The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/lib/bitmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * lib/bitmap.c
    3  * Helper functions for bitmap.h.
    4  *
    5  * This source code is licensed under the GNU General Public License,
    6  * Version 2.  See the file COPYING for more details.
    7  */
    8 #include <linux/export.h>
    9 #include <linux/thread_info.h>
   10 #include <linux/ctype.h>
   11 #include <linux/errno.h>
   12 #include <linux/bitmap.h>
   13 #include <linux/bitops.h>
   14 #include <linux/bug.h>
   15 #include <asm/uaccess.h>
   16 
   17 /*
   18  * bitmaps provide an array of bits, implemented using an an
   19  * array of unsigned longs.  The number of valid bits in a
   20  * given bitmap does _not_ need to be an exact multiple of
   21  * BITS_PER_LONG.
   22  *
   23  * The possible unused bits in the last, partially used word
   24  * of a bitmap are 'don't care'.  The implementation makes
   25  * no particular effort to keep them zero.  It ensures that
   26  * their value will not affect the results of any operation.
   27  * The bitmap operations that return Boolean (bitmap_empty,
   28  * for example) or scalar (bitmap_weight, for example) results
   29  * carefully filter out these unused bits from impacting their
   30  * results.
   31  *
   32  * These operations actually hold to a slightly stronger rule:
   33  * if you don't input any bitmaps to these ops that have some
   34  * unused bits set, then they won't output any set unused bits
   35  * in output bitmaps.
   36  *
   37  * The byte ordering of bitmaps is more natural on little
   38  * endian architectures.  See the big-endian headers
   39  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
   40  * for the best explanations of this ordering.
   41  */
   42 
   43 int __bitmap_empty(const unsigned long *bitmap, int bits)
   44 {
   45         int k, lim = bits/BITS_PER_LONG;
   46         for (k = 0; k < lim; ++k)
   47                 if (bitmap[k])
   48                         return 0;
   49 
   50         if (bits % BITS_PER_LONG)
   51                 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
   52                         return 0;
   53 
   54         return 1;
   55 }
   56 EXPORT_SYMBOL(__bitmap_empty);
   57 
   58 int __bitmap_full(const unsigned long *bitmap, int bits)
   59 {
   60         int k, lim = bits/BITS_PER_LONG;
   61         for (k = 0; k < lim; ++k)
   62                 if (~bitmap[k])
   63                         return 0;
   64 
   65         if (bits % BITS_PER_LONG)
   66                 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
   67                         return 0;
   68 
   69         return 1;
   70 }
   71 EXPORT_SYMBOL(__bitmap_full);
   72 
   73 int __bitmap_equal(const unsigned long *bitmap1,
   74                 const unsigned long *bitmap2, int bits)
   75 {
   76         int k, lim = bits/BITS_PER_LONG;
   77         for (k = 0; k < lim; ++k)
   78                 if (bitmap1[k] != bitmap2[k])
   79                         return 0;
   80 
   81         if (bits % BITS_PER_LONG)
   82                 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
   83                         return 0;
   84 
   85         return 1;
   86 }
   87 EXPORT_SYMBOL(__bitmap_equal);
   88 
   89 void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
   90 {
   91         int k, lim = bits/BITS_PER_LONG;
   92         for (k = 0; k < lim; ++k)
   93                 dst[k] = ~src[k];
   94 
   95         if (bits % BITS_PER_LONG)
   96                 dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
   97 }
   98 EXPORT_SYMBOL(__bitmap_complement);
   99 
  100 /**
  101  * __bitmap_shift_right - logical right shift of the bits in a bitmap
  102  *   @dst : destination bitmap
  103  *   @src : source bitmap
  104  *   @shift : shift by this many bits
  105  *   @bits : bitmap size, in bits
  106  *
  107  * Shifting right (dividing) means moving bits in the MS -> LS bit
  108  * direction.  Zeros are fed into the vacated MS positions and the
  109  * LS bits shifted off the bottom are lost.
  110  */
  111 void __bitmap_shift_right(unsigned long *dst,
  112                         const unsigned long *src, int shift, int bits)
  113 {
  114         int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
  115         int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  116         unsigned long mask = (1UL << left) - 1;
  117         for (k = 0; off + k < lim; ++k) {
  118                 unsigned long upper, lower;
  119 
  120                 /*
  121                  * If shift is not word aligned, take lower rem bits of
  122                  * word above and make them the top rem bits of result.
  123                  */
  124                 if (!rem || off + k + 1 >= lim)
  125                         upper = 0;
  126                 else {
  127                         upper = src[off + k + 1];
  128                         if (off + k + 1 == lim - 1 && left)
  129                                 upper &= mask;
  130                 }
  131                 lower = src[off + k];
  132                 if (left && off + k == lim - 1)
  133                         lower &= mask;
  134                 dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
  135                 if (left && k == lim - 1)
  136                         dst[k] &= mask;
  137         }
  138         if (off)
  139                 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
  140 }
  141 EXPORT_SYMBOL(__bitmap_shift_right);
  142 
  143 
  144 /**
  145  * __bitmap_shift_left - logical left shift of the bits in a bitmap
  146  *   @dst : destination bitmap
  147  *   @src : source bitmap
  148  *   @shift : shift by this many bits
  149  *   @bits : bitmap size, in bits
  150  *
  151  * Shifting left (multiplying) means moving bits in the LS -> MS
  152  * direction.  Zeros are fed into the vacated LS bit positions
  153  * and those MS bits shifted off the top are lost.
  154  */
  155 
  156 void __bitmap_shift_left(unsigned long *dst,
  157                         const unsigned long *src, int shift, int bits)
  158 {
  159         int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
  160         int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  161         for (k = lim - off - 1; k >= 0; --k) {
  162                 unsigned long upper, lower;
  163 
  164                 /*
  165                  * If shift is not word aligned, take upper rem bits of
  166                  * word below and make them the bottom rem bits of result.
  167                  */
  168                 if (rem && k > 0)
  169                         lower = src[k - 1];
  170                 else
  171                         lower = 0;
  172                 upper = src[k];
  173                 if (left && k == lim - 1)
  174                         upper &= (1UL << left) - 1;
  175                 dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem;
  176                 if (left && k + off == lim - 1)
  177                         dst[k + off] &= (1UL << left) - 1;
  178         }
  179         if (off)
  180                 memset(dst, 0, off*sizeof(unsigned long));
  181 }
  182 EXPORT_SYMBOL(__bitmap_shift_left);
  183 
  184 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
  185                                 const unsigned long *bitmap2, int bits)
  186 {
  187         int k;
  188         int nr = BITS_TO_LONGS(bits);
  189         unsigned long result = 0;
  190 
  191         for (k = 0; k < nr; k++)
  192                 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
  193         return result != 0;
  194 }
  195 EXPORT_SYMBOL(__bitmap_and);
  196 
  197 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
  198                                 const unsigned long *bitmap2, int bits)
  199 {
  200         int k;
  201         int nr = BITS_TO_LONGS(bits);
  202 
  203         for (k = 0; k < nr; k++)
  204                 dst[k] = bitmap1[k] | bitmap2[k];
  205 }
  206 EXPORT_SYMBOL(__bitmap_or);
  207 
  208 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
  209                                 const unsigned long *bitmap2, int bits)
  210 {
  211         int k;
  212         int nr = BITS_TO_LONGS(bits);
  213 
  214         for (k = 0; k < nr; k++)
  215                 dst[k] = bitmap1[k] ^ bitmap2[k];
  216 }
  217 EXPORT_SYMBOL(__bitmap_xor);
  218 
  219 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
  220                                 const unsigned long *bitmap2, int bits)
  221 {
  222         int k;
  223         int nr = BITS_TO_LONGS(bits);
  224         unsigned long result = 0;
  225 
  226         for (k = 0; k < nr; k++)
  227                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
  228         return result != 0;
  229 }
  230 EXPORT_SYMBOL(__bitmap_andnot);
  231 
  232 int __bitmap_intersects(const unsigned long *bitmap1,
  233                                 const unsigned long *bitmap2, int bits)
  234 {
  235         int k, lim = bits/BITS_PER_LONG;
  236         for (k = 0; k < lim; ++k)
  237                 if (bitmap1[k] & bitmap2[k])
  238                         return 1;
  239 
  240         if (bits % BITS_PER_LONG)
  241                 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  242                         return 1;
  243         return 0;
  244 }
  245 EXPORT_SYMBOL(__bitmap_intersects);
  246 
  247 int __bitmap_subset(const unsigned long *bitmap1,
  248                                 const unsigned long *bitmap2, int bits)
  249 {
  250         int k, lim = bits/BITS_PER_LONG;
  251         for (k = 0; k < lim; ++k)
  252                 if (bitmap1[k] & ~bitmap2[k])
  253                         return 0;
  254 
  255         if (bits % BITS_PER_LONG)
  256                 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  257                         return 0;
  258         return 1;
  259 }
  260 EXPORT_SYMBOL(__bitmap_subset);
  261 
  262 int __bitmap_weight(const unsigned long *bitmap, int bits)
  263 {
  264         int k, w = 0, lim = bits/BITS_PER_LONG;
  265 
  266         for (k = 0; k < lim; k++)
  267                 w += hweight_long(bitmap[k]);
  268 
  269         if (bits % BITS_PER_LONG)
  270                 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
  271 
  272         return w;
  273 }
  274 EXPORT_SYMBOL(__bitmap_weight);
  275 
  276 void bitmap_set(unsigned long *map, int start, int nr)
  277 {
  278         unsigned long *p = map + BIT_WORD(start);
  279         const int size = start + nr;
  280         int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
  281         unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
  282 
  283         while (nr - bits_to_set >= 0) {
  284                 *p |= mask_to_set;
  285                 nr -= bits_to_set;
  286                 bits_to_set = BITS_PER_LONG;
  287                 mask_to_set = ~0UL;
  288                 p++;
  289         }
  290         if (nr) {
  291                 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
  292                 *p |= mask_to_set;
  293         }
  294 }
  295 EXPORT_SYMBOL(bitmap_set);
  296 
  297 void bitmap_clear(unsigned long *map, int start, int nr)
  298 {
  299         unsigned long *p = map + BIT_WORD(start);
  300         const int size = start + nr;
  301         int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
  302         unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
  303 
  304         while (nr - bits_to_clear >= 0) {
  305                 *p &= ~mask_to_clear;
  306                 nr -= bits_to_clear;
  307                 bits_to_clear = BITS_PER_LONG;
  308                 mask_to_clear = ~0UL;
  309                 p++;
  310         }
  311         if (nr) {
  312                 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
  313                 *p &= ~mask_to_clear;
  314         }
  315 }
  316 EXPORT_SYMBOL(bitmap_clear);
  317 
  318 /*
  319  * bitmap_find_next_zero_area - find a contiguous aligned zero area
  320  * @map: The address to base the search on
  321  * @size: The bitmap size in bits
  322  * @start: The bitnumber to start searching at
  323  * @nr: The number of zeroed bits we're looking for
  324  * @align_mask: Alignment mask for zero area
  325  *
  326  * The @align_mask should be one less than a power of 2; the effect is that
  327  * the bit offset of all zero areas this function finds is multiples of that
  328  * power of 2. A @align_mask of 0 means no alignment is required.
  329  */
  330 unsigned long bitmap_find_next_zero_area(unsigned long *map,
  331                                          unsigned long size,
  332                                          unsigned long start,
  333                                          unsigned int nr,
  334                                          unsigned long align_mask)
  335 {
  336         unsigned long index, end, i;
  337 again:
  338         index = find_next_zero_bit(map, size, start);
  339 
  340         /* Align allocation */
  341         index = __ALIGN_MASK(index, align_mask);
  342 
  343         end = index + nr;
  344         if (end > size)
  345                 return end;
  346         i = find_next_bit(map, end, index);
  347         if (i < end) {
  348                 start = i + 1;
  349                 goto again;
  350         }
  351         return index;
  352 }
  353 EXPORT_SYMBOL(bitmap_find_next_zero_area);
  354 
  355 /*
  356  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
  357  * second version by Paul Jackson, third by Joe Korty.
  358  */
  359 
  360 #define CHUNKSZ                         32
  361 #define nbits_to_hold_value(val)        fls(val)
  362 #define BASEDEC 10              /* fancier cpuset lists input in decimal */
  363 
  364 /**
  365  * bitmap_scnprintf - convert bitmap to an ASCII hex string.
  366  * @buf: byte buffer into which string is placed
  367  * @buflen: reserved size of @buf, in bytes
  368  * @maskp: pointer to bitmap to convert
  369  * @nmaskbits: size of bitmap, in bits
  370  *
  371  * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
  372  * comma-separated sets of eight digits per set.  Returns the number of
  373  * characters which were written to *buf, excluding the trailing \0.
  374  */
  375 int bitmap_scnprintf(char *buf, unsigned int buflen,
  376         const unsigned long *maskp, int nmaskbits)
  377 {
  378         int i, word, bit, len = 0;
  379         unsigned long val;
  380         const char *sep = "";
  381         int chunksz;
  382         u32 chunkmask;
  383 
  384         chunksz = nmaskbits & (CHUNKSZ - 1);
  385         if (chunksz == 0)
  386                 chunksz = CHUNKSZ;
  387 
  388         i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
  389         for (; i >= 0; i -= CHUNKSZ) {
  390                 chunkmask = ((1ULL << chunksz) - 1);
  391                 word = i / BITS_PER_LONG;
  392                 bit = i % BITS_PER_LONG;
  393                 val = (maskp[word] >> bit) & chunkmask;
  394                 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
  395                         (chunksz+3)/4, val);
  396                 chunksz = CHUNKSZ;
  397                 sep = ",";
  398         }
  399         return len;
  400 }
  401 EXPORT_SYMBOL(bitmap_scnprintf);
  402 
  403 /**
  404  * __bitmap_parse - convert an ASCII hex string into a bitmap.
  405  * @buf: pointer to buffer containing string.
  406  * @buflen: buffer size in bytes.  If string is smaller than this
  407  *    then it must be terminated with a \0.
  408  * @is_user: location of buffer, 0 indicates kernel space
  409  * @maskp: pointer to bitmap array that will contain result.
  410  * @nmaskbits: size of bitmap, in bits.
  411  *
  412  * Commas group hex digits into chunks.  Each chunk defines exactly 32
  413  * bits of the resultant bitmask.  No chunk may specify a value larger
  414  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
  415  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
  416  * characters and for grouping errors such as "1,,5", ",44", "," and "".
  417  * Leading and trailing whitespace accepted, but not embedded whitespace.
  418  */
  419 int __bitmap_parse(const char *buf, unsigned int buflen,
  420                 int is_user, unsigned long *maskp,
  421                 int nmaskbits)
  422 {
  423         int c, old_c, totaldigits, ndigits, nchunks, nbits;
  424         u32 chunk;
  425         const char __user __force *ubuf = (const char __user __force *)buf;
  426 
  427         bitmap_zero(maskp, nmaskbits);
  428 
  429         nchunks = nbits = totaldigits = c = 0;
  430         do {
  431                 chunk = ndigits = 0;
  432 
  433                 /* Get the next chunk of the bitmap */
  434                 while (buflen) {
  435                         old_c = c;
  436                         if (is_user) {
  437                                 if (__get_user(c, ubuf++))
  438                                         return -EFAULT;
  439                         }
  440                         else
  441                                 c = *buf++;
  442                         buflen--;
  443                         if (isspace(c))
  444                                 continue;
  445 
  446                         /*
  447                          * If the last character was a space and the current
  448                          * character isn't '\0', we've got embedded whitespace.
  449                          * This is a no-no, so throw an error.
  450                          */
  451                         if (totaldigits && c && isspace(old_c))
  452                                 return -EINVAL;
  453 
  454                         /* A '\0' or a ',' signal the end of the chunk */
  455                         if (c == '\0' || c == ',')
  456                                 break;
  457 
  458                         if (!isxdigit(c))
  459                                 return -EINVAL;
  460 
  461                         /*
  462                          * Make sure there are at least 4 free bits in 'chunk'.
  463                          * If not, this hexdigit will overflow 'chunk', so
  464                          * throw an error.
  465                          */
  466                         if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
  467                                 return -EOVERFLOW;
  468 
  469                         chunk = (chunk << 4) | hex_to_bin(c);
  470                         ndigits++; totaldigits++;
  471                 }
  472                 if (ndigits == 0)
  473                         return -EINVAL;
  474                 if (nchunks == 0 && chunk == 0)
  475                         continue;
  476 
  477                 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
  478                 *maskp |= chunk;
  479                 nchunks++;
  480                 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
  481                 if (nbits > nmaskbits)
  482                         return -EOVERFLOW;
  483         } while (buflen && c == ',');
  484 
  485         return 0;
  486 }
  487 EXPORT_SYMBOL(__bitmap_parse);
  488 
  489 /**
  490  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
  491  *
  492  * @ubuf: pointer to user buffer containing string.
  493  * @ulen: buffer size in bytes.  If string is smaller than this
  494  *    then it must be terminated with a \0.
  495  * @maskp: pointer to bitmap array that will contain result.
  496  * @nmaskbits: size of bitmap, in bits.
  497  *
  498  * Wrapper for __bitmap_parse(), providing it with user buffer.
  499  *
  500  * We cannot have this as an inline function in bitmap.h because it needs
  501  * linux/uaccess.h to get the access_ok() declaration and this causes
  502  * cyclic dependencies.
  503  */
  504 int bitmap_parse_user(const char __user *ubuf,
  505                         unsigned int ulen, unsigned long *maskp,
  506                         int nmaskbits)
  507 {
  508         if (!access_ok(VERIFY_READ, ubuf, ulen))
  509                 return -EFAULT;
  510         return __bitmap_parse((const char __force *)ubuf,
  511                                 ulen, 1, maskp, nmaskbits);
  512 
  513 }
  514 EXPORT_SYMBOL(bitmap_parse_user);
  515 
  516 /*
  517  * bscnl_emit(buf, buflen, rbot, rtop, bp)
  518  *
  519  * Helper routine for bitmap_scnlistprintf().  Write decimal number
  520  * or range to buf, suppressing output past buf+buflen, with optional
  521  * comma-prefix.  Return len of what was written to *buf, excluding the
  522  * trailing \0.
  523  */
  524 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
  525 {
  526         if (len > 0)
  527                 len += scnprintf(buf + len, buflen - len, ",");
  528         if (rbot == rtop)
  529                 len += scnprintf(buf + len, buflen - len, "%d", rbot);
  530         else
  531                 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
  532         return len;
  533 }
  534 
  535 /**
  536  * bitmap_scnlistprintf - convert bitmap to list format ASCII string
  537  * @buf: byte buffer into which string is placed
  538  * @buflen: reserved size of @buf, in bytes
  539  * @maskp: pointer to bitmap to convert
  540  * @nmaskbits: size of bitmap, in bits
  541  *
  542  * Output format is a comma-separated list of decimal numbers and
  543  * ranges.  Consecutively set bits are shown as two hyphen-separated
  544  * decimal numbers, the smallest and largest bit numbers set in
  545  * the range.  Output format is compatible with the format
  546  * accepted as input by bitmap_parselist().
  547  *
  548  * The return value is the number of characters which were written to *buf
  549  * excluding the trailing '\0', as per ISO C99's scnprintf.
  550  */
  551 int bitmap_scnlistprintf(char *buf, unsigned int buflen,
  552         const unsigned long *maskp, int nmaskbits)
  553 {
  554         int len = 0;
  555         /* current bit is 'cur', most recently seen range is [rbot, rtop] */
  556         int cur, rbot, rtop;
  557 
  558         if (buflen == 0)
  559                 return 0;
  560         buf[0] = 0;
  561 
  562         rbot = cur = find_first_bit(maskp, nmaskbits);
  563         while (cur < nmaskbits) {
  564                 rtop = cur;
  565                 cur = find_next_bit(maskp, nmaskbits, cur+1);
  566                 if (cur >= nmaskbits || cur > rtop + 1) {
  567                         len = bscnl_emit(buf, buflen, rbot, rtop, len);
  568                         rbot = cur;
  569                 }
  570         }
  571         return len;
  572 }
  573 EXPORT_SYMBOL(bitmap_scnlistprintf);
  574 
  575 /**
  576  * __bitmap_parselist - convert list format ASCII string to bitmap
  577  * @buf: read nul-terminated user string from this buffer
  578  * @buflen: buffer size in bytes.  If string is smaller than this
  579  *    then it must be terminated with a \0.
  580  * @is_user: location of buffer, 0 indicates kernel space
  581  * @maskp: write resulting mask here
  582  * @nmaskbits: number of bits in mask to be written
  583  *
  584  * Input format is a comma-separated list of decimal numbers and
  585  * ranges.  Consecutively set bits are shown as two hyphen-separated
  586  * decimal numbers, the smallest and largest bit numbers set in
  587  * the range.
  588  *
  589  * Returns 0 on success, -errno on invalid input strings.
  590  * Error values:
  591  *    %-EINVAL: second number in range smaller than first
  592  *    %-EINVAL: invalid character in string
  593  *    %-ERANGE: bit number specified too large for mask
  594  */
  595 static int __bitmap_parselist(const char *buf, unsigned int buflen,
  596                 int is_user, unsigned long *maskp,
  597                 int nmaskbits)
  598 {
  599         unsigned a, b;
  600         int c, old_c, totaldigits;
  601         const char __user __force *ubuf = (const char __user __force *)buf;
  602         int exp_digit, in_range;
  603 
  604         totaldigits = c = 0;
  605         bitmap_zero(maskp, nmaskbits);
  606         do {
  607                 exp_digit = 1;
  608                 in_range = 0;
  609                 a = b = 0;
  610 
  611                 /* Get the next cpu# or a range of cpu#'s */
  612                 while (buflen) {
  613                         old_c = c;
  614                         if (is_user) {
  615                                 if (__get_user(c, ubuf++))
  616                                         return -EFAULT;
  617                         } else
  618                                 c = *buf++;
  619                         buflen--;
  620                         if (isspace(c))
  621                                 continue;
  622 
  623                         /*
  624                          * If the last character was a space and the current
  625                          * character isn't '\0', we've got embedded whitespace.
  626                          * This is a no-no, so throw an error.
  627                          */
  628                         if (totaldigits && c && isspace(old_c))
  629                                 return -EINVAL;
  630 
  631                         /* A '\0' or a ',' signal the end of a cpu# or range */
  632                         if (c == '\0' || c == ',')
  633                                 break;
  634 
  635                         if (c == '-') {
  636                                 if (exp_digit || in_range)
  637                                         return -EINVAL;
  638                                 b = 0;
  639                                 in_range = 1;
  640                                 exp_digit = 1;
  641                                 continue;
  642                         }
  643 
  644                         if (!isdigit(c))
  645                                 return -EINVAL;
  646 
  647                         b = b * 10 + (c - '');
  648                         if (!in_range)
  649                                 a = b;
  650                         exp_digit = 0;
  651                         totaldigits++;
  652                 }
  653                 if (!(a <= b))
  654                         return -EINVAL;
  655                 if (b >= nmaskbits)
  656                         return -ERANGE;
  657                 while (a <= b) {
  658                         set_bit(a, maskp);
  659                         a++;
  660                 }
  661         } while (buflen && c == ',');
  662         return 0;
  663 }
  664 
  665 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
  666 {
  667         char *nl  = strchr(bp, '\n');
  668         int len;
  669 
  670         if (nl)
  671                 len = nl - bp;
  672         else
  673                 len = strlen(bp);
  674 
  675         return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
  676 }
  677 EXPORT_SYMBOL(bitmap_parselist);
  678 
  679 
  680 /**
  681  * bitmap_parselist_user()
  682  *
  683  * @ubuf: pointer to user buffer containing string.
  684  * @ulen: buffer size in bytes.  If string is smaller than this
  685  *    then it must be terminated with a \0.
  686  * @maskp: pointer to bitmap array that will contain result.
  687  * @nmaskbits: size of bitmap, in bits.
  688  *
  689  * Wrapper for bitmap_parselist(), providing it with user buffer.
  690  *
  691  * We cannot have this as an inline function in bitmap.h because it needs
  692  * linux/uaccess.h to get the access_ok() declaration and this causes
  693  * cyclic dependencies.
  694  */
  695 int bitmap_parselist_user(const char __user *ubuf,
  696                         unsigned int ulen, unsigned long *maskp,
  697                         int nmaskbits)
  698 {
  699         if (!access_ok(VERIFY_READ, ubuf, ulen))
  700                 return -EFAULT;
  701         return __bitmap_parselist((const char __force *)ubuf,
  702                                         ulen, 1, maskp, nmaskbits);
  703 }
  704 EXPORT_SYMBOL(bitmap_parselist_user);
  705 
  706 
  707 /**
  708  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
  709  *      @buf: pointer to a bitmap
  710  *      @pos: a bit position in @buf (0 <= @pos < @bits)
  711  *      @bits: number of valid bit positions in @buf
  712  *
  713  * Map the bit at position @pos in @buf (of length @bits) to the
  714  * ordinal of which set bit it is.  If it is not set or if @pos
  715  * is not a valid bit position, map to -1.
  716  *
  717  * If for example, just bits 4 through 7 are set in @buf, then @pos
  718  * values 4 through 7 will get mapped to 0 through 3, respectively,
  719  * and other @pos values will get mapped to 0.  When @pos value 7
  720  * gets mapped to (returns) @ord value 3 in this example, that means
  721  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
  722  *
  723  * The bit positions 0 through @bits are valid positions in @buf.
  724  */
  725 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
  726 {
  727         int i, ord;
  728 
  729         if (pos < 0 || pos >= bits || !test_bit(pos, buf))
  730                 return -1;
  731 
  732         i = find_first_bit(buf, bits);
  733         ord = 0;
  734         while (i < pos) {
  735                 i = find_next_bit(buf, bits, i + 1);
  736                 ord++;
  737         }
  738         BUG_ON(i != pos);
  739 
  740         return ord;
  741 }
  742 
  743 /**
  744  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
  745  *      @buf: pointer to bitmap
  746  *      @ord: ordinal bit position (n-th set bit, n >= 0)
  747  *      @bits: number of valid bit positions in @buf
  748  *
  749  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
  750  * Value of @ord should be in range 0 <= @ord < weight(buf), else
  751  * results are undefined.
  752  *
  753  * If for example, just bits 4 through 7 are set in @buf, then @ord
  754  * values 0 through 3 will get mapped to 4 through 7, respectively,
  755  * and all other @ord values return undefined values.  When @ord value 3
  756  * gets mapped to (returns) @pos value 7 in this example, that means
  757  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
  758  *
  759  * The bit positions 0 through @bits are valid positions in @buf.
  760  */
  761 int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
  762 {
  763         int pos = 0;
  764 
  765         if (ord >= 0 && ord < bits) {
  766                 int i;
  767 
  768                 for (i = find_first_bit(buf, bits);
  769                      i < bits && ord > 0;
  770                      i = find_next_bit(buf, bits, i + 1))
  771                         ord--;
  772                 if (i < bits && ord == 0)
  773                         pos = i;
  774         }
  775 
  776         return pos;
  777 }
  778 
  779 /**
  780  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
  781  *      @dst: remapped result
  782  *      @src: subset to be remapped
  783  *      @old: defines domain of map
  784  *      @new: defines range of map
  785  *      @bits: number of bits in each of these bitmaps
  786  *
  787  * Let @old and @new define a mapping of bit positions, such that
  788  * whatever position is held by the n-th set bit in @old is mapped
  789  * to the n-th set bit in @new.  In the more general case, allowing
  790  * for the possibility that the weight 'w' of @new is less than the
  791  * weight of @old, map the position of the n-th set bit in @old to
  792  * the position of the m-th set bit in @new, where m == n % w.
  793  *
  794  * If either of the @old and @new bitmaps are empty, or if @src and
  795  * @dst point to the same location, then this routine copies @src
  796  * to @dst.
  797  *
  798  * The positions of unset bits in @old are mapped to themselves
  799  * (the identify map).
  800  *
  801  * Apply the above specified mapping to @src, placing the result in
  802  * @dst, clearing any bits previously set in @dst.
  803  *
  804  * For example, lets say that @old has bits 4 through 7 set, and
  805  * @new has bits 12 through 15 set.  This defines the mapping of bit
  806  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
  807  * bit positions unchanged.  So if say @src comes into this routine
  808  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
  809  * 13 and 15 set.
  810  */
  811 void bitmap_remap(unsigned long *dst, const unsigned long *src,
  812                 const unsigned long *old, const unsigned long *new,
  813                 int bits)
  814 {
  815         int oldbit, w;
  816 
  817         if (dst == src)         /* following doesn't handle inplace remaps */
  818                 return;
  819         bitmap_zero(dst, bits);
  820 
  821         w = bitmap_weight(new, bits);
  822         for_each_set_bit(oldbit, src, bits) {
  823                 int n = bitmap_pos_to_ord(old, oldbit, bits);
  824 
  825                 if (n < 0 || w == 0)
  826                         set_bit(oldbit, dst);   /* identity map */
  827                 else
  828                         set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
  829         }
  830 }
  831 EXPORT_SYMBOL(bitmap_remap);
  832 
  833 /**
  834  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
  835  *      @oldbit: bit position to be mapped
  836  *      @old: defines domain of map
  837  *      @new: defines range of map
  838  *      @bits: number of bits in each of these bitmaps
  839  *
  840  * Let @old and @new define a mapping of bit positions, such that
  841  * whatever position is held by the n-th set bit in @old is mapped
  842  * to the n-th set bit in @new.  In the more general case, allowing
  843  * for the possibility that the weight 'w' of @new is less than the
  844  * weight of @old, map the position of the n-th set bit in @old to
  845  * the position of the m-th set bit in @new, where m == n % w.
  846  *
  847  * The positions of unset bits in @old are mapped to themselves
  848  * (the identify map).
  849  *
  850  * Apply the above specified mapping to bit position @oldbit, returning
  851  * the new bit position.
  852  *
  853  * For example, lets say that @old has bits 4 through 7 set, and
  854  * @new has bits 12 through 15 set.  This defines the mapping of bit
  855  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
  856  * bit positions unchanged.  So if say @oldbit is 5, then this routine
  857  * returns 13.
  858  */
  859 int bitmap_bitremap(int oldbit, const unsigned long *old,
  860                                 const unsigned long *new, int bits)
  861 {
  862         int w = bitmap_weight(new, bits);
  863         int n = bitmap_pos_to_ord(old, oldbit, bits);
  864         if (n < 0 || w == 0)
  865                 return oldbit;
  866         else
  867                 return bitmap_ord_to_pos(new, n % w, bits);
  868 }
  869 EXPORT_SYMBOL(bitmap_bitremap);
  870 
  871 /**
  872  * bitmap_onto - translate one bitmap relative to another
  873  *      @dst: resulting translated bitmap
  874  *      @orig: original untranslated bitmap
  875  *      @relmap: bitmap relative to which translated
  876  *      @bits: number of bits in each of these bitmaps
  877  *
  878  * Set the n-th bit of @dst iff there exists some m such that the
  879  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
  880  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
  881  * (If you understood the previous sentence the first time your
  882  * read it, you're overqualified for your current job.)
  883  *
  884  * In other words, @orig is mapped onto (surjectively) @dst,
  885  * using the the map { <n, m> | the n-th bit of @relmap is the
  886  * m-th set bit of @relmap }.
  887  *
  888  * Any set bits in @orig above bit number W, where W is the
  889  * weight of (number of set bits in) @relmap are mapped nowhere.
  890  * In particular, if for all bits m set in @orig, m >= W, then
  891  * @dst will end up empty.  In situations where the possibility
  892  * of such an empty result is not desired, one way to avoid it is
  893  * to use the bitmap_fold() operator, below, to first fold the
  894  * @orig bitmap over itself so that all its set bits x are in the
  895  * range 0 <= x < W.  The bitmap_fold() operator does this by
  896  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
  897  *
  898  * Example [1] for bitmap_onto():
  899  *  Let's say @relmap has bits 30-39 set, and @orig has bits
  900  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
  901  *  @dst will have bits 31, 33, 35, 37 and 39 set.
  902  *
  903  *  When bit 0 is set in @orig, it means turn on the bit in
  904  *  @dst corresponding to whatever is the first bit (if any)
  905  *  that is turned on in @relmap.  Since bit 0 was off in the
  906  *  above example, we leave off that bit (bit 30) in @dst.
  907  *
  908  *  When bit 1 is set in @orig (as in the above example), it
  909  *  means turn on the bit in @dst corresponding to whatever
  910  *  is the second bit that is turned on in @relmap.  The second
  911  *  bit in @relmap that was turned on in the above example was
  912  *  bit 31, so we turned on bit 31 in @dst.
  913  *
  914  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
  915  *  because they were the 4th, 6th, 8th and 10th set bits
  916  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
  917  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
  918  *
  919  *  When bit 11 is set in @orig, it means turn on the bit in
  920  *  @dst corresponding to whatever is the twelfth bit that is
  921  *  turned on in @relmap.  In the above example, there were
  922  *  only ten bits turned on in @relmap (30..39), so that bit
  923  *  11 was set in @orig had no affect on @dst.
  924  *
  925  * Example [2] for bitmap_fold() + bitmap_onto():
  926  *  Let's say @relmap has these ten bits set:
  927  *              40 41 42 43 45 48 53 61 74 95
  928  *  (for the curious, that's 40 plus the first ten terms of the
  929  *  Fibonacci sequence.)
  930  *
  931  *  Further lets say we use the following code, invoking
  932  *  bitmap_fold() then bitmap_onto, as suggested above to
  933  *  avoid the possitility of an empty @dst result:
  934  *
  935  *      unsigned long *tmp;     // a temporary bitmap's bits
  936  *
  937  *      bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
  938  *      bitmap_onto(dst, tmp, relmap, bits);
  939  *
  940  *  Then this table shows what various values of @dst would be, for
  941  *  various @orig's.  I list the zero-based positions of each set bit.
  942  *  The tmp column shows the intermediate result, as computed by
  943  *  using bitmap_fold() to fold the @orig bitmap modulo ten
  944  *  (the weight of @relmap).
  945  *
  946  *      @orig           tmp            @dst
  947  *      0                0             40
  948  *      1                1             41
  949  *      9                9             95
  950  *      10               0             40 (*)
  951  *      1 3 5 7          1 3 5 7       41 43 48 61
  952  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
  953  *      0 9 18 27        0 9 8 7       40 61 74 95
  954  *      0 10 20 30       0             40
  955  *      0 11 22 33       0 1 2 3       40 41 42 43
  956  *      0 12 24 36       0 2 4 6       40 42 45 53
  957  *      78 102 211       1 2 8         41 42 74 (*)
  958  *
  959  * (*) For these marked lines, if we hadn't first done bitmap_fold()
  960  *     into tmp, then the @dst result would have been empty.
  961  *
  962  * If either of @orig or @relmap is empty (no set bits), then @dst
  963  * will be returned empty.
  964  *
  965  * If (as explained above) the only set bits in @orig are in positions
  966  * m where m >= W, (where W is the weight of @relmap) then @dst will
  967  * once again be returned empty.
  968  *
  969  * All bits in @dst not set by the above rule are cleared.
  970  */
  971 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
  972                         const unsigned long *relmap, int bits)
  973 {
  974         int n, m;               /* same meaning as in above comment */
  975 
  976         if (dst == orig)        /* following doesn't handle inplace mappings */
  977                 return;
  978         bitmap_zero(dst, bits);
  979 
  980         /*
  981          * The following code is a more efficient, but less
  982          * obvious, equivalent to the loop:
  983          *      for (m = 0; m < bitmap_weight(relmap, bits); m++) {
  984          *              n = bitmap_ord_to_pos(orig, m, bits);
  985          *              if (test_bit(m, orig))
  986          *                      set_bit(n, dst);
  987          *      }
  988          */
  989 
  990         m = 0;
  991         for_each_set_bit(n, relmap, bits) {
  992                 /* m == bitmap_pos_to_ord(relmap, n, bits) */
  993                 if (test_bit(m, orig))
  994                         set_bit(n, dst);
  995                 m++;
  996         }
  997 }
  998 EXPORT_SYMBOL(bitmap_onto);
  999 
 1000 /**
 1001  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
 1002  *      @dst: resulting smaller bitmap
 1003  *      @orig: original larger bitmap
 1004  *      @sz: specified size
 1005  *      @bits: number of bits in each of these bitmaps
 1006  *
 1007  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
 1008  * Clear all other bits in @dst.  See further the comment and
 1009  * Example [2] for bitmap_onto() for why and how to use this.
 1010  */
 1011 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
 1012                         int sz, int bits)
 1013 {
 1014         int oldbit;
 1015 
 1016         if (dst == orig)        /* following doesn't handle inplace mappings */
 1017                 return;
 1018         bitmap_zero(dst, bits);
 1019 
 1020         for_each_set_bit(oldbit, orig, bits)
 1021                 set_bit(oldbit % sz, dst);
 1022 }
 1023 EXPORT_SYMBOL(bitmap_fold);
 1024 
 1025 /*
 1026  * Common code for bitmap_*_region() routines.
 1027  *      bitmap: array of unsigned longs corresponding to the bitmap
 1028  *      pos: the beginning of the region
 1029  *      order: region size (log base 2 of number of bits)
 1030  *      reg_op: operation(s) to perform on that region of bitmap
 1031  *
 1032  * Can set, verify and/or release a region of bits in a bitmap,
 1033  * depending on which combination of REG_OP_* flag bits is set.
 1034  *
 1035  * A region of a bitmap is a sequence of bits in the bitmap, of
 1036  * some size '1 << order' (a power of two), aligned to that same
 1037  * '1 << order' power of two.
 1038  *
 1039  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
 1040  * Returns 0 in all other cases and reg_ops.
 1041  */
 1042 
 1043 enum {
 1044         REG_OP_ISFREE,          /* true if region is all zero bits */
 1045         REG_OP_ALLOC,           /* set all bits in region */
 1046         REG_OP_RELEASE,         /* clear all bits in region */
 1047 };
 1048 
 1049 static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
 1050 {
 1051         int nbits_reg;          /* number of bits in region */
 1052         int index;              /* index first long of region in bitmap */
 1053         int offset;             /* bit offset region in bitmap[index] */
 1054         int nlongs_reg;         /* num longs spanned by region in bitmap */
 1055         int nbitsinlong;        /* num bits of region in each spanned long */
 1056         unsigned long mask;     /* bitmask for one long of region */
 1057         int i;                  /* scans bitmap by longs */
 1058         int ret = 0;            /* return value */
 1059 
 1060         /*
 1061          * Either nlongs_reg == 1 (for small orders that fit in one long)
 1062          * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
 1063          */
 1064         nbits_reg = 1 << order;
 1065         index = pos / BITS_PER_LONG;
 1066         offset = pos - (index * BITS_PER_LONG);
 1067         nlongs_reg = BITS_TO_LONGS(nbits_reg);
 1068         nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
 1069 
 1070         /*
 1071          * Can't do "mask = (1UL << nbitsinlong) - 1", as that
 1072          * overflows if nbitsinlong == BITS_PER_LONG.
 1073          */
 1074         mask = (1UL << (nbitsinlong - 1));
 1075         mask += mask - 1;
 1076         mask <<= offset;
 1077 
 1078         switch (reg_op) {
 1079         case REG_OP_ISFREE:
 1080                 for (i = 0; i < nlongs_reg; i++) {
 1081                         if (bitmap[index + i] & mask)
 1082                                 goto done;
 1083                 }
 1084                 ret = 1;        /* all bits in region free (zero) */
 1085                 break;
 1086 
 1087         case REG_OP_ALLOC:
 1088                 for (i = 0; i < nlongs_reg; i++)
 1089                         bitmap[index + i] |= mask;
 1090                 break;
 1091 
 1092         case REG_OP_RELEASE:
 1093                 for (i = 0; i < nlongs_reg; i++)
 1094                         bitmap[index + i] &= ~mask;
 1095                 break;
 1096         }
 1097 done:
 1098         return ret;
 1099 }
 1100 
 1101 /**
 1102  * bitmap_find_free_region - find a contiguous aligned mem region
 1103  *      @bitmap: array of unsigned longs corresponding to the bitmap
 1104  *      @bits: number of bits in the bitmap
 1105  *      @order: region size (log base 2 of number of bits) to find
 1106  *
 1107  * Find a region of free (zero) bits in a @bitmap of @bits bits and
 1108  * allocate them (set them to one).  Only consider regions of length
 1109  * a power (@order) of two, aligned to that power of two, which
 1110  * makes the search algorithm much faster.
 1111  *
 1112  * Return the bit offset in bitmap of the allocated region,
 1113  * or -errno on failure.
 1114  */
 1115 int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
 1116 {
 1117         int pos, end;           /* scans bitmap by regions of size order */
 1118 
 1119         for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
 1120                 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
 1121                         continue;
 1122                 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
 1123                 return pos;
 1124         }
 1125         return -ENOMEM;
 1126 }
 1127 EXPORT_SYMBOL(bitmap_find_free_region);
 1128 
 1129 /**
 1130  * bitmap_release_region - release allocated bitmap region
 1131  *      @bitmap: array of unsigned longs corresponding to the bitmap
 1132  *      @pos: beginning of bit region to release
 1133  *      @order: region size (log base 2 of number of bits) to release
 1134  *
 1135  * This is the complement to __bitmap_find_free_region() and releases
 1136  * the found region (by clearing it in the bitmap).
 1137  *
 1138  * No return value.
 1139  */
 1140 void bitmap_release_region(unsigned long *bitmap, int pos, int order)
 1141 {
 1142         __reg_op(bitmap, pos, order, REG_OP_RELEASE);
 1143 }
 1144 EXPORT_SYMBOL(bitmap_release_region);
 1145 
 1146 /**
 1147  * bitmap_allocate_region - allocate bitmap region
 1148  *      @bitmap: array of unsigned longs corresponding to the bitmap
 1149  *      @pos: beginning of bit region to allocate
 1150  *      @order: region size (log base 2 of number of bits) to allocate
 1151  *
 1152  * Allocate (set bits in) a specified region of a bitmap.
 1153  *
 1154  * Return 0 on success, or %-EBUSY if specified region wasn't
 1155  * free (not all bits were zero).
 1156  */
 1157 int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
 1158 {
 1159         if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
 1160                 return -EBUSY;
 1161         __reg_op(bitmap, pos, order, REG_OP_ALLOC);
 1162         return 0;
 1163 }
 1164 EXPORT_SYMBOL(bitmap_allocate_region);
 1165 
 1166 /**
 1167  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
 1168  * @dst:   destination buffer
 1169  * @src:   bitmap to copy
 1170  * @nbits: number of bits in the bitmap
 1171  *
 1172  * Require nbits % BITS_PER_LONG == 0.
 1173  */
 1174 void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
 1175 {
 1176         unsigned long *d = dst;
 1177         int i;
 1178 
 1179         for (i = 0; i < nbits/BITS_PER_LONG; i++) {
 1180                 if (BITS_PER_LONG == 64)
 1181                         d[i] = cpu_to_le64(src[i]);
 1182                 else
 1183                         d[i] = cpu_to_le32(src[i]);
 1184         }
 1185 }
 1186 EXPORT_SYMBOL(bitmap_copy_le);

Cache object: 5c9fb42cf590a61769cf4583d552c942


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.