The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/lib/radix-tree.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (C) 2001 Momchil Velikov
    3  * Portions Copyright (C) 2001 Christoph Hellwig
    4  * Copyright (C) 2005 SGI, Christoph Lameter
    5  * Copyright (C) 2006 Nick Piggin
    6  * Copyright (C) 2012 Konstantin Khlebnikov
    7  *
    8  * This program is free software; you can redistribute it and/or
    9  * modify it under the terms of the GNU General Public License as
   10  * published by the Free Software Foundation; either version 2, or (at
   11  * your option) any later version.
   12  *
   13  * This program is distributed in the hope that it will be useful, but
   14  * WITHOUT ANY WARRANTY; without even the implied warranty of
   15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   16  * General Public License for more details.
   17  *
   18  * You should have received a copy of the GNU General Public License
   19  * along with this program; if not, write to the Free Software
   20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
   21  */
   22 
   23 #include <linux/errno.h>
   24 #include <linux/init.h>
   25 #include <linux/kernel.h>
   26 #include <linux/export.h>
   27 #include <linux/radix-tree.h>
   28 #include <linux/percpu.h>
   29 #include <linux/slab.h>
   30 #include <linux/notifier.h>
   31 #include <linux/cpu.h>
   32 #include <linux/string.h>
   33 #include <linux/bitops.h>
   34 #include <linux/rcupdate.h>
   35 
   36 
   37 #ifdef __KERNEL__
   38 #define RADIX_TREE_MAP_SHIFT    (CONFIG_BASE_SMALL ? 4 : 6)
   39 #else
   40 #define RADIX_TREE_MAP_SHIFT    3       /* For more stressful testing */
   41 #endif
   42 
   43 #define RADIX_TREE_MAP_SIZE     (1UL << RADIX_TREE_MAP_SHIFT)
   44 #define RADIX_TREE_MAP_MASK     (RADIX_TREE_MAP_SIZE-1)
   45 
   46 #define RADIX_TREE_TAG_LONGS    \
   47         ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
   48 
   49 struct radix_tree_node {
   50         unsigned int    height;         /* Height from the bottom */
   51         unsigned int    count;
   52         union {
   53                 struct radix_tree_node *parent; /* Used when ascending tree */
   54                 struct rcu_head rcu_head;       /* Used when freeing node */
   55         };
   56         void __rcu      *slots[RADIX_TREE_MAP_SIZE];
   57         unsigned long   tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
   58 };
   59 
   60 #define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
   61 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
   62                                           RADIX_TREE_MAP_SHIFT))
   63 
   64 /*
   65  * The height_to_maxindex array needs to be one deeper than the maximum
   66  * path as height 0 holds only 1 entry.
   67  */
   68 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
   69 
   70 /*
   71  * Radix tree node cache.
   72  */
   73 static struct kmem_cache *radix_tree_node_cachep;
   74 
   75 /*
   76  * The radix tree is variable-height, so an insert operation not only has
   77  * to build the branch to its corresponding item, it also has to build the
   78  * branch to existing items if the size has to be increased (by
   79  * radix_tree_extend).
   80  *
   81  * The worst case is a zero height tree with just a single item at index 0,
   82  * and then inserting an item at index ULONG_MAX. This requires 2 new branches
   83  * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
   84  * Hence:
   85  */
   86 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
   87 
   88 /*
   89  * Per-cpu pool of preloaded nodes
   90  */
   91 struct radix_tree_preload {
   92         int nr;
   93         struct radix_tree_node *nodes[RADIX_TREE_PRELOAD_SIZE];
   94 };
   95 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
   96 
   97 static inline void *ptr_to_indirect(void *ptr)
   98 {
   99         return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
  100 }
  101 
  102 static inline void *indirect_to_ptr(void *ptr)
  103 {
  104         return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
  105 }
  106 
  107 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
  108 {
  109         return root->gfp_mask & __GFP_BITS_MASK;
  110 }
  111 
  112 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
  113                 int offset)
  114 {
  115         __set_bit(offset, node->tags[tag]);
  116 }
  117 
  118 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
  119                 int offset)
  120 {
  121         __clear_bit(offset, node->tags[tag]);
  122 }
  123 
  124 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
  125                 int offset)
  126 {
  127         return test_bit(offset, node->tags[tag]);
  128 }
  129 
  130 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
  131 {
  132         root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
  133 }
  134 
  135 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
  136 {
  137         root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
  138 }
  139 
  140 static inline void root_tag_clear_all(struct radix_tree_root *root)
  141 {
  142         root->gfp_mask &= __GFP_BITS_MASK;
  143 }
  144 
  145 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
  146 {
  147         return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
  148 }
  149 
  150 /*
  151  * Returns 1 if any slot in the node has this tag set.
  152  * Otherwise returns 0.
  153  */
  154 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
  155 {
  156         int idx;
  157         for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
  158                 if (node->tags[tag][idx])
  159                         return 1;
  160         }
  161         return 0;
  162 }
  163 
  164 /**
  165  * radix_tree_find_next_bit - find the next set bit in a memory region
  166  *
  167  * @addr: The address to base the search on
  168  * @size: The bitmap size in bits
  169  * @offset: The bitnumber to start searching at
  170  *
  171  * Unrollable variant of find_next_bit() for constant size arrays.
  172  * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
  173  * Returns next bit offset, or size if nothing found.
  174  */
  175 static __always_inline unsigned long
  176 radix_tree_find_next_bit(const unsigned long *addr,
  177                          unsigned long size, unsigned long offset)
  178 {
  179         if (!__builtin_constant_p(size))
  180                 return find_next_bit(addr, size, offset);
  181 
  182         if (offset < size) {
  183                 unsigned long tmp;
  184 
  185                 addr += offset / BITS_PER_LONG;
  186                 tmp = *addr >> (offset % BITS_PER_LONG);
  187                 if (tmp)
  188                         return __ffs(tmp) + offset;
  189                 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
  190                 while (offset < size) {
  191                         tmp = *++addr;
  192                         if (tmp)
  193                                 return __ffs(tmp) + offset;
  194                         offset += BITS_PER_LONG;
  195                 }
  196         }
  197         return size;
  198 }
  199 
  200 /*
  201  * This assumes that the caller has performed appropriate preallocation, and
  202  * that the caller has pinned this thread of control to the current CPU.
  203  */
  204 static struct radix_tree_node *
  205 radix_tree_node_alloc(struct radix_tree_root *root)
  206 {
  207         struct radix_tree_node *ret = NULL;
  208         gfp_t gfp_mask = root_gfp_mask(root);
  209 
  210         if (!(gfp_mask & __GFP_WAIT)) {
  211                 struct radix_tree_preload *rtp;
  212 
  213                 /*
  214                  * Provided the caller has preloaded here, we will always
  215                  * succeed in getting a node here (and never reach
  216                  * kmem_cache_alloc)
  217                  */
  218                 rtp = &__get_cpu_var(radix_tree_preloads);
  219                 if (rtp->nr) {
  220                         ret = rtp->nodes[rtp->nr - 1];
  221                         rtp->nodes[rtp->nr - 1] = NULL;
  222                         rtp->nr--;
  223                 }
  224         }
  225         if (ret == NULL)
  226                 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
  227 
  228         BUG_ON(radix_tree_is_indirect_ptr(ret));
  229         return ret;
  230 }
  231 
  232 static void radix_tree_node_rcu_free(struct rcu_head *head)
  233 {
  234         struct radix_tree_node *node =
  235                         container_of(head, struct radix_tree_node, rcu_head);
  236         int i;
  237 
  238         /*
  239          * must only free zeroed nodes into the slab. radix_tree_shrink
  240          * can leave us with a non-NULL entry in the first slot, so clear
  241          * that here to make sure.
  242          */
  243         for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
  244                 tag_clear(node, i, 0);
  245 
  246         node->slots[0] = NULL;
  247         node->count = 0;
  248 
  249         kmem_cache_free(radix_tree_node_cachep, node);
  250 }
  251 
  252 static inline void
  253 radix_tree_node_free(struct radix_tree_node *node)
  254 {
  255         call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
  256 }
  257 
  258 /*
  259  * Load up this CPU's radix_tree_node buffer with sufficient objects to
  260  * ensure that the addition of a single element in the tree cannot fail.  On
  261  * success, return zero, with preemption disabled.  On error, return -ENOMEM
  262  * with preemption not disabled.
  263  *
  264  * To make use of this facility, the radix tree must be initialised without
  265  * __GFP_WAIT being passed to INIT_RADIX_TREE().
  266  */
  267 int radix_tree_preload(gfp_t gfp_mask)
  268 {
  269         struct radix_tree_preload *rtp;
  270         struct radix_tree_node *node;
  271         int ret = -ENOMEM;
  272 
  273         preempt_disable();
  274         rtp = &__get_cpu_var(radix_tree_preloads);
  275         while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
  276                 preempt_enable();
  277                 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
  278                 if (node == NULL)
  279                         goto out;
  280                 preempt_disable();
  281                 rtp = &__get_cpu_var(radix_tree_preloads);
  282                 if (rtp->nr < ARRAY_SIZE(rtp->nodes))
  283                         rtp->nodes[rtp->nr++] = node;
  284                 else
  285                         kmem_cache_free(radix_tree_node_cachep, node);
  286         }
  287         ret = 0;
  288 out:
  289         return ret;
  290 }
  291 EXPORT_SYMBOL(radix_tree_preload);
  292 
  293 /*
  294  *      Return the maximum key which can be store into a
  295  *      radix tree with height HEIGHT.
  296  */
  297 static inline unsigned long radix_tree_maxindex(unsigned int height)
  298 {
  299         return height_to_maxindex[height];
  300 }
  301 
  302 /*
  303  *      Extend a radix tree so it can store key @index.
  304  */
  305 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
  306 {
  307         struct radix_tree_node *node;
  308         struct radix_tree_node *slot;
  309         unsigned int height;
  310         int tag;
  311 
  312         /* Figure out what the height should be.  */
  313         height = root->height + 1;
  314         while (index > radix_tree_maxindex(height))
  315                 height++;
  316 
  317         if (root->rnode == NULL) {
  318                 root->height = height;
  319                 goto out;
  320         }
  321 
  322         do {
  323                 unsigned int newheight;
  324                 if (!(node = radix_tree_node_alloc(root)))
  325                         return -ENOMEM;
  326 
  327                 /* Propagate the aggregated tag info into the new root */
  328                 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
  329                         if (root_tag_get(root, tag))
  330                                 tag_set(node, tag, 0);
  331                 }
  332 
  333                 /* Increase the height.  */
  334                 newheight = root->height+1;
  335                 node->height = newheight;
  336                 node->count = 1;
  337                 node->parent = NULL;
  338                 slot = root->rnode;
  339                 if (newheight > 1) {
  340                         slot = indirect_to_ptr(slot);
  341                         slot->parent = node;
  342                 }
  343                 node->slots[0] = slot;
  344                 node = ptr_to_indirect(node);
  345                 rcu_assign_pointer(root->rnode, node);
  346                 root->height = newheight;
  347         } while (height > root->height);
  348 out:
  349         return 0;
  350 }
  351 
  352 /**
  353  *      radix_tree_insert    -    insert into a radix tree
  354  *      @root:          radix tree root
  355  *      @index:         index key
  356  *      @item:          item to insert
  357  *
  358  *      Insert an item into the radix tree at position @index.
  359  */
  360 int radix_tree_insert(struct radix_tree_root *root,
  361                         unsigned long index, void *item)
  362 {
  363         struct radix_tree_node *node = NULL, *slot;
  364         unsigned int height, shift;
  365         int offset;
  366         int error;
  367 
  368         BUG_ON(radix_tree_is_indirect_ptr(item));
  369 
  370         /* Make sure the tree is high enough.  */
  371         if (index > radix_tree_maxindex(root->height)) {
  372                 error = radix_tree_extend(root, index);
  373                 if (error)
  374                         return error;
  375         }
  376 
  377         slot = indirect_to_ptr(root->rnode);
  378 
  379         height = root->height;
  380         shift = (height-1) * RADIX_TREE_MAP_SHIFT;
  381 
  382         offset = 0;                     /* uninitialised var warning */
  383         while (height > 0) {
  384                 if (slot == NULL) {
  385                         /* Have to add a child node.  */
  386                         if (!(slot = radix_tree_node_alloc(root)))
  387                                 return -ENOMEM;
  388                         slot->height = height;
  389                         slot->parent = node;
  390                         if (node) {
  391                                 rcu_assign_pointer(node->slots[offset], slot);
  392                                 node->count++;
  393                         } else
  394                                 rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
  395                 }
  396 
  397                 /* Go a level down */
  398                 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
  399                 node = slot;
  400                 slot = node->slots[offset];
  401                 shift -= RADIX_TREE_MAP_SHIFT;
  402                 height--;
  403         }
  404 
  405         if (slot != NULL)
  406                 return -EEXIST;
  407 
  408         if (node) {
  409                 node->count++;
  410                 rcu_assign_pointer(node->slots[offset], item);
  411                 BUG_ON(tag_get(node, 0, offset));
  412                 BUG_ON(tag_get(node, 1, offset));
  413         } else {
  414                 rcu_assign_pointer(root->rnode, item);
  415                 BUG_ON(root_tag_get(root, 0));
  416                 BUG_ON(root_tag_get(root, 1));
  417         }
  418 
  419         return 0;
  420 }
  421 EXPORT_SYMBOL(radix_tree_insert);
  422 
  423 /*
  424  * is_slot == 1 : search for the slot.
  425  * is_slot == 0 : search for the node.
  426  */
  427 static void *radix_tree_lookup_element(struct radix_tree_root *root,
  428                                 unsigned long index, int is_slot)
  429 {
  430         unsigned int height, shift;
  431         struct radix_tree_node *node, **slot;
  432 
  433         node = rcu_dereference_raw(root->rnode);
  434         if (node == NULL)
  435                 return NULL;
  436 
  437         if (!radix_tree_is_indirect_ptr(node)) {
  438                 if (index > 0)
  439                         return NULL;
  440                 return is_slot ? (void *)&root->rnode : node;
  441         }
  442         node = indirect_to_ptr(node);
  443 
  444         height = node->height;
  445         if (index > radix_tree_maxindex(height))
  446                 return NULL;
  447 
  448         shift = (height-1) * RADIX_TREE_MAP_SHIFT;
  449 
  450         do {
  451                 slot = (struct radix_tree_node **)
  452                         (node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
  453                 node = rcu_dereference_raw(*slot);
  454                 if (node == NULL)
  455                         return NULL;
  456 
  457                 shift -= RADIX_TREE_MAP_SHIFT;
  458                 height--;
  459         } while (height > 0);
  460 
  461         return is_slot ? (void *)slot : indirect_to_ptr(node);
  462 }
  463 
  464 /**
  465  *      radix_tree_lookup_slot    -    lookup a slot in a radix tree
  466  *      @root:          radix tree root
  467  *      @index:         index key
  468  *
  469  *      Returns:  the slot corresponding to the position @index in the
  470  *      radix tree @root. This is useful for update-if-exists operations.
  471  *
  472  *      This function can be called under rcu_read_lock iff the slot is not
  473  *      modified by radix_tree_replace_slot, otherwise it must be called
  474  *      exclusive from other writers. Any dereference of the slot must be done
  475  *      using radix_tree_deref_slot.
  476  */
  477 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
  478 {
  479         return (void **)radix_tree_lookup_element(root, index, 1);
  480 }
  481 EXPORT_SYMBOL(radix_tree_lookup_slot);
  482 
  483 /**
  484  *      radix_tree_lookup    -    perform lookup operation on a radix tree
  485  *      @root:          radix tree root
  486  *      @index:         index key
  487  *
  488  *      Lookup the item at the position @index in the radix tree @root.
  489  *
  490  *      This function can be called under rcu_read_lock, however the caller
  491  *      must manage lifetimes of leaf nodes (eg. RCU may also be used to free
  492  *      them safely). No RCU barriers are required to access or modify the
  493  *      returned item, however.
  494  */
  495 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
  496 {
  497         return radix_tree_lookup_element(root, index, 0);
  498 }
  499 EXPORT_SYMBOL(radix_tree_lookup);
  500 
  501 /**
  502  *      radix_tree_tag_set - set a tag on a radix tree node
  503  *      @root:          radix tree root
  504  *      @index:         index key
  505  *      @tag:           tag index
  506  *
  507  *      Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
  508  *      corresponding to @index in the radix tree.  From
  509  *      the root all the way down to the leaf node.
  510  *
  511  *      Returns the address of the tagged item.   Setting a tag on a not-present
  512  *      item is a bug.
  513  */
  514 void *radix_tree_tag_set(struct radix_tree_root *root,
  515                         unsigned long index, unsigned int tag)
  516 {
  517         unsigned int height, shift;
  518         struct radix_tree_node *slot;
  519 
  520         height = root->height;
  521         BUG_ON(index > radix_tree_maxindex(height));
  522 
  523         slot = indirect_to_ptr(root->rnode);
  524         shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
  525 
  526         while (height > 0) {
  527                 int offset;
  528 
  529                 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
  530                 if (!tag_get(slot, tag, offset))
  531                         tag_set(slot, tag, offset);
  532                 slot = slot->slots[offset];
  533                 BUG_ON(slot == NULL);
  534                 shift -= RADIX_TREE_MAP_SHIFT;
  535                 height--;
  536         }
  537 
  538         /* set the root's tag bit */
  539         if (slot && !root_tag_get(root, tag))
  540                 root_tag_set(root, tag);
  541 
  542         return slot;
  543 }
  544 EXPORT_SYMBOL(radix_tree_tag_set);
  545 
  546 /**
  547  *      radix_tree_tag_clear - clear a tag on a radix tree node
  548  *      @root:          radix tree root
  549  *      @index:         index key
  550  *      @tag:           tag index
  551  *
  552  *      Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
  553  *      corresponding to @index in the radix tree.  If
  554  *      this causes the leaf node to have no tags set then clear the tag in the
  555  *      next-to-leaf node, etc.
  556  *
  557  *      Returns the address of the tagged item on success, else NULL.  ie:
  558  *      has the same return value and semantics as radix_tree_lookup().
  559  */
  560 void *radix_tree_tag_clear(struct radix_tree_root *root,
  561                         unsigned long index, unsigned int tag)
  562 {
  563         struct radix_tree_node *node = NULL;
  564         struct radix_tree_node *slot = NULL;
  565         unsigned int height, shift;
  566         int uninitialized_var(offset);
  567 
  568         height = root->height;
  569         if (index > radix_tree_maxindex(height))
  570                 goto out;
  571 
  572         shift = height * RADIX_TREE_MAP_SHIFT;
  573         slot = indirect_to_ptr(root->rnode);
  574 
  575         while (shift) {
  576                 if (slot == NULL)
  577                         goto out;
  578 
  579                 shift -= RADIX_TREE_MAP_SHIFT;
  580                 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
  581                 node = slot;
  582                 slot = slot->slots[offset];
  583         }
  584 
  585         if (slot == NULL)
  586                 goto out;
  587 
  588         while (node) {
  589                 if (!tag_get(node, tag, offset))
  590                         goto out;
  591                 tag_clear(node, tag, offset);
  592                 if (any_tag_set(node, tag))
  593                         goto out;
  594 
  595                 index >>= RADIX_TREE_MAP_SHIFT;
  596                 offset = index & RADIX_TREE_MAP_MASK;
  597                 node = node->parent;
  598         }
  599 
  600         /* clear the root's tag bit */
  601         if (root_tag_get(root, tag))
  602                 root_tag_clear(root, tag);
  603 
  604 out:
  605         return slot;
  606 }
  607 EXPORT_SYMBOL(radix_tree_tag_clear);
  608 
  609 /**
  610  * radix_tree_tag_get - get a tag on a radix tree node
  611  * @root:               radix tree root
  612  * @index:              index key
  613  * @tag:                tag index (< RADIX_TREE_MAX_TAGS)
  614  *
  615  * Return values:
  616  *
  617  *  0: tag not present or not set
  618  *  1: tag set
  619  *
  620  * Note that the return value of this function may not be relied on, even if
  621  * the RCU lock is held, unless tag modification and node deletion are excluded
  622  * from concurrency.
  623  */
  624 int radix_tree_tag_get(struct radix_tree_root *root,
  625                         unsigned long index, unsigned int tag)
  626 {
  627         unsigned int height, shift;
  628         struct radix_tree_node *node;
  629 
  630         /* check the root's tag bit */
  631         if (!root_tag_get(root, tag))
  632                 return 0;
  633 
  634         node = rcu_dereference_raw(root->rnode);
  635         if (node == NULL)
  636                 return 0;
  637 
  638         if (!radix_tree_is_indirect_ptr(node))
  639                 return (index == 0);
  640         node = indirect_to_ptr(node);
  641 
  642         height = node->height;
  643         if (index > radix_tree_maxindex(height))
  644                 return 0;
  645 
  646         shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
  647 
  648         for ( ; ; ) {
  649                 int offset;
  650 
  651                 if (node == NULL)
  652                         return 0;
  653 
  654                 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
  655                 if (!tag_get(node, tag, offset))
  656                         return 0;
  657                 if (height == 1)
  658                         return 1;
  659                 node = rcu_dereference_raw(node->slots[offset]);
  660                 shift -= RADIX_TREE_MAP_SHIFT;
  661                 height--;
  662         }
  663 }
  664 EXPORT_SYMBOL(radix_tree_tag_get);
  665 
  666 /**
  667  * radix_tree_next_chunk - find next chunk of slots for iteration
  668  *
  669  * @root:       radix tree root
  670  * @iter:       iterator state
  671  * @flags:      RADIX_TREE_ITER_* flags and tag index
  672  * Returns:     pointer to chunk first slot, or NULL if iteration is over
  673  */
  674 void **radix_tree_next_chunk(struct radix_tree_root *root,
  675                              struct radix_tree_iter *iter, unsigned flags)
  676 {
  677         unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
  678         struct radix_tree_node *rnode, *node;
  679         unsigned long index, offset;
  680 
  681         if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
  682                 return NULL;
  683 
  684         /*
  685          * Catch next_index overflow after ~0UL. iter->index never overflows
  686          * during iterating; it can be zero only at the beginning.
  687          * And we cannot overflow iter->next_index in a single step,
  688          * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
  689          *
  690          * This condition also used by radix_tree_next_slot() to stop
  691          * contiguous iterating, and forbid swithing to the next chunk.
  692          */
  693         index = iter->next_index;
  694         if (!index && iter->index)
  695                 return NULL;
  696 
  697         rnode = rcu_dereference_raw(root->rnode);
  698         if (radix_tree_is_indirect_ptr(rnode)) {
  699                 rnode = indirect_to_ptr(rnode);
  700         } else if (rnode && !index) {
  701                 /* Single-slot tree */
  702                 iter->index = 0;
  703                 iter->next_index = 1;
  704                 iter->tags = 1;
  705                 return (void **)&root->rnode;
  706         } else
  707                 return NULL;
  708 
  709 restart:
  710         shift = (rnode->height - 1) * RADIX_TREE_MAP_SHIFT;
  711         offset = index >> shift;
  712 
  713         /* Index outside of the tree */
  714         if (offset >= RADIX_TREE_MAP_SIZE)
  715                 return NULL;
  716 
  717         node = rnode;
  718         while (1) {
  719                 if ((flags & RADIX_TREE_ITER_TAGGED) ?
  720                                 !test_bit(offset, node->tags[tag]) :
  721                                 !node->slots[offset]) {
  722                         /* Hole detected */
  723                         if (flags & RADIX_TREE_ITER_CONTIG)
  724                                 return NULL;
  725 
  726                         if (flags & RADIX_TREE_ITER_TAGGED)
  727                                 offset = radix_tree_find_next_bit(
  728                                                 node->tags[tag],
  729                                                 RADIX_TREE_MAP_SIZE,
  730                                                 offset + 1);
  731                         else
  732                                 while (++offset < RADIX_TREE_MAP_SIZE) {
  733                                         if (node->slots[offset])
  734                                                 break;
  735                                 }
  736                         index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
  737                         index += offset << shift;
  738                         /* Overflow after ~0UL */
  739                         if (!index)
  740                                 return NULL;
  741                         if (offset == RADIX_TREE_MAP_SIZE)
  742                                 goto restart;
  743                 }
  744 
  745                 /* This is leaf-node */
  746                 if (!shift)
  747                         break;
  748 
  749                 node = rcu_dereference_raw(node->slots[offset]);
  750                 if (node == NULL)
  751                         goto restart;
  752                 shift -= RADIX_TREE_MAP_SHIFT;
  753                 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
  754         }
  755 
  756         /* Update the iterator state */
  757         iter->index = index;
  758         iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1;
  759 
  760         /* Construct iter->tags bit-mask from node->tags[tag] array */
  761         if (flags & RADIX_TREE_ITER_TAGGED) {
  762                 unsigned tag_long, tag_bit;
  763 
  764                 tag_long = offset / BITS_PER_LONG;
  765                 tag_bit  = offset % BITS_PER_LONG;
  766                 iter->tags = node->tags[tag][tag_long] >> tag_bit;
  767                 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
  768                 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
  769                         /* Pick tags from next element */
  770                         if (tag_bit)
  771                                 iter->tags |= node->tags[tag][tag_long + 1] <<
  772                                                 (BITS_PER_LONG - tag_bit);
  773                         /* Clip chunk size, here only BITS_PER_LONG tags */
  774                         iter->next_index = index + BITS_PER_LONG;
  775                 }
  776         }
  777 
  778         return node->slots + offset;
  779 }
  780 EXPORT_SYMBOL(radix_tree_next_chunk);
  781 
  782 /**
  783  * radix_tree_range_tag_if_tagged - for each item in given range set given
  784  *                                 tag if item has another tag set
  785  * @root:               radix tree root
  786  * @first_indexp:       pointer to a starting index of a range to scan
  787  * @last_index:         last index of a range to scan
  788  * @nr_to_tag:          maximum number items to tag
  789  * @iftag:              tag index to test
  790  * @settag:             tag index to set if tested tag is set
  791  *
  792  * This function scans range of radix tree from first_index to last_index
  793  * (inclusive).  For each item in the range if iftag is set, the function sets
  794  * also settag. The function stops either after tagging nr_to_tag items or
  795  * after reaching last_index.
  796  *
  797  * The tags must be set from the leaf level only and propagated back up the
  798  * path to the root. We must do this so that we resolve the full path before
  799  * setting any tags on intermediate nodes. If we set tags as we descend, then
  800  * we can get to the leaf node and find that the index that has the iftag
  801  * set is outside the range we are scanning. This reults in dangling tags and
  802  * can lead to problems with later tag operations (e.g. livelocks on lookups).
  803  *
  804  * The function returns number of leaves where the tag was set and sets
  805  * *first_indexp to the first unscanned index.
  806  * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
  807  * be prepared to handle that.
  808  */
  809 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
  810                 unsigned long *first_indexp, unsigned long last_index,
  811                 unsigned long nr_to_tag,
  812                 unsigned int iftag, unsigned int settag)
  813 {
  814         unsigned int height = root->height;
  815         struct radix_tree_node *node = NULL;
  816         struct radix_tree_node *slot;
  817         unsigned int shift;
  818         unsigned long tagged = 0;
  819         unsigned long index = *first_indexp;
  820 
  821         last_index = min(last_index, radix_tree_maxindex(height));
  822         if (index > last_index)
  823                 return 0;
  824         if (!nr_to_tag)
  825                 return 0;
  826         if (!root_tag_get(root, iftag)) {
  827                 *first_indexp = last_index + 1;
  828                 return 0;
  829         }
  830         if (height == 0) {
  831                 *first_indexp = last_index + 1;
  832                 root_tag_set(root, settag);
  833                 return 1;
  834         }
  835 
  836         shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
  837         slot = indirect_to_ptr(root->rnode);
  838 
  839         for (;;) {
  840                 unsigned long upindex;
  841                 int offset;
  842 
  843                 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
  844                 if (!slot->slots[offset])
  845                         goto next;
  846                 if (!tag_get(slot, iftag, offset))
  847                         goto next;
  848                 if (shift) {
  849                         /* Go down one level */
  850                         shift -= RADIX_TREE_MAP_SHIFT;
  851                         node = slot;
  852                         slot = slot->slots[offset];
  853                         continue;
  854                 }
  855 
  856                 /* tag the leaf */
  857                 tagged++;
  858                 tag_set(slot, settag, offset);
  859 
  860                 /* walk back up the path tagging interior nodes */
  861                 upindex = index;
  862                 while (node) {
  863                         upindex >>= RADIX_TREE_MAP_SHIFT;
  864                         offset = upindex & RADIX_TREE_MAP_MASK;
  865 
  866                         /* stop if we find a node with the tag already set */
  867                         if (tag_get(node, settag, offset))
  868                                 break;
  869                         tag_set(node, settag, offset);
  870                         node = node->parent;
  871                 }
  872 
  873                 /*
  874                  * Small optimization: now clear that node pointer.
  875                  * Since all of this slot's ancestors now have the tag set
  876                  * from setting it above, we have no further need to walk
  877                  * back up the tree setting tags, until we update slot to
  878                  * point to another radix_tree_node.
  879                  */
  880                 node = NULL;
  881 
  882 next:
  883                 /* Go to next item at level determined by 'shift' */
  884                 index = ((index >> shift) + 1) << shift;
  885                 /* Overflow can happen when last_index is ~0UL... */
  886                 if (index > last_index || !index)
  887                         break;
  888                 if (tagged >= nr_to_tag)
  889                         break;
  890                 while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
  891                         /*
  892                          * We've fully scanned this node. Go up. Because
  893                          * last_index is guaranteed to be in the tree, what
  894                          * we do below cannot wander astray.
  895                          */
  896                         slot = slot->parent;
  897                         shift += RADIX_TREE_MAP_SHIFT;
  898                 }
  899         }
  900         /*
  901          * We need not to tag the root tag if there is no tag which is set with
  902          * settag within the range from *first_indexp to last_index.
  903          */
  904         if (tagged > 0)
  905                 root_tag_set(root, settag);
  906         *first_indexp = index;
  907 
  908         return tagged;
  909 }
  910 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
  911 
  912 
  913 /**
  914  *      radix_tree_next_hole    -    find the next hole (not-present entry)
  915  *      @root:          tree root
  916  *      @index:         index key
  917  *      @max_scan:      maximum range to search
  918  *
  919  *      Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
  920  *      indexed hole.
  921  *
  922  *      Returns: the index of the hole if found, otherwise returns an index
  923  *      outside of the set specified (in which case 'return - index >= max_scan'
  924  *      will be true). In rare cases of index wrap-around, 0 will be returned.
  925  *
  926  *      radix_tree_next_hole may be called under rcu_read_lock. However, like
  927  *      radix_tree_gang_lookup, this will not atomically search a snapshot of
  928  *      the tree at a single point in time. For example, if a hole is created
  929  *      at index 5, then subsequently a hole is created at index 10,
  930  *      radix_tree_next_hole covering both indexes may return 10 if called
  931  *      under rcu_read_lock.
  932  */
  933 unsigned long radix_tree_next_hole(struct radix_tree_root *root,
  934                                 unsigned long index, unsigned long max_scan)
  935 {
  936         unsigned long i;
  937 
  938         for (i = 0; i < max_scan; i++) {
  939                 if (!radix_tree_lookup(root, index))
  940                         break;
  941                 index++;
  942                 if (index == 0)
  943                         break;
  944         }
  945 
  946         return index;
  947 }
  948 EXPORT_SYMBOL(radix_tree_next_hole);
  949 
  950 /**
  951  *      radix_tree_prev_hole    -    find the prev hole (not-present entry)
  952  *      @root:          tree root
  953  *      @index:         index key
  954  *      @max_scan:      maximum range to search
  955  *
  956  *      Search backwards in the range [max(index-max_scan+1, 0), index]
  957  *      for the first hole.
  958  *
  959  *      Returns: the index of the hole if found, otherwise returns an index
  960  *      outside of the set specified (in which case 'index - return >= max_scan'
  961  *      will be true). In rare cases of wrap-around, ULONG_MAX will be returned.
  962  *
  963  *      radix_tree_next_hole may be called under rcu_read_lock. However, like
  964  *      radix_tree_gang_lookup, this will not atomically search a snapshot of
  965  *      the tree at a single point in time. For example, if a hole is created
  966  *      at index 10, then subsequently a hole is created at index 5,
  967  *      radix_tree_prev_hole covering both indexes may return 5 if called under
  968  *      rcu_read_lock.
  969  */
  970 unsigned long radix_tree_prev_hole(struct radix_tree_root *root,
  971                                    unsigned long index, unsigned long max_scan)
  972 {
  973         unsigned long i;
  974 
  975         for (i = 0; i < max_scan; i++) {
  976                 if (!radix_tree_lookup(root, index))
  977                         break;
  978                 index--;
  979                 if (index == ULONG_MAX)
  980                         break;
  981         }
  982 
  983         return index;
  984 }
  985 EXPORT_SYMBOL(radix_tree_prev_hole);
  986 
  987 /**
  988  *      radix_tree_gang_lookup - perform multiple lookup on a radix tree
  989  *      @root:          radix tree root
  990  *      @results:       where the results of the lookup are placed
  991  *      @first_index:   start the lookup from this key
  992  *      @max_items:     place up to this many items at *results
  993  *
  994  *      Performs an index-ascending scan of the tree for present items.  Places
  995  *      them at *@results and returns the number of items which were placed at
  996  *      *@results.
  997  *
  998  *      The implementation is naive.
  999  *
 1000  *      Like radix_tree_lookup, radix_tree_gang_lookup may be called under
 1001  *      rcu_read_lock. In this case, rather than the returned results being
 1002  *      an atomic snapshot of the tree at a single point in time, the semantics
 1003  *      of an RCU protected gang lookup are as though multiple radix_tree_lookups
 1004  *      have been issued in individual locks, and results stored in 'results'.
 1005  */
 1006 unsigned int
 1007 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
 1008                         unsigned long first_index, unsigned int max_items)
 1009 {
 1010         struct radix_tree_iter iter;
 1011         void **slot;
 1012         unsigned int ret = 0;
 1013 
 1014         if (unlikely(!max_items))
 1015                 return 0;
 1016 
 1017         radix_tree_for_each_slot(slot, root, &iter, first_index) {
 1018                 results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
 1019                 if (!results[ret])
 1020                         continue;
 1021                 if (++ret == max_items)
 1022                         break;
 1023         }
 1024 
 1025         return ret;
 1026 }
 1027 EXPORT_SYMBOL(radix_tree_gang_lookup);
 1028 
 1029 /**
 1030  *      radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
 1031  *      @root:          radix tree root
 1032  *      @results:       where the results of the lookup are placed
 1033  *      @indices:       where their indices should be placed (but usually NULL)
 1034  *      @first_index:   start the lookup from this key
 1035  *      @max_items:     place up to this many items at *results
 1036  *
 1037  *      Performs an index-ascending scan of the tree for present items.  Places
 1038  *      their slots at *@results and returns the number of items which were
 1039  *      placed at *@results.
 1040  *
 1041  *      The implementation is naive.
 1042  *
 1043  *      Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
 1044  *      be dereferenced with radix_tree_deref_slot, and if using only RCU
 1045  *      protection, radix_tree_deref_slot may fail requiring a retry.
 1046  */
 1047 unsigned int
 1048 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
 1049                         void ***results, unsigned long *indices,
 1050                         unsigned long first_index, unsigned int max_items)
 1051 {
 1052         struct radix_tree_iter iter;
 1053         void **slot;
 1054         unsigned int ret = 0;
 1055 
 1056         if (unlikely(!max_items))
 1057                 return 0;
 1058 
 1059         radix_tree_for_each_slot(slot, root, &iter, first_index) {
 1060                 results[ret] = slot;
 1061                 if (indices)
 1062                         indices[ret] = iter.index;
 1063                 if (++ret == max_items)
 1064                         break;
 1065         }
 1066 
 1067         return ret;
 1068 }
 1069 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
 1070 
 1071 /**
 1072  *      radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
 1073  *                                   based on a tag
 1074  *      @root:          radix tree root
 1075  *      @results:       where the results of the lookup are placed
 1076  *      @first_index:   start the lookup from this key
 1077  *      @max_items:     place up to this many items at *results
 1078  *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
 1079  *
 1080  *      Performs an index-ascending scan of the tree for present items which
 1081  *      have the tag indexed by @tag set.  Places the items at *@results and
 1082  *      returns the number of items which were placed at *@results.
 1083  */
 1084 unsigned int
 1085 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
 1086                 unsigned long first_index, unsigned int max_items,
 1087                 unsigned int tag)
 1088 {
 1089         struct radix_tree_iter iter;
 1090         void **slot;
 1091         unsigned int ret = 0;
 1092 
 1093         if (unlikely(!max_items))
 1094                 return 0;
 1095 
 1096         radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
 1097                 results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
 1098                 if (!results[ret])
 1099                         continue;
 1100                 if (++ret == max_items)
 1101                         break;
 1102         }
 1103 
 1104         return ret;
 1105 }
 1106 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
 1107 
 1108 /**
 1109  *      radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
 1110  *                                        radix tree based on a tag
 1111  *      @root:          radix tree root
 1112  *      @results:       where the results of the lookup are placed
 1113  *      @first_index:   start the lookup from this key
 1114  *      @max_items:     place up to this many items at *results
 1115  *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
 1116  *
 1117  *      Performs an index-ascending scan of the tree for present items which
 1118  *      have the tag indexed by @tag set.  Places the slots at *@results and
 1119  *      returns the number of slots which were placed at *@results.
 1120  */
 1121 unsigned int
 1122 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
 1123                 unsigned long first_index, unsigned int max_items,
 1124                 unsigned int tag)
 1125 {
 1126         struct radix_tree_iter iter;
 1127         void **slot;
 1128         unsigned int ret = 0;
 1129 
 1130         if (unlikely(!max_items))
 1131                 return 0;
 1132 
 1133         radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
 1134                 results[ret] = slot;
 1135                 if (++ret == max_items)
 1136                         break;
 1137         }
 1138 
 1139         return ret;
 1140 }
 1141 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
 1142 
 1143 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
 1144 #include <linux/sched.h> /* for cond_resched() */
 1145 
 1146 /*
 1147  * This linear search is at present only useful to shmem_unuse_inode().
 1148  */
 1149 static unsigned long __locate(struct radix_tree_node *slot, void *item,
 1150                               unsigned long index, unsigned long *found_index)
 1151 {
 1152         unsigned int shift, height;
 1153         unsigned long i;
 1154 
 1155         height = slot->height;
 1156         shift = (height-1) * RADIX_TREE_MAP_SHIFT;
 1157 
 1158         for ( ; height > 1; height--) {
 1159                 i = (index >> shift) & RADIX_TREE_MAP_MASK;
 1160                 for (;;) {
 1161                         if (slot->slots[i] != NULL)
 1162                                 break;
 1163                         index &= ~((1UL << shift) - 1);
 1164                         index += 1UL << shift;
 1165                         if (index == 0)
 1166                                 goto out;       /* 32-bit wraparound */
 1167                         i++;
 1168                         if (i == RADIX_TREE_MAP_SIZE)
 1169                                 goto out;
 1170                 }
 1171 
 1172                 shift -= RADIX_TREE_MAP_SHIFT;
 1173                 slot = rcu_dereference_raw(slot->slots[i]);
 1174                 if (slot == NULL)
 1175                         goto out;
 1176         }
 1177 
 1178         /* Bottom level: check items */
 1179         for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
 1180                 if (slot->slots[i] == item) {
 1181                         *found_index = index + i;
 1182                         index = 0;
 1183                         goto out;
 1184                 }
 1185         }
 1186         index += RADIX_TREE_MAP_SIZE;
 1187 out:
 1188         return index;
 1189 }
 1190 
 1191 /**
 1192  *      radix_tree_locate_item - search through radix tree for item
 1193  *      @root:          radix tree root
 1194  *      @item:          item to be found
 1195  *
 1196  *      Returns index where item was found, or -1 if not found.
 1197  *      Caller must hold no lock (since this time-consuming function needs
 1198  *      to be preemptible), and must check afterwards if item is still there.
 1199  */
 1200 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
 1201 {
 1202         struct radix_tree_node *node;
 1203         unsigned long max_index;
 1204         unsigned long cur_index = 0;
 1205         unsigned long found_index = -1;
 1206 
 1207         do {
 1208                 rcu_read_lock();
 1209                 node = rcu_dereference_raw(root->rnode);
 1210                 if (!radix_tree_is_indirect_ptr(node)) {
 1211                         rcu_read_unlock();
 1212                         if (node == item)
 1213                                 found_index = 0;
 1214                         break;
 1215                 }
 1216 
 1217                 node = indirect_to_ptr(node);
 1218                 max_index = radix_tree_maxindex(node->height);
 1219                 if (cur_index > max_index)
 1220                         break;
 1221 
 1222                 cur_index = __locate(node, item, cur_index, &found_index);
 1223                 rcu_read_unlock();
 1224                 cond_resched();
 1225         } while (cur_index != 0 && cur_index <= max_index);
 1226 
 1227         return found_index;
 1228 }
 1229 #else
 1230 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
 1231 {
 1232         return -1;
 1233 }
 1234 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
 1235 
 1236 /**
 1237  *      radix_tree_shrink    -    shrink height of a radix tree to minimal
 1238  *      @root           radix tree root
 1239  */
 1240 static inline void radix_tree_shrink(struct radix_tree_root *root)
 1241 {
 1242         /* try to shrink tree height */
 1243         while (root->height > 0) {
 1244                 struct radix_tree_node *to_free = root->rnode;
 1245                 struct radix_tree_node *slot;
 1246 
 1247                 BUG_ON(!radix_tree_is_indirect_ptr(to_free));
 1248                 to_free = indirect_to_ptr(to_free);
 1249 
 1250                 /*
 1251                  * The candidate node has more than one child, or its child
 1252                  * is not at the leftmost slot, we cannot shrink.
 1253                  */
 1254                 if (to_free->count != 1)
 1255                         break;
 1256                 if (!to_free->slots[0])
 1257                         break;
 1258 
 1259                 /*
 1260                  * We don't need rcu_assign_pointer(), since we are simply
 1261                  * moving the node from one part of the tree to another: if it
 1262                  * was safe to dereference the old pointer to it
 1263                  * (to_free->slots[0]), it will be safe to dereference the new
 1264                  * one (root->rnode) as far as dependent read barriers go.
 1265                  */
 1266                 slot = to_free->slots[0];
 1267                 if (root->height > 1) {
 1268                         slot->parent = NULL;
 1269                         slot = ptr_to_indirect(slot);
 1270                 }
 1271                 root->rnode = slot;
 1272                 root->height--;
 1273 
 1274                 /*
 1275                  * We have a dilemma here. The node's slot[0] must not be
 1276                  * NULLed in case there are concurrent lookups expecting to
 1277                  * find the item. However if this was a bottom-level node,
 1278                  * then it may be subject to the slot pointer being visible
 1279                  * to callers dereferencing it. If item corresponding to
 1280                  * slot[0] is subsequently deleted, these callers would expect
 1281                  * their slot to become empty sooner or later.
 1282                  *
 1283                  * For example, lockless pagecache will look up a slot, deref
 1284                  * the page pointer, and if the page is 0 refcount it means it
 1285                  * was concurrently deleted from pagecache so try the deref
 1286                  * again. Fortunately there is already a requirement for logic
 1287                  * to retry the entire slot lookup -- the indirect pointer
 1288                  * problem (replacing direct root node with an indirect pointer
 1289                  * also results in a stale slot). So tag the slot as indirect
 1290                  * to force callers to retry.
 1291                  */
 1292                 if (root->height == 0)
 1293                         *((unsigned long *)&to_free->slots[0]) |=
 1294                                                 RADIX_TREE_INDIRECT_PTR;
 1295 
 1296                 radix_tree_node_free(to_free);
 1297         }
 1298 }
 1299 
 1300 /**
 1301  *      radix_tree_delete    -    delete an item from a radix tree
 1302  *      @root:          radix tree root
 1303  *      @index:         index key
 1304  *
 1305  *      Remove the item at @index from the radix tree rooted at @root.
 1306  *
 1307  *      Returns the address of the deleted item, or NULL if it was not present.
 1308  */
 1309 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
 1310 {
 1311         struct radix_tree_node *node = NULL;
 1312         struct radix_tree_node *slot = NULL;
 1313         struct radix_tree_node *to_free;
 1314         unsigned int height, shift;
 1315         int tag;
 1316         int uninitialized_var(offset);
 1317 
 1318         height = root->height;
 1319         if (index > radix_tree_maxindex(height))
 1320                 goto out;
 1321 
 1322         slot = root->rnode;
 1323         if (height == 0) {
 1324                 root_tag_clear_all(root);
 1325                 root->rnode = NULL;
 1326                 goto out;
 1327         }
 1328         slot = indirect_to_ptr(slot);
 1329         shift = height * RADIX_TREE_MAP_SHIFT;
 1330 
 1331         do {
 1332                 if (slot == NULL)
 1333                         goto out;
 1334 
 1335                 shift -= RADIX_TREE_MAP_SHIFT;
 1336                 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 1337                 node = slot;
 1338                 slot = slot->slots[offset];
 1339         } while (shift);
 1340 
 1341         if (slot == NULL)
 1342                 goto out;
 1343 
 1344         /*
 1345          * Clear all tags associated with the item to be deleted.
 1346          * This way of doing it would be inefficient, but seldom is any set.
 1347          */
 1348         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 1349                 if (tag_get(node, tag, offset))
 1350                         radix_tree_tag_clear(root, index, tag);
 1351         }
 1352 
 1353         to_free = NULL;
 1354         /* Now free the nodes we do not need anymore */
 1355         while (node) {
 1356                 node->slots[offset] = NULL;
 1357                 node->count--;
 1358                 /*
 1359                  * Queue the node for deferred freeing after the
 1360                  * last reference to it disappears (set NULL, above).
 1361                  */
 1362                 if (to_free)
 1363                         radix_tree_node_free(to_free);
 1364 
 1365                 if (node->count) {
 1366                         if (node == indirect_to_ptr(root->rnode))
 1367                                 radix_tree_shrink(root);
 1368                         goto out;
 1369                 }
 1370 
 1371                 /* Node with zero slots in use so free it */
 1372                 to_free = node;
 1373 
 1374                 index >>= RADIX_TREE_MAP_SHIFT;
 1375                 offset = index & RADIX_TREE_MAP_MASK;
 1376                 node = node->parent;
 1377         }
 1378 
 1379         root_tag_clear_all(root);
 1380         root->height = 0;
 1381         root->rnode = NULL;
 1382         if (to_free)
 1383                 radix_tree_node_free(to_free);
 1384 
 1385 out:
 1386         return slot;
 1387 }
 1388 EXPORT_SYMBOL(radix_tree_delete);
 1389 
 1390 /**
 1391  *      radix_tree_tagged - test whether any items in the tree are tagged
 1392  *      @root:          radix tree root
 1393  *      @tag:           tag to test
 1394  */
 1395 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
 1396 {
 1397         return root_tag_get(root, tag);
 1398 }
 1399 EXPORT_SYMBOL(radix_tree_tagged);
 1400 
 1401 static void
 1402 radix_tree_node_ctor(void *node)
 1403 {
 1404         memset(node, 0, sizeof(struct radix_tree_node));
 1405 }
 1406 
 1407 static __init unsigned long __maxindex(unsigned int height)
 1408 {
 1409         unsigned int width = height * RADIX_TREE_MAP_SHIFT;
 1410         int shift = RADIX_TREE_INDEX_BITS - width;
 1411 
 1412         if (shift < 0)
 1413                 return ~0UL;
 1414         if (shift >= BITS_PER_LONG)
 1415                 return 0UL;
 1416         return ~0UL >> shift;
 1417 }
 1418 
 1419 static __init void radix_tree_init_maxindex(void)
 1420 {
 1421         unsigned int i;
 1422 
 1423         for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
 1424                 height_to_maxindex[i] = __maxindex(i);
 1425 }
 1426 
 1427 static int radix_tree_callback(struct notifier_block *nfb,
 1428                             unsigned long action,
 1429                             void *hcpu)
 1430 {
 1431        int cpu = (long)hcpu;
 1432        struct radix_tree_preload *rtp;
 1433 
 1434        /* Free per-cpu pool of perloaded nodes */
 1435        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
 1436                rtp = &per_cpu(radix_tree_preloads, cpu);
 1437                while (rtp->nr) {
 1438                        kmem_cache_free(radix_tree_node_cachep,
 1439                                        rtp->nodes[rtp->nr-1]);
 1440                        rtp->nodes[rtp->nr-1] = NULL;
 1441                        rtp->nr--;
 1442                }
 1443        }
 1444        return NOTIFY_OK;
 1445 }
 1446 
 1447 void __init radix_tree_init(void)
 1448 {
 1449         radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
 1450                         sizeof(struct radix_tree_node), 0,
 1451                         SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
 1452                         radix_tree_node_ctor);
 1453         radix_tree_init_maxindex();
 1454         hotcpu_notifier(radix_tree_callback, 0);
 1455 }

Cache object: 23f739c6ccf96b07b35f5833d7a6ee45


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.