The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/lib/idr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * 2002-10-18  written by Jim Houston jim.houston@ccur.com
    3  *      Copyright (C) 2002 by Concurrent Computer Corporation
    4  *      Distributed under the GNU GPL license version 2.
    5  *
    6  * Modified by George Anzinger to reuse immediately and to use
    7  * find bit instructions.  Also removed _irq on spinlocks.
    8  *
    9  * Modified by Nadia Derbey to make it RCU safe.
   10  *
   11  * Small id to pointer translation service.
   12  *
   13  * It uses a radix tree like structure as a sparse array indexed
   14  * by the id to obtain the pointer.  The bitmap makes allocating
   15  * a new id quick.
   16  *
   17  * You call it to allocate an id (an int) an associate with that id a
   18  * pointer or what ever, we treat it as a (void *).  You can pass this
   19  * id to a user for him to pass back at a later time.  You then pass
   20  * that id to this code and it returns your pointer.
   21 
   22  * You can release ids at any time. When all ids are released, most of
   23  * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
   24  * don't need to go to the memory "store" during an id allocate, just
   25  * so you don't need to be too concerned about locking and conflicts
   26  * with the slab allocator.
   27  */
   28 
   29 #ifndef TEST                        // to test in user space...
   30 #include <linux/slab.h>
   31 #include <linux/init.h>
   32 #include <linux/export.h>
   33 #endif
   34 #include <linux/err.h>
   35 #include <linux/string.h>
   36 #include <linux/idr.h>
   37 #include <linux/spinlock.h>
   38 
   39 static struct kmem_cache *idr_layer_cache;
   40 static DEFINE_SPINLOCK(simple_ida_lock);
   41 
   42 static struct idr_layer *get_from_free_list(struct idr *idp)
   43 {
   44         struct idr_layer *p;
   45         unsigned long flags;
   46 
   47         spin_lock_irqsave(&idp->lock, flags);
   48         if ((p = idp->id_free)) {
   49                 idp->id_free = p->ary[0];
   50                 idp->id_free_cnt--;
   51                 p->ary[0] = NULL;
   52         }
   53         spin_unlock_irqrestore(&idp->lock, flags);
   54         return(p);
   55 }
   56 
   57 static void idr_layer_rcu_free(struct rcu_head *head)
   58 {
   59         struct idr_layer *layer;
   60 
   61         layer = container_of(head, struct idr_layer, rcu_head);
   62         kmem_cache_free(idr_layer_cache, layer);
   63 }
   64 
   65 static inline void free_layer(struct idr_layer *p)
   66 {
   67         call_rcu(&p->rcu_head, idr_layer_rcu_free);
   68 }
   69 
   70 /* only called when idp->lock is held */
   71 static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
   72 {
   73         p->ary[0] = idp->id_free;
   74         idp->id_free = p;
   75         idp->id_free_cnt++;
   76 }
   77 
   78 static void move_to_free_list(struct idr *idp, struct idr_layer *p)
   79 {
   80         unsigned long flags;
   81 
   82         /*
   83          * Depends on the return element being zeroed.
   84          */
   85         spin_lock_irqsave(&idp->lock, flags);
   86         __move_to_free_list(idp, p);
   87         spin_unlock_irqrestore(&idp->lock, flags);
   88 }
   89 
   90 static void idr_mark_full(struct idr_layer **pa, int id)
   91 {
   92         struct idr_layer *p = pa[0];
   93         int l = 0;
   94 
   95         __set_bit(id & IDR_MASK, &p->bitmap);
   96         /*
   97          * If this layer is full mark the bit in the layer above to
   98          * show that this part of the radix tree is full.  This may
   99          * complete the layer above and require walking up the radix
  100          * tree.
  101          */
  102         while (p->bitmap == IDR_FULL) {
  103                 if (!(p = pa[++l]))
  104                         break;
  105                 id = id >> IDR_BITS;
  106                 __set_bit((id & IDR_MASK), &p->bitmap);
  107         }
  108 }
  109 
  110 /**
  111  * idr_pre_get - reserve resources for idr allocation
  112  * @idp:        idr handle
  113  * @gfp_mask:   memory allocation flags
  114  *
  115  * This function should be called prior to calling the idr_get_new* functions.
  116  * It preallocates enough memory to satisfy the worst possible allocation. The
  117  * caller should pass in GFP_KERNEL if possible.  This of course requires that
  118  * no spinning locks be held.
  119  *
  120  * If the system is REALLY out of memory this function returns %0,
  121  * otherwise %1.
  122  */
  123 int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
  124 {
  125         while (idp->id_free_cnt < MAX_IDR_FREE) {
  126                 struct idr_layer *new;
  127                 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
  128                 if (new == NULL)
  129                         return (0);
  130                 move_to_free_list(idp, new);
  131         }
  132         return 1;
  133 }
  134 EXPORT_SYMBOL(idr_pre_get);
  135 
  136 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa)
  137 {
  138         int n, m, sh;
  139         struct idr_layer *p, *new;
  140         int l, id, oid;
  141         unsigned long bm;
  142 
  143         id = *starting_id;
  144  restart:
  145         p = idp->top;
  146         l = idp->layers;
  147         pa[l--] = NULL;
  148         while (1) {
  149                 /*
  150                  * We run around this while until we reach the leaf node...
  151                  */
  152                 n = (id >> (IDR_BITS*l)) & IDR_MASK;
  153                 bm = ~p->bitmap;
  154                 m = find_next_bit(&bm, IDR_SIZE, n);
  155                 if (m == IDR_SIZE) {
  156                         /* no space available go back to previous layer. */
  157                         l++;
  158                         oid = id;
  159                         id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
  160 
  161                         /* if already at the top layer, we need to grow */
  162                         if (id >= 1 << (idp->layers * IDR_BITS)) {
  163                                 *starting_id = id;
  164                                 return IDR_NEED_TO_GROW;
  165                         }
  166                         p = pa[l];
  167                         BUG_ON(!p);
  168 
  169                         /* If we need to go up one layer, continue the
  170                          * loop; otherwise, restart from the top.
  171                          */
  172                         sh = IDR_BITS * (l + 1);
  173                         if (oid >> sh == id >> sh)
  174                                 continue;
  175                         else
  176                                 goto restart;
  177                 }
  178                 if (m != n) {
  179                         sh = IDR_BITS*l;
  180                         id = ((id >> sh) ^ n ^ m) << sh;
  181                 }
  182                 if ((id >= MAX_IDR_BIT) || (id < 0))
  183                         return IDR_NOMORE_SPACE;
  184                 if (l == 0)
  185                         break;
  186                 /*
  187                  * Create the layer below if it is missing.
  188                  */
  189                 if (!p->ary[m]) {
  190                         new = get_from_free_list(idp);
  191                         if (!new)
  192                                 return -1;
  193                         new->layer = l-1;
  194                         rcu_assign_pointer(p->ary[m], new);
  195                         p->count++;
  196                 }
  197                 pa[l--] = p;
  198                 p = p->ary[m];
  199         }
  200 
  201         pa[l] = p;
  202         return id;
  203 }
  204 
  205 static int idr_get_empty_slot(struct idr *idp, int starting_id,
  206                               struct idr_layer **pa)
  207 {
  208         struct idr_layer *p, *new;
  209         int layers, v, id;
  210         unsigned long flags;
  211 
  212         id = starting_id;
  213 build_up:
  214         p = idp->top;
  215         layers = idp->layers;
  216         if (unlikely(!p)) {
  217                 if (!(p = get_from_free_list(idp)))
  218                         return -1;
  219                 p->layer = 0;
  220                 layers = 1;
  221         }
  222         /*
  223          * Add a new layer to the top of the tree if the requested
  224          * id is larger than the currently allocated space.
  225          */
  226         while ((layers < (MAX_IDR_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
  227                 layers++;
  228                 if (!p->count) {
  229                         /* special case: if the tree is currently empty,
  230                          * then we grow the tree by moving the top node
  231                          * upwards.
  232                          */
  233                         p->layer++;
  234                         continue;
  235                 }
  236                 if (!(new = get_from_free_list(idp))) {
  237                         /*
  238                          * The allocation failed.  If we built part of
  239                          * the structure tear it down.
  240                          */
  241                         spin_lock_irqsave(&idp->lock, flags);
  242                         for (new = p; p && p != idp->top; new = p) {
  243                                 p = p->ary[0];
  244                                 new->ary[0] = NULL;
  245                                 new->bitmap = new->count = 0;
  246                                 __move_to_free_list(idp, new);
  247                         }
  248                         spin_unlock_irqrestore(&idp->lock, flags);
  249                         return -1;
  250                 }
  251                 new->ary[0] = p;
  252                 new->count = 1;
  253                 new->layer = layers-1;
  254                 if (p->bitmap == IDR_FULL)
  255                         __set_bit(0, &new->bitmap);
  256                 p = new;
  257         }
  258         rcu_assign_pointer(idp->top, p);
  259         idp->layers = layers;
  260         v = sub_alloc(idp, &id, pa);
  261         if (v == IDR_NEED_TO_GROW)
  262                 goto build_up;
  263         return(v);
  264 }
  265 
  266 static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
  267 {
  268         struct idr_layer *pa[MAX_IDR_LEVEL];
  269         int id;
  270 
  271         id = idr_get_empty_slot(idp, starting_id, pa);
  272         if (id >= 0) {
  273                 /*
  274                  * Successfully found an empty slot.  Install the user
  275                  * pointer and mark the slot full.
  276                  */
  277                 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK],
  278                                 (struct idr_layer *)ptr);
  279                 pa[0]->count++;
  280                 idr_mark_full(pa, id);
  281         }
  282 
  283         return id;
  284 }
  285 
  286 /**
  287  * idr_get_new_above - allocate new idr entry above or equal to a start id
  288  * @idp: idr handle
  289  * @ptr: pointer you want associated with the id
  290  * @starting_id: id to start search at
  291  * @id: pointer to the allocated handle
  292  *
  293  * This is the allocate id function.  It should be called with any
  294  * required locks.
  295  *
  296  * If allocation from IDR's private freelist fails, idr_get_new_above() will
  297  * return %-EAGAIN.  The caller should retry the idr_pre_get() call to refill
  298  * IDR's preallocation and then retry the idr_get_new_above() call.
  299  *
  300  * If the idr is full idr_get_new_above() will return %-ENOSPC.
  301  *
  302  * @id returns a value in the range @starting_id ... %0x7fffffff
  303  */
  304 int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
  305 {
  306         int rv;
  307 
  308         rv = idr_get_new_above_int(idp, ptr, starting_id);
  309         /*
  310          * This is a cheap hack until the IDR code can be fixed to
  311          * return proper error values.
  312          */
  313         if (rv < 0)
  314                 return _idr_rc_to_errno(rv);
  315         *id = rv;
  316         return 0;
  317 }
  318 EXPORT_SYMBOL(idr_get_new_above);
  319 
  320 /**
  321  * idr_get_new - allocate new idr entry
  322  * @idp: idr handle
  323  * @ptr: pointer you want associated with the id
  324  * @id: pointer to the allocated handle
  325  *
  326  * If allocation from IDR's private freelist fails, idr_get_new_above() will
  327  * return %-EAGAIN.  The caller should retry the idr_pre_get() call to refill
  328  * IDR's preallocation and then retry the idr_get_new_above() call.
  329  *
  330  * If the idr is full idr_get_new_above() will return %-ENOSPC.
  331  *
  332  * @id returns a value in the range %0 ... %0x7fffffff
  333  */
  334 int idr_get_new(struct idr *idp, void *ptr, int *id)
  335 {
  336         int rv;
  337 
  338         rv = idr_get_new_above_int(idp, ptr, 0);
  339         /*
  340          * This is a cheap hack until the IDR code can be fixed to
  341          * return proper error values.
  342          */
  343         if (rv < 0)
  344                 return _idr_rc_to_errno(rv);
  345         *id = rv;
  346         return 0;
  347 }
  348 EXPORT_SYMBOL(idr_get_new);
  349 
  350 static void idr_remove_warning(int id)
  351 {
  352         printk(KERN_WARNING
  353                 "idr_remove called for id=%d which is not allocated.\n", id);
  354         dump_stack();
  355 }
  356 
  357 static void sub_remove(struct idr *idp, int shift, int id)
  358 {
  359         struct idr_layer *p = idp->top;
  360         struct idr_layer **pa[MAX_IDR_LEVEL];
  361         struct idr_layer ***paa = &pa[0];
  362         struct idr_layer *to_free;
  363         int n;
  364 
  365         *paa = NULL;
  366         *++paa = &idp->top;
  367 
  368         while ((shift > 0) && p) {
  369                 n = (id >> shift) & IDR_MASK;
  370                 __clear_bit(n, &p->bitmap);
  371                 *++paa = &p->ary[n];
  372                 p = p->ary[n];
  373                 shift -= IDR_BITS;
  374         }
  375         n = id & IDR_MASK;
  376         if (likely(p != NULL && test_bit(n, &p->bitmap))){
  377                 __clear_bit(n, &p->bitmap);
  378                 rcu_assign_pointer(p->ary[n], NULL);
  379                 to_free = NULL;
  380                 while(*paa && ! --((**paa)->count)){
  381                         if (to_free)
  382                                 free_layer(to_free);
  383                         to_free = **paa;
  384                         **paa-- = NULL;
  385                 }
  386                 if (!*paa)
  387                         idp->layers = 0;
  388                 if (to_free)
  389                         free_layer(to_free);
  390         } else
  391                 idr_remove_warning(id);
  392 }
  393 
  394 /**
  395  * idr_remove - remove the given id and free its slot
  396  * @idp: idr handle
  397  * @id: unique key
  398  */
  399 void idr_remove(struct idr *idp, int id)
  400 {
  401         struct idr_layer *p;
  402         struct idr_layer *to_free;
  403 
  404         /* Mask off upper bits we don't use for the search. */
  405         id &= MAX_IDR_MASK;
  406 
  407         sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
  408         if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
  409             idp->top->ary[0]) {
  410                 /*
  411                  * Single child at leftmost slot: we can shrink the tree.
  412                  * This level is not needed anymore since when layers are
  413                  * inserted, they are inserted at the top of the existing
  414                  * tree.
  415                  */
  416                 to_free = idp->top;
  417                 p = idp->top->ary[0];
  418                 rcu_assign_pointer(idp->top, p);
  419                 --idp->layers;
  420                 to_free->bitmap = to_free->count = 0;
  421                 free_layer(to_free);
  422         }
  423         while (idp->id_free_cnt >= MAX_IDR_FREE) {
  424                 p = get_from_free_list(idp);
  425                 /*
  426                  * Note: we don't call the rcu callback here, since the only
  427                  * layers that fall into the freelist are those that have been
  428                  * preallocated.
  429                  */
  430                 kmem_cache_free(idr_layer_cache, p);
  431         }
  432         return;
  433 }
  434 EXPORT_SYMBOL(idr_remove);
  435 
  436 /**
  437  * idr_remove_all - remove all ids from the given idr tree
  438  * @idp: idr handle
  439  *
  440  * idr_destroy() only frees up unused, cached idp_layers, but this
  441  * function will remove all id mappings and leave all idp_layers
  442  * unused.
  443  *
  444  * A typical clean-up sequence for objects stored in an idr tree will
  445  * use idr_for_each() to free all objects, if necessay, then
  446  * idr_remove_all() to remove all ids, and idr_destroy() to free
  447  * up the cached idr_layers.
  448  */
  449 void idr_remove_all(struct idr *idp)
  450 {
  451         int n, id, max;
  452         int bt_mask;
  453         struct idr_layer *p;
  454         struct idr_layer *pa[MAX_IDR_LEVEL];
  455         struct idr_layer **paa = &pa[0];
  456 
  457         n = idp->layers * IDR_BITS;
  458         p = idp->top;
  459         rcu_assign_pointer(idp->top, NULL);
  460         max = 1 << n;
  461 
  462         id = 0;
  463         while (id < max) {
  464                 while (n > IDR_BITS && p) {
  465                         n -= IDR_BITS;
  466                         *paa++ = p;
  467                         p = p->ary[(id >> n) & IDR_MASK];
  468                 }
  469 
  470                 bt_mask = id;
  471                 id += 1 << n;
  472                 /* Get the highest bit that the above add changed from 0->1. */
  473                 while (n < fls(id ^ bt_mask)) {
  474                         if (p)
  475                                 free_layer(p);
  476                         n += IDR_BITS;
  477                         p = *--paa;
  478                 }
  479         }
  480         idp->layers = 0;
  481 }
  482 EXPORT_SYMBOL(idr_remove_all);
  483 
  484 /**
  485  * idr_destroy - release all cached layers within an idr tree
  486  * @idp: idr handle
  487  */
  488 void idr_destroy(struct idr *idp)
  489 {
  490         while (idp->id_free_cnt) {
  491                 struct idr_layer *p = get_from_free_list(idp);
  492                 kmem_cache_free(idr_layer_cache, p);
  493         }
  494 }
  495 EXPORT_SYMBOL(idr_destroy);
  496 
  497 /**
  498  * idr_find - return pointer for given id
  499  * @idp: idr handle
  500  * @id: lookup key
  501  *
  502  * Return the pointer given the id it has been registered with.  A %NULL
  503  * return indicates that @id is not valid or you passed %NULL in
  504  * idr_get_new().
  505  *
  506  * This function can be called under rcu_read_lock(), given that the leaf
  507  * pointers lifetimes are correctly managed.
  508  */
  509 void *idr_find(struct idr *idp, int id)
  510 {
  511         int n;
  512         struct idr_layer *p;
  513 
  514         p = rcu_dereference_raw(idp->top);
  515         if (!p)
  516                 return NULL;
  517         n = (p->layer+1) * IDR_BITS;
  518 
  519         /* Mask off upper bits we don't use for the search. */
  520         id &= MAX_IDR_MASK;
  521 
  522         if (id >= (1 << n))
  523                 return NULL;
  524         BUG_ON(n == 0);
  525 
  526         while (n > 0 && p) {
  527                 n -= IDR_BITS;
  528                 BUG_ON(n != p->layer*IDR_BITS);
  529                 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
  530         }
  531         return((void *)p);
  532 }
  533 EXPORT_SYMBOL(idr_find);
  534 
  535 /**
  536  * idr_for_each - iterate through all stored pointers
  537  * @idp: idr handle
  538  * @fn: function to be called for each pointer
  539  * @data: data passed back to callback function
  540  *
  541  * Iterate over the pointers registered with the given idr.  The
  542  * callback function will be called for each pointer currently
  543  * registered, passing the id, the pointer and the data pointer passed
  544  * to this function.  It is not safe to modify the idr tree while in
  545  * the callback, so functions such as idr_get_new and idr_remove are
  546  * not allowed.
  547  *
  548  * We check the return of @fn each time. If it returns anything other
  549  * than %0, we break out and return that value.
  550  *
  551  * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
  552  */
  553 int idr_for_each(struct idr *idp,
  554                  int (*fn)(int id, void *p, void *data), void *data)
  555 {
  556         int n, id, max, error = 0;
  557         struct idr_layer *p;
  558         struct idr_layer *pa[MAX_IDR_LEVEL];
  559         struct idr_layer **paa = &pa[0];
  560 
  561         n = idp->layers * IDR_BITS;
  562         p = rcu_dereference_raw(idp->top);
  563         max = 1 << n;
  564 
  565         id = 0;
  566         while (id < max) {
  567                 while (n > 0 && p) {
  568                         n -= IDR_BITS;
  569                         *paa++ = p;
  570                         p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
  571                 }
  572 
  573                 if (p) {
  574                         error = fn(id, (void *)p, data);
  575                         if (error)
  576                                 break;
  577                 }
  578 
  579                 id += 1 << n;
  580                 while (n < fls(id)) {
  581                         n += IDR_BITS;
  582                         p = *--paa;
  583                 }
  584         }
  585 
  586         return error;
  587 }
  588 EXPORT_SYMBOL(idr_for_each);
  589 
  590 /**
  591  * idr_get_next - lookup next object of id to given id.
  592  * @idp: idr handle
  593  * @nextidp:  pointer to lookup key
  594  *
  595  * Returns pointer to registered object with id, which is next number to
  596  * given id. After being looked up, *@nextidp will be updated for the next
  597  * iteration.
  598  *
  599  * This function can be called under rcu_read_lock(), given that the leaf
  600  * pointers lifetimes are correctly managed.
  601  */
  602 void *idr_get_next(struct idr *idp, int *nextidp)
  603 {
  604         struct idr_layer *p, *pa[MAX_IDR_LEVEL];
  605         struct idr_layer **paa = &pa[0];
  606         int id = *nextidp;
  607         int n, max;
  608 
  609         /* find first ent */
  610         p = rcu_dereference_raw(idp->top);
  611         if (!p)
  612                 return NULL;
  613         n = (p->layer + 1) * IDR_BITS;
  614         max = 1 << n;
  615 
  616         while (id < max) {
  617                 while (n > 0 && p) {
  618                         n -= IDR_BITS;
  619                         *paa++ = p;
  620                         p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
  621                 }
  622 
  623                 if (p) {
  624                         *nextidp = id;
  625                         return p;
  626                 }
  627 
  628                 id += 1 << n;
  629                 while (n < fls(id)) {
  630                         n += IDR_BITS;
  631                         p = *--paa;
  632                 }
  633         }
  634         return NULL;
  635 }
  636 EXPORT_SYMBOL(idr_get_next);
  637 
  638 
  639 /**
  640  * idr_replace - replace pointer for given id
  641  * @idp: idr handle
  642  * @ptr: pointer you want associated with the id
  643  * @id: lookup key
  644  *
  645  * Replace the pointer registered with an id and return the old value.
  646  * A %-ENOENT return indicates that @id was not found.
  647  * A %-EINVAL return indicates that @id was not within valid constraints.
  648  *
  649  * The caller must serialize with writers.
  650  */
  651 void *idr_replace(struct idr *idp, void *ptr, int id)
  652 {
  653         int n;
  654         struct idr_layer *p, *old_p;
  655 
  656         p = idp->top;
  657         if (!p)
  658                 return ERR_PTR(-EINVAL);
  659 
  660         n = (p->layer+1) * IDR_BITS;
  661 
  662         id &= MAX_IDR_MASK;
  663 
  664         if (id >= (1 << n))
  665                 return ERR_PTR(-EINVAL);
  666 
  667         n -= IDR_BITS;
  668         while ((n > 0) && p) {
  669                 p = p->ary[(id >> n) & IDR_MASK];
  670                 n -= IDR_BITS;
  671         }
  672 
  673         n = id & IDR_MASK;
  674         if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
  675                 return ERR_PTR(-ENOENT);
  676 
  677         old_p = p->ary[n];
  678         rcu_assign_pointer(p->ary[n], ptr);
  679 
  680         return old_p;
  681 }
  682 EXPORT_SYMBOL(idr_replace);
  683 
  684 void __init idr_init_cache(void)
  685 {
  686         idr_layer_cache = kmem_cache_create("idr_layer_cache",
  687                                 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
  688 }
  689 
  690 /**
  691  * idr_init - initialize idr handle
  692  * @idp:        idr handle
  693  *
  694  * This function is use to set up the handle (@idp) that you will pass
  695  * to the rest of the functions.
  696  */
  697 void idr_init(struct idr *idp)
  698 {
  699         memset(idp, 0, sizeof(struct idr));
  700         spin_lock_init(&idp->lock);
  701 }
  702 EXPORT_SYMBOL(idr_init);
  703 
  704 
  705 /**
  706  * DOC: IDA description
  707  * IDA - IDR based ID allocator
  708  *
  709  * This is id allocator without id -> pointer translation.  Memory
  710  * usage is much lower than full blown idr because each id only
  711  * occupies a bit.  ida uses a custom leaf node which contains
  712  * IDA_BITMAP_BITS slots.
  713  *
  714  * 2007-04-25  written by Tejun Heo <htejun@gmail.com>
  715  */
  716 
  717 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
  718 {
  719         unsigned long flags;
  720 
  721         if (!ida->free_bitmap) {
  722                 spin_lock_irqsave(&ida->idr.lock, flags);
  723                 if (!ida->free_bitmap) {
  724                         ida->free_bitmap = bitmap;
  725                         bitmap = NULL;
  726                 }
  727                 spin_unlock_irqrestore(&ida->idr.lock, flags);
  728         }
  729 
  730         kfree(bitmap);
  731 }
  732 
  733 /**
  734  * ida_pre_get - reserve resources for ida allocation
  735  * @ida:        ida handle
  736  * @gfp_mask:   memory allocation flag
  737  *
  738  * This function should be called prior to locking and calling the
  739  * following function.  It preallocates enough memory to satisfy the
  740  * worst possible allocation.
  741  *
  742  * If the system is REALLY out of memory this function returns %0,
  743  * otherwise %1.
  744  */
  745 int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
  746 {
  747         /* allocate idr_layers */
  748         if (!idr_pre_get(&ida->idr, gfp_mask))
  749                 return 0;
  750 
  751         /* allocate free_bitmap */
  752         if (!ida->free_bitmap) {
  753                 struct ida_bitmap *bitmap;
  754 
  755                 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
  756                 if (!bitmap)
  757                         return 0;
  758 
  759                 free_bitmap(ida, bitmap);
  760         }
  761 
  762         return 1;
  763 }
  764 EXPORT_SYMBOL(ida_pre_get);
  765 
  766 /**
  767  * ida_get_new_above - allocate new ID above or equal to a start id
  768  * @ida:        ida handle
  769  * @starting_id: id to start search at
  770  * @p_id:       pointer to the allocated handle
  771  *
  772  * Allocate new ID above or equal to @starting_id.  It should be called
  773  * with any required locks.
  774  *
  775  * If memory is required, it will return %-EAGAIN, you should unlock
  776  * and go back to the ida_pre_get() call.  If the ida is full, it will
  777  * return %-ENOSPC.
  778  *
  779  * @p_id returns a value in the range @starting_id ... %0x7fffffff.
  780  */
  781 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
  782 {
  783         struct idr_layer *pa[MAX_IDR_LEVEL];
  784         struct ida_bitmap *bitmap;
  785         unsigned long flags;
  786         int idr_id = starting_id / IDA_BITMAP_BITS;
  787         int offset = starting_id % IDA_BITMAP_BITS;
  788         int t, id;
  789 
  790  restart:
  791         /* get vacant slot */
  792         t = idr_get_empty_slot(&ida->idr, idr_id, pa);
  793         if (t < 0)
  794                 return _idr_rc_to_errno(t);
  795 
  796         if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
  797                 return -ENOSPC;
  798 
  799         if (t != idr_id)
  800                 offset = 0;
  801         idr_id = t;
  802 
  803         /* if bitmap isn't there, create a new one */
  804         bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
  805         if (!bitmap) {
  806                 spin_lock_irqsave(&ida->idr.lock, flags);
  807                 bitmap = ida->free_bitmap;
  808                 ida->free_bitmap = NULL;
  809                 spin_unlock_irqrestore(&ida->idr.lock, flags);
  810 
  811                 if (!bitmap)
  812                         return -EAGAIN;
  813 
  814                 memset(bitmap, 0, sizeof(struct ida_bitmap));
  815                 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
  816                                 (void *)bitmap);
  817                 pa[0]->count++;
  818         }
  819 
  820         /* lookup for empty slot */
  821         t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
  822         if (t == IDA_BITMAP_BITS) {
  823                 /* no empty slot after offset, continue to the next chunk */
  824                 idr_id++;
  825                 offset = 0;
  826                 goto restart;
  827         }
  828 
  829         id = idr_id * IDA_BITMAP_BITS + t;
  830         if (id >= MAX_IDR_BIT)
  831                 return -ENOSPC;
  832 
  833         __set_bit(t, bitmap->bitmap);
  834         if (++bitmap->nr_busy == IDA_BITMAP_BITS)
  835                 idr_mark_full(pa, idr_id);
  836 
  837         *p_id = id;
  838 
  839         /* Each leaf node can handle nearly a thousand slots and the
  840          * whole idea of ida is to have small memory foot print.
  841          * Throw away extra resources one by one after each successful
  842          * allocation.
  843          */
  844         if (ida->idr.id_free_cnt || ida->free_bitmap) {
  845                 struct idr_layer *p = get_from_free_list(&ida->idr);
  846                 if (p)
  847                         kmem_cache_free(idr_layer_cache, p);
  848         }
  849 
  850         return 0;
  851 }
  852 EXPORT_SYMBOL(ida_get_new_above);
  853 
  854 /**
  855  * ida_get_new - allocate new ID
  856  * @ida:        idr handle
  857  * @p_id:       pointer to the allocated handle
  858  *
  859  * Allocate new ID.  It should be called with any required locks.
  860  *
  861  * If memory is required, it will return %-EAGAIN, you should unlock
  862  * and go back to the idr_pre_get() call.  If the idr is full, it will
  863  * return %-ENOSPC.
  864  *
  865  * @p_id returns a value in the range %0 ... %0x7fffffff.
  866  */
  867 int ida_get_new(struct ida *ida, int *p_id)
  868 {
  869         return ida_get_new_above(ida, 0, p_id);
  870 }
  871 EXPORT_SYMBOL(ida_get_new);
  872 
  873 /**
  874  * ida_remove - remove the given ID
  875  * @ida:        ida handle
  876  * @id:         ID to free
  877  */
  878 void ida_remove(struct ida *ida, int id)
  879 {
  880         struct idr_layer *p = ida->idr.top;
  881         int shift = (ida->idr.layers - 1) * IDR_BITS;
  882         int idr_id = id / IDA_BITMAP_BITS;
  883         int offset = id % IDA_BITMAP_BITS;
  884         int n;
  885         struct ida_bitmap *bitmap;
  886 
  887         /* clear full bits while looking up the leaf idr_layer */
  888         while ((shift > 0) && p) {
  889                 n = (idr_id >> shift) & IDR_MASK;
  890                 __clear_bit(n, &p->bitmap);
  891                 p = p->ary[n];
  892                 shift -= IDR_BITS;
  893         }
  894 
  895         if (p == NULL)
  896                 goto err;
  897 
  898         n = idr_id & IDR_MASK;
  899         __clear_bit(n, &p->bitmap);
  900 
  901         bitmap = (void *)p->ary[n];
  902         if (!test_bit(offset, bitmap->bitmap))
  903                 goto err;
  904 
  905         /* update bitmap and remove it if empty */
  906         __clear_bit(offset, bitmap->bitmap);
  907         if (--bitmap->nr_busy == 0) {
  908                 __set_bit(n, &p->bitmap);       /* to please idr_remove() */
  909                 idr_remove(&ida->idr, idr_id);
  910                 free_bitmap(ida, bitmap);
  911         }
  912 
  913         return;
  914 
  915  err:
  916         printk(KERN_WARNING
  917                "ida_remove called for id=%d which is not allocated.\n", id);
  918 }
  919 EXPORT_SYMBOL(ida_remove);
  920 
  921 /**
  922  * ida_destroy - release all cached layers within an ida tree
  923  * @ida:                ida handle
  924  */
  925 void ida_destroy(struct ida *ida)
  926 {
  927         idr_destroy(&ida->idr);
  928         kfree(ida->free_bitmap);
  929 }
  930 EXPORT_SYMBOL(ida_destroy);
  931 
  932 /**
  933  * ida_simple_get - get a new id.
  934  * @ida: the (initialized) ida.
  935  * @start: the minimum id (inclusive, < 0x8000000)
  936  * @end: the maximum id (exclusive, < 0x8000000 or 0)
  937  * @gfp_mask: memory allocation flags
  938  *
  939  * Allocates an id in the range start <= id < end, or returns -ENOSPC.
  940  * On memory allocation failure, returns -ENOMEM.
  941  *
  942  * Use ida_simple_remove() to get rid of an id.
  943  */
  944 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
  945                    gfp_t gfp_mask)
  946 {
  947         int ret, id;
  948         unsigned int max;
  949         unsigned long flags;
  950 
  951         BUG_ON((int)start < 0);
  952         BUG_ON((int)end < 0);
  953 
  954         if (end == 0)
  955                 max = 0x80000000;
  956         else {
  957                 BUG_ON(end < start);
  958                 max = end - 1;
  959         }
  960 
  961 again:
  962         if (!ida_pre_get(ida, gfp_mask))
  963                 return -ENOMEM;
  964 
  965         spin_lock_irqsave(&simple_ida_lock, flags);
  966         ret = ida_get_new_above(ida, start, &id);
  967         if (!ret) {
  968                 if (id > max) {
  969                         ida_remove(ida, id);
  970                         ret = -ENOSPC;
  971                 } else {
  972                         ret = id;
  973                 }
  974         }
  975         spin_unlock_irqrestore(&simple_ida_lock, flags);
  976 
  977         if (unlikely(ret == -EAGAIN))
  978                 goto again;
  979 
  980         return ret;
  981 }
  982 EXPORT_SYMBOL(ida_simple_get);
  983 
  984 /**
  985  * ida_simple_remove - remove an allocated id.
  986  * @ida: the (initialized) ida.
  987  * @id: the id returned by ida_simple_get.
  988  */
  989 void ida_simple_remove(struct ida *ida, unsigned int id)
  990 {
  991         unsigned long flags;
  992 
  993         BUG_ON((int)id < 0);
  994         spin_lock_irqsave(&simple_ida_lock, flags);
  995         ida_remove(ida, id);
  996         spin_unlock_irqrestore(&simple_ida_lock, flags);
  997 }
  998 EXPORT_SYMBOL(ida_simple_remove);
  999 
 1000 /**
 1001  * ida_init - initialize ida handle
 1002  * @ida:        ida handle
 1003  *
 1004  * This function is use to set up the handle (@ida) that you will pass
 1005  * to the rest of the functions.
 1006  */
 1007 void ida_init(struct ida *ida)
 1008 {
 1009         memset(ida, 0, sizeof(struct ida));
 1010         idr_init(&ida->idr);
 1011 
 1012 }
 1013 EXPORT_SYMBOL(ida_init);

Cache object: 4287e814ef9a7df7431754504aadbc5f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.