The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/lib/flex_array.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Flexible array managed in PAGE_SIZE parts
    3  *
    4  * This program is free software; you can redistribute it and/or modify
    5  * it under the terms of the GNU General Public License as published by
    6  * the Free Software Foundation; either version 2 of the License, or
    7  * (at your option) any later version.
    8  *
    9  * This program is distributed in the hope that it will be useful,
   10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
   11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   12  * GNU General Public License for more details.
   13  *
   14  * You should have received a copy of the GNU General Public License
   15  * along with this program; if not, write to the Free Software
   16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
   17  *
   18  * Copyright IBM Corporation, 2009
   19  *
   20  * Author: Dave Hansen <dave@linux.vnet.ibm.com>
   21  */
   22 
   23 #include <linux/flex_array.h>
   24 #include <linux/slab.h>
   25 #include <linux/stddef.h>
   26 #include <linux/export.h>
   27 #include <linux/reciprocal_div.h>
   28 
   29 struct flex_array_part {
   30         char elements[FLEX_ARRAY_PART_SIZE];
   31 };
   32 
   33 /*
   34  * If a user requests an allocation which is small
   35  * enough, we may simply use the space in the
   36  * flex_array->parts[] array to store the user
   37  * data.
   38  */
   39 static inline int elements_fit_in_base(struct flex_array *fa)
   40 {
   41         int data_size = fa->element_size * fa->total_nr_elements;
   42         if (data_size <= FLEX_ARRAY_BASE_BYTES_LEFT)
   43                 return 1;
   44         return 0;
   45 }
   46 
   47 /**
   48  * flex_array_alloc - allocate a new flexible array
   49  * @element_size:       the size of individual elements in the array
   50  * @total:              total number of elements that this should hold
   51  * @flags:              page allocation flags to use for base array
   52  *
   53  * Note: all locking must be provided by the caller.
   54  *
   55  * @total is used to size internal structures.  If the user ever
   56  * accesses any array indexes >=@total, it will produce errors.
   57  *
   58  * The maximum number of elements is defined as: the number of
   59  * elements that can be stored in a page times the number of
   60  * page pointers that we can fit in the base structure or (using
   61  * integer math):
   62  *
   63  *      (PAGE_SIZE/element_size) * (PAGE_SIZE-8)/sizeof(void *)
   64  *
   65  * Here's a table showing example capacities.  Note that the maximum
   66  * index that the get/put() functions is just nr_objects-1.   This
   67  * basically means that you get 4MB of storage on 32-bit and 2MB on
   68  * 64-bit.
   69  *
   70  *
   71  * Element size | Objects | Objects |
   72  * PAGE_SIZE=4k |  32-bit |  64-bit |
   73  * ---------------------------------|
   74  *      1 bytes | 4177920 | 2088960 |
   75  *      2 bytes | 2088960 | 1044480 |
   76  *      3 bytes | 1392300 |  696150 |
   77  *      4 bytes | 1044480 |  522240 |
   78  *     32 bytes |  130560 |   65408 |
   79  *     33 bytes |  126480 |   63240 |
   80  *   2048 bytes |    2040 |    1020 |
   81  *   2049 bytes |    1020 |     510 |
   82  *       void * | 1044480 |  261120 |
   83  *
   84  * Since 64-bit pointers are twice the size, we lose half the
   85  * capacity in the base structure.  Also note that no effort is made
   86  * to efficiently pack objects across page boundaries.
   87  */
   88 struct flex_array *flex_array_alloc(int element_size, unsigned int total,
   89                                         gfp_t flags)
   90 {
   91         struct flex_array *ret;
   92         int elems_per_part = 0;
   93         int reciprocal_elems = 0;
   94         int max_size = 0;
   95 
   96         if (element_size) {
   97                 elems_per_part = FLEX_ARRAY_ELEMENTS_PER_PART(element_size);
   98                 reciprocal_elems = reciprocal_value(elems_per_part);
   99                 max_size = FLEX_ARRAY_NR_BASE_PTRS * elems_per_part;
  100         }
  101 
  102         /* max_size will end up 0 if element_size > PAGE_SIZE */
  103         if (total > max_size)
  104                 return NULL;
  105         ret = kzalloc(sizeof(struct flex_array), flags);
  106         if (!ret)
  107                 return NULL;
  108         ret->element_size = element_size;
  109         ret->total_nr_elements = total;
  110         ret->elems_per_part = elems_per_part;
  111         ret->reciprocal_elems = reciprocal_elems;
  112         if (elements_fit_in_base(ret) && !(flags & __GFP_ZERO))
  113                 memset(&ret->parts[0], FLEX_ARRAY_FREE,
  114                                                 FLEX_ARRAY_BASE_BYTES_LEFT);
  115         return ret;
  116 }
  117 EXPORT_SYMBOL(flex_array_alloc);
  118 
  119 static int fa_element_to_part_nr(struct flex_array *fa,
  120                                         unsigned int element_nr)
  121 {
  122         return reciprocal_divide(element_nr, fa->reciprocal_elems);
  123 }
  124 
  125 /**
  126  * flex_array_free_parts - just free the second-level pages
  127  * @fa:         the flex array from which to free parts
  128  *
  129  * This is to be used in cases where the base 'struct flex_array'
  130  * has been statically allocated and should not be free.
  131  */
  132 void flex_array_free_parts(struct flex_array *fa)
  133 {
  134         int part_nr;
  135 
  136         if (elements_fit_in_base(fa))
  137                 return;
  138         for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++)
  139                 kfree(fa->parts[part_nr]);
  140 }
  141 EXPORT_SYMBOL(flex_array_free_parts);
  142 
  143 void flex_array_free(struct flex_array *fa)
  144 {
  145         flex_array_free_parts(fa);
  146         kfree(fa);
  147 }
  148 EXPORT_SYMBOL(flex_array_free);
  149 
  150 static unsigned int index_inside_part(struct flex_array *fa,
  151                                         unsigned int element_nr,
  152                                         unsigned int part_nr)
  153 {
  154         unsigned int part_offset;
  155 
  156         part_offset = element_nr - part_nr * fa->elems_per_part;
  157         return part_offset * fa->element_size;
  158 }
  159 
  160 static struct flex_array_part *
  161 __fa_get_part(struct flex_array *fa, int part_nr, gfp_t flags)
  162 {
  163         struct flex_array_part *part = fa->parts[part_nr];
  164         if (!part) {
  165                 part = kmalloc(sizeof(struct flex_array_part), flags);
  166                 if (!part)
  167                         return NULL;
  168                 if (!(flags & __GFP_ZERO))
  169                         memset(part, FLEX_ARRAY_FREE,
  170                                 sizeof(struct flex_array_part));
  171                 fa->parts[part_nr] = part;
  172         }
  173         return part;
  174 }
  175 
  176 /**
  177  * flex_array_put - copy data into the array at @element_nr
  178  * @fa:         the flex array to copy data into
  179  * @element_nr: index of the position in which to insert
  180  *              the new element.
  181  * @src:        address of data to copy into the array
  182  * @flags:      page allocation flags to use for array expansion
  183  *
  184  *
  185  * Note that this *copies* the contents of @src into
  186  * the array.  If you are trying to store an array of
  187  * pointers, make sure to pass in &ptr instead of ptr.
  188  * You may instead wish to use the flex_array_put_ptr()
  189  * helper function.
  190  *
  191  * Locking must be provided by the caller.
  192  */
  193 int flex_array_put(struct flex_array *fa, unsigned int element_nr, void *src,
  194                         gfp_t flags)
  195 {
  196         int part_nr = 0;
  197         struct flex_array_part *part;
  198         void *dst;
  199 
  200         if (element_nr >= fa->total_nr_elements)
  201                 return -ENOSPC;
  202         if (!fa->element_size)
  203                 return 0;
  204         if (elements_fit_in_base(fa))
  205                 part = (struct flex_array_part *)&fa->parts[0];
  206         else {
  207                 part_nr = fa_element_to_part_nr(fa, element_nr);
  208                 part = __fa_get_part(fa, part_nr, flags);
  209                 if (!part)
  210                         return -ENOMEM;
  211         }
  212         dst = &part->elements[index_inside_part(fa, element_nr, part_nr)];
  213         memcpy(dst, src, fa->element_size);
  214         return 0;
  215 }
  216 EXPORT_SYMBOL(flex_array_put);
  217 
  218 /**
  219  * flex_array_clear - clear element in array at @element_nr
  220  * @fa:         the flex array of the element.
  221  * @element_nr: index of the position to clear.
  222  *
  223  * Locking must be provided by the caller.
  224  */
  225 int flex_array_clear(struct flex_array *fa, unsigned int element_nr)
  226 {
  227         int part_nr = 0;
  228         struct flex_array_part *part;
  229         void *dst;
  230 
  231         if (element_nr >= fa->total_nr_elements)
  232                 return -ENOSPC;
  233         if (!fa->element_size)
  234                 return 0;
  235         if (elements_fit_in_base(fa))
  236                 part = (struct flex_array_part *)&fa->parts[0];
  237         else {
  238                 part_nr = fa_element_to_part_nr(fa, element_nr);
  239                 part = fa->parts[part_nr];
  240                 if (!part)
  241                         return -EINVAL;
  242         }
  243         dst = &part->elements[index_inside_part(fa, element_nr, part_nr)];
  244         memset(dst, FLEX_ARRAY_FREE, fa->element_size);
  245         return 0;
  246 }
  247 EXPORT_SYMBOL(flex_array_clear);
  248 
  249 /**
  250  * flex_array_prealloc - guarantee that array space exists
  251  * @fa:                 the flex array for which to preallocate parts
  252  * @start:              index of first array element for which space is allocated
  253  * @nr_elements:        number of elements for which space is allocated
  254  * @flags:              page allocation flags
  255  *
  256  * This will guarantee that no future calls to flex_array_put()
  257  * will allocate memory.  It can be used if you are expecting to
  258  * be holding a lock or in some atomic context while writing
  259  * data into the array.
  260  *
  261  * Locking must be provided by the caller.
  262  */
  263 int flex_array_prealloc(struct flex_array *fa, unsigned int start,
  264                         unsigned int nr_elements, gfp_t flags)
  265 {
  266         int start_part;
  267         int end_part;
  268         int part_nr;
  269         unsigned int end;
  270         struct flex_array_part *part;
  271 
  272         if (!start && !nr_elements)
  273                 return 0;
  274         if (start >= fa->total_nr_elements)
  275                 return -ENOSPC;
  276         if (!nr_elements)
  277                 return 0;
  278 
  279         end = start + nr_elements - 1;
  280 
  281         if (end >= fa->total_nr_elements)
  282                 return -ENOSPC;
  283         if (!fa->element_size)
  284                 return 0;
  285         if (elements_fit_in_base(fa))
  286                 return 0;
  287         start_part = fa_element_to_part_nr(fa, start);
  288         end_part = fa_element_to_part_nr(fa, end);
  289         for (part_nr = start_part; part_nr <= end_part; part_nr++) {
  290                 part = __fa_get_part(fa, part_nr, flags);
  291                 if (!part)
  292                         return -ENOMEM;
  293         }
  294         return 0;
  295 }
  296 EXPORT_SYMBOL(flex_array_prealloc);
  297 
  298 /**
  299  * flex_array_get - pull data back out of the array
  300  * @fa:         the flex array from which to extract data
  301  * @element_nr: index of the element to fetch from the array
  302  *
  303  * Returns a pointer to the data at index @element_nr.  Note
  304  * that this is a copy of the data that was passed in.  If you
  305  * are using this to store pointers, you'll get back &ptr.  You
  306  * may instead wish to use the flex_array_get_ptr helper.
  307  *
  308  * Locking must be provided by the caller.
  309  */
  310 void *flex_array_get(struct flex_array *fa, unsigned int element_nr)
  311 {
  312         int part_nr = 0;
  313         struct flex_array_part *part;
  314 
  315         if (!fa->element_size)
  316                 return NULL;
  317         if (element_nr >= fa->total_nr_elements)
  318                 return NULL;
  319         if (elements_fit_in_base(fa))
  320                 part = (struct flex_array_part *)&fa->parts[0];
  321         else {
  322                 part_nr = fa_element_to_part_nr(fa, element_nr);
  323                 part = fa->parts[part_nr];
  324                 if (!part)
  325                         return NULL;
  326         }
  327         return &part->elements[index_inside_part(fa, element_nr, part_nr)];
  328 }
  329 EXPORT_SYMBOL(flex_array_get);
  330 
  331 /**
  332  * flex_array_get_ptr - pull a ptr back out of the array
  333  * @fa:         the flex array from which to extract data
  334  * @element_nr: index of the element to fetch from the array
  335  *
  336  * Returns the pointer placed in the flex array at element_nr using
  337  * flex_array_put_ptr().  This function should not be called if the
  338  * element in question was not set using the _put_ptr() helper.
  339  */
  340 void *flex_array_get_ptr(struct flex_array *fa, unsigned int element_nr)
  341 {
  342         void **tmp;
  343 
  344         tmp = flex_array_get(fa, element_nr);
  345         if (!tmp)
  346                 return NULL;
  347 
  348         return *tmp;
  349 }
  350 EXPORT_SYMBOL(flex_array_get_ptr);
  351 
  352 static int part_is_free(struct flex_array_part *part)
  353 {
  354         int i;
  355 
  356         for (i = 0; i < sizeof(struct flex_array_part); i++)
  357                 if (part->elements[i] != FLEX_ARRAY_FREE)
  358                         return 0;
  359         return 1;
  360 }
  361 
  362 /**
  363  * flex_array_shrink - free unused second-level pages
  364  * @fa:         the flex array to shrink
  365  *
  366  * Frees all second-level pages that consist solely of unused
  367  * elements.  Returns the number of pages freed.
  368  *
  369  * Locking must be provided by the caller.
  370  */
  371 int flex_array_shrink(struct flex_array *fa)
  372 {
  373         struct flex_array_part *part;
  374         int part_nr;
  375         int ret = 0;
  376 
  377         if (!fa->total_nr_elements || !fa->element_size)
  378                 return 0;
  379         if (elements_fit_in_base(fa))
  380                 return ret;
  381         for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++) {
  382                 part = fa->parts[part_nr];
  383                 if (!part)
  384                         continue;
  385                 if (part_is_free(part)) {
  386                         fa->parts[part_nr] = NULL;
  387                         kfree(part);
  388                         ret++;
  389                 }
  390         }
  391         return ret;
  392 }
  393 EXPORT_SYMBOL(flex_array_shrink);

Cache object: 2bdeb945375f304f635ffe95bac137bf


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.