The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/lib/klist.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * klist.c - Routines for manipulating klists.
    3  *
    4  * Copyright (C) 2005 Patrick Mochel
    5  *
    6  * This file is released under the GPL v2.
    7  *
    8  * This klist interface provides a couple of structures that wrap around
    9  * struct list_head to provide explicit list "head" (struct klist) and list
   10  * "node" (struct klist_node) objects. For struct klist, a spinlock is
   11  * included that protects access to the actual list itself. struct
   12  * klist_node provides a pointer to the klist that owns it and a kref
   13  * reference count that indicates the number of current users of that node
   14  * in the list.
   15  *
   16  * The entire point is to provide an interface for iterating over a list
   17  * that is safe and allows for modification of the list during the
   18  * iteration (e.g. insertion and removal), including modification of the
   19  * current node on the list.
   20  *
   21  * It works using a 3rd object type - struct klist_iter - that is declared
   22  * and initialized before an iteration. klist_next() is used to acquire the
   23  * next element in the list. It returns NULL if there are no more items.
   24  * Internally, that routine takes the klist's lock, decrements the
   25  * reference count of the previous klist_node and increments the count of
   26  * the next klist_node. It then drops the lock and returns.
   27  *
   28  * There are primitives for adding and removing nodes to/from a klist.
   29  * When deleting, klist_del() will simply decrement the reference count.
   30  * Only when the count goes to 0 is the node removed from the list.
   31  * klist_remove() will try to delete the node from the list and block until
   32  * it is actually removed. This is useful for objects (like devices) that
   33  * have been removed from the system and must be freed (but must wait until
   34  * all accessors have finished).
   35  */
   36 
   37 #include <linux/klist.h>
   38 #include <linux/export.h>
   39 #include <linux/sched.h>
   40 
   41 /*
   42  * Use the lowest bit of n_klist to mark deleted nodes and exclude
   43  * dead ones from iteration.
   44  */
   45 #define KNODE_DEAD              1LU
   46 #define KNODE_KLIST_MASK        ~KNODE_DEAD
   47 
   48 static struct klist *knode_klist(struct klist_node *knode)
   49 {
   50         return (struct klist *)
   51                 ((unsigned long)knode->n_klist & KNODE_KLIST_MASK);
   52 }
   53 
   54 static bool knode_dead(struct klist_node *knode)
   55 {
   56         return (unsigned long)knode->n_klist & KNODE_DEAD;
   57 }
   58 
   59 static void knode_set_klist(struct klist_node *knode, struct klist *klist)
   60 {
   61         knode->n_klist = klist;
   62         /* no knode deserves to start its life dead */
   63         WARN_ON(knode_dead(knode));
   64 }
   65 
   66 static void knode_kill(struct klist_node *knode)
   67 {
   68         /* and no knode should die twice ever either, see we're very humane */
   69         WARN_ON(knode_dead(knode));
   70         *(unsigned long *)&knode->n_klist |= KNODE_DEAD;
   71 }
   72 
   73 /**
   74  * klist_init - Initialize a klist structure.
   75  * @k: The klist we're initializing.
   76  * @get: The get function for the embedding object (NULL if none)
   77  * @put: The put function for the embedding object (NULL if none)
   78  *
   79  * Initialises the klist structure.  If the klist_node structures are
   80  * going to be embedded in refcounted objects (necessary for safe
   81  * deletion) then the get/put arguments are used to initialise
   82  * functions that take and release references on the embedding
   83  * objects.
   84  */
   85 void klist_init(struct klist *k, void (*get)(struct klist_node *),
   86                 void (*put)(struct klist_node *))
   87 {
   88         INIT_LIST_HEAD(&k->k_list);
   89         spin_lock_init(&k->k_lock);
   90         k->get = get;
   91         k->put = put;
   92 }
   93 EXPORT_SYMBOL_GPL(klist_init);
   94 
   95 static void add_head(struct klist *k, struct klist_node *n)
   96 {
   97         spin_lock(&k->k_lock);
   98         list_add(&n->n_node, &k->k_list);
   99         spin_unlock(&k->k_lock);
  100 }
  101 
  102 static void add_tail(struct klist *k, struct klist_node *n)
  103 {
  104         spin_lock(&k->k_lock);
  105         list_add_tail(&n->n_node, &k->k_list);
  106         spin_unlock(&k->k_lock);
  107 }
  108 
  109 static void klist_node_init(struct klist *k, struct klist_node *n)
  110 {
  111         INIT_LIST_HEAD(&n->n_node);
  112         kref_init(&n->n_ref);
  113         knode_set_klist(n, k);
  114         if (k->get)
  115                 k->get(n);
  116 }
  117 
  118 /**
  119  * klist_add_head - Initialize a klist_node and add it to front.
  120  * @n: node we're adding.
  121  * @k: klist it's going on.
  122  */
  123 void klist_add_head(struct klist_node *n, struct klist *k)
  124 {
  125         klist_node_init(k, n);
  126         add_head(k, n);
  127 }
  128 EXPORT_SYMBOL_GPL(klist_add_head);
  129 
  130 /**
  131  * klist_add_tail - Initialize a klist_node and add it to back.
  132  * @n: node we're adding.
  133  * @k: klist it's going on.
  134  */
  135 void klist_add_tail(struct klist_node *n, struct klist *k)
  136 {
  137         klist_node_init(k, n);
  138         add_tail(k, n);
  139 }
  140 EXPORT_SYMBOL_GPL(klist_add_tail);
  141 
  142 /**
  143  * klist_add_after - Init a klist_node and add it after an existing node
  144  * @n: node we're adding.
  145  * @pos: node to put @n after
  146  */
  147 void klist_add_after(struct klist_node *n, struct klist_node *pos)
  148 {
  149         struct klist *k = knode_klist(pos);
  150 
  151         klist_node_init(k, n);
  152         spin_lock(&k->k_lock);
  153         list_add(&n->n_node, &pos->n_node);
  154         spin_unlock(&k->k_lock);
  155 }
  156 EXPORT_SYMBOL_GPL(klist_add_after);
  157 
  158 /**
  159  * klist_add_before - Init a klist_node and add it before an existing node
  160  * @n: node we're adding.
  161  * @pos: node to put @n after
  162  */
  163 void klist_add_before(struct klist_node *n, struct klist_node *pos)
  164 {
  165         struct klist *k = knode_klist(pos);
  166 
  167         klist_node_init(k, n);
  168         spin_lock(&k->k_lock);
  169         list_add_tail(&n->n_node, &pos->n_node);
  170         spin_unlock(&k->k_lock);
  171 }
  172 EXPORT_SYMBOL_GPL(klist_add_before);
  173 
  174 struct klist_waiter {
  175         struct list_head list;
  176         struct klist_node *node;
  177         struct task_struct *process;
  178         int woken;
  179 };
  180 
  181 static DEFINE_SPINLOCK(klist_remove_lock);
  182 static LIST_HEAD(klist_remove_waiters);
  183 
  184 static void klist_release(struct kref *kref)
  185 {
  186         struct klist_waiter *waiter, *tmp;
  187         struct klist_node *n = container_of(kref, struct klist_node, n_ref);
  188 
  189         WARN_ON(!knode_dead(n));
  190         list_del(&n->n_node);
  191         spin_lock(&klist_remove_lock);
  192         list_for_each_entry_safe(waiter, tmp, &klist_remove_waiters, list) {
  193                 if (waiter->node != n)
  194                         continue;
  195 
  196                 waiter->woken = 1;
  197                 mb();
  198                 wake_up_process(waiter->process);
  199                 list_del(&waiter->list);
  200         }
  201         spin_unlock(&klist_remove_lock);
  202         knode_set_klist(n, NULL);
  203 }
  204 
  205 static int klist_dec_and_del(struct klist_node *n)
  206 {
  207         return kref_put(&n->n_ref, klist_release);
  208 }
  209 
  210 static void klist_put(struct klist_node *n, bool kill)
  211 {
  212         struct klist *k = knode_klist(n);
  213         void (*put)(struct klist_node *) = k->put;
  214 
  215         spin_lock(&k->k_lock);
  216         if (kill)
  217                 knode_kill(n);
  218         if (!klist_dec_and_del(n))
  219                 put = NULL;
  220         spin_unlock(&k->k_lock);
  221         if (put)
  222                 put(n);
  223 }
  224 
  225 /**
  226  * klist_del - Decrement the reference count of node and try to remove.
  227  * @n: node we're deleting.
  228  */
  229 void klist_del(struct klist_node *n)
  230 {
  231         klist_put(n, true);
  232 }
  233 EXPORT_SYMBOL_GPL(klist_del);
  234 
  235 /**
  236  * klist_remove - Decrement the refcount of node and wait for it to go away.
  237  * @n: node we're removing.
  238  */
  239 void klist_remove(struct klist_node *n)
  240 {
  241         struct klist_waiter waiter;
  242 
  243         waiter.node = n;
  244         waiter.process = current;
  245         waiter.woken = 0;
  246         spin_lock(&klist_remove_lock);
  247         list_add(&waiter.list, &klist_remove_waiters);
  248         spin_unlock(&klist_remove_lock);
  249 
  250         klist_del(n);
  251 
  252         for (;;) {
  253                 set_current_state(TASK_UNINTERRUPTIBLE);
  254                 if (waiter.woken)
  255                         break;
  256                 schedule();
  257         }
  258         __set_current_state(TASK_RUNNING);
  259 }
  260 EXPORT_SYMBOL_GPL(klist_remove);
  261 
  262 /**
  263  * klist_node_attached - Say whether a node is bound to a list or not.
  264  * @n: Node that we're testing.
  265  */
  266 int klist_node_attached(struct klist_node *n)
  267 {
  268         return (n->n_klist != NULL);
  269 }
  270 EXPORT_SYMBOL_GPL(klist_node_attached);
  271 
  272 /**
  273  * klist_iter_init_node - Initialize a klist_iter structure.
  274  * @k: klist we're iterating.
  275  * @i: klist_iter we're filling.
  276  * @n: node to start with.
  277  *
  278  * Similar to klist_iter_init(), but starts the action off with @n,
  279  * instead of with the list head.
  280  */
  281 void klist_iter_init_node(struct klist *k, struct klist_iter *i,
  282                           struct klist_node *n)
  283 {
  284         i->i_klist = k;
  285         i->i_cur = n;
  286         if (n)
  287                 kref_get(&n->n_ref);
  288 }
  289 EXPORT_SYMBOL_GPL(klist_iter_init_node);
  290 
  291 /**
  292  * klist_iter_init - Iniitalize a klist_iter structure.
  293  * @k: klist we're iterating.
  294  * @i: klist_iter structure we're filling.
  295  *
  296  * Similar to klist_iter_init_node(), but start with the list head.
  297  */
  298 void klist_iter_init(struct klist *k, struct klist_iter *i)
  299 {
  300         klist_iter_init_node(k, i, NULL);
  301 }
  302 EXPORT_SYMBOL_GPL(klist_iter_init);
  303 
  304 /**
  305  * klist_iter_exit - Finish a list iteration.
  306  * @i: Iterator structure.
  307  *
  308  * Must be called when done iterating over list, as it decrements the
  309  * refcount of the current node. Necessary in case iteration exited before
  310  * the end of the list was reached, and always good form.
  311  */
  312 void klist_iter_exit(struct klist_iter *i)
  313 {
  314         if (i->i_cur) {
  315                 klist_put(i->i_cur, false);
  316                 i->i_cur = NULL;
  317         }
  318 }
  319 EXPORT_SYMBOL_GPL(klist_iter_exit);
  320 
  321 static struct klist_node *to_klist_node(struct list_head *n)
  322 {
  323         return container_of(n, struct klist_node, n_node);
  324 }
  325 
  326 /**
  327  * klist_next - Ante up next node in list.
  328  * @i: Iterator structure.
  329  *
  330  * First grab list lock. Decrement the reference count of the previous
  331  * node, if there was one. Grab the next node, increment its reference
  332  * count, drop the lock, and return that next node.
  333  */
  334 struct klist_node *klist_next(struct klist_iter *i)
  335 {
  336         void (*put)(struct klist_node *) = i->i_klist->put;
  337         struct klist_node *last = i->i_cur;
  338         struct klist_node *next;
  339 
  340         spin_lock(&i->i_klist->k_lock);
  341 
  342         if (last) {
  343                 next = to_klist_node(last->n_node.next);
  344                 if (!klist_dec_and_del(last))
  345                         put = NULL;
  346         } else
  347                 next = to_klist_node(i->i_klist->k_list.next);
  348 
  349         i->i_cur = NULL;
  350         while (next != to_klist_node(&i->i_klist->k_list)) {
  351                 if (likely(!knode_dead(next))) {
  352                         kref_get(&next->n_ref);
  353                         i->i_cur = next;
  354                         break;
  355                 }
  356                 next = to_klist_node(next->n_node.next);
  357         }
  358 
  359         spin_unlock(&i->i_klist->k_lock);
  360 
  361         if (put && last)
  362                 put(last);
  363         return i->i_cur;
  364 }
  365 EXPORT_SYMBOL_GPL(klist_next);

Cache object: f7cb333551157ffe05f8f806ff5fe914


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.