7963         rt_rq->rt_throttled = 0;
 7964         rt_rq->rt_runtime = 0;
 7965         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 7966 }
 7967 
 7968 #ifdef CONFIG_FAIR_GROUP_SCHED
 7969 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 7970                                 struct sched_entity *se, int cpu,
 7971                                 struct sched_entity *parent)
 7972 {
 7973         struct rq *rq = cpu_rq(cpu);
 7974 
 7975         cfs_rq->tg = tg;
 7976         cfs_rq->rq = rq;
 7977 #ifdef CONFIG_SMP
 7978         /* allow initial update_cfs_load() to truncate */
 7979         cfs_rq->load_stamp = 1;
 7980 #endif
 7981 
 7982         tg->cfs_rq[cpu] = cfs_rq;
 7983         tg->se[cpu] = se;
 7984 
 7985         /* se could be NULL for root_task_group */
 7986         if (!se)
 7987                 return;
 7988 
 7989         if (!parent)
 7990                 se->cfs_rq = &rq->cfs;
 7991         else
 7992                 se->cfs_rq = parent->my_q;
 7993 
 7994         se->my_q = cfs_rq;
 7995         update_load_set(&se->load, 0);
 7996         se->parent = parent;
 7997 }
 7998 #endif
 7999 
 8000 #ifdef CONFIG_RT_GROUP_SCHED
 8001 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 8002                 struct sched_rt_entity *rt_se, int cpu,
 8003                 struct sched_rt_entity *parent)
 8004 {
 8005         struct rq *rq = cpu_rq(cpu);
 8006 
 8007         rt_rq->highest_prio.curr = MAX_RT_PRIO;
 8008         rt_rq->rt_nr_boosted = 0;
 8009         rt_rq->rq = rq;
 8010         rt_rq->tg = tg;
 8011 
 8012         tg->rt_rq[cpu] = rt_rq;
 8013         tg->rt_se[cpu] = rt_se;
 8014 
 8015         if (!rt_se)
 8016                 return;
 8017 
 8018         if (!parent)
 8019                 rt_se->rt_rq = &rq->rt;
 8020         else
 8021                 rt_se->rt_rq = parent->my_q;
 8022 
 8023         rt_se->my_q = rt_rq;
 8024         rt_se->parent = parent;
 8025         INIT_LIST_HEAD(&rt_se->run_list);
 8026 }
 8027 #endif
 8028 
 8029 void __init sched_init(void)
 8030 {
 8031         int i, j;
 8032         unsigned long alloc_size = 0, ptr;
 8033 
 8034 #ifdef CONFIG_FAIR_GROUP_SCHED
 8035         alloc_size += 2 * nr_cpu_ids * sizeof(void **);
 8036 #endif
 8037 #ifdef CONFIG_RT_GROUP_SCHED
 8038         alloc_size += 2 * nr_cpu_ids * sizeof(void **);
 8039 #endif
 8040 #ifdef CONFIG_CPUMASK_OFFSTACK
 8041         alloc_size += num_possible_cpus() * cpumask_size();
 8042 #endif
 8043         if (alloc_size) {
 8044                 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
 8045 
 8046 #ifdef CONFIG_FAIR_GROUP_SCHED
 8047                 root_task_group.se = (struct sched_entity **)ptr;
 8048                 ptr += nr_cpu_ids * sizeof(void **);
 8049 
 8050                 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
 8051                 ptr += nr_cpu_ids * sizeof(void **);
 8052 
 8053 #endif /* CONFIG_FAIR_GROUP_SCHED */
 8054 #ifdef CONFIG_RT_GROUP_SCHED
 8055                 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
 8056                 ptr += nr_cpu_ids * sizeof(void **);
 8057 
 8058                 root_task_group.rt_rq = (struct rt_rq **)ptr;
 8059                 ptr += nr_cpu_ids * sizeof(void **);
 8060 
 8061 #endif /* CONFIG_RT_GROUP_SCHED */
 8062 #ifdef CONFIG_CPUMASK_OFFSTACK
 8063                 for_each_possible_cpu(i) {
 8064                         per_cpu(load_balance_tmpmask, i) = (void *)ptr;
 8065                         ptr += cpumask_size();
 8066                 }
 8067 #endif /* CONFIG_CPUMASK_OFFSTACK */
 8068         }
 8069 
 8070 #ifdef CONFIG_SMP
 8071         init_defrootdomain();
 8072 #endif
 8073 
 8074         init_rt_bandwidth(&def_rt_bandwidth,
 8075                         global_rt_period(), global_rt_runtime());
 8076 
 8077 #ifdef CONFIG_RT_GROUP_SCHED
 8078         init_rt_bandwidth(&root_task_group.rt_bandwidth,
 8079                         global_rt_period(), global_rt_runtime());
 8080 #endif /* CONFIG_RT_GROUP_SCHED */
 8081 
 8082 #ifdef CONFIG_CGROUP_SCHED
 8083         list_add(&root_task_group.list, &task_groups);
 8084         INIT_LIST_HEAD(&root_task_group.children);
 8085         autogroup_init(&init_task);
 8086 #endif /* CONFIG_CGROUP_SCHED */
 8087 
 8088         for_each_possible_cpu(i) {
 8089                 struct rq *rq;
 8090 
 8091                 rq = cpu_rq(i);
 8092                 raw_spin_lock_init(&rq->lock);
 8093                 rq->nr_running = 0;
 8094                 rq->calc_load_active = 0;
 8095                 rq->calc_load_update = jiffies + LOAD_FREQ;
 8096                 init_cfs_rq(&rq->cfs);
 8097                 init_rt_rq(&rq->rt, rq);
 8098 #ifdef CONFIG_FAIR_GROUP_SCHED
 8099                 root_task_group.shares = root_task_group_load;
 8100                 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
 8101                 /*
 8102                  * How much cpu bandwidth does root_task_group get?
 8103                  *
 8104                  * In case of task-groups formed thr' the cgroup filesystem, it
 8105                  * gets 100% of the cpu resources in the system. This overall
 8106                  * system cpu resource is divided among the tasks of
 8107                  * root_task_group and its child task-groups in a fair manner,
 8108                  * based on each entity's (task or task-group's) weight
 8109                  * (se->load.weight).
 8110                  *
 8111                  * In other words, if root_task_group has 10 tasks of weight
 8112                  * 1024) and two child groups A0 and A1 (of weight 1024 each),
 8113                  * then A0's share of the cpu resource is:
 8114                  *
 8115                  *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
 8116                  *
 8117                  * We achieve this by letting root_task_group's tasks sit
 8118                  * directly in rq->cfs (i.e root_task_group->se[] = NULL).
 8119                  */
 8120                 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
 8121 #endif /* CONFIG_FAIR_GROUP_SCHED */
 8122 
 8123                 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
 8124 #ifdef CONFIG_RT_GROUP_SCHED
 8125                 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
 8126                 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
 8127 #endif
 8128 
 8129                 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
 8130                         rq->cpu_load[j] = 0;
 8131 
 8132                 rq->last_load_update_tick = jiffies;
 8133 
 8134 #ifdef CONFIG_SMP
 8135                 rq->sd = NULL;
 8136                 rq->rd = NULL;
 8137                 rq->cpu_power = SCHED_POWER_SCALE;
 8138                 rq->post_schedule = 0;
 8139                 rq->active_balance = 0;
 8140                 rq->next_balance = jiffies;
 8141                 rq->push_cpu = 0;
 8142                 rq->cpu = i;
 8143                 rq->online = 0;
 8144                 rq->idle_stamp = 0;
 8145                 rq->avg_idle = 2*sysctl_sched_migration_cost;
 8146                 rq_attach_root(rq, &def_root_domain);
 8147 #ifdef CONFIG_NO_HZ
 8148                 rq->nohz_balance_kick = 0;
 8149                 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
 8150 #endif
 8151 #endif
 8152                 init_rq_hrtick(rq);
 8153                 atomic_set(&rq->nr_iowait, 0);
 8154         }
 8155 
 8156         set_load_weight(&init_task);
 8157 
 8158 #ifdef CONFIG_PREEMPT_NOTIFIERS
 8159         INIT_HLIST_HEAD(&init_task.preempt_notifiers);
 8160 #endif
 8161 
 8162 #ifdef CONFIG_SMP
 8163         open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
 8164 #endif
 8165 
 8166 #ifdef CONFIG_RT_MUTEXES
 8167         plist_head_init(&init_task.pi_waiters);
 8168 #endif
 8169 
 8170         /*
 8171          * The boot idle thread does lazy MMU switching as well:
 8172          */
 8173         atomic_inc(&init_mm.mm_count);
 8174         enter_lazy_tlb(&init_mm, current);
 8175 
 8176         /*
 8177          * Make us the idle thread. Technically, schedule() should not be
 8178          * called from this thread, however somewhere below it might be,
 8179          * but because we are the idle thread, we just pick up running again
 8180          * when this runqueue becomes "idle".
 8181          */
 8182         init_idle(current, smp_processor_id());
 8183 
 8184         calc_load_update = jiffies + LOAD_FREQ;
 8185 
 8186         /*
 8187          * During early bootup we pretend to be a normal task:
 8188          */
 8189         current->sched_class = &fair_sched_class;
 8190 
 8191         /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
 8192         zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
 8193 #ifdef CONFIG_SMP
 8194         zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
 8195 #ifdef CONFIG_NO_HZ
 8196         zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
 8197         alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
 8198         atomic_set(&nohz.load_balancer, nr_cpu_ids);
 8199         atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
 8200         atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
 8201 #endif
 8202         /* May be allocated at isolcpus cmdline parse time */
 8203         if (cpu_isolated_map == NULL)
 8204                 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
 8205 #endif /* SMP */
 8206 
 8207         scheduler_running = 1;
 8208 }
 8209 
 8210 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 8211 static inline int preempt_count_equals(int preempt_offset)
 8212 {
 8213         int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
 8214 
 8215         return (nested == preempt_offset);
 8216 }
 8217 
 8218 void __might_sleep(const char *file, int line, int preempt_offset)
 8219 {
 8220         static unsigned long prev_jiffy;        /* ratelimiting */
 8221 
 8222         if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
 8223             system_state != SYSTEM_RUNNING || oops_in_progress)
 8224                 return;
 8225         if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
 8226                 return;
 8227         prev_jiffy = jiffies;
 8228 
 8229         printk(KERN_ERR
 8230                 "BUG: sleeping function called from invalid context at %s:%d\n",
 8231                         file, line);
 8232         printk(KERN_ERR
 8233                 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
 8234                         in_atomic(), irqs_disabled(),
 8235                         current->pid, current->comm);
 8236 
 8237         debug_show_held_locks(current);
 8238         if (irqs_disabled())
 8239                 print_irqtrace_events(current);
 8240         dump_stack();
 8241 }
 8242 EXPORT_SYMBOL(__might_sleep);
 8243 #endif
 8244 
 8245 #ifdef CONFIG_MAGIC_SYSRQ
 8246 static void normalize_task(struct rq *rq, struct task_struct *p)
 8247 {
 8248         const struct sched_class *prev_class = p->sched_class;
 8249         int old_prio = p->prio;
 8250         int on_rq;
 8251 
 8252         on_rq = p->on_rq;
 8253         if (on_rq)
 8254                 deactivate_task(rq, p, 0);
 8255         __setscheduler(rq, p, SCHED_NORMAL, 0);
 8256         if (on_rq) {
 8257                 activate_task(rq, p, 0);
 8258                 resched_task(rq->curr);
 8259         }
 8260 
 8261         check_class_changed(rq, p, prev_class, old_prio);
 8262 }
 8263 
 8264 void normalize_rt_tasks(void)
 8265 {
 8266         struct task_struct *g, *p;
 8267         unsigned long flags;
 8268         struct rq *rq;
 8269 
 8270         read_lock_irqsave(&tasklist_lock, flags);
 8271         do_each_thread(g, p) {
 8272                 /*
 8273                  * Only normalize user tasks:
 8274                  */
 8275                 if (!p->mm)
 8276                         continue;
 8277 
 8278                 p->se.exec_start                = 0;
 8279 #ifdef CONFIG_SCHEDSTATS
 8280                 p->se.statistics.wait_start     = 0;
 8281                 p->se.statistics.sleep_start    = 0;
 8282                 p->se.statistics.block_start    = 0;
 8283 #endif
 8284 
 8285                 if (!rt_task(p)) {
 8286                         /*
 8287                          * Renice negative nice level userspace
 8288                          * tasks back to 0:
 8289                          */
 8290                         if (TASK_NICE(p) < 0 && p->mm)
 8291                                 set_user_nice(p, 0);
 8292                         continue;
 8293                 }
 8294 
 8295                 raw_spin_lock(&p->pi_lock);
 8296                 rq = __task_rq_lock(p);
 8297 
 8298                 normalize_task(rq, p);
 8299 
 8300                 __task_rq_unlock(rq);
 8301                 raw_spin_unlock(&p->pi_lock);
 8302         } while_each_thread(g, p);
 8303 
 8304         read_unlock_irqrestore(&tasklist_lock, flags);
 8305 }
 8306 
 8307 #endif /* CONFIG_MAGIC_SYSRQ */
 8308 
 8309 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
 8310 /*
 8311  * These functions are only useful for the IA64 MCA handling, or kdb.
 8312  *
 8313  * They can only be called when the whole system has been
 8314  * stopped - every CPU needs to be quiescent, and no scheduling
 8315  * activity can take place. Using them for anything else would
 8316  * be a serious bug, and as a result, they aren't even visible
 8317  * under any other configuration.
 8318  */
 8319 
 8320 /**
 8321  * curr_task - return the current task for a given cpu.
 8322  * @cpu: the processor in question.
 8323  *
 8324  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 8325  */
 8326 struct task_struct *curr_task(int cpu)
 8327 {
 8328         return cpu_curr(cpu);
 8329 }
 8330 
 8331 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
 8332 
 8333 #ifdef CONFIG_IA64
 8334 /**
 8335  * set_curr_task - set the current task for a given cpu.
 8336  * @cpu: the processor in question.
 8337  * @p: the task pointer to set.
 8338  *
 8339  * Description: This function must only be used when non-maskable interrupts
 8340  * are serviced on a separate stack. It allows the architecture to switch the
 8341  * notion of the current task on a cpu in a non-blocking manner. This function
 8342  * must be called with all CPU's synchronized, and interrupts disabled, the
 8343  * and caller must save the original value of the current task (see
 8344  * curr_task() above) and restore that value before reenabling interrupts and
 8345  * re-starting the system.
 8346  *
 8347  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 8348  */
 8349 void set_curr_task(int cpu, struct task_struct *p)
 8350 {
 8351         cpu_curr(cpu) = p;
 8352 }
 8353 
 8354 #endif
 8355 
 8356 #ifdef CONFIG_FAIR_GROUP_SCHED
 8357 static void free_fair_sched_group(struct task_group *tg)
 8358 {
 8359         int i;
 8360 
 8361         for_each_possible_cpu(i) {
 8362                 if (tg->cfs_rq)
 8363                         kfree(tg->cfs_rq[i]);
 8364                 if (tg->se)
 8365                         kfree(tg->se[i]);
 8366         }
 8367 
 8368         kfree(tg->cfs_rq);
 8369         kfree(tg->se);
 8370 }
 8371 
 8372 static
 8373 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
 8374 {
 8375         struct cfs_rq *cfs_rq;
 8376         struct sched_entity *se;
 8377         int i;
 8378 
 8379         tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
 8380         if (!tg->cfs_rq)
 8381                 goto err;
 8382         tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
 8383         if (!tg->se)
 8384                 goto err;
 8385 
 8386         tg->shares = NICE_0_LOAD;
 8387 
 8388         for_each_possible_cpu(i) {
 8389                 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
 8390                                       GFP_KERNEL, cpu_to_node(i));
 8391                 if (!cfs_rq)
 8392                         goto err;
 8393 
 8394                 se = kzalloc_node(sizeof(struct sched_entity),
 8395                                   GFP_KERNEL, cpu_to_node(i));
 8396                 if (!se)
 8397                         goto err_free_rq;
 8398 
 8399                 init_cfs_rq(cfs_rq);
 8400                 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
 8401         }
 8402 
 8403         return 1;
 8404 
 8405 err_free_rq:
 8406         kfree(cfs_rq);
 8407 err:
 8408         return 0;
 8409 }
 8410 
 8411 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
 8412 {
 8413         struct rq *rq = cpu_rq(cpu);
 8414         unsigned long flags;
 8415 
 8416         /*
 8417         * Only empty task groups can be destroyed; so we can speculatively
 8418         * check on_list without danger of it being re-added.
 8419         */
 8420         if (!tg->cfs_rq[cpu]->on_list)
 8421                 return;
 8422 
 8423         raw_spin_lock_irqsave(&rq->lock, flags);
 8424         list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
 8425         raw_spin_unlock_irqrestore(&rq->lock, flags);
 8426 }
 8427 #else /* !CONFIG_FAIR_GROUP_SCHED */
 8428 static inline void free_fair_sched_group(struct task_group *tg)
 8429 {
 8430 }
 8431 
 8432 static inline
 8433 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
 8434 {
 8435         return 1;
 8436 }
 8437 
 8438 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
 8439 {
 8440 }
 8441 #endif /* CONFIG_FAIR_GROUP_SCHED */
 8442 
 8443 #ifdef CONFIG_RT_GROUP_SCHED
 8444 static void free_rt_sched_group(struct task_group *tg)
 8445 {
 8446         int i;
 8447 
 8448         if (tg->rt_se)
 8449                 destroy_rt_bandwidth(&tg->rt_bandwidth);
 8450 
 8451         for_each_possible_cpu(i) {
 8452                 if (tg->rt_rq)
 8453                         kfree(tg->rt_rq[i]);
 8454                 if (tg->rt_se)
 8455                         kfree(tg->rt_se[i]);
 8456         }
 8457 
 8458         kfree(tg->rt_rq);
 8459         kfree(tg->rt_se);
 8460 }
 8461 
 8462 static
 8463 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 8464 {
 8465         struct rt_rq *rt_rq;
 8466         struct sched_rt_entity *rt_se;
 8467         int i;
 8468 
 8469         tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
 8470         if (!tg->rt_rq)
 8471                 goto err;
 8472         tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
 8473         if (!tg->rt_se)
 8474                 goto err;
 8475 
 8476         init_rt_bandwidth(&tg->rt_bandwidth,
 8477                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 8478 
 8479         for_each_possible_cpu(i) {
 8480                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
 8481                                      GFP_KERNEL, cpu_to_node(i));
 8482                 if (!rt_rq)
 8483                         goto err;
 8484 
 8485                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 8486                                      GFP_KERNEL, cpu_to_node(i));
 8487                 if (!rt_se)
 8488                         goto err_free_rq;
 8489 
 8490                 init_rt_rq(rt_rq, cpu_rq(i));
 8491                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 8492                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 8493         }
 8494 
 8495         return 1;
 8496 
 8497 err_free_rq:
 8498         kfree(rt_rq);
 8499 err:
 8500         return 0;
 8501 }
 8502 #else /* !CONFIG_RT_GROUP_SCHED */
 8503 static inline void free_rt_sched_group(struct task_group *tg)
 8504 {
 8505 }
 8506 
 8507 static inline
 8508 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 8509 {
 8510         return 1;
 8511 }
 8512 #endif /* CONFIG_RT_GROUP_SCHED */
 8513 
 8514 #ifdef CONFIG_CGROUP_SCHED
 8515 static void free_sched_group(struct task_group *tg)
 8516 {
 8517         free_fair_sched_group(tg);
 8518         free_rt_sched_group(tg);
 8519         autogroup_free(tg);
 8520         kfree(tg);
 8521 }
 8522 
 8523 /* allocate runqueue etc for a new task group */
 8524 struct task_group *sched_create_group(struct task_group *parent)
 8525 {
 8526         struct task_group *tg;
 8527         unsigned long flags;
 8528 
 8529         tg = kzalloc(sizeof(*tg), GFP_KERNEL);
 8530         if (!tg)
 8531                 return ERR_PTR(-ENOMEM);
 8532 
 8533         if (!alloc_fair_sched_group(tg, parent))
 8534                 goto err;
 8535 
 8536         if (!alloc_rt_sched_group(tg, parent))
 8537                 goto err;
 8538 
 8539         spin_lock_irqsave(&task_group_lock, flags);
 8540         list_add_rcu(&tg->list, &task_groups);
 8541 
 8542         WARN_ON(!parent); /* root should already exist */
 8543 
 8544         tg->parent = parent;
 8545         INIT_LIST_HEAD(&tg->children);
 8546         list_add_rcu(&tg->siblings, &parent->children);
 8547         spin_unlock_irqrestore(&task_group_lock, flags);
 8548 
 8549         return tg;
 8550 
 8551 err:
 8552         free_sched_group(tg);
 8553         return ERR_PTR(-ENOMEM);
 8554 }
 8555 
 8556 /* rcu callback to free various structures associated with a task group */
 8557 static void free_sched_group_rcu(struct rcu_head *rhp)
 8558 {
 8559         /* now it should be safe to free those cfs_rqs */
 8560         free_sched_group(container_of(rhp, struct task_group, rcu));
 8561 }
 8562 
 8563 /* Destroy runqueue etc associated with a task group */
 8564 void sched_destroy_group(struct task_group *tg)
 8565 {
 8566         unsigned long flags;
 8567         int i;
 8568 
 8569         /* end participation in shares distribution */
 8570         for_each_possible_cpu(i)
 8571                 unregister_fair_sched_group(tg, i);
 8572 
 8573         spin_lock_irqsave(&task_group_lock, flags);
 8574         list_del_rcu(&tg->list);
 8575         list_del_rcu(&tg->siblings);
 8576         spin_unlock_irqrestore(&task_group_lock, flags);
 8577 
 8578         /* wait for possible concurrent references to cfs_rqs complete */
 8579         call_rcu(&tg->rcu, free_sched_group_rcu);
 8580 }
 8581 
 8582 /* change task's runqueue when it moves between groups.
 8583  *      The caller of this function should have put the task in its new group
 8584  *      by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 8585  *      reflect its new group.
 8586  */
 8587 void sched_move_task(struct task_struct *tsk)
 8588 {
 8589         int on_rq, running;
 8590         unsigned long flags;
 8591         struct rq *rq;
 8592 
 8593         rq = task_rq_lock(tsk, &flags);
 8594 
 8595         running = task_current(rq, tsk);
 8596         on_rq = tsk->on_rq;
 8597 
 8598         if (on_rq)
 8599                 dequeue_task(rq, tsk, 0);
 8600         if (unlikely(running))
 8601                 tsk->sched_class->put_prev_task(rq, tsk);
 8602 
 8603 #ifdef CONFIG_FAIR_GROUP_SCHED
 8604         if (tsk->sched_class->task_move_group)
 8605                 tsk->sched_class->task_move_group(tsk, on_rq);
 8606         else
 8607 #endif
 8608                 set_task_rq(tsk, task_cpu(tsk));
 8609 
 8610         if (unlikely(running))
 8611                 tsk->sched_class->set_curr_task(rq);
 8612         if (on_rq)
 8613                 enqueue_task(rq, tsk, 0);
 8614 
 8615         task_rq_unlock(rq, tsk, &flags);
 8616 }
 8617 #endif /* CONFIG_CGROUP_SCHED */
 8618 
 8619 #ifdef CONFIG_FAIR_GROUP_SCHED
 8620 static DEFINE_MUTEX(shares_mutex);
 8621 
 8622 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
 8623 {
 8624         int i;
 8625         unsigned long flags;
 8626 
 8627         /*
 8628          * We can't change the weight of the root cgroup.
 8629          */
 8630         if (!tg->se[0])
 8631                 return -EINVAL;
 8632 
 8633         shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
 8634 
 8635         mutex_lock(&shares_mutex);
 8636         if (tg->shares == shares)
 8637                 goto done;
 8638 
 8639         tg->shares = shares;
 8640         for_each_possible_cpu(i) {
 8641                 struct rq *rq = cpu_rq(i);
 8642                 struct sched_entity *se;
 8643 
 8644                 se = tg->se[i];
 8645                 /* Propagate contribution to hierarchy */
 8646                 raw_spin_lock_irqsave(&rq->lock, flags);
 8647                 for_each_sched_entity(se)
 8648                         update_cfs_shares(group_cfs_rq(se));
 8649                 raw_spin_unlock_irqrestore(&rq->lock, flags);
 8650         }
 8651 
 8652 done:
 8653         mutex_unlock(&shares_mutex);
 8654         return 0;
 8655 }
 8656 
 8657 unsigned long sched_group_shares(struct task_group *tg)
 8658 {
 8659         return tg->shares;
 8660 }
 8661 #endif
 8662 
 8663 #ifdef CONFIG_RT_GROUP_SCHED
 8664 /*
 8665  * Ensure that the real time constraints are schedulable.
 8666  */
 8667 static DEFINE_MUTEX(rt_constraints_mutex);
 8668 
 8669 static unsigned long to_ratio(u64 period, u64 runtime)
 8670 {
 8671         if (runtime == RUNTIME_INF)
 8672                 return 1ULL << 20;
 8673 
 8674         return div64_u64(runtime << 20, period);
 8675 }
 8676 
 8677 /* Must be called with tasklist_lock held */
 8678 static inline int tg_has_rt_tasks(struct task_group *tg)
 8679 {
 8680         struct task_struct *g, *p;
 8681 
 8682         do_each_thread(g, p) {
 8683                 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
 8684                         return 1;
 8685         } while_each_thread(g, p);
 8686 
 8687         return 0;
 8688 }
 8689 
 8690 struct rt_schedulable_data {
 8691         struct task_group *tg;
 8692         u64 rt_period;
 8693         u64 rt_runtime;
 8694 };
 8695 
 8696 static int tg_schedulable(struct task_group *tg, void *data)
 8697 {
 8698         struct rt_schedulable_data *d = data;
 8699         struct task_group *child;
 8700         unsigned long total, sum = 0;
 8701         u64 period, runtime;
 8702 
 8703         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
 8704         runtime = tg->rt_bandwidth.rt_runtime;
 8705 
 8706         if (tg == d->tg) {
 8707                 period = d->rt_period;
 8708                 runtime = d->rt_runtime;
 8709         }
 8710 
 8711         /*
 8712          * Cannot have more runtime than the period.
 8713          */
 8714         if (runtime > period && runtime != RUNTIME_INF)
 8715                 return -EINVAL;
 8716 
 8717         /*
 8718          * Ensure we don't starve existing RT tasks.
 8719          */
 8720         if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
 8721                 return -EBUSY;
 8722 
 8723         total = to_ratio(period, runtime);
 8724 
 8725         /*
 8726          * Nobody can have more than the global setting allows.
 8727          */
 8728         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
 8729                 return -EINVAL;
 8730 
 8731         /*
 8732          * The sum of our children's runtime should not exceed our own.
 8733          */
 8734         list_for_each_entry_rcu(child, &tg->children, siblings) {
 8735                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
 8736                 runtime = child->rt_bandwidth.rt_runtime;
 8737 
 8738                 if (child == d->tg) {
 8739                         period = d->rt_period;
 8740                         runtime = d->rt_runtime;
 8741                 }
 8742 
 8743                 sum += to_ratio(period, runtime);
 8744         }
 8745 
 8746         if (sum > total)
 8747                 return -EINVAL;
 8748 
 8749         return 0;
 8750 }
 8751 
 8752 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
 8753 {
 8754         struct rt_schedulable_data data = {
 8755                 .tg = tg,
 8756                 .rt_period = period,
 8757                 .rt_runtime = runtime,
 8758         };
 8759 
 8760         return walk_tg_tree(tg_schedulable, tg_nop, &data);
 8761 }
 8762 
 8763 static int tg_set_bandwidth(struct task_group *tg,
 8764                 u64 rt_period, u64 rt_runtime)
 8765 {
 8766         int i, err = 0;
 8767 
 8768         mutex_lock(&rt_constraints_mutex);
 8769         read_lock(&tasklist_lock);
 8770         err = __rt_schedulable(tg, rt_period, rt_runtime);
 8771         if (err)
 8772                 goto unlock;
 8773 
 8774         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
 8775         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
 8776         tg->rt_bandwidth.rt_runtime = rt_runtime;
 8777 
 8778         for_each_possible_cpu(i) {
 8779                 struct rt_rq *rt_rq = tg->rt_rq[i];
 8780 
 8781                 raw_spin_lock(&rt_rq->rt_runtime_lock);
 8782                 rt_rq->rt_runtime = rt_runtime;
 8783                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
 8784         }
 8785         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
 8786 unlock:
 8787         read_unlock(&tasklist_lock);
 8788         mutex_unlock(&rt_constraints_mutex);
 8789 
 8790         return err;
 8791 }
 8792 
 8793 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
 8794 {
 8795         u64 rt_runtime, rt_period;
 8796 
 8797         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
 8798         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
 8799         if (rt_runtime_us < 0)
 8800                 rt_runtime = RUNTIME_INF;
 8801 
 8802         return tg_set_bandwidth(tg, rt_period, rt_runtime);
 8803 }
 8804 
 8805 long sched_group_rt_runtime(struct task_group *tg)
 8806 {
 8807         u64 rt_runtime_us;
 8808 
 8809         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
 8810                 return -1;
 8811 
 8812         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
 8813         do_div(rt_runtime_us, NSEC_PER_USEC);
 8814         return rt_runtime_us;
 8815 }
 8816 
 8817 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
 8818 {
 8819         u64 rt_runtime, rt_period;
 8820 
 8821         rt_period = (u64)rt_period_us * NSEC_PER_USEC;
 8822         rt_runtime = tg->rt_bandwidth.rt_runtime;
 8823 
 8824         if (rt_period == 0)
 8825                 return -EINVAL;
 8826 
 8827         return tg_set_bandwidth(tg, rt_period, rt_runtime);
 8828 }
 8829 
 8830 long sched_group_rt_period(struct task_group *tg)
 8831 {
 8832         u64 rt_period_us;
 8833 
 8834         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
 8835         do_div(rt_period_us, NSEC_PER_USEC);
 8836         return rt_period_us;
 8837 }
 8838 
 8839 static int sched_rt_global_constraints(void)
 8840 {
 8841         u64 runtime, period;
 8842         int ret = 0;
 8843 
 8844         if (sysctl_sched_rt_period <= 0)
 8845                 return -EINVAL;
 8846 
 8847         runtime = global_rt_runtime();
 8848         period = global_rt_period();
 8849 
 8850         /*
 8851          * Sanity check on the sysctl variables.
 8852          */
 8853         if (runtime > period && runtime != RUNTIME_INF)
 8854                 return -EINVAL;
 8855 
 8856         mutex_lock(&rt_constraints_mutex);
 8857         read_lock(&tasklist_lock);
 8858         ret = __rt_schedulable(NULL, 0, 0);
 8859         read_unlock(&tasklist_lock);
 8860         mutex_unlock(&rt_constraints_mutex);
 8861 
 8862         return ret;
 8863 }
 8864 
 8865 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
 8866 {
 8867         /* Don't accept realtime tasks when there is no way for them to run */
 8868         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
 8869                 return 0;
 8870 
 8871         return 1;
 8872 }
 8873 
 8874 #else /* !CONFIG_RT_GROUP_SCHED */
 8875 static int sched_rt_global_constraints(void)
 8876 {
 8877         unsigned long flags;
 8878         int i;
 8879 
 8880         if (sysctl_sched_rt_period <= 0)
 8881                 return -EINVAL;
 8882 
 8883         /*
 8884          * There's always some RT tasks in the root group
 8885          * -- migration, kstopmachine etc..
 8886          */
 8887         if (sysctl_sched_rt_runtime == 0)
 8888                 return -EBUSY;
 8889 
 8890         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
 8891         for_each_possible_cpu(i) {
 8892                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
 8893 
 8894                 raw_spin_lock(&rt_rq->rt_runtime_lock);
 8895                 rt_rq->rt_runtime = global_rt_runtime();
 8896                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
 8897         }
 8898         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
 8899 
 8900         return 0;
 8901 }
 8902 #endif /* CONFIG_RT_GROUP_SCHED */
 8903 
 8904 int sched_rt_handler(struct ctl_table *table, int write,
 8905                 void __user *buffer, size_t *lenp,
 8906                 loff_t *ppos)
 8907 {
 8908         int ret;
 8909         int old_period, old_runtime;
 8910         static DEFINE_MUTEX(mutex);
 8911 
 8912         mutex_lock(&mutex);
 8913         old_period = sysctl_sched_rt_period;
 8914         old_runtime = sysctl_sched_rt_runtime;
 8915 
 8916         ret = proc_dointvec(table, write, buffer, lenp, ppos);
 8917 
 8918         if (!ret && write) {
 8919                 ret = sched_rt_global_constraints();
 8920                 if (ret) {
 8921                         sysctl_sched_rt_period = old_period;
 8922                         sysctl_sched_rt_runtime = old_runtime;
 8923                 } else {
 8924                         def_rt_bandwidth.rt_runtime = global_rt_runtime();
 8925                         def_rt_bandwidth.rt_period =
 8926                                 ns_to_ktime(global_rt_period());
 8927                 }
 8928         }
 8929         mutex_unlock(&mutex);
 8930 
 8931         return ret;
 8932 }
 8933 
 8934 #ifdef CONFIG_CGROUP_SCHED
 8935 
 8936 /* return corresponding task_group object of a cgroup */
 8937 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
 8938 {
 8939         return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
 8940                             struct task_group, css);
 8941 }
 8942 
 8943 static struct cgroup_subsys_state *
 8944 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
 8945 {
 8946         struct task_group *tg, *parent;
 8947 
 8948         if (!cgrp->parent) {
 8949                 /* This is early initialization for the top cgroup */
 8950                 return &root_task_group.css;
 8951         }
 8952 
 8953         parent = cgroup_tg(cgrp->parent);
 8954         tg = sched_create_group(parent);
 8955         if (IS_ERR(tg))
 8956                 return ERR_PTR(-ENOMEM);
 8957 
 8958         return &tg->css;
 8959 }
 8960 
 8961 static void
 8962 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
 8963 {
 8964         struct task_group *tg = cgroup_tg(cgrp);
 8965 
 8966         sched_destroy_group(tg);
 8967 }
 8968 
 8969 static int
 8970 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
 8971 {
 8972 #ifdef CONFIG_RT_GROUP_SCHED
 8973         if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
 8974                 return -EINVAL;
 8975 #else
 8976         /* We don't support RT-tasks being in separate groups */
 8977         if (tsk->sched_class != &fair_sched_class)
 8978                 return -EINVAL;
 8979 #endif
 8980         return 0;
 8981 }
 8982 
 8983 static void
 8984 cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
 8985 {
 8986         sched_move_task(tsk);
 8987 }
 8988 
 8989 static void
 8990 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
 8991                 struct cgroup *old_cgrp, struct task_struct *task)
 8992 {
 8993         /*
 8994          * cgroup_exit() is called in the copy_process() failure path.
 8995          * Ignore this case since the task hasn't ran yet, this avoids
 8996          * trying to poke a half freed task state from generic code.
 8997          */
 8998         if (!(task->flags & PF_EXITING))
 8999                 return;
 9000 
 9001         sched_move_task(task);
 9002 }
 9003 
 9004 #ifdef CONFIG_FAIR_GROUP_SCHED
 9005 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
 9006                                 u64 shareval)
 9007 {
 9008         return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
 9009 }
 9010 
 9011 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
 9012 {
 9013         struct task_group *tg = cgroup_tg(cgrp);
 9014 
 9015         return (u64) scale_load_down(tg->shares);
 9016 }
 9017 #endif /* CONFIG_FAIR_GROUP_SCHED */
 9018 
 9019 #ifdef CONFIG_RT_GROUP_SCHED
 9020 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
 9021                                 s64 val)
 9022 {
 9023         return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
 9024 }
 9025 
 9026 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
 9027 {
 9028         return sched_group_rt_runtime(cgroup_tg(cgrp));
 9029 }
 9030 
 9031 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
 9032                 u64 rt_period_us)
 9033 {
 9034         return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
 9035 }
 9036 
 9037 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
 9038 {
 9039         return sched_group_rt_period(cgroup_tg(cgrp));
 9040 }
 9041 #endif /* CONFIG_RT_GROUP_SCHED */
 9042 
 9043 static struct cftype cpu_files[] = {
 9044 #ifdef CONFIG_FAIR_GROUP_SCHED
 9045         {
 9046                 .name = "shares",
 9047                 .read_u64 = cpu_shares_read_u64,
 9048                 .write_u64 = cpu_shares_write_u64,
 9049         },
 9050 #endif
 9051 #ifdef CONFIG_RT_GROUP_SCHED
 9052         {
 9053                 .name = "rt_runtime_us",
 9054                 .read_s64 = cpu_rt_runtime_read,
 9055                 .write_s64 = cpu_rt_runtime_write,
 9056         },
 9057         {
 9058                 .name = "rt_period_us",
 9059                 .read_u64 = cpu_rt_period_read_uint,
 9060                 .write_u64 = cpu_rt_period_write_uint,
 9061         },
 9062 #endif
 9063 };
 9064 
 9065 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
 9066 {
 9067         return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
 9068 }
 9069 
 9070 struct cgroup_subsys cpu_cgroup_subsys = {
 9071         .name           = "cpu",
 9072         .create         = cpu_cgroup_create,
 9073         .destroy        = cpu_cgroup_destroy,
 9074         .can_attach_task = cpu_cgroup_can_attach_task,
 9075         .attach_task    = cpu_cgroup_attach_task,
 9076         .exit           = cpu_cgroup_exit,
 9077         .populate       = cpu_cgroup_populate,
 9078         .subsys_id      = cpu_cgroup_subsys_id,
 9079         .early_init     = 1,
 9080 };
 9081 
 9082 #endif  /* CONFIG_CGROUP_SCHED */
 9083 
 9084 #ifdef CONFIG_CGROUP_CPUACCT
 9085 
 9086 /*
 9087  * CPU accounting code for task groups.
 9088  *
 9089  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 9090  * (balbir@in.ibm.com).
 9091  */
 9092 
 9093 /* track cpu usage of a group of tasks and its child groups */
 9094 struct cpuacct {
 9095         struct cgroup_subsys_state css;
 9096         /* cpuusage holds pointer to a u64-type object on every cpu */
 9097         u64 __percpu *cpuusage;
 9098         struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
 9099         struct cpuacct *parent;
 9100 };
 9101 
 9102 struct cgroup_subsys cpuacct_subsys;
 9103 
 9104 /* return cpu accounting group corresponding to this container */
 9105 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
 9106 {
 9107         return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
 9108                             struct cpuacct, css);
 9109 }
 9110 
 9111 /* return cpu accounting group to which this task belongs */
 9112 static inline struct cpuacct *task_ca(struct task_struct *tsk)
 9113 {
 9114         return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
 9115                             struct cpuacct, css);
 9116 }
 9117 
 9118 /* create a new cpu accounting group */
 9119 static struct cgroup_subsys_state *cpuacct_create(
 9120         struct cgroup_subsys *ss, struct cgroup *cgrp)
 9121 {
 9122         struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
 9123         int i;
 9124 
 9125         if (!ca)
 9126                 goto out;
 9127 
 9128         ca->cpuusage = alloc_percpu(u64);
 9129         if (!ca->cpuusage)
 9130                 goto out_free_ca;
 9131 
 9132         for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
 9133                 if (percpu_counter_init(&ca->cpustat[i], 0))
 9134                         goto out_free_counters;
 9135 
 9136         if (cgrp->parent)
 9137                 ca->parent = cgroup_ca(cgrp->parent);
 9138 
 9139         return &ca->css;
 9140 
 9141 out_free_counters:
 9142         while (--i >= 0)
 9143                 percpu_counter_destroy(&ca->cpustat[i]);
 9144         free_percpu(ca->cpuusage);
 9145 out_free_ca:
 9146         kfree(ca);
 9147 out:
 9148         return ERR_PTR(-ENOMEM);
 9149 }
 9150 
 9151 /* destroy an existing cpu accounting group */
 9152 static void
 9153 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
 9154 {
 9155         struct cpuacct *ca = cgroup_ca(cgrp);
 9156         int i;
 9157 
 9158         for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
 9159                 percpu_counter_destroy(&ca->cpustat[i]);
 9160         free_percpu(ca->cpuusage);
 9161         kfree(ca);
 9162 }
 9163 
 9164 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
 9165 {
 9166         u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
 9167         u64 data;
 9168 
 9169 #ifndef CONFIG_64BIT
 9170         /*
 9171          * Take rq->lock to make 64-bit read safe on 32-bit platforms.
 9172          */
 9173         raw_spin_lock_irq(&cpu_rq(cpu)->lock);
 9174         data = *cpuusage;
 9175         raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
 9176 #else
 9177         data = *cpuusage;
 9178 #endif
 9179 
 9180         return data;
 9181 }
 9182 
 9183 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
 9184 {
 9185         u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
 9186 
 9187 #ifndef CONFIG_64BIT
 9188         /*
 9189          * Take rq->lock to make 64-bit write safe on 32-bit platforms.
 9190          */
 9191         raw_spin_lock_irq(&cpu_rq(cpu)->lock);
 9192         *cpuusage = val;
 9193         raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
 9194 #else
 9195         *cpuusage = val;
 9196 #endif
 9197 }
 9198 
 9199 /* return total cpu usage (in nanoseconds) of a group */
 9200 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
 9201 {
 9202         struct cpuacct *ca = cgroup_ca(cgrp);
 9203         u64 totalcpuusage = 0;
 9204         int i;
 9205 
 9206         for_each_present_cpu(i)
 9207                 totalcpuusage += cpuacct_cpuusage_read(ca, i);
 9208 
 9209         return totalcpuusage;
 9210 }
 9211 
 9212 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
 9213                                                                 u64 reset)
 9214 {
 9215         struct cpuacct *ca = cgroup_ca(cgrp);
 9216         int err = 0;
 9217         int i;
 9218 
 9219         if (reset) {
 9220                 err = -EINVAL;
 9221                 goto out;
 9222         }
 9223 
 9224         for_each_present_cpu(i)
 9225                 cpuacct_cpuusage_write(ca, i, 0);
 9226 
 9227 out:
 9228         return err;
 9229 }
 9230 
 9231 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
 9232                                    struct seq_file *m)
 9233 {
 9234         struct cpuacct *ca = cgroup_ca(cgroup);
 9235         u64 percpu;
 9236         int i;
 9237 
 9238         for_each_present_cpu(i) {
 9239                 percpu = cpuacct_cpuusage_read(ca, i);
 9240                 seq_printf(m, "%llu ", (unsigned long long) percpu);
 9241         }
 9242         seq_printf(m, "\n");
 9243         return 0;
 9244 }
 9245 
 9246 static const char *cpuacct_stat_desc[] = {
 9247         [CPUACCT_STAT_USER] = "user",
 9248         [CPUACCT_STAT_SYSTEM] = "system",
 9249 };
 9250 
 9251 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
 9252                 struct cgroup_map_cb *cb)
 9253 {
 9254         struct cpuacct *ca = cgroup_ca(cgrp);
 9255         int i;
 9256 
 9257         for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
 9258                 s64 val = percpu_counter_read(&ca->cpustat[i]);
 9259                 val = cputime64_to_clock_t(val);
 9260                 cb->fill(cb, cpuacct_stat_desc[i], val);
 9261         }
 9262         return 0;
 9263 }
 9264 
 9265 static struct cftype files[] = {
 9266         {
 9267                 .name = "usage",
 9268                 .read_u64 = cpuusage_read,
 9269                 .write_u64 = cpuusage_write,
 9270         },
 9271         {
 9272                 .name = "usage_percpu",
 9273                 .read_seq_string = cpuacct_percpu_seq_read,
 9274         },
 9275         {
 9276                 .name = "stat",
 9277                 .read_map = cpuacct_stats_show,
 9278         },
 9279 };
 9280 
 9281 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
 9282 {
 9283         return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
 9284 }
 9285 
 9286 /*
 9287  * charge this task's execution time to its accounting group.
 9288  *
 9289  * called with rq->lock held.
 9290  */
 9291 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
 9292 {
 9293         struct cpuacct *ca;
 9294         int cpu;
 9295 
 9296         if (unlikely(!cpuacct_subsys.active))
 9297                 return;
 9298 
 9299         cpu = task_cpu(tsk);
 9300 
 9301         rcu_read_lock();
 9302 
 9303         ca = task_ca(tsk);
 9304 
 9305         for (; ca; ca = ca->parent) {
 9306                 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
 9307                 *cpuusage += cputime;
 9308         }
 9309 
 9310         rcu_read_unlock();
 9311 }
 9312 
 9313 /*
 9314  * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 9315  * in cputime_t units. As a result, cpuacct_update_stats calls
 9316  * percpu_counter_add with values large enough to always overflow the
 9317  * per cpu batch limit causing bad SMP scalability.
 9318  *
 9319  * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 9320  * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 9321  * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 9322  */
 9323 #ifdef CONFIG_SMP
 9324 #define CPUACCT_BATCH   \
 9325         min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
 9326 #else
 9327 #define CPUACCT_BATCH   0
 9328 #endif
 9329 
 9330 /*
 9331  * Charge the system/user time to the task's accounting group.
 9332  */
 9333 static void cpuacct_update_stats(struct task_struct *tsk,
 9334                 enum cpuacct_stat_index idx, cputime_t val)
 9335 {
 9336         struct cpuacct *ca;
 9337         int batch = CPUACCT_BATCH;
 9338 
 9339         if (unlikely(!cpuacct_subsys.active))
 9340                 return;
 9341 
 9342         rcu_read_lock();
 9343         ca = task_ca(tsk);
 9344 
 9345         do {
 9346                 __percpu_counter_add(&ca->cpustat[idx], val, batch);
 9347                 ca = ca->parent;
 9348         } while (ca);
 9349         rcu_read_unlock();
 9350 }
 9351 
 9352 struct cgroup_subsys cpuacct_subsys = {
 9353         .name = "cpuacct",
 9354         .create = cpuacct_create,
 9355         .destroy = cpuacct_destroy,
 9356         .populate = cpuacct_populate,
 9357         .subsys_id = cpuacct_subsys_id,
 9358 };
 9359 #endif  /* CONFIG_CGROUP_CPUACCT */
 9360 

Cache object: dbe51b92fe5e7326fdd8d2b23bc0f2a3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.