The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/libkern/x86/crc32_sse42.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Derived from crc32c.c version 1.1 by Mark Adler.
    3  *
    4  * Copyright (C) 2013 Mark Adler
    5  *
    6  * This software is provided 'as-is', without any express or implied warranty.
    7  * In no event will the author be held liable for any damages arising from the
    8  * use of this software.
    9  *
   10  * Permission is granted to anyone to use this software for any purpose,
   11  * including commercial applications, and to alter it and redistribute it
   12  * freely, subject to the following restrictions:
   13  *
   14  * 1. The origin of this software must not be misrepresented; you must not
   15  *    claim that you wrote the original software. If you use this software
   16  *    in a product, an acknowledgment in the product documentation would be
   17  *    appreciated but is not required.
   18  * 2. Altered source versions must be plainly marked as such, and must not be
   19  *    misrepresented as being the original software.
   20  * 3. This notice may not be removed or altered from any source distribution.
   21  *
   22  * Mark Adler
   23  * madler@alumni.caltech.edu
   24  */
   25 
   26 #include <sys/cdefs.h>
   27 __FBSDID("$FreeBSD: releng/11.2/sys/libkern/x86/crc32_sse42.c 317149 2017-04-19 16:16:41Z markj $");
   28 
   29 /*
   30  * This file is compiled in userspace in order to run ATF unit tests.
   31  */
   32 #ifdef USERSPACE_TESTING
   33 #include <stdint.h>
   34 #include <stdlib.h>
   35 #else
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/kernel.h>
   39 #endif
   40 
   41 static __inline uint32_t
   42 _mm_crc32_u8(uint32_t x, uint8_t y)
   43 {
   44         /*
   45          * clang (at least 3.9.[0-1]) pessimizes "rm" (y) and "m" (y)
   46          * significantly and "r" (y) a lot by copying y to a different
   47          * local variable (on the stack or in a register), so only use
   48          * the latter.  This costs a register and an instruction but
   49          * not a uop.
   50          */
   51         __asm("crc32b %1,%0" : "+r" (x) : "r" (y));
   52         return (x);
   53 }
   54 
   55 static __inline uint32_t
   56 _mm_crc32_u32(uint32_t x, uint32_t y)
   57 {
   58         __asm("crc32l %1,%0" : "+r" (x) : "r" (y));
   59         return (x);
   60 }
   61 
   62 static __inline uint64_t
   63 _mm_crc32_u64(uint64_t x, uint64_t y)
   64 {
   65         __asm("crc32q %1,%0" : "+r" (x) : "r" (y));
   66         return (x);
   67 }
   68 
   69 /* CRC-32C (iSCSI) polynomial in reversed bit order. */
   70 #define POLY    0x82f63b78
   71 
   72 /*
   73  * Block sizes for three-way parallel crc computation.  LONG and SHORT must
   74  * both be powers of two.
   75  */
   76 #define LONG    128
   77 #define SHORT   64
   78 
   79 /* 
   80  * Tables for updating a crc for LONG, 2 * LONG, SHORT and 2 * SHORT bytes
   81  * of value 0 later in the input stream, in the same way that the hardware
   82  * would, but in software without calculating intermediate steps.
   83  */
   84 static uint32_t crc32c_long[4][256];
   85 static uint32_t crc32c_2long[4][256];
   86 static uint32_t crc32c_short[4][256];
   87 static uint32_t crc32c_2short[4][256];
   88 
   89 /*
   90  * Multiply a matrix times a vector over the Galois field of two elements,
   91  * GF(2).  Each element is a bit in an unsigned integer.  mat must have at
   92  * least as many entries as the power of two for most significant one bit in
   93  * vec.
   94  */
   95 static inline uint32_t
   96 gf2_matrix_times(uint32_t *mat, uint32_t vec)
   97 {
   98         uint32_t sum;
   99 
  100         sum = 0;
  101         while (vec) {
  102                 if (vec & 1)
  103                         sum ^= *mat;
  104                 vec >>= 1;
  105                 mat++;
  106         }
  107         return (sum);
  108 }
  109 
  110 /*
  111  * Multiply a matrix by itself over GF(2).  Both mat and square must have 32
  112  * rows.
  113  */
  114 static inline void
  115 gf2_matrix_square(uint32_t *square, uint32_t *mat)
  116 {
  117         int n;
  118 
  119         for (n = 0; n < 32; n++)
  120                 square[n] = gf2_matrix_times(mat, mat[n]);
  121 }
  122 
  123 /*
  124  * Construct an operator to apply len zeros to a crc.  len must be a power of
  125  * two.  If len is not a power of two, then the result is the same as for the
  126  * largest power of two less than len.  The result for len == 0 is the same as
  127  * for len == 1.  A version of this routine could be easily written for any
  128  * len, but that is not needed for this application.
  129  */
  130 static void
  131 crc32c_zeros_op(uint32_t *even, size_t len)
  132 {
  133         uint32_t odd[32];       /* odd-power-of-two zeros operator */
  134         uint32_t row;
  135         int n;
  136 
  137         /* put operator for one zero bit in odd */
  138         odd[0] = POLY;              /* CRC-32C polynomial */
  139         row = 1;
  140         for (n = 1; n < 32; n++) {
  141                 odd[n] = row;
  142                 row <<= 1;
  143         }
  144 
  145         /* put operator for two zero bits in even */
  146         gf2_matrix_square(even, odd);
  147 
  148         /* put operator for four zero bits in odd */
  149         gf2_matrix_square(odd, even);
  150 
  151         /*
  152          * first square will put the operator for one zero byte (eight zero
  153          * bits), in even -- next square puts operator for two zero bytes in
  154          * odd, and so on, until len has been rotated down to zero
  155          */
  156         do {
  157                 gf2_matrix_square(even, odd);
  158                 len >>= 1;
  159                 if (len == 0)
  160                         return;
  161                 gf2_matrix_square(odd, even);
  162                 len >>= 1;
  163         } while (len);
  164 
  165         /* answer ended up in odd -- copy to even */
  166         for (n = 0; n < 32; n++)
  167                 even[n] = odd[n];
  168 }
  169 
  170 /*
  171  * Take a length and build four lookup tables for applying the zeros operator
  172  * for that length, byte-by-byte on the operand.
  173  */
  174 static void
  175 crc32c_zeros(uint32_t zeros[][256], size_t len)
  176 {
  177         uint32_t op[32];
  178         uint32_t n;
  179 
  180         crc32c_zeros_op(op, len);
  181         for (n = 0; n < 256; n++) {
  182                 zeros[0][n] = gf2_matrix_times(op, n);
  183                 zeros[1][n] = gf2_matrix_times(op, n << 8);
  184                 zeros[2][n] = gf2_matrix_times(op, n << 16);
  185                 zeros[3][n] = gf2_matrix_times(op, n << 24);
  186         }
  187 }
  188 
  189 /* Apply the zeros operator table to crc. */
  190 static inline uint32_t
  191 crc32c_shift(uint32_t zeros[][256], uint32_t crc)
  192 {
  193 
  194         return (zeros[0][crc & 0xff] ^ zeros[1][(crc >> 8) & 0xff] ^
  195             zeros[2][(crc >> 16) & 0xff] ^ zeros[3][crc >> 24]);
  196 }
  197 
  198 /* Initialize tables for shifting crcs. */
  199 static void
  200 #ifdef USERSPACE_TESTING
  201 __attribute__((__constructor__))
  202 #endif
  203 crc32c_init_hw(void)
  204 {
  205         crc32c_zeros(crc32c_long, LONG);
  206         crc32c_zeros(crc32c_2long, 2 * LONG);
  207         crc32c_zeros(crc32c_short, SHORT);
  208         crc32c_zeros(crc32c_2short, 2 * SHORT);
  209 }
  210 #ifdef _KERNEL
  211 SYSINIT(crc32c_sse42, SI_SUB_LOCK, SI_ORDER_ANY, crc32c_init_hw, NULL);
  212 #endif
  213 
  214 /* Compute CRC-32C using the Intel hardware instruction. */
  215 #ifdef USERSPACE_TESTING
  216 uint32_t sse42_crc32c(uint32_t, const unsigned char *, unsigned);
  217 #endif
  218 uint32_t
  219 sse42_crc32c(uint32_t crc, const unsigned char *buf, unsigned len)
  220 {
  221 #ifdef __amd64__
  222         const size_t align = 8;
  223 #else
  224         const size_t align = 4;
  225 #endif
  226         const unsigned char *next, *end;
  227 #ifdef __amd64__
  228         uint64_t crc0, crc1, crc2;
  229 #else
  230         uint32_t crc0, crc1, crc2;
  231 #endif
  232 
  233         next = buf;
  234         crc0 = crc;
  235 
  236         /* Compute the crc to bring the data pointer to an aligned boundary. */
  237         while (len && ((uintptr_t)next & (align - 1)) != 0) {
  238                 crc0 = _mm_crc32_u8(crc0, *next);
  239                 next++;
  240                 len--;
  241         }
  242 
  243 #if LONG > SHORT
  244         /*
  245          * Compute the crc on sets of LONG*3 bytes, executing three independent
  246          * crc instructions, each on LONG bytes -- this is optimized for the
  247          * Nehalem, Westmere, Sandy Bridge, and Ivy Bridge architectures, which
  248          * have a throughput of one crc per cycle, but a latency of three
  249          * cycles.
  250          */
  251         crc = 0;
  252         while (len >= LONG * 3) {
  253                 crc1 = 0;
  254                 crc2 = 0;
  255                 end = next + LONG;
  256                 do {
  257 #ifdef __amd64__
  258                         crc0 = _mm_crc32_u64(crc0, *(const uint64_t *)next);
  259                         crc1 = _mm_crc32_u64(crc1,
  260                             *(const uint64_t *)(next + LONG));
  261                         crc2 = _mm_crc32_u64(crc2,
  262                             *(const uint64_t *)(next + (LONG * 2)));
  263 #else
  264                         crc0 = _mm_crc32_u32(crc0, *(const uint32_t *)next);
  265                         crc1 = _mm_crc32_u32(crc1,
  266                             *(const uint32_t *)(next + LONG));
  267                         crc2 = _mm_crc32_u32(crc2,
  268                             *(const uint32_t *)(next + (LONG * 2)));
  269 #endif
  270                         next += align;
  271                 } while (next < end);
  272                 /*-
  273                  * Update the crc.  Try to do it in parallel with the inner
  274                  * loop.  'crc' is used to accumulate crc0 and crc1
  275                  * produced by the inner loop so that the next iteration
  276                  * of the loop doesn't depend on anything except crc2.
  277                  *
  278                  * The full expression for the update is:
  279                  *     crc = S*S*S*crc + S*S*crc0 + S*crc1
  280                  * where the terms are polynomials modulo the CRC polynomial.
  281                  * We regroup this subtly as:
  282                  *     crc = S*S * (S*crc + crc0) + S*crc1.
  283                  * This has an extra dependency which reduces possible
  284                  * parallelism for the expression, but it turns out to be
  285                  * best to intentionally delay evaluation of this expression
  286                  * so that it competes less with the inner loop.
  287                  *
  288                  * We also intentionally reduce parallelism by feedng back
  289                  * crc2 to the inner loop as crc0 instead of accumulating
  290                  * it in crc.  This synchronizes the loop with crc update.
  291                  * CPU and/or compiler schedulers produced bad order without
  292                  * this.
  293                  *
  294                  * Shifts take about 12 cycles each, so 3 here with 2
  295                  * parallelizable take about 24 cycles and the crc update
  296                  * takes slightly longer.  8 dependent crc32 instructions
  297                  * can run in 24 cycles, so the 3-way blocking is worse
  298                  * than useless for sizes less than 8 * <word size> = 64
  299                  * on amd64.  In practice, SHORT = 32 confirms these
  300                  * timing calculations by giving a small improvement
  301                  * starting at size 96.  Then the inner loop takes about
  302                  * 12 cycles and the crc update about 24, but these are
  303                  * partly in parallel so the total time is less than the
  304                  * 36 cycles that 12 dependent crc32 instructions would
  305                  * take.
  306                  *
  307                  * To have a chance of completely hiding the overhead for
  308                  * the crc update, the inner loop must take considerably
  309                  * longer than 24 cycles.  LONG = 64 makes the inner loop
  310                  * take about 24 cycles, so is not quite large enough.
  311                  * LONG = 128 works OK.  Unhideable overheads are about
  312                  * 12 cycles per inner loop.  All assuming timing like
  313                  * Haswell.
  314                  */
  315                 crc = crc32c_shift(crc32c_long, crc) ^ crc0;
  316                 crc1 = crc32c_shift(crc32c_long, crc1);
  317                 crc = crc32c_shift(crc32c_2long, crc) ^ crc1;
  318                 crc0 = crc2;
  319                 next += LONG * 2;
  320                 len -= LONG * 3;
  321         }
  322         crc0 ^= crc;
  323 #endif /* LONG > SHORT */
  324 
  325         /*
  326          * Do the same thing, but now on SHORT*3 blocks for the remaining data
  327          * less than a LONG*3 block
  328          */
  329         crc = 0;
  330         while (len >= SHORT * 3) {
  331                 crc1 = 0;
  332                 crc2 = 0;
  333                 end = next + SHORT;
  334                 do {
  335 #ifdef __amd64__
  336                         crc0 = _mm_crc32_u64(crc0, *(const uint64_t *)next);
  337                         crc1 = _mm_crc32_u64(crc1,
  338                             *(const uint64_t *)(next + SHORT));
  339                         crc2 = _mm_crc32_u64(crc2,
  340                             *(const uint64_t *)(next + (SHORT * 2)));
  341 #else
  342                         crc0 = _mm_crc32_u32(crc0, *(const uint32_t *)next);
  343                         crc1 = _mm_crc32_u32(crc1,
  344                             *(const uint32_t *)(next + SHORT));
  345                         crc2 = _mm_crc32_u32(crc2,
  346                             *(const uint32_t *)(next + (SHORT * 2)));
  347 #endif
  348                         next += align;
  349                 } while (next < end);
  350                 crc = crc32c_shift(crc32c_short, crc) ^ crc0;
  351                 crc1 = crc32c_shift(crc32c_short, crc1);
  352                 crc = crc32c_shift(crc32c_2short, crc) ^ crc1;
  353                 crc0 = crc2;
  354                 next += SHORT * 2;
  355                 len -= SHORT * 3;
  356         }
  357         crc0 ^= crc;
  358 
  359         /* Compute the crc on the remaining bytes at native word size. */
  360         end = next + (len - (len & (align - 1)));
  361         while (next < end) {
  362 #ifdef __amd64__
  363                 crc0 = _mm_crc32_u64(crc0, *(const uint64_t *)next);
  364 #else
  365                 crc0 = _mm_crc32_u32(crc0, *(const uint32_t *)next);
  366 #endif
  367                 next += align;
  368         }
  369         len &= (align - 1);
  370 
  371         /* Compute the crc for any trailing bytes. */
  372         while (len) {
  373                 crc0 = _mm_crc32_u8(crc0, *next);
  374                 next++;
  375                 len--;
  376         }
  377 
  378         return ((uint32_t)crc0);
  379 }

Cache object: f1bf054facadb3e8ce93edc1033ce7ad


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.