The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/libkern/zlib/trees.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2008 Apple Inc. All rights reserved.
    3  *
    4  * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
    5  * 
    6  * This file contains Original Code and/or Modifications of Original Code
    7  * as defined in and that are subject to the Apple Public Source License
    8  * Version 2.0 (the 'License'). You may not use this file except in
    9  * compliance with the License. The rights granted to you under the License
   10  * may not be used to create, or enable the creation or redistribution of,
   11  * unlawful or unlicensed copies of an Apple operating system, or to
   12  * circumvent, violate, or enable the circumvention or violation of, any
   13  * terms of an Apple operating system software license agreement.
   14  * 
   15  * Please obtain a copy of the License at
   16  * http://www.opensource.apple.com/apsl/ and read it before using this file.
   17  * 
   18  * The Original Code and all software distributed under the License are
   19  * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
   20  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
   21  * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
   22  * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
   23  * Please see the License for the specific language governing rights and
   24  * limitations under the License.
   25  * 
   26  * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
   27  */
   28 /* trees.c -- output deflated data using Huffman coding
   29  * Copyright (C) 1995-2005 Jean-loup Gailly
   30  * For conditions of distribution and use, see copyright notice in zlib.h
   31  */
   32 
   33 /*
   34  *  ALGORITHM
   35  *
   36  *      The "deflation" process uses several Huffman trees. The more
   37  *      common source values are represented by shorter bit sequences.
   38  *
   39  *      Each code tree is stored in a compressed form which is itself
   40  * a Huffman encoding of the lengths of all the code strings (in
   41  * ascending order by source values).  The actual code strings are
   42  * reconstructed from the lengths in the inflate process, as described
   43  * in the deflate specification.
   44  *
   45  *  REFERENCES
   46  *
   47  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
   48  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
   49  *
   50  *      Storer, James A.
   51  *          Data Compression:  Methods and Theory, pp. 49-50.
   52  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
   53  *
   54  *      Sedgewick, R.
   55  *          Algorithms, p290.
   56  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
   57  */
   58 
   59 /* @(#) $Id$ */
   60 
   61 /* #define GEN_TREES_H */
   62 
   63 #include "deflate.h"
   64 
   65 #ifdef DEBUG
   66 #  include <ctype.h>
   67 #endif
   68 
   69 /* ===========================================================================
   70  * Constants
   71  */
   72 
   73 #define MAX_BL_BITS 7
   74 /* Bit length codes must not exceed MAX_BL_BITS bits */
   75 
   76 #define END_BLOCK 256
   77 /* end of block literal code */
   78 
   79 #define REP_3_6      16
   80 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
   81 
   82 #define REPZ_3_10    17
   83 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
   84 
   85 #define REPZ_11_138  18
   86 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
   87 
   88 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
   89    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
   90 
   91 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
   92    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
   93 
   94 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
   95    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
   96 
   97 local const uch bl_order[BL_CODES]
   98    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
   99 /* The lengths of the bit length codes are sent in order of decreasing
  100  * probability, to avoid transmitting the lengths for unused bit length codes.
  101  */
  102 
  103 #define Buf_size (8 * 2*sizeof(char))
  104 /* Number of bits used within bi_buf. (bi_buf might be implemented on
  105  * more than 16 bits on some systems.)
  106  */
  107 
  108 /* ===========================================================================
  109  * Local data. These are initialized only once.
  110  */
  111 
  112 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
  113 
  114 #if defined(GEN_TREES_H) || !defined(STDC)
  115 /* non ANSI compilers may not accept trees.h */
  116 
  117 local ct_data static_ltree[L_CODES+2];
  118 /* The static literal tree. Since the bit lengths are imposed, there is no
  119  * need for the L_CODES extra codes used during heap construction. However
  120  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
  121  * below).
  122  */
  123 
  124 local ct_data static_dtree[D_CODES];
  125 /* The static distance tree. (Actually a trivial tree since all codes use
  126  * 5 bits.)
  127  */
  128 
  129 uch _dist_code[DIST_CODE_LEN];
  130 /* Distance codes. The first 256 values correspond to the distances
  131  * 3 .. 258, the last 256 values correspond to the top 8 bits of
  132  * the 15 bit distances.
  133  */
  134 
  135 uch _length_code[MAX_MATCH-MIN_MATCH+1];
  136 /* length code for each normalized match length (0 == MIN_MATCH) */
  137 
  138 local int base_length[LENGTH_CODES];
  139 /* First normalized length for each code (0 = MIN_MATCH) */
  140 
  141 local int base_dist[D_CODES];
  142 /* First normalized distance for each code (0 = distance of 1) */
  143 
  144 #else
  145 #  include "trees.h"
  146 #endif /* GEN_TREES_H */
  147 
  148 struct static_tree_desc_s {
  149     const ct_data *static_tree;  /* static tree or NULL */
  150     const intf *extra_bits;      /* extra bits for each code or NULL */
  151     int     extra_base;          /* base index for extra_bits */
  152     int     elems;               /* max number of elements in the tree */
  153     int     max_length;          /* max bit length for the codes */
  154 };
  155 
  156 local static_tree_desc  static_l_desc =
  157 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
  158 
  159 local static_tree_desc  static_d_desc =
  160 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
  161 
  162 local static_tree_desc  static_bl_desc =
  163 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
  164 
  165 /* ===========================================================================
  166  * Local (static) routines in this file.
  167  */
  168 
  169 local void tr_static_init OF((void));
  170 local void init_block     OF((deflate_state *s));
  171 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
  172 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
  173 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
  174 local void build_tree     OF((deflate_state *s, tree_desc *desc));
  175 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
  176 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
  177 local int  build_bl_tree  OF((deflate_state *s));
  178 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
  179                               int blcodes));
  180 local void compress_block OF((deflate_state *s, ct_data *ltree,
  181                               ct_data *dtree));
  182 local void set_data_type  OF((deflate_state *s));
  183 local unsigned bi_reverse OF((unsigned value, int length));
  184 local void bi_windup      OF((deflate_state *s));
  185 local void bi_flush       OF((deflate_state *s));
  186 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
  187                               int header));
  188 
  189 #ifdef GEN_TREES_H
  190 local void gen_trees_header OF((void));
  191 #endif
  192 
  193 #ifndef DEBUG
  194 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
  195    /* Send a code of the given tree. c and tree must not have side effects */
  196 
  197 #else /* DEBUG */
  198 #  define send_code(s, c, tree) \
  199      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
  200        send_bits(s, tree[c].Code, tree[c].Len); }
  201 #endif
  202 
  203 /* ===========================================================================
  204  * Output a short LSB first on the stream.
  205  * IN assertion: there is enough room in pendingBuf.
  206  */
  207 #define put_short(s, w) { \
  208     put_byte(s, (uch)((w) & 0xff)); \
  209     put_byte(s, (uch)((ush)(w) >> 8)); \
  210 }
  211 
  212 /* ===========================================================================
  213  * Send a value on a given number of bits.
  214  * IN assertion: length <= 16 and value fits in length bits.
  215  */
  216 #ifdef DEBUG
  217 local void send_bits      OF((deflate_state *s, int value, int length));
  218 
  219 local void send_bits(s, value, length)
  220     deflate_state *s;
  221     int value;  /* value to send */
  222     int length; /* number of bits */
  223 {
  224     Tracevv((stderr," l %2d v %4x ", length, value));
  225     Assert(length > 0 && length <= 15, "invalid length");
  226     s->bits_sent += (ulg)length;
  227 
  228     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
  229      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
  230      * unused bits in value.
  231      */
  232     if (s->bi_valid > (int)Buf_size - length) {
  233         s->bi_buf |= (value << s->bi_valid);
  234         put_short(s, s->bi_buf);
  235         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
  236         s->bi_valid += length - Buf_size;
  237     } else {
  238         s->bi_buf |= value << s->bi_valid;
  239         s->bi_valid += length;
  240     }
  241 }
  242 #else /* !DEBUG */
  243 
  244 #define send_bits(s, value, length) \
  245 { int len = length;\
  246   if (s->bi_valid > (int)Buf_size - len) {\
  247     int val = value;\
  248     s->bi_buf |= (val << s->bi_valid);\
  249     put_short(s, s->bi_buf);\
  250     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
  251     s->bi_valid += len - Buf_size;\
  252   } else {\
  253     s->bi_buf |= (value) << s->bi_valid;\
  254     s->bi_valid += len;\
  255   }\
  256 }
  257 #endif /* DEBUG */
  258 
  259 
  260 /* the arguments must not have side effects */
  261 
  262 /* ===========================================================================
  263  * Initialize the various 'constant' tables.
  264  */
  265 local void tr_static_init()
  266 {
  267 #if defined(GEN_TREES_H) || !defined(STDC)
  268     static int static_init_done = 0;
  269     int n;        /* iterates over tree elements */
  270     int bits;     /* bit counter */
  271     int length;   /* length value */
  272     int code;     /* code value */
  273     int dist;     /* distance index */
  274     ush bl_count[MAX_BITS+1];
  275     /* number of codes at each bit length for an optimal tree */
  276 
  277     if (static_init_done) return;
  278 
  279     /* For some embedded targets, global variables are not initialized: */
  280     static_l_desc.static_tree = static_ltree;
  281     static_l_desc.extra_bits = extra_lbits;
  282     static_d_desc.static_tree = static_dtree;
  283     static_d_desc.extra_bits = extra_dbits;
  284     static_bl_desc.extra_bits = extra_blbits;
  285 
  286     /* Initialize the mapping length (0..255) -> length code (0..28) */
  287     length = 0;
  288     for (code = 0; code < LENGTH_CODES-1; code++) {
  289         base_length[code] = length;
  290         for (n = 0; n < (1<<extra_lbits[code]); n++) {
  291             _length_code[length++] = (uch)code;
  292         }
  293     }
  294     Assert (length == 256, "tr_static_init: length != 256");
  295     /* Note that the length 255 (match length 258) can be represented
  296      * in two different ways: code 284 + 5 bits or code 285, so we
  297      * overwrite length_code[255] to use the best encoding:
  298      */
  299     _length_code[length-1] = (uch)code;
  300 
  301     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
  302     dist = 0;
  303     for (code = 0 ; code < 16; code++) {
  304         base_dist[code] = dist;
  305         for (n = 0; n < (1<<extra_dbits[code]); n++) {
  306             _dist_code[dist++] = (uch)code;
  307         }
  308     }
  309     Assert (dist == 256, "tr_static_init: dist != 256");
  310     dist >>= 7; /* from now on, all distances are divided by 128 */
  311     for ( ; code < D_CODES; code++) {
  312         base_dist[code] = dist << 7;
  313         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
  314             _dist_code[256 + dist++] = (uch)code;
  315         }
  316     }
  317     Assert (dist == 256, "tr_static_init: 256+dist != 512");
  318 
  319     /* Construct the codes of the static literal tree */
  320     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
  321     n = 0;
  322     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
  323     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
  324     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
  325     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
  326     /* Codes 286 and 287 do not exist, but we must include them in the
  327      * tree construction to get a canonical Huffman tree (longest code
  328      * all ones)
  329      */
  330     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
  331 
  332     /* The static distance tree is trivial: */
  333     for (n = 0; n < D_CODES; n++) {
  334         static_dtree[n].Len = 5;
  335         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
  336     }
  337     static_init_done = 1;
  338 
  339 #  ifdef GEN_TREES_H
  340     gen_trees_header();
  341 #  endif
  342 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
  343 }
  344 
  345 /* ===========================================================================
  346  * Genererate the file trees.h describing the static trees.
  347  */
  348 #ifdef GEN_TREES_H
  349 #  ifndef DEBUG
  350 #    include <stdio.h>
  351 #  endif
  352 
  353 #  define SEPARATOR(i, last, width) \
  354       ((i) == (last)? "\n};\n\n" :    \
  355        ((i) % (width) == (width)-1 ? ",\n" : ", "))
  356 
  357 void gen_trees_header()
  358 {
  359     FILE *header = fopen("trees.h", "w");
  360     int i;
  361 
  362     Assert (header != NULL, "Can't open trees.h");
  363     fprintf(header,
  364             "/* header created automatically with -DGEN_TREES_H */\n\n");
  365 
  366     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
  367     for (i = 0; i < L_CODES+2; i++) {
  368         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
  369                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
  370     }
  371 
  372     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
  373     for (i = 0; i < D_CODES; i++) {
  374         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
  375                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
  376     }
  377 
  378     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
  379     for (i = 0; i < DIST_CODE_LEN; i++) {
  380         fprintf(header, "%2u%s", _dist_code[i],
  381                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
  382     }
  383 
  384     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
  385     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
  386         fprintf(header, "%2u%s", _length_code[i],
  387                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
  388     }
  389 
  390     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
  391     for (i = 0; i < LENGTH_CODES; i++) {
  392         fprintf(header, "%1u%s", base_length[i],
  393                 SEPARATOR(i, LENGTH_CODES-1, 20));
  394     }
  395 
  396     fprintf(header, "local const int base_dist[D_CODES] = {\n");
  397     for (i = 0; i < D_CODES; i++) {
  398         fprintf(header, "%5u%s", base_dist[i],
  399                 SEPARATOR(i, D_CODES-1, 10));
  400     }
  401 
  402     fclose(header);
  403 }
  404 #endif /* GEN_TREES_H */
  405 
  406 /* ===========================================================================
  407  * Initialize the tree data structures for a new zlib stream.
  408  */
  409 void _tr_init(s)
  410     deflate_state *s;
  411 {
  412     tr_static_init();
  413 
  414     s->l_desc.dyn_tree = s->dyn_ltree;
  415     s->l_desc.stat_desc = &static_l_desc;
  416 
  417     s->d_desc.dyn_tree = s->dyn_dtree;
  418     s->d_desc.stat_desc = &static_d_desc;
  419 
  420     s->bl_desc.dyn_tree = s->bl_tree;
  421     s->bl_desc.stat_desc = &static_bl_desc;
  422 
  423     s->bi_buf = 0;
  424     s->bi_valid = 0;
  425     s->last_eob_len = 8; /* enough lookahead for inflate */
  426 #ifdef DEBUG
  427     s->compressed_len = 0L;
  428     s->bits_sent = 0L;
  429 #endif
  430 
  431     /* Initialize the first block of the first file: */
  432     init_block(s);
  433 }
  434 
  435 /* ===========================================================================
  436  * Initialize a new block.
  437  */
  438 local void init_block(s)
  439     deflate_state *s;
  440 {
  441     int n; /* iterates over tree elements */
  442 
  443     /* Initialize the trees. */
  444     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
  445     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
  446     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
  447 
  448     s->dyn_ltree[END_BLOCK].Freq = 1;
  449     s->opt_len = s->static_len = 0L;
  450     s->last_lit = s->matches = 0;
  451 }
  452 
  453 #define SMALLEST 1
  454 /* Index within the heap array of least frequent node in the Huffman tree */
  455 
  456 
  457 /* ===========================================================================
  458  * Remove the smallest element from the heap and recreate the heap with
  459  * one less element. Updates heap and heap_len.
  460  */
  461 #define pqremove(s, tree, top) \
  462 {\
  463     top = s->heap[SMALLEST]; \
  464     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
  465     pqdownheap(s, tree, SMALLEST); \
  466 }
  467 
  468 /* ===========================================================================
  469  * Compares to subtrees, using the tree depth as tie breaker when
  470  * the subtrees have equal frequency. This minimizes the worst case length.
  471  */
  472 #define smaller(tree, n, m, depth) \
  473    (tree[n].Freq < tree[m].Freq || \
  474    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
  475 
  476 /* ===========================================================================
  477  * Restore the heap property by moving down the tree starting at node k,
  478  * exchanging a node with the smallest of its two sons if necessary, stopping
  479  * when the heap property is re-established (each father smaller than its
  480  * two sons).
  481  */
  482 local void pqdownheap(s, tree, k)
  483     deflate_state *s;
  484     ct_data *tree;  /* the tree to restore */
  485     int k;               /* node to move down */
  486 {
  487     int v = s->heap[k];
  488     int j = k << 1;  /* left son of k */
  489     while (j <= s->heap_len) {
  490         /* Set j to the smallest of the two sons: */
  491         if (j < s->heap_len &&
  492             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
  493             j++;
  494         }
  495         /* Exit if v is smaller than both sons */
  496         if (smaller(tree, v, s->heap[j], s->depth)) break;
  497 
  498         /* Exchange v with the smallest son */
  499         s->heap[k] = s->heap[j];  k = j;
  500 
  501         /* And continue down the tree, setting j to the left son of k */
  502         j <<= 1;
  503     }
  504     s->heap[k] = v;
  505 }
  506 
  507 /* ===========================================================================
  508  * Compute the optimal bit lengths for a tree and update the total bit length
  509  * for the current block.
  510  * IN assertion: the fields freq and dad are set, heap[heap_max] and
  511  *    above are the tree nodes sorted by increasing frequency.
  512  * OUT assertions: the field len is set to the optimal bit length, the
  513  *     array bl_count contains the frequencies for each bit length.
  514  *     The length opt_len is updated; static_len is also updated if stree is
  515  *     not null.
  516  */
  517 local void gen_bitlen(s, desc)
  518     deflate_state *s;
  519     tree_desc *desc;    /* the tree descriptor */
  520 {
  521     ct_data *tree        = desc->dyn_tree;
  522     int max_code         = desc->max_code;
  523     const ct_data *stree = desc->stat_desc->static_tree;
  524     const intf *extra    = desc->stat_desc->extra_bits;
  525     int base             = desc->stat_desc->extra_base;
  526     int max_length       = desc->stat_desc->max_length;
  527     int h;              /* heap index */
  528     int n, m;           /* iterate over the tree elements */
  529     int bits;           /* bit length */
  530     int xbits;          /* extra bits */
  531     ush f;              /* frequency */
  532     int overflow = 0;   /* number of elements with bit length too large */
  533 
  534     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
  535 
  536     /* In a first pass, compute the optimal bit lengths (which may
  537      * overflow in the case of the bit length tree).
  538      */
  539     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
  540 
  541     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
  542         n = s->heap[h];
  543         bits = tree[tree[n].Dad].Len + 1;
  544         if (bits > max_length) bits = max_length, overflow++;
  545         tree[n].Len = (ush)bits;
  546         /* We overwrite tree[n].Dad which is no longer needed */
  547 
  548         if (n > max_code) continue; /* not a leaf node */
  549 
  550         s->bl_count[bits]++;
  551         xbits = 0;
  552         if (n >= base) xbits = extra[n-base];
  553         f = tree[n].Freq;
  554         s->opt_len += (ulg)f * (bits + xbits);
  555         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
  556     }
  557     if (overflow == 0) return;
  558 
  559     Trace((stderr,"\nbit length overflow\n"));
  560     /* This happens for example on obj2 and pic of the Calgary corpus */
  561 
  562     /* Find the first bit length which could increase: */
  563     do {
  564         bits = max_length-1;
  565         while (s->bl_count[bits] == 0) bits--;
  566         s->bl_count[bits]--;      /* move one leaf down the tree */
  567         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
  568         s->bl_count[max_length]--;
  569         /* The brother of the overflow item also moves one step up,
  570          * but this does not affect bl_count[max_length]
  571          */
  572         overflow -= 2;
  573     } while (overflow > 0);
  574 
  575     /* Now recompute all bit lengths, scanning in increasing frequency.
  576      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
  577      * lengths instead of fixing only the wrong ones. This idea is taken
  578      * from 'ar' written by Haruhiko Okumura.)
  579      */
  580     for (bits = max_length; bits != 0; bits--) {
  581         n = s->bl_count[bits];
  582         while (n != 0) {
  583             m = s->heap[--h];
  584             if (m > max_code) continue;
  585             if ((unsigned) tree[m].Len != (unsigned) bits) {
  586                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
  587                 s->opt_len += ((long)bits - (long)tree[m].Len)
  588                               *(long)tree[m].Freq;
  589                 tree[m].Len = (ush)bits;
  590             }
  591             n--;
  592         }
  593     }
  594 }
  595 
  596 /* ===========================================================================
  597  * Generate the codes for a given tree and bit counts (which need not be
  598  * optimal).
  599  * IN assertion: the array bl_count contains the bit length statistics for
  600  * the given tree and the field len is set for all tree elements.
  601  * OUT assertion: the field code is set for all tree elements of non
  602  *     zero code length.
  603  */
  604 local void gen_codes (tree, max_code, bl_count)
  605     ct_data *tree;             /* the tree to decorate */
  606     int max_code;              /* largest code with non zero frequency */
  607     ushf *bl_count;            /* number of codes at each bit length */
  608 {
  609     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
  610     ush code = 0;              /* running code value */
  611     int bits;                  /* bit index */
  612     int n;                     /* code index */
  613 
  614     /* The distribution counts are first used to generate the code values
  615      * without bit reversal.
  616      */
  617     for (bits = 1; bits <= MAX_BITS; bits++) {
  618         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
  619     }
  620     /* Check that the bit counts in bl_count are consistent. The last code
  621      * must be all ones.
  622      */
  623     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
  624             "inconsistent bit counts");
  625     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
  626 
  627     for (n = 0;  n <= max_code; n++) {
  628         int len = tree[n].Len;
  629         if (len == 0) continue;
  630         /* Now reverse the bits */
  631         tree[n].Code = bi_reverse(next_code[len]++, len);
  632 
  633         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
  634              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
  635     }
  636 }
  637 
  638 /* ===========================================================================
  639  * Construct one Huffman tree and assigns the code bit strings and lengths.
  640  * Update the total bit length for the current block.
  641  * IN assertion: the field freq is set for all tree elements.
  642  * OUT assertions: the fields len and code are set to the optimal bit length
  643  *     and corresponding code. The length opt_len is updated; static_len is
  644  *     also updated if stree is not null. The field max_code is set.
  645  */
  646 local void build_tree(s, desc)
  647     deflate_state *s;
  648     tree_desc *desc; /* the tree descriptor */
  649 {
  650     ct_data *tree         = desc->dyn_tree;
  651     const ct_data *stree  = desc->stat_desc->static_tree;
  652     int elems             = desc->stat_desc->elems;
  653     int n, m;          /* iterate over heap elements */
  654     int max_code = -1; /* largest code with non zero frequency */
  655     int node;          /* new node being created */
  656 
  657     /* Construct the initial heap, with least frequent element in
  658      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
  659      * heap[0] is not used.
  660      */
  661     s->heap_len = 0, s->heap_max = HEAP_SIZE;
  662 
  663     for (n = 0; n < elems; n++) {
  664         if (tree[n].Freq != 0) {
  665             s->heap[++(s->heap_len)] = max_code = n;
  666             s->depth[n] = 0;
  667         } else {
  668             tree[n].Len = 0;
  669         }
  670     }
  671 
  672     /* The pkzip format requires that at least one distance code exists,
  673      * and that at least one bit should be sent even if there is only one
  674      * possible code. So to avoid special checks later on we force at least
  675      * two codes of non zero frequency.
  676      */
  677     while (s->heap_len < 2) {
  678         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
  679         tree[node].Freq = 1;
  680         s->depth[node] = 0;
  681         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
  682         /* node is 0 or 1 so it does not have extra bits */
  683     }
  684     desc->max_code = max_code;
  685 
  686     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
  687      * establish sub-heaps of increasing lengths:
  688      */
  689     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
  690 
  691     /* Construct the Huffman tree by repeatedly combining the least two
  692      * frequent nodes.
  693      */
  694     node = elems;              /* next internal node of the tree */
  695     do {
  696         pqremove(s, tree, n);  /* n = node of least frequency */
  697         m = s->heap[SMALLEST]; /* m = node of next least frequency */
  698 
  699         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
  700         s->heap[--(s->heap_max)] = m;
  701 
  702         /* Create a new node father of n and m */
  703         tree[node].Freq = tree[n].Freq + tree[m].Freq;
  704         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
  705                                 s->depth[n] : s->depth[m]) + 1);
  706         tree[n].Dad = tree[m].Dad = (ush)node;
  707 #ifdef DUMP_BL_TREE
  708         if (tree == s->bl_tree) {
  709             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
  710                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
  711         }
  712 #endif
  713         /* and insert the new node in the heap */
  714         s->heap[SMALLEST] = node++;
  715         pqdownheap(s, tree, SMALLEST);
  716 
  717     } while (s->heap_len >= 2);
  718 
  719     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
  720 
  721     /* At this point, the fields freq and dad are set. We can now
  722      * generate the bit lengths.
  723      */
  724     gen_bitlen(s, (tree_desc *)desc);
  725 
  726     /* The field len is now set, we can generate the bit codes */
  727     gen_codes ((ct_data *)tree, max_code, s->bl_count);
  728 }
  729 
  730 /* ===========================================================================
  731  * Scan a literal or distance tree to determine the frequencies of the codes
  732  * in the bit length tree.
  733  */
  734 local void scan_tree (s, tree, max_code)
  735     deflate_state *s;
  736     ct_data *tree;   /* the tree to be scanned */
  737     int max_code;    /* and its largest code of non zero frequency */
  738 {
  739     int n;                     /* iterates over all tree elements */
  740     int prevlen = -1;          /* last emitted length */
  741     int curlen;                /* length of current code */
  742     int nextlen = tree[0].Len; /* length of next code */
  743     int count = 0;             /* repeat count of the current code */
  744     int max_count = 7;         /* max repeat count */
  745     int min_count = 4;         /* min repeat count */
  746 
  747     if (nextlen == 0) max_count = 138, min_count = 3;
  748     tree[max_code+1].Len = (ush)0xffff; /* guard */
  749 
  750     for (n = 0; n <= max_code; n++) {
  751         curlen = nextlen; nextlen = tree[n+1].Len;
  752         if (++count < max_count && curlen == nextlen) {
  753             continue;
  754         } else if (count < min_count) {
  755             s->bl_tree[curlen].Freq += count;
  756         } else if (curlen != 0) {
  757             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
  758             s->bl_tree[REP_3_6].Freq++;
  759         } else if (count <= 10) {
  760             s->bl_tree[REPZ_3_10].Freq++;
  761         } else {
  762             s->bl_tree[REPZ_11_138].Freq++;
  763         }
  764         count = 0; prevlen = curlen;
  765         if (nextlen == 0) {
  766             max_count = 138, min_count = 3;
  767         } else if (curlen == nextlen) {
  768             max_count = 6, min_count = 3;
  769         } else {
  770             max_count = 7, min_count = 4;
  771         }
  772     }
  773 }
  774 
  775 /* ===========================================================================
  776  * Send a literal or distance tree in compressed form, using the codes in
  777  * bl_tree.
  778  */
  779 local void send_tree (s, tree, max_code)
  780     deflate_state *s;
  781     ct_data *tree; /* the tree to be scanned */
  782     int max_code;       /* and its largest code of non zero frequency */
  783 {
  784     int n;                     /* iterates over all tree elements */
  785     int prevlen = -1;          /* last emitted length */
  786     int curlen;                /* length of current code */
  787     int nextlen = tree[0].Len; /* length of next code */
  788     int count = 0;             /* repeat count of the current code */
  789     int max_count = 7;         /* max repeat count */
  790     int min_count = 4;         /* min repeat count */
  791 
  792     /* tree[max_code+1].Len = -1; */  /* guard already set */
  793     if (nextlen == 0) max_count = 138, min_count = 3;
  794 
  795     for (n = 0; n <= max_code; n++) {
  796         curlen = nextlen; nextlen = tree[n+1].Len;
  797         if (++count < max_count && curlen == nextlen) {
  798             continue;
  799         } else if (count < min_count) {
  800             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
  801 
  802         } else if (curlen != 0) {
  803             if (curlen != prevlen) {
  804                 send_code(s, curlen, s->bl_tree); count--;
  805             }
  806             Assert(count >= 3 && count <= 6, " 3_6?");
  807             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
  808 
  809         } else if (count <= 10) {
  810             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
  811 
  812         } else {
  813             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
  814         }
  815         count = 0; prevlen = curlen;
  816         if (nextlen == 0) {
  817             max_count = 138, min_count = 3;
  818         } else if (curlen == nextlen) {
  819             max_count = 6, min_count = 3;
  820         } else {
  821             max_count = 7, min_count = 4;
  822         }
  823     }
  824 }
  825 
  826 /* ===========================================================================
  827  * Construct the Huffman tree for the bit lengths and return the index in
  828  * bl_order of the last bit length code to send.
  829  */
  830 local int build_bl_tree(s)
  831     deflate_state *s;
  832 {
  833     int max_blindex;  /* index of last bit length code of non zero freq */
  834 
  835     /* Determine the bit length frequencies for literal and distance trees */
  836     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
  837     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
  838 
  839     /* Build the bit length tree: */
  840     build_tree(s, (tree_desc *)(&(s->bl_desc)));
  841     /* opt_len now includes the length of the tree representations, except
  842      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
  843      */
  844 
  845     /* Determine the number of bit length codes to send. The pkzip format
  846      * requires that at least 4 bit length codes be sent. (appnote.txt says
  847      * 3 but the actual value used is 4.)
  848      */
  849     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
  850         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
  851     }
  852     /* Update opt_len to include the bit length tree and counts */
  853     s->opt_len += 3*(max_blindex+1) + 5+5+4;
  854     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
  855             s->opt_len, s->static_len));
  856 
  857     return max_blindex;
  858 }
  859 
  860 /* ===========================================================================
  861  * Send the header for a block using dynamic Huffman trees: the counts, the
  862  * lengths of the bit length codes, the literal tree and the distance tree.
  863  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
  864  */
  865 local void send_all_trees(s, lcodes, dcodes, blcodes)
  866     deflate_state *s;
  867     int lcodes, dcodes, blcodes; /* number of codes for each tree */
  868 {
  869     int rank;                    /* index in bl_order */
  870 
  871     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
  872     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
  873             "too many codes");
  874     Tracev((stderr, "\nbl counts: "));
  875     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
  876     send_bits(s, dcodes-1,   5);
  877     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
  878     for (rank = 0; rank < blcodes; rank++) {
  879         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
  880         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
  881     }
  882     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
  883 
  884     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
  885     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
  886 
  887     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
  888     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
  889 }
  890 
  891 /* ===========================================================================
  892  * Send a stored block
  893  */
  894 void _tr_stored_block(s, buf, stored_len, eof)
  895     deflate_state *s;
  896     charf *buf;       /* input block */
  897     ulg stored_len;   /* length of input block */
  898     int eof;          /* true if this is the last block for a file */
  899 {
  900     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
  901 #ifdef DEBUG
  902     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
  903     s->compressed_len += (stored_len + 4) << 3;
  904 #endif
  905     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
  906 }
  907 
  908 /* ===========================================================================
  909  * Send one empty static block to give enough lookahead for inflate.
  910  * This takes 10 bits, of which 7 may remain in the bit buffer.
  911  * The current inflate code requires 9 bits of lookahead. If the
  912  * last two codes for the previous block (real code plus EOB) were coded
  913  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
  914  * the last real code. In this case we send two empty static blocks instead
  915  * of one. (There are no problems if the previous block is stored or fixed.)
  916  * To simplify the code, we assume the worst case of last real code encoded
  917  * on one bit only.
  918  */
  919 void _tr_align(s)
  920     deflate_state *s;
  921 {
  922     send_bits(s, STATIC_TREES<<1, 3);
  923     send_code(s, END_BLOCK, static_ltree);
  924 #ifdef DEBUG
  925     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
  926 #endif
  927     bi_flush(s);
  928     /* Of the 10 bits for the empty block, we have already sent
  929      * (10 - bi_valid) bits. The lookahead for the last real code (before
  930      * the EOB of the previous block) was thus at least one plus the length
  931      * of the EOB plus what we have just sent of the empty static block.
  932      */
  933     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
  934         send_bits(s, STATIC_TREES<<1, 3);
  935         send_code(s, END_BLOCK, static_ltree);
  936 #ifdef DEBUG
  937         s->compressed_len += 10L;
  938 #endif
  939         bi_flush(s);
  940     }
  941     s->last_eob_len = 7;
  942 }
  943 
  944 /* ===========================================================================
  945  * Determine the best encoding for the current block: dynamic trees, static
  946  * trees or store, and output the encoded block to the zip file.
  947  */
  948 void _tr_flush_block(s, buf, stored_len, eof)
  949     deflate_state *s;
  950     charf *buf;       /* input block, or NULL if too old */
  951     ulg stored_len;   /* length of input block */
  952     int eof;          /* true if this is the last block for a file */
  953 {
  954     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
  955     int max_blindex = 0;  /* index of last bit length code of non zero freq */
  956 
  957     /* Build the Huffman trees unless a stored block is forced */
  958     if (s->level > 0) {
  959 
  960         /* Check if the file is binary or text */
  961         if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN)
  962             set_data_type(s);
  963 
  964         /* Construct the literal and distance trees */
  965         build_tree(s, (tree_desc *)(&(s->l_desc)));
  966         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
  967                 s->static_len));
  968 
  969         build_tree(s, (tree_desc *)(&(s->d_desc)));
  970         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
  971                 s->static_len));
  972         /* At this point, opt_len and static_len are the total bit lengths of
  973          * the compressed block data, excluding the tree representations.
  974          */
  975 
  976         /* Build the bit length tree for the above two trees, and get the index
  977          * in bl_order of the last bit length code to send.
  978          */
  979         max_blindex = build_bl_tree(s);
  980 
  981         /* Determine the best encoding. Compute the block lengths in bytes. */
  982         opt_lenb = (s->opt_len+3+7)>>3;
  983         static_lenb = (s->static_len+3+7)>>3;
  984 
  985         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
  986                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
  987                 s->last_lit));
  988 
  989         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
  990 
  991     } else {
  992         Assert(buf != (char*)0, "lost buf");
  993         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
  994     }
  995 
  996 #ifdef FORCE_STORED
  997     if (buf != (char*)0) { /* force stored block */
  998 #else
  999     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
 1000                        /* 4: two words for the lengths */
 1001 #endif
 1002         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
 1003          * Otherwise we can't have processed more than WSIZE input bytes since
 1004          * the last block flush, because compression would have been
 1005          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
 1006          * transform a block into a stored block.
 1007          */
 1008         _tr_stored_block(s, buf, stored_len, eof);
 1009 
 1010 #ifdef FORCE_STATIC
 1011     } else if (static_lenb >= 0) { /* force static trees */
 1012 #else
 1013     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
 1014 #endif
 1015         send_bits(s, (STATIC_TREES<<1)+eof, 3);
 1016         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
 1017 #ifdef DEBUG
 1018         s->compressed_len += 3 + s->static_len;
 1019 #endif
 1020     } else {
 1021         send_bits(s, (DYN_TREES<<1)+eof, 3);
 1022         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
 1023                        max_blindex+1);
 1024         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
 1025 #ifdef DEBUG
 1026         s->compressed_len += 3 + s->opt_len;
 1027 #endif
 1028     }
 1029     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
 1030     /* The above check is made mod 2^32, for files larger than 512 MB
 1031      * and uLong implemented on 32 bits.
 1032      */
 1033     init_block(s);
 1034 
 1035     if (eof) {
 1036         bi_windup(s);
 1037 #ifdef DEBUG
 1038         s->compressed_len += 7;  /* align on byte boundary */
 1039 #endif
 1040     }
 1041     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
 1042            s->compressed_len-7*eof));
 1043 }
 1044 
 1045 /* ===========================================================================
 1046  * Save the match info and tally the frequency counts. Return true if
 1047  * the current block must be flushed.
 1048  */
 1049 int _tr_tally (s, dist, lc)
 1050     deflate_state *s;
 1051     unsigned dist;  /* distance of matched string */
 1052     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
 1053 {
 1054     s->d_buf[s->last_lit] = (ush)dist;
 1055     s->l_buf[s->last_lit++] = (uch)lc;
 1056     if (dist == 0) {
 1057         /* lc is the unmatched char */
 1058         s->dyn_ltree[lc].Freq++;
 1059     } else {
 1060         s->matches++;
 1061         /* Here, lc is the match length - MIN_MATCH */
 1062         dist--;             /* dist = match distance - 1 */
 1063         Assert((ush)dist < (ush)MAX_DIST(s) &&
 1064                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
 1065                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
 1066 
 1067         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
 1068         s->dyn_dtree[d_code(dist)].Freq++;
 1069     }
 1070 
 1071 #ifdef TRUNCATE_BLOCK
 1072     /* Try to guess if it is profitable to stop the current block here */
 1073     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
 1074         /* Compute an upper bound for the compressed length */
 1075         ulg out_length = (ulg)s->last_lit*8L;
 1076         ulg in_length = (ulg)((long)s->strstart - s->block_start);
 1077         int dcode;
 1078         for (dcode = 0; dcode < D_CODES; dcode++) {
 1079             out_length += (ulg)s->dyn_dtree[dcode].Freq *
 1080                 (5L+extra_dbits[dcode]);
 1081         }
 1082         out_length >>= 3;
 1083         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
 1084                s->last_lit, in_length, out_length,
 1085                100L - out_length*100L/in_length));
 1086         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
 1087     }
 1088 #endif
 1089     return (s->last_lit == s->lit_bufsize-1);
 1090     /* We avoid equality with lit_bufsize because of wraparound at 64K
 1091      * on 16 bit machines and because stored blocks are restricted to
 1092      * 64K-1 bytes.
 1093      */
 1094 }
 1095 
 1096 /* ===========================================================================
 1097  * Send the block data compressed using the given Huffman trees
 1098  */
 1099 local void compress_block(s, ltree, dtree)
 1100     deflate_state *s;
 1101     ct_data *ltree; /* literal tree */
 1102     ct_data *dtree; /* distance tree */
 1103 {
 1104     unsigned dist;      /* distance of matched string */
 1105     int lc;             /* match length or unmatched char (if dist == 0) */
 1106     unsigned lx = 0;    /* running index in l_buf */
 1107     unsigned code;      /* the code to send */
 1108     int extra;          /* number of extra bits to send */
 1109 
 1110     if (s->last_lit != 0) do {
 1111         dist = s->d_buf[lx];
 1112         lc = s->l_buf[lx++];
 1113         if (dist == 0) {
 1114             send_code(s, lc, ltree); /* send a literal byte */
 1115             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
 1116         } else {
 1117             /* Here, lc is the match length - MIN_MATCH */
 1118             code = _length_code[lc];
 1119             send_code(s, code+LITERALS+1, ltree); /* send the length code */
 1120             extra = extra_lbits[code];
 1121             if (extra != 0) {
 1122                 lc -= base_length[code];
 1123                 send_bits(s, lc, extra);       /* send the extra length bits */
 1124             }
 1125             dist--; /* dist is now the match distance - 1 */
 1126             code = d_code(dist);
 1127             Assert (code < D_CODES, "bad d_code");
 1128 
 1129             send_code(s, code, dtree);       /* send the distance code */
 1130             extra = extra_dbits[code];
 1131             if (extra != 0) {
 1132                 dist -= base_dist[code];
 1133                 send_bits(s, dist, extra);   /* send the extra distance bits */
 1134             }
 1135         } /* literal or match pair ? */
 1136 
 1137         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
 1138         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
 1139                "pendingBuf overflow");
 1140 
 1141     } while (lx < s->last_lit);
 1142 
 1143     send_code(s, END_BLOCK, ltree);
 1144     s->last_eob_len = ltree[END_BLOCK].Len;
 1145 }
 1146 
 1147 /* ===========================================================================
 1148  * Set the data type to BINARY or TEXT, using a crude approximation:
 1149  * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
 1150  * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
 1151  * IN assertion: the fields Freq of dyn_ltree are set.
 1152  */
 1153 local void set_data_type(s)
 1154     deflate_state *s;
 1155 {
 1156     int n;
 1157 
 1158     for (n = 0; n < 9; n++)
 1159         if (s->dyn_ltree[n].Freq != 0)
 1160             break;
 1161     if (n == 9)
 1162         for (n = 14; n < 32; n++)
 1163             if (s->dyn_ltree[n].Freq != 0)
 1164                 break;
 1165     s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY;
 1166 }
 1167 
 1168 /* ===========================================================================
 1169  * Reverse the first len bits of a code, using straightforward code (a faster
 1170  * method would use a table)
 1171  * IN assertion: 1 <= len <= 15
 1172  */
 1173 local unsigned bi_reverse(code, len)
 1174     unsigned code; /* the value to invert */
 1175     int len;       /* its bit length */
 1176 {
 1177     register unsigned res = 0;
 1178     do {
 1179         res |= code & 1;
 1180         code >>= 1, res <<= 1;
 1181     } while (--len > 0);
 1182     return res >> 1;
 1183 }
 1184 
 1185 /* ===========================================================================
 1186  * Flush the bit buffer, keeping at most 7 bits in it.
 1187  */
 1188 local void bi_flush(s)
 1189     deflate_state *s;
 1190 {
 1191     if (s->bi_valid == 16) {
 1192         put_short(s, s->bi_buf);
 1193         s->bi_buf = 0;
 1194         s->bi_valid = 0;
 1195     } else if (s->bi_valid >= 8) {
 1196         put_byte(s, (Byte)s->bi_buf);
 1197         s->bi_buf >>= 8;
 1198         s->bi_valid -= 8;
 1199     }
 1200 }
 1201 
 1202 /* ===========================================================================
 1203  * Flush the bit buffer and align the output on a byte boundary
 1204  */
 1205 local void bi_windup(s)
 1206     deflate_state *s;
 1207 {
 1208     if (s->bi_valid > 8) {
 1209         put_short(s, s->bi_buf);
 1210     } else if (s->bi_valid > 0) {
 1211         put_byte(s, (Byte)s->bi_buf);
 1212     }
 1213     s->bi_buf = 0;
 1214     s->bi_valid = 0;
 1215 #ifdef DEBUG
 1216     s->bits_sent = (s->bits_sent+7) & ~7;
 1217 #endif
 1218 }
 1219 
 1220 /* ===========================================================================
 1221  * Copy a stored block, storing first the length and its
 1222  * one's complement if requested.
 1223  */
 1224 local void copy_block(s, buf, len, header)
 1225     deflate_state *s;
 1226     charf    *buf;    /* the input data */
 1227     unsigned len;     /* its length */
 1228     int      header;  /* true if block header must be written */
 1229 {
 1230     bi_windup(s);        /* align on byte boundary */
 1231     s->last_eob_len = 8; /* enough lookahead for inflate */
 1232 
 1233     if (header) {
 1234         put_short(s, (ush)len);
 1235         put_short(s, (ush)~len);
 1236 #ifdef DEBUG
 1237         s->bits_sent += 2*16;
 1238 #endif
 1239     }
 1240 #ifdef DEBUG
 1241     s->bits_sent += (ulg)len<<3;
 1242 #endif
 1243     while (len--) {
 1244         put_byte(s, *buf++);
 1245     }
 1246 }

Cache object: 7fd0d47331ec152cf0745e37afea3ecc


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.