The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mips/mips/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  * This code is derived from software contributed to Berkeley by
   10  * the Systems Programming Group of the University of Utah Computer
   11  * Science Department and William Jolitz of UUNET Technologies Inc.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   38  *      from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
   39  *      JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
   40  */
   41 
   42 /*
   43  *      Manages physical address maps.
   44  *
   45  *      Since the information managed by this module is
   46  *      also stored by the logical address mapping module,
   47  *      this module may throw away valid virtual-to-physical
   48  *      mappings at almost any time.  However, invalidations
   49  *      of virtual-to-physical mappings must be done as
   50  *      requested.
   51  *
   52  *      In order to cope with hardware architectures which
   53  *      make virtual-to-physical map invalidates expensive,
   54  *      this module may delay invalidate or reduced protection
   55  *      operations until such time as they are actually
   56  *      necessary.  This module is given full information as
   57  *      to which processors are currently using which maps,
   58  *      and to when physical maps must be made correct.
   59  */
   60 
   61 #include <sys/cdefs.h>
   62 __FBSDID("$FreeBSD: releng/10.2/sys/mips/mips/pmap.c 270920 2014-09-01 07:58:15Z kib $");
   63 
   64 #include "opt_ddb.h"
   65 #include "opt_pmap.h"
   66 
   67 #include <sys/param.h>
   68 #include <sys/systm.h>
   69 #include <sys/lock.h>
   70 #include <sys/mman.h>
   71 #include <sys/msgbuf.h>
   72 #include <sys/mutex.h>
   73 #include <sys/pcpu.h>
   74 #include <sys/proc.h>
   75 #include <sys/rwlock.h>
   76 #include <sys/sched.h>
   77 #ifdef SMP
   78 #include <sys/smp.h>
   79 #else
   80 #include <sys/cpuset.h>
   81 #endif
   82 #include <sys/sysctl.h>
   83 #include <sys/vmmeter.h>
   84 
   85 #ifdef DDB
   86 #include <ddb/ddb.h>
   87 #endif
   88 
   89 #include <vm/vm.h>
   90 #include <vm/vm_param.h>
   91 #include <vm/vm_kern.h>
   92 #include <vm/vm_page.h>
   93 #include <vm/vm_map.h>
   94 #include <vm/vm_object.h>
   95 #include <vm/vm_extern.h>
   96 #include <vm/vm_pageout.h>
   97 #include <vm/vm_pager.h>
   98 #include <vm/uma.h>
   99 
  100 #include <machine/cache.h>
  101 #include <machine/md_var.h>
  102 #include <machine/tlb.h>
  103 
  104 #undef PMAP_DEBUG
  105 
  106 #if !defined(DIAGNOSTIC)
  107 #define PMAP_INLINE __inline
  108 #else
  109 #define PMAP_INLINE
  110 #endif
  111 
  112 #ifdef PV_STATS
  113 #define PV_STAT(x)      do { x ; } while (0)
  114 #else
  115 #define PV_STAT(x)      do { } while (0)
  116 #endif
  117 
  118 /*
  119  * Get PDEs and PTEs for user/kernel address space
  120  */
  121 #define pmap_seg_index(v)       (((v) >> SEGSHIFT) & (NPDEPG - 1))
  122 #define pmap_pde_index(v)       (((v) >> PDRSHIFT) & (NPDEPG - 1))
  123 #define pmap_pte_index(v)       (((v) >> PAGE_SHIFT) & (NPTEPG - 1))
  124 #define pmap_pde_pindex(v)      ((v) >> PDRSHIFT)
  125 
  126 #ifdef __mips_n64
  127 #define NUPDE                   (NPDEPG * NPDEPG)
  128 #define NUSERPGTBLS             (NUPDE + NPDEPG)
  129 #else
  130 #define NUPDE                   (NPDEPG)
  131 #define NUSERPGTBLS             (NUPDE)
  132 #endif
  133 
  134 #define is_kernel_pmap(x)       ((x) == kernel_pmap)
  135 
  136 struct pmap kernel_pmap_store;
  137 pd_entry_t *kernel_segmap;
  138 
  139 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  140 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  141 
  142 static int nkpt;
  143 unsigned pmap_max_asid;         /* max ASID supported by the system */
  144 
  145 #define PMAP_ASID_RESERVED      0
  146 
  147 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
  148 
  149 static void pmap_asid_alloc(pmap_t pmap);
  150 
  151 static struct rwlock_padalign pvh_global_lock;
  152 
  153 /*
  154  * Data for the pv entry allocation mechanism
  155  */
  156 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
  157 static int pv_entry_count;
  158 
  159 static void free_pv_chunk(struct pv_chunk *pc);
  160 static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
  161 static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
  162 static vm_page_t pmap_pv_reclaim(pmap_t locked_pmap);
  163 static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
  164 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
  165     vm_offset_t va);
  166 static vm_page_t pmap_alloc_direct_page(unsigned int index, int req);
  167 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
  168     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
  169 static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
  170     pd_entry_t pde);
  171 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
  172 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
  173 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
  174     vm_offset_t va, vm_page_t m);
  175 static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte);
  176 static void pmap_invalidate_all(pmap_t pmap);
  177 static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
  178 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m);
  179 
  180 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
  181 static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, u_int flags);
  182 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t);
  183 static pt_entry_t init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot);
  184 
  185 static void pmap_invalidate_page_action(void *arg);
  186 static void pmap_invalidate_range_action(void *arg);
  187 static void pmap_update_page_action(void *arg);
  188 
  189 #ifndef __mips_n64
  190 /*
  191  * This structure is for high memory (memory above 512Meg in 32 bit) support.
  192  * The highmem area does not have a KSEG0 mapping, and we need a mechanism to
  193  * do temporary per-CPU mappings for pmap_zero_page, pmap_copy_page etc.
  194  *
  195  * At bootup, we reserve 2 virtual pages per CPU for mapping highmem pages. To 
  196  * access a highmem physical address on a CPU, we map the physical address to
  197  * the reserved virtual address for the CPU in the kernel pagetable.  This is 
  198  * done with interrupts disabled(although a spinlock and sched_pin would be 
  199  * sufficient).
  200  */
  201 struct local_sysmaps {
  202         vm_offset_t     base;
  203         uint32_t        saved_intr;
  204         uint16_t        valid1, valid2;
  205 };
  206 static struct local_sysmaps sysmap_lmem[MAXCPU];
  207 
  208 static __inline void
  209 pmap_alloc_lmem_map(void)
  210 {
  211         int i;
  212 
  213         for (i = 0; i < MAXCPU; i++) {
  214                 sysmap_lmem[i].base = virtual_avail;
  215                 virtual_avail += PAGE_SIZE * 2;
  216                 sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
  217         }
  218 }
  219 
  220 static __inline vm_offset_t
  221 pmap_lmem_map1(vm_paddr_t phys)
  222 {
  223         struct local_sysmaps *sysm;
  224         pt_entry_t *pte, npte;
  225         vm_offset_t va;
  226         uint32_t intr;
  227         int cpu;
  228 
  229         intr = intr_disable();
  230         cpu = PCPU_GET(cpuid);
  231         sysm = &sysmap_lmem[cpu];
  232         sysm->saved_intr = intr;
  233         va = sysm->base;
  234         npte = TLBLO_PA_TO_PFN(phys) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
  235         pte = pmap_pte(kernel_pmap, va);
  236         *pte = npte;
  237         sysm->valid1 = 1;
  238         return (va);
  239 }
  240 
  241 static __inline vm_offset_t
  242 pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
  243 {
  244         struct local_sysmaps *sysm;
  245         pt_entry_t *pte, npte;
  246         vm_offset_t va1, va2;
  247         uint32_t intr;
  248         int cpu;
  249 
  250         intr = intr_disable();
  251         cpu = PCPU_GET(cpuid);
  252         sysm = &sysmap_lmem[cpu];
  253         sysm->saved_intr = intr;
  254         va1 = sysm->base;
  255         va2 = sysm->base + PAGE_SIZE;
  256         npte = TLBLO_PA_TO_PFN(phys1) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
  257         pte = pmap_pte(kernel_pmap, va1);
  258         *pte = npte;
  259         npte = TLBLO_PA_TO_PFN(phys2) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
  260         pte = pmap_pte(kernel_pmap, va2);
  261         *pte = npte;
  262         sysm->valid1 = 1;
  263         sysm->valid2 = 1;
  264         return (va1);
  265 }
  266 
  267 static __inline void
  268 pmap_lmem_unmap(void)
  269 {
  270         struct local_sysmaps *sysm;
  271         pt_entry_t *pte;
  272         int cpu;
  273 
  274         cpu = PCPU_GET(cpuid);
  275         sysm = &sysmap_lmem[cpu];
  276         pte = pmap_pte(kernel_pmap, sysm->base);
  277         *pte = PTE_G;
  278         tlb_invalidate_address(kernel_pmap, sysm->base);
  279         sysm->valid1 = 0;
  280         if (sysm->valid2) {
  281                 pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);
  282                 *pte = PTE_G;
  283                 tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);
  284                 sysm->valid2 = 0;
  285         }
  286         intr_restore(sysm->saved_intr);
  287 }
  288 #else  /* __mips_n64 */
  289 
  290 static __inline void
  291 pmap_alloc_lmem_map(void)
  292 {
  293 }
  294 
  295 static __inline vm_offset_t
  296 pmap_lmem_map1(vm_paddr_t phys)
  297 {
  298 
  299         return (0);
  300 }
  301 
  302 static __inline vm_offset_t
  303 pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
  304 {
  305 
  306         return (0);
  307 }
  308 
  309 static __inline vm_offset_t 
  310 pmap_lmem_unmap(void)
  311 {
  312 
  313         return (0);
  314 }
  315 #endif /* !__mips_n64 */
  316 
  317 /*
  318  * Page table entry lookup routines.
  319  */
  320 static __inline pd_entry_t *
  321 pmap_segmap(pmap_t pmap, vm_offset_t va)
  322 {
  323 
  324         return (&pmap->pm_segtab[pmap_seg_index(va)]);
  325 }
  326 
  327 #ifdef __mips_n64
  328 static __inline pd_entry_t *
  329 pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
  330 {
  331         pd_entry_t *pde;
  332 
  333         pde = (pd_entry_t *)*pdpe;
  334         return (&pde[pmap_pde_index(va)]);
  335 }
  336 
  337 static __inline pd_entry_t *
  338 pmap_pde(pmap_t pmap, vm_offset_t va)
  339 {
  340         pd_entry_t *pdpe;
  341 
  342         pdpe = pmap_segmap(pmap, va);
  343         if (*pdpe == NULL)
  344                 return (NULL);
  345 
  346         return (pmap_pdpe_to_pde(pdpe, va));
  347 }
  348 #else
  349 static __inline pd_entry_t *
  350 pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
  351 {
  352 
  353         return (pdpe);
  354 }
  355 
  356 static __inline 
  357 pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va)
  358 {
  359 
  360         return (pmap_segmap(pmap, va));
  361 }
  362 #endif
  363 
  364 static __inline pt_entry_t *
  365 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
  366 {
  367         pt_entry_t *pte;
  368 
  369         pte = (pt_entry_t *)*pde;
  370         return (&pte[pmap_pte_index(va)]);
  371 }
  372 
  373 pt_entry_t *
  374 pmap_pte(pmap_t pmap, vm_offset_t va)
  375 {
  376         pd_entry_t *pde;
  377 
  378         pde = pmap_pde(pmap, va);
  379         if (pde == NULL || *pde == NULL)
  380                 return (NULL);
  381 
  382         return (pmap_pde_to_pte(pde, va));
  383 }
  384 
  385 vm_offset_t
  386 pmap_steal_memory(vm_size_t size)
  387 {
  388         vm_paddr_t bank_size, pa;
  389         vm_offset_t va;
  390 
  391         size = round_page(size);
  392         bank_size = phys_avail[1] - phys_avail[0];
  393         while (size > bank_size) {
  394                 int i;
  395 
  396                 for (i = 0; phys_avail[i + 2]; i += 2) {
  397                         phys_avail[i] = phys_avail[i + 2];
  398                         phys_avail[i + 1] = phys_avail[i + 3];
  399                 }
  400                 phys_avail[i] = 0;
  401                 phys_avail[i + 1] = 0;
  402                 if (!phys_avail[0])
  403                         panic("pmap_steal_memory: out of memory");
  404                 bank_size = phys_avail[1] - phys_avail[0];
  405         }
  406 
  407         pa = phys_avail[0];
  408         phys_avail[0] += size;
  409         if (MIPS_DIRECT_MAPPABLE(pa) == 0)
  410                 panic("Out of memory below 512Meg?");
  411         va = MIPS_PHYS_TO_DIRECT(pa);
  412         bzero((caddr_t)va, size);
  413         return (va);
  414 }
  415 
  416 /*
  417  * Bootstrap the system enough to run with virtual memory.  This
  418  * assumes that the phys_avail array has been initialized.
  419  */
  420 static void 
  421 pmap_create_kernel_pagetable(void)
  422 {
  423         int i, j;
  424         vm_offset_t ptaddr;
  425         pt_entry_t *pte;
  426 #ifdef __mips_n64
  427         pd_entry_t *pde;
  428         vm_offset_t pdaddr;
  429         int npt, npde;
  430 #endif
  431 
  432         /*
  433          * Allocate segment table for the kernel
  434          */
  435         kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
  436 
  437         /*
  438          * Allocate second level page tables for the kernel
  439          */
  440 #ifdef __mips_n64
  441         npde = howmany(NKPT, NPDEPG);
  442         pdaddr = pmap_steal_memory(PAGE_SIZE * npde);
  443 #endif
  444         nkpt = NKPT;
  445         ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt);
  446 
  447         /*
  448          * The R[4-7]?00 stores only one copy of the Global bit in the
  449          * translation lookaside buffer for each 2 page entry. Thus invalid
  450          * entrys must have the Global bit set so when Entry LO and Entry HI
  451          * G bits are anded together they will produce a global bit to store
  452          * in the tlb.
  453          */
  454         for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++)
  455                 *pte = PTE_G;
  456 
  457 #ifdef __mips_n64
  458         for (i = 0,  npt = nkpt; npt > 0; i++) {
  459                 kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE);
  460                 pde = (pd_entry_t *)kernel_segmap[i];
  461 
  462                 for (j = 0; j < NPDEPG && npt > 0; j++, npt--)
  463                         pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE);
  464         }
  465 #else
  466         for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++)
  467                 kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE));
  468 #endif
  469 
  470         PMAP_LOCK_INIT(kernel_pmap);
  471         kernel_pmap->pm_segtab = kernel_segmap;
  472         CPU_FILL(&kernel_pmap->pm_active);
  473         TAILQ_INIT(&kernel_pmap->pm_pvchunk);
  474         kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
  475         kernel_pmap->pm_asid[0].gen = 0;
  476         kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE;
  477 }
  478 
  479 void
  480 pmap_bootstrap(void)
  481 {
  482         int i;
  483         int need_local_mappings = 0; 
  484 
  485         /* Sort. */
  486 again:
  487         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  488                 /*
  489                  * Keep the memory aligned on page boundary.
  490                  */
  491                 phys_avail[i] = round_page(phys_avail[i]);
  492                 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
  493 
  494                 if (i < 2)
  495                         continue;
  496                 if (phys_avail[i - 2] > phys_avail[i]) {
  497                         vm_paddr_t ptemp[2];
  498 
  499                         ptemp[0] = phys_avail[i + 0];
  500                         ptemp[1] = phys_avail[i + 1];
  501 
  502                         phys_avail[i + 0] = phys_avail[i - 2];
  503                         phys_avail[i + 1] = phys_avail[i - 1];
  504 
  505                         phys_avail[i - 2] = ptemp[0];
  506                         phys_avail[i - 1] = ptemp[1];
  507                         goto again;
  508                 }
  509         }
  510 
  511         /*
  512          * In 32 bit, we may have memory which cannot be mapped directly.
  513          * This memory will need temporary mapping before it can be
  514          * accessed.
  515          */
  516         if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1] - 1))
  517                 need_local_mappings = 1;
  518 
  519         /*
  520          * Copy the phys_avail[] array before we start stealing memory from it.
  521          */
  522         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  523                 physmem_desc[i] = phys_avail[i];
  524                 physmem_desc[i + 1] = phys_avail[i + 1];
  525         }
  526 
  527         Maxmem = atop(phys_avail[i - 1]);
  528 
  529         if (bootverbose) {
  530                 printf("Physical memory chunk(s):\n");
  531                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  532                         vm_paddr_t size;
  533 
  534                         size = phys_avail[i + 1] - phys_avail[i];
  535                         printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
  536                             (uintmax_t) phys_avail[i],
  537                             (uintmax_t) phys_avail[i + 1] - 1,
  538                             (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
  539                 }
  540                 printf("Maxmem is 0x%0jx\n", ptoa((uintmax_t)Maxmem));
  541         }
  542         /*
  543          * Steal the message buffer from the beginning of memory.
  544          */
  545         msgbufp = (struct msgbuf *)pmap_steal_memory(msgbufsize);
  546         msgbufinit(msgbufp, msgbufsize);
  547 
  548         /*
  549          * Steal thread0 kstack.
  550          */
  551         kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
  552 
  553         virtual_avail = VM_MIN_KERNEL_ADDRESS;
  554         virtual_end = VM_MAX_KERNEL_ADDRESS;
  555 
  556 #ifdef SMP
  557         /*
  558          * Steal some virtual address space to map the pcpu area.
  559          */
  560         virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
  561         pcpup = (struct pcpu *)virtual_avail;
  562         virtual_avail += PAGE_SIZE * 2;
  563 
  564         /*
  565          * Initialize the wired TLB entry mapping the pcpu region for
  566          * the BSP at 'pcpup'. Up until this point we were operating
  567          * with the 'pcpup' for the BSP pointing to a virtual address
  568          * in KSEG0 so there was no need for a TLB mapping.
  569          */
  570         mips_pcpu_tlb_init(PCPU_ADDR(0));
  571 
  572         if (bootverbose)
  573                 printf("pcpu is available at virtual address %p.\n", pcpup);
  574 #endif
  575 
  576         if (need_local_mappings)
  577                 pmap_alloc_lmem_map();
  578         pmap_create_kernel_pagetable();
  579         pmap_max_asid = VMNUM_PIDS;
  580         mips_wr_entryhi(0);
  581         mips_wr_pagemask(0);
  582 
  583         /*
  584          * Initialize the global pv list lock.
  585          */
  586         rw_init(&pvh_global_lock, "pmap pv global");
  587 }
  588 
  589 /*
  590  * Initialize a vm_page's machine-dependent fields.
  591  */
  592 void
  593 pmap_page_init(vm_page_t m)
  594 {
  595 
  596         TAILQ_INIT(&m->md.pv_list);
  597         m->md.pv_flags = 0;
  598 }
  599 
  600 /*
  601  *      Initialize the pmap module.
  602  *      Called by vm_init, to initialize any structures that the pmap
  603  *      system needs to map virtual memory.
  604  */
  605 void
  606 pmap_init(void)
  607 {
  608 }
  609 
  610 /***************************************************
  611  * Low level helper routines.....
  612  ***************************************************/
  613 
  614 #ifdef  SMP
  615 static __inline void
  616 pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
  617 {
  618         int     cpuid, cpu, self;
  619         cpuset_t active_cpus;
  620 
  621         sched_pin();
  622         if (is_kernel_pmap(pmap)) {
  623                 smp_rendezvous(NULL, fn, NULL, arg);
  624                 goto out;
  625         }
  626         /* Force ASID update on inactive CPUs */
  627         CPU_FOREACH(cpu) {
  628                 if (!CPU_ISSET(cpu, &pmap->pm_active))
  629                         pmap->pm_asid[cpu].gen = 0;
  630         }
  631         cpuid = PCPU_GET(cpuid);
  632         /* 
  633          * XXX: barrier/locking for active? 
  634          *
  635          * Take a snapshot of active here, any further changes are ignored.
  636          * tlb update/invalidate should be harmless on inactive CPUs
  637          */
  638         active_cpus = pmap->pm_active;
  639         self = CPU_ISSET(cpuid, &active_cpus);
  640         CPU_CLR(cpuid, &active_cpus);
  641         /* Optimize for the case where this cpu is the only active one */
  642         if (CPU_EMPTY(&active_cpus)) {
  643                 if (self)
  644                         fn(arg);
  645         } else {
  646                 if (self)
  647                         CPU_SET(cpuid, &active_cpus);
  648                 smp_rendezvous_cpus(active_cpus, NULL, fn, NULL, arg);
  649         }
  650 out:
  651         sched_unpin();
  652 }
  653 #else /* !SMP */
  654 static __inline void
  655 pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
  656 {
  657         int     cpuid;
  658 
  659         if (is_kernel_pmap(pmap)) {
  660                 fn(arg);
  661                 return;
  662         }
  663         cpuid = PCPU_GET(cpuid);
  664         if (!CPU_ISSET(cpuid, &pmap->pm_active))
  665                 pmap->pm_asid[cpuid].gen = 0;
  666         else
  667                 fn(arg);
  668 }
  669 #endif /* SMP */
  670 
  671 static void
  672 pmap_invalidate_all(pmap_t pmap)
  673 {
  674 
  675         pmap_call_on_active_cpus(pmap,
  676             (void (*)(void *))tlb_invalidate_all_user, pmap);
  677 }
  678 
  679 struct pmap_invalidate_page_arg {
  680         pmap_t pmap;
  681         vm_offset_t va;
  682 };
  683 
  684 static void
  685 pmap_invalidate_page_action(void *arg)
  686 {
  687         struct pmap_invalidate_page_arg *p = arg;
  688 
  689         tlb_invalidate_address(p->pmap, p->va);
  690 }
  691 
  692 static void
  693 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  694 {
  695         struct pmap_invalidate_page_arg arg;
  696 
  697         arg.pmap = pmap;
  698         arg.va = va;
  699         pmap_call_on_active_cpus(pmap, pmap_invalidate_page_action, &arg);
  700 }
  701 
  702 struct pmap_invalidate_range_arg {
  703         pmap_t pmap;
  704         vm_offset_t sva;
  705         vm_offset_t eva;
  706 };
  707 
  708 static void
  709 pmap_invalidate_range_action(void *arg)
  710 {
  711         struct pmap_invalidate_range_arg *p = arg;
  712 
  713         tlb_invalidate_range(p->pmap, p->sva, p->eva);
  714 }
  715 
  716 static void
  717 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  718 {
  719         struct pmap_invalidate_range_arg arg;
  720 
  721         arg.pmap = pmap;
  722         arg.sva = sva;
  723         arg.eva = eva;
  724         pmap_call_on_active_cpus(pmap, pmap_invalidate_range_action, &arg);
  725 }
  726 
  727 struct pmap_update_page_arg {
  728         pmap_t pmap;
  729         vm_offset_t va;
  730         pt_entry_t pte;
  731 };
  732 
  733 static void
  734 pmap_update_page_action(void *arg)
  735 {
  736         struct pmap_update_page_arg *p = arg;
  737 
  738         tlb_update(p->pmap, p->va, p->pte);
  739 }
  740 
  741 static void
  742 pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
  743 {
  744         struct pmap_update_page_arg arg;
  745 
  746         arg.pmap = pmap;
  747         arg.va = va;
  748         arg.pte = pte;
  749         pmap_call_on_active_cpus(pmap, pmap_update_page_action, &arg);
  750 }
  751 
  752 /*
  753  *      Routine:        pmap_extract
  754  *      Function:
  755  *              Extract the physical page address associated
  756  *              with the given map/virtual_address pair.
  757  */
  758 vm_paddr_t
  759 pmap_extract(pmap_t pmap, vm_offset_t va)
  760 {
  761         pt_entry_t *pte;
  762         vm_offset_t retval = 0;
  763 
  764         PMAP_LOCK(pmap);
  765         pte = pmap_pte(pmap, va);
  766         if (pte) {
  767                 retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
  768         }
  769         PMAP_UNLOCK(pmap);
  770         return (retval);
  771 }
  772 
  773 /*
  774  *      Routine:        pmap_extract_and_hold
  775  *      Function:
  776  *              Atomically extract and hold the physical page
  777  *              with the given pmap and virtual address pair
  778  *              if that mapping permits the given protection.
  779  */
  780 vm_page_t
  781 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
  782 {
  783         pt_entry_t pte, *ptep;
  784         vm_paddr_t pa, pte_pa;
  785         vm_page_t m;
  786 
  787         m = NULL;
  788         pa = 0;
  789         PMAP_LOCK(pmap);
  790 retry:
  791         ptep = pmap_pte(pmap, va);
  792         if (ptep != NULL) {
  793                 pte = *ptep;
  794                 if (pte_test(&pte, PTE_V) && (!pte_test(&pte, PTE_RO) ||
  795                     (prot & VM_PROT_WRITE) == 0)) {
  796                         pte_pa = TLBLO_PTE_TO_PA(pte);
  797                         if (vm_page_pa_tryrelock(pmap, pte_pa, &pa))
  798                                 goto retry;
  799                         m = PHYS_TO_VM_PAGE(pte_pa);
  800                         vm_page_hold(m);
  801                 }
  802         }
  803         PA_UNLOCK_COND(pa);
  804         PMAP_UNLOCK(pmap);
  805         return (m);
  806 }
  807 
  808 /***************************************************
  809  * Low level mapping routines.....
  810  ***************************************************/
  811 
  812 /*
  813  * add a wired page to the kva
  814  */
  815 void
  816 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int attr)
  817 {
  818         pt_entry_t *pte;
  819         pt_entry_t opte, npte;
  820 
  821 #ifdef PMAP_DEBUG
  822         printf("pmap_kenter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
  823 #endif
  824 
  825         pte = pmap_pte(kernel_pmap, va);
  826         opte = *pte;
  827         npte = TLBLO_PA_TO_PFN(pa) | attr | PTE_D | PTE_V | PTE_G;
  828         *pte = npte;
  829         if (pte_test(&opte, PTE_V) && opte != npte)
  830                 pmap_update_page(kernel_pmap, va, npte);
  831 }
  832 
  833 void
  834 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
  835 {
  836 
  837         KASSERT(is_cacheable_mem(pa),
  838                 ("pmap_kenter: memory at 0x%lx is not cacheable", (u_long)pa));
  839 
  840         pmap_kenter_attr(va, pa, PTE_C_CACHE);
  841 }
  842 
  843 /*
  844  * remove a page from the kernel pagetables
  845  */
  846  /* PMAP_INLINE */ void
  847 pmap_kremove(vm_offset_t va)
  848 {
  849         pt_entry_t *pte;
  850 
  851         /*
  852          * Write back all caches from the page being destroyed
  853          */
  854         mips_dcache_wbinv_range_index(va, PAGE_SIZE);
  855 
  856         pte = pmap_pte(kernel_pmap, va);
  857         *pte = PTE_G;
  858         pmap_invalidate_page(kernel_pmap, va);
  859 }
  860 
  861 /*
  862  *      Used to map a range of physical addresses into kernel
  863  *      virtual address space.
  864  *
  865  *      The value passed in '*virt' is a suggested virtual address for
  866  *      the mapping. Architectures which can support a direct-mapped
  867  *      physical to virtual region can return the appropriate address
  868  *      within that region, leaving '*virt' unchanged. Other
  869  *      architectures should map the pages starting at '*virt' and
  870  *      update '*virt' with the first usable address after the mapped
  871  *      region.
  872  *
  873  *      Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
  874  */
  875 vm_offset_t
  876 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
  877 {
  878         vm_offset_t va, sva;
  879 
  880         if (MIPS_DIRECT_MAPPABLE(end - 1))
  881                 return (MIPS_PHYS_TO_DIRECT(start));
  882 
  883         va = sva = *virt;
  884         while (start < end) {
  885                 pmap_kenter(va, start);
  886                 va += PAGE_SIZE;
  887                 start += PAGE_SIZE;
  888         }
  889         *virt = va;
  890         return (sva);
  891 }
  892 
  893 /*
  894  * Add a list of wired pages to the kva
  895  * this routine is only used for temporary
  896  * kernel mappings that do not need to have
  897  * page modification or references recorded.
  898  * Note that old mappings are simply written
  899  * over.  The page *must* be wired.
  900  */
  901 void
  902 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
  903 {
  904         int i;
  905         vm_offset_t origva = va;
  906 
  907         for (i = 0; i < count; i++) {
  908                 pmap_flush_pvcache(m[i]);
  909                 pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
  910                 va += PAGE_SIZE;
  911         }
  912 
  913         mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
  914 }
  915 
  916 /*
  917  * this routine jerks page mappings from the
  918  * kernel -- it is meant only for temporary mappings.
  919  */
  920 void
  921 pmap_qremove(vm_offset_t va, int count)
  922 {
  923         pt_entry_t *pte;
  924         vm_offset_t origva;
  925 
  926         if (count < 1)
  927                 return;
  928         mips_dcache_wbinv_range_index(va, PAGE_SIZE * count);
  929         origva = va;
  930         do {
  931                 pte = pmap_pte(kernel_pmap, va);
  932                 *pte = PTE_G;
  933                 va += PAGE_SIZE;
  934         } while (--count > 0);
  935         pmap_invalidate_range(kernel_pmap, origva, va);
  936 }
  937 
  938 /***************************************************
  939  * Page table page management routines.....
  940  ***************************************************/
  941 
  942 /*
  943  * Decrements a page table page's wire count, which is used to record the
  944  * number of valid page table entries within the page.  If the wire count
  945  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
  946  * page table page was unmapped and FALSE otherwise.
  947  */
  948 static PMAP_INLINE boolean_t
  949 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
  950 {
  951 
  952         --m->wire_count;
  953         if (m->wire_count == 0) {
  954                 _pmap_unwire_ptp(pmap, va, m);
  955                 return (TRUE);
  956         } else
  957                 return (FALSE);
  958 }
  959 
  960 static void
  961 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
  962 {
  963         pd_entry_t *pde;
  964 
  965         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
  966         /*
  967          * unmap the page table page
  968          */
  969 #ifdef __mips_n64
  970         if (m->pindex < NUPDE)
  971                 pde = pmap_pde(pmap, va);
  972         else
  973                 pde = pmap_segmap(pmap, va);
  974 #else
  975         pde = pmap_pde(pmap, va);
  976 #endif
  977         *pde = 0;
  978         pmap->pm_stats.resident_count--;
  979 
  980 #ifdef __mips_n64
  981         if (m->pindex < NUPDE) {
  982                 pd_entry_t *pdp;
  983                 vm_page_t pdpg;
  984 
  985                 /*
  986                  * Recursively decrement next level pagetable refcount
  987                  */
  988                 pdp = (pd_entry_t *)*pmap_segmap(pmap, va);
  989                 pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp));
  990                 pmap_unwire_ptp(pmap, va, pdpg);
  991         }
  992 #endif
  993 
  994         /*
  995          * If the page is finally unwired, simply free it.
  996          */
  997         vm_page_free_zero(m);
  998         atomic_subtract_int(&cnt.v_wire_count, 1);
  999 }
 1000 
 1001 /*
 1002  * After removing a page table entry, this routine is used to
 1003  * conditionally free the page, and manage the hold/wire counts.
 1004  */
 1005 static int
 1006 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
 1007 {
 1008         vm_page_t mpte;
 1009 
 1010         if (va >= VM_MAXUSER_ADDRESS)
 1011                 return (0);
 1012         KASSERT(pde != 0, ("pmap_unuse_pt: pde != 0"));
 1013         mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pde));
 1014         return (pmap_unwire_ptp(pmap, va, mpte));
 1015 }
 1016 
 1017 void
 1018 pmap_pinit0(pmap_t pmap)
 1019 {
 1020         int i;
 1021 
 1022         PMAP_LOCK_INIT(pmap);
 1023         pmap->pm_segtab = kernel_segmap;
 1024         CPU_ZERO(&pmap->pm_active);
 1025         for (i = 0; i < MAXCPU; i++) {
 1026                 pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
 1027                 pmap->pm_asid[i].gen = 0;
 1028         }
 1029         PCPU_SET(curpmap, pmap);
 1030         TAILQ_INIT(&pmap->pm_pvchunk);
 1031         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1032 }
 1033 
 1034 void
 1035 pmap_grow_direct_page_cache()
 1036 {
 1037 
 1038 #ifdef __mips_n64
 1039         vm_pageout_grow_cache(3, 0, MIPS_XKPHYS_LARGEST_PHYS);
 1040 #else
 1041         vm_pageout_grow_cache(3, 0, MIPS_KSEG0_LARGEST_PHYS);
 1042 #endif
 1043 }
 1044 
 1045 static vm_page_t
 1046 pmap_alloc_direct_page(unsigned int index, int req)
 1047 {
 1048         vm_page_t m;
 1049 
 1050         m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, req | VM_ALLOC_WIRED |
 1051             VM_ALLOC_ZERO);
 1052         if (m == NULL)
 1053                 return (NULL);
 1054 
 1055         if ((m->flags & PG_ZERO) == 0)
 1056                 pmap_zero_page(m);
 1057 
 1058         m->pindex = index;
 1059         return (m);
 1060 }
 1061 
 1062 /*
 1063  * Initialize a preallocated and zeroed pmap structure,
 1064  * such as one in a vmspace structure.
 1065  */
 1066 int
 1067 pmap_pinit(pmap_t pmap)
 1068 {
 1069         vm_offset_t ptdva;
 1070         vm_page_t ptdpg;
 1071         int i;
 1072 
 1073         /*
 1074          * allocate the page directory page
 1075          */
 1076         while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, VM_ALLOC_NORMAL)) == NULL)
 1077                pmap_grow_direct_page_cache();
 1078 
 1079         ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
 1080         pmap->pm_segtab = (pd_entry_t *)ptdva;
 1081         CPU_ZERO(&pmap->pm_active);
 1082         for (i = 0; i < MAXCPU; i++) {
 1083                 pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
 1084                 pmap->pm_asid[i].gen = 0;
 1085         }
 1086         TAILQ_INIT(&pmap->pm_pvchunk);
 1087         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1088 
 1089         return (1);
 1090 }
 1091 
 1092 /*
 1093  * this routine is called if the page table page is not
 1094  * mapped correctly.
 1095  */
 1096 static vm_page_t
 1097 _pmap_allocpte(pmap_t pmap, unsigned ptepindex, u_int flags)
 1098 {
 1099         vm_offset_t pageva;
 1100         vm_page_t m;
 1101 
 1102         /*
 1103          * Find or fabricate a new pagetable page
 1104          */
 1105         if ((m = pmap_alloc_direct_page(ptepindex, VM_ALLOC_NORMAL)) == NULL) {
 1106                 if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
 1107                         PMAP_UNLOCK(pmap);
 1108                         rw_wunlock(&pvh_global_lock);
 1109                         pmap_grow_direct_page_cache();
 1110                         rw_wlock(&pvh_global_lock);
 1111                         PMAP_LOCK(pmap);
 1112                 }
 1113 
 1114                 /*
 1115                  * Indicate the need to retry.  While waiting, the page
 1116                  * table page may have been allocated.
 1117                  */
 1118                 return (NULL);
 1119         }
 1120 
 1121         /*
 1122          * Map the pagetable page into the process address space, if it
 1123          * isn't already there.
 1124          */
 1125         pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
 1126 
 1127 #ifdef __mips_n64
 1128         if (ptepindex >= NUPDE) {
 1129                 pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva;
 1130         } else {
 1131                 pd_entry_t *pdep, *pde;
 1132                 int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT);
 1133                 int pdeindex = ptepindex & (NPDEPG - 1);
 1134                 vm_page_t pg;
 1135                 
 1136                 pdep = &pmap->pm_segtab[segindex];
 1137                 if (*pdep == NULL) { 
 1138                         /* recurse for allocating page dir */
 1139                         if (_pmap_allocpte(pmap, NUPDE + segindex, 
 1140                             flags) == NULL) {
 1141                                 /* alloc failed, release current */
 1142                                 --m->wire_count;
 1143                                 atomic_subtract_int(&cnt.v_wire_count, 1);
 1144                                 vm_page_free_zero(m);
 1145                                 return (NULL);
 1146                         }
 1147                 } else {
 1148                         pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep));
 1149                         pg->wire_count++;
 1150                 }
 1151                 /* Next level entry */
 1152                 pde = (pd_entry_t *)*pdep;
 1153                 pde[pdeindex] = (pd_entry_t)pageva;
 1154         }
 1155 #else
 1156         pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva;
 1157 #endif
 1158         pmap->pm_stats.resident_count++;
 1159         return (m);
 1160 }
 1161 
 1162 static vm_page_t
 1163 pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
 1164 {
 1165         unsigned ptepindex;
 1166         pd_entry_t *pde;
 1167         vm_page_t m;
 1168 
 1169         /*
 1170          * Calculate pagetable page index
 1171          */
 1172         ptepindex = pmap_pde_pindex(va);
 1173 retry:
 1174         /*
 1175          * Get the page directory entry
 1176          */
 1177         pde = pmap_pde(pmap, va);
 1178 
 1179         /*
 1180          * If the page table page is mapped, we just increment the hold
 1181          * count, and activate it.
 1182          */
 1183         if (pde != NULL && *pde != NULL) {
 1184                 m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde));
 1185                 m->wire_count++;
 1186         } else {
 1187                 /*
 1188                  * Here if the pte page isn't mapped, or if it has been
 1189                  * deallocated.
 1190                  */
 1191                 m = _pmap_allocpte(pmap, ptepindex, flags);
 1192                 if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
 1193                         goto retry;
 1194         }
 1195         return (m);
 1196 }
 1197 
 1198 
 1199 /***************************************************
 1200  * Pmap allocation/deallocation routines.
 1201  ***************************************************/
 1202 
 1203 /*
 1204  * Release any resources held by the given physical map.
 1205  * Called when a pmap initialized by pmap_pinit is being released.
 1206  * Should only be called if the map contains no valid mappings.
 1207  */
 1208 void
 1209 pmap_release(pmap_t pmap)
 1210 {
 1211         vm_offset_t ptdva;
 1212         vm_page_t ptdpg;
 1213 
 1214         KASSERT(pmap->pm_stats.resident_count == 0,
 1215             ("pmap_release: pmap resident count %ld != 0",
 1216             pmap->pm_stats.resident_count));
 1217 
 1218         ptdva = (vm_offset_t)pmap->pm_segtab;
 1219         ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva));
 1220 
 1221         ptdpg->wire_count--;
 1222         atomic_subtract_int(&cnt.v_wire_count, 1);
 1223         vm_page_free_zero(ptdpg);
 1224 }
 1225 
 1226 /*
 1227  * grow the number of kernel page table entries, if needed
 1228  */
 1229 void
 1230 pmap_growkernel(vm_offset_t addr)
 1231 {
 1232         vm_page_t nkpg;
 1233         pd_entry_t *pde, *pdpe;
 1234         pt_entry_t *pte;
 1235         int i;
 1236 
 1237         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 1238         addr = roundup2(addr, NBSEG);
 1239         if (addr - 1 >= kernel_map->max_offset)
 1240                 addr = kernel_map->max_offset;
 1241         while (kernel_vm_end < addr) {
 1242                 pdpe = pmap_segmap(kernel_pmap, kernel_vm_end);
 1243 #ifdef __mips_n64
 1244                 if (*pdpe == 0) {
 1245                         /* new intermediate page table entry */
 1246                         nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
 1247                         if (nkpg == NULL)
 1248                                 panic("pmap_growkernel: no memory to grow kernel");
 1249                         *pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
 1250                         continue; /* try again */
 1251                 }
 1252 #endif
 1253                 pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
 1254                 if (*pde != 0) {
 1255                         kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 1256                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1257                                 kernel_vm_end = kernel_map->max_offset;
 1258                                 break;
 1259                         }
 1260                         continue;
 1261                 }
 1262 
 1263                 /*
 1264                  * This index is bogus, but out of the way
 1265                  */
 1266                 nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
 1267                 if (!nkpg)
 1268                         panic("pmap_growkernel: no memory to grow kernel");
 1269                 nkpt++;
 1270                 *pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
 1271 
 1272                 /*
 1273                  * The R[4-7]?00 stores only one copy of the Global bit in
 1274                  * the translation lookaside buffer for each 2 page entry.
 1275                  * Thus invalid entrys must have the Global bit set so when
 1276                  * Entry LO and Entry HI G bits are anded together they will
 1277                  * produce a global bit to store in the tlb.
 1278                  */
 1279                 pte = (pt_entry_t *)*pde;
 1280                 for (i = 0; i < NPTEPG; i++)
 1281                         pte[i] = PTE_G;
 1282 
 1283                 kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 1284                 if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1285                         kernel_vm_end = kernel_map->max_offset;
 1286                         break;
 1287                 }
 1288         }
 1289 }
 1290 
 1291 /***************************************************
 1292  * page management routines.
 1293  ***************************************************/
 1294 
 1295 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
 1296 #ifdef __mips_n64
 1297 CTASSERT(_NPCM == 3);
 1298 CTASSERT(_NPCPV == 168);
 1299 #else
 1300 CTASSERT(_NPCM == 11);
 1301 CTASSERT(_NPCPV == 336);
 1302 #endif
 1303 
 1304 static __inline struct pv_chunk *
 1305 pv_to_chunk(pv_entry_t pv)
 1306 {
 1307 
 1308         return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
 1309 }
 1310 
 1311 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
 1312 
 1313 #ifdef __mips_n64
 1314 #define PC_FREE0_1      0xfffffffffffffffful
 1315 #define PC_FREE2        0x000000fffffffffful
 1316 #else
 1317 #define PC_FREE0_9      0xfffffffful    /* Free values for index 0 through 9 */
 1318 #define PC_FREE10       0x0000fffful    /* Free values for index 10 */
 1319 #endif
 1320 
 1321 static const u_long pc_freemask[_NPCM] = {
 1322 #ifdef __mips_n64
 1323         PC_FREE0_1, PC_FREE0_1, PC_FREE2
 1324 #else
 1325         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1326         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1327         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1328         PC_FREE0_9, PC_FREE10
 1329 #endif
 1330 };
 1331 
 1332 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
 1333 
 1334 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
 1335     "Current number of pv entries");
 1336 
 1337 #ifdef PV_STATS
 1338 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
 1339 
 1340 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
 1341     "Current number of pv entry chunks");
 1342 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
 1343     "Current number of pv entry chunks allocated");
 1344 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
 1345     "Current number of pv entry chunks frees");
 1346 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
 1347     "Number of times tried to get a chunk page but failed.");
 1348 
 1349 static long pv_entry_frees, pv_entry_allocs;
 1350 static int pv_entry_spare;
 1351 
 1352 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
 1353     "Current number of pv entry frees");
 1354 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
 1355     "Current number of pv entry allocs");
 1356 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
 1357     "Current number of spare pv entries");
 1358 #endif
 1359 
 1360 /*
 1361  * We are in a serious low memory condition.  Resort to
 1362  * drastic measures to free some pages so we can allocate
 1363  * another pv entry chunk.
 1364  */
 1365 static vm_page_t
 1366 pmap_pv_reclaim(pmap_t locked_pmap)
 1367 {
 1368         struct pch newtail;
 1369         struct pv_chunk *pc;
 1370         pd_entry_t *pde;
 1371         pmap_t pmap;
 1372         pt_entry_t *pte, oldpte;
 1373         pv_entry_t pv;
 1374         vm_offset_t va;
 1375         vm_page_t m, m_pc;
 1376         u_long inuse;
 1377         int bit, field, freed, idx;
 1378 
 1379         PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
 1380         pmap = NULL;
 1381         m_pc = NULL;
 1382         TAILQ_INIT(&newtail);
 1383         while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL) {
 1384                 TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 1385                 if (pmap != pc->pc_pmap) {
 1386                         if (pmap != NULL) {
 1387                                 pmap_invalidate_all(pmap);
 1388                                 if (pmap != locked_pmap)
 1389                                         PMAP_UNLOCK(pmap);
 1390                         }
 1391                         pmap = pc->pc_pmap;
 1392                         /* Avoid deadlock and lock recursion. */
 1393                         if (pmap > locked_pmap)
 1394                                 PMAP_LOCK(pmap);
 1395                         else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
 1396                                 pmap = NULL;
 1397                                 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 1398                                 continue;
 1399                         }
 1400                 }
 1401 
 1402                 /*
 1403                  * Destroy every non-wired, 4 KB page mapping in the chunk.
 1404                  */
 1405                 freed = 0;
 1406                 for (field = 0; field < _NPCM; field++) {
 1407                         for (inuse = ~pc->pc_map[field] & pc_freemask[field];
 1408                             inuse != 0; inuse &= ~(1UL << bit)) {
 1409                                 bit = ffsl(inuse) - 1;
 1410                                 idx = field * sizeof(inuse) * NBBY + bit;
 1411                                 pv = &pc->pc_pventry[idx];
 1412                                 va = pv->pv_va;
 1413                                 pde = pmap_pde(pmap, va);
 1414                                 KASSERT(pde != NULL && *pde != 0,
 1415                                     ("pmap_pv_reclaim: pde"));
 1416                                 pte = pmap_pde_to_pte(pde, va);
 1417                                 oldpte = *pte;
 1418                                 if (pte_test(&oldpte, PTE_W))
 1419                                         continue;
 1420                                 if (is_kernel_pmap(pmap))
 1421                                         *pte = PTE_G;
 1422                                 else
 1423                                         *pte = 0;
 1424                                 m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(oldpte));
 1425                                 if (pte_test(&oldpte, PTE_D))
 1426                                         vm_page_dirty(m);
 1427                                 if (m->md.pv_flags & PV_TABLE_REF)
 1428                                         vm_page_aflag_set(m, PGA_REFERENCED);
 1429                                 m->md.pv_flags &= ~PV_TABLE_REF;
 1430                                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1431                                 if (TAILQ_EMPTY(&m->md.pv_list))
 1432                                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 1433                                 pc->pc_map[field] |= 1UL << bit;
 1434                                 pmap_unuse_pt(pmap, va, *pde);
 1435                                 freed++;
 1436                         }
 1437                 }
 1438                 if (freed == 0) {
 1439                         TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 1440                         continue;
 1441                 }
 1442                 /* Every freed mapping is for a 4 KB page. */
 1443                 pmap->pm_stats.resident_count -= freed;
 1444                 PV_STAT(pv_entry_frees += freed);
 1445                 PV_STAT(pv_entry_spare += freed);
 1446                 pv_entry_count -= freed;
 1447                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 1448                 for (field = 0; field < _NPCM; field++)
 1449                         if (pc->pc_map[field] != pc_freemask[field]) {
 1450                                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
 1451                                     pc_list);
 1452                                 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 1453 
 1454                                 /*
 1455                                  * One freed pv entry in locked_pmap is
 1456                                  * sufficient.
 1457                                  */
 1458                                 if (pmap == locked_pmap)
 1459                                         goto out;
 1460                                 break;
 1461                         }
 1462                 if (field == _NPCM) {
 1463                         PV_STAT(pv_entry_spare -= _NPCPV);
 1464                         PV_STAT(pc_chunk_count--);
 1465                         PV_STAT(pc_chunk_frees++);
 1466                         /* Entire chunk is free; return it. */
 1467                         m_pc = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(
 1468                             (vm_offset_t)pc));
 1469                         break;
 1470                 }
 1471         }
 1472 out:
 1473         TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
 1474         if (pmap != NULL) {
 1475                 pmap_invalidate_all(pmap);
 1476                 if (pmap != locked_pmap)
 1477                         PMAP_UNLOCK(pmap);
 1478         }
 1479         return (m_pc);
 1480 }
 1481 
 1482 /*
 1483  * free the pv_entry back to the free list
 1484  */
 1485 static void
 1486 free_pv_entry(pmap_t pmap, pv_entry_t pv)
 1487 {
 1488         struct pv_chunk *pc;
 1489         int bit, field, idx;
 1490 
 1491         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1492         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1493         PV_STAT(pv_entry_frees++);
 1494         PV_STAT(pv_entry_spare++);
 1495         pv_entry_count--;
 1496         pc = pv_to_chunk(pv);
 1497         idx = pv - &pc->pc_pventry[0];
 1498         field = idx / (sizeof(u_long) * NBBY);
 1499         bit = idx % (sizeof(u_long) * NBBY);
 1500         pc->pc_map[field] |= 1ul << bit;
 1501         for (idx = 0; idx < _NPCM; idx++)
 1502                 if (pc->pc_map[idx] != pc_freemask[idx]) {
 1503                         /*
 1504                          * 98% of the time, pc is already at the head of the
 1505                          * list.  If it isn't already, move it to the head.
 1506                          */
 1507                         if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
 1508                             pc)) {
 1509                                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 1510                                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
 1511                                     pc_list);
 1512                         }
 1513                         return;
 1514                 }
 1515         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 1516         free_pv_chunk(pc);
 1517 }
 1518 
 1519 static void
 1520 free_pv_chunk(struct pv_chunk *pc)
 1521 {
 1522         vm_page_t m;
 1523 
 1524         TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 1525         PV_STAT(pv_entry_spare -= _NPCPV);
 1526         PV_STAT(pc_chunk_count--);
 1527         PV_STAT(pc_chunk_frees++);
 1528         /* entire chunk is free, return it */
 1529         m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS((vm_offset_t)pc));
 1530         vm_page_unwire(m, 0);
 1531         vm_page_free(m);
 1532 }
 1533 
 1534 /*
 1535  * get a new pv_entry, allocating a block from the system
 1536  * when needed.
 1537  */
 1538 static pv_entry_t
 1539 get_pv_entry(pmap_t pmap, boolean_t try)
 1540 {
 1541         struct pv_chunk *pc;
 1542         pv_entry_t pv;
 1543         vm_page_t m;
 1544         int bit, field, idx;
 1545 
 1546         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1547         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1548         PV_STAT(pv_entry_allocs++);
 1549         pv_entry_count++;
 1550 retry:
 1551         pc = TAILQ_FIRST(&pmap->pm_pvchunk);
 1552         if (pc != NULL) {
 1553                 for (field = 0; field < _NPCM; field++) {
 1554                         if (pc->pc_map[field]) {
 1555                                 bit = ffsl(pc->pc_map[field]) - 1;
 1556                                 break;
 1557                         }
 1558                 }
 1559                 if (field < _NPCM) {
 1560                         idx = field * sizeof(pc->pc_map[field]) * NBBY + bit;
 1561                         pv = &pc->pc_pventry[idx];
 1562                         pc->pc_map[field] &= ~(1ul << bit);
 1563                         /* If this was the last item, move it to tail */
 1564                         for (field = 0; field < _NPCM; field++)
 1565                                 if (pc->pc_map[field] != 0) {
 1566                                         PV_STAT(pv_entry_spare--);
 1567                                         return (pv);    /* not full, return */
 1568                                 }
 1569                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 1570                         TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
 1571                         PV_STAT(pv_entry_spare--);
 1572                         return (pv);
 1573                 }
 1574         }
 1575         /* No free items, allocate another chunk */
 1576         m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, VM_ALLOC_NORMAL |
 1577             VM_ALLOC_WIRED);
 1578         if (m == NULL) {
 1579                 if (try) {
 1580                         pv_entry_count--;
 1581                         PV_STAT(pc_chunk_tryfail++);
 1582                         return (NULL);
 1583                 }
 1584                 m = pmap_pv_reclaim(pmap);
 1585                 if (m == NULL)
 1586                         goto retry;
 1587         }
 1588         PV_STAT(pc_chunk_count++);
 1589         PV_STAT(pc_chunk_allocs++);
 1590         pc = (struct pv_chunk *)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
 1591         pc->pc_pmap = pmap;
 1592         pc->pc_map[0] = pc_freemask[0] & ~1ul;  /* preallocated bit 0 */
 1593         for (field = 1; field < _NPCM; field++)
 1594                 pc->pc_map[field] = pc_freemask[field];
 1595         TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
 1596         pv = &pc->pc_pventry[0];
 1597         TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 1598         PV_STAT(pv_entry_spare += _NPCPV - 1);
 1599         return (pv);
 1600 }
 1601 
 1602 static pv_entry_t
 1603 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 1604 {
 1605         pv_entry_t pv;
 1606 
 1607         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1608         TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
 1609                 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
 1610                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
 1611                         break;
 1612                 }
 1613         }
 1614         return (pv);
 1615 }
 1616 
 1617 static void
 1618 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 1619 {
 1620         pv_entry_t pv;
 1621 
 1622         pv = pmap_pvh_remove(pvh, pmap, va);
 1623         KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
 1624              (u_long)VM_PAGE_TO_PHYS(__containerof(pvh, struct vm_page, md)),
 1625              (u_long)va));
 1626         free_pv_entry(pmap, pv);
 1627 }
 1628 
 1629 static void
 1630 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
 1631 {
 1632 
 1633         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1634         pmap_pvh_free(&m->md, pmap, va);
 1635         if (TAILQ_EMPTY(&m->md.pv_list))
 1636                 vm_page_aflag_clear(m, PGA_WRITEABLE);
 1637 }
 1638 
 1639 /*
 1640  * Conditionally create a pv entry.
 1641  */
 1642 static boolean_t
 1643 pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
 1644     vm_page_t m)
 1645 {
 1646         pv_entry_t pv;
 1647 
 1648         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1649         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1650         if ((pv = get_pv_entry(pmap, TRUE)) != NULL) {
 1651                 pv->pv_va = va;
 1652                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 1653                 return (TRUE);
 1654         } else
 1655                 return (FALSE);
 1656 }
 1657 
 1658 /*
 1659  * pmap_remove_pte: do the things to unmap a page in a process
 1660  */
 1661 static int
 1662 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va, 
 1663     pd_entry_t pde)
 1664 {
 1665         pt_entry_t oldpte;
 1666         vm_page_t m;
 1667         vm_paddr_t pa;
 1668 
 1669         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1670         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1671 
 1672         /*
 1673          * Write back all cache lines from the page being unmapped.
 1674          */
 1675         mips_dcache_wbinv_range_index(va, PAGE_SIZE);
 1676 
 1677         oldpte = *ptq;
 1678         if (is_kernel_pmap(pmap))
 1679                 *ptq = PTE_G;
 1680         else
 1681                 *ptq = 0;
 1682 
 1683         if (pte_test(&oldpte, PTE_W))
 1684                 pmap->pm_stats.wired_count -= 1;
 1685 
 1686         pmap->pm_stats.resident_count -= 1;
 1687 
 1688         if (pte_test(&oldpte, PTE_MANAGED)) {
 1689                 pa = TLBLO_PTE_TO_PA(oldpte);
 1690                 m = PHYS_TO_VM_PAGE(pa);
 1691                 if (pte_test(&oldpte, PTE_D)) {
 1692                         KASSERT(!pte_test(&oldpte, PTE_RO),
 1693                             ("%s: modified page not writable: va: %p, pte: %#jx",
 1694                             __func__, (void *)va, (uintmax_t)oldpte));
 1695                         vm_page_dirty(m);
 1696                 }
 1697                 if (m->md.pv_flags & PV_TABLE_REF)
 1698                         vm_page_aflag_set(m, PGA_REFERENCED);
 1699                 m->md.pv_flags &= ~PV_TABLE_REF;
 1700 
 1701                 pmap_remove_entry(pmap, m, va);
 1702         }
 1703         return (pmap_unuse_pt(pmap, va, pde));
 1704 }
 1705 
 1706 /*
 1707  * Remove a single page from a process address space
 1708  */
 1709 static void
 1710 pmap_remove_page(struct pmap *pmap, vm_offset_t va)
 1711 {
 1712         pd_entry_t *pde;
 1713         pt_entry_t *ptq;
 1714 
 1715         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1716         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1717         pde = pmap_pde(pmap, va);
 1718         if (pde == NULL || *pde == 0)
 1719                 return;
 1720         ptq = pmap_pde_to_pte(pde, va);
 1721 
 1722         /*
 1723          * If there is no pte for this address, just skip it!
 1724          */
 1725         if (!pte_test(ptq, PTE_V))
 1726                 return;
 1727 
 1728         (void)pmap_remove_pte(pmap, ptq, va, *pde);
 1729         pmap_invalidate_page(pmap, va);
 1730 }
 1731 
 1732 /*
 1733  *      Remove the given range of addresses from the specified map.
 1734  *
 1735  *      It is assumed that the start and end are properly
 1736  *      rounded to the page size.
 1737  */
 1738 void
 1739 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 1740 {
 1741         pd_entry_t *pde, *pdpe;
 1742         pt_entry_t *pte;
 1743         vm_offset_t va, va_next;
 1744 
 1745         /*
 1746          * Perform an unsynchronized read.  This is, however, safe.
 1747          */
 1748         if (pmap->pm_stats.resident_count == 0)
 1749                 return;
 1750 
 1751         rw_wlock(&pvh_global_lock);
 1752         PMAP_LOCK(pmap);
 1753 
 1754         /*
 1755          * special handling of removing one page.  a very common operation
 1756          * and easy to short circuit some code.
 1757          */
 1758         if ((sva + PAGE_SIZE) == eva) {
 1759                 pmap_remove_page(pmap, sva);
 1760                 goto out;
 1761         }
 1762         for (; sva < eva; sva = va_next) {
 1763                 pdpe = pmap_segmap(pmap, sva);
 1764 #ifdef __mips_n64
 1765                 if (*pdpe == 0) {
 1766                         va_next = (sva + NBSEG) & ~SEGMASK;
 1767                         if (va_next < sva)
 1768                                 va_next = eva;
 1769                         continue;
 1770                 }
 1771 #endif
 1772                 va_next = (sva + NBPDR) & ~PDRMASK;
 1773                 if (va_next < sva)
 1774                         va_next = eva;
 1775 
 1776                 pde = pmap_pdpe_to_pde(pdpe, sva);
 1777                 if (*pde == NULL)
 1778                         continue;
 1779 
 1780                 /*
 1781                  * Limit our scan to either the end of the va represented
 1782                  * by the current page table page, or to the end of the
 1783                  * range being removed.
 1784                  */
 1785                 if (va_next > eva)
 1786                         va_next = eva;
 1787 
 1788                 va = va_next;
 1789                 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 1790                     sva += PAGE_SIZE) {
 1791                         if (!pte_test(pte, PTE_V)) {
 1792                                 if (va != va_next) {
 1793                                         pmap_invalidate_range(pmap, va, sva);
 1794                                         va = va_next;
 1795                                 }
 1796                                 continue;
 1797                         }
 1798                         if (va == va_next)
 1799                                 va = sva;
 1800                         if (pmap_remove_pte(pmap, pte, sva, *pde)) {
 1801                                 sva += PAGE_SIZE;
 1802                                 break;
 1803                         }
 1804                 }
 1805                 if (va != va_next)
 1806                         pmap_invalidate_range(pmap, va, sva);
 1807         }
 1808 out:
 1809         rw_wunlock(&pvh_global_lock);
 1810         PMAP_UNLOCK(pmap);
 1811 }
 1812 
 1813 /*
 1814  *      Routine:        pmap_remove_all
 1815  *      Function:
 1816  *              Removes this physical page from
 1817  *              all physical maps in which it resides.
 1818  *              Reflects back modify bits to the pager.
 1819  *
 1820  *      Notes:
 1821  *              Original versions of this routine were very
 1822  *              inefficient because they iteratively called
 1823  *              pmap_remove (slow...)
 1824  */
 1825 
 1826 void
 1827 pmap_remove_all(vm_page_t m)
 1828 {
 1829         pv_entry_t pv;
 1830         pmap_t pmap;
 1831         pd_entry_t *pde;
 1832         pt_entry_t *pte, tpte;
 1833 
 1834         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1835             ("pmap_remove_all: page %p is not managed", m));
 1836         rw_wlock(&pvh_global_lock);
 1837 
 1838         if (m->md.pv_flags & PV_TABLE_REF)
 1839                 vm_page_aflag_set(m, PGA_REFERENCED);
 1840 
 1841         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 1842                 pmap = PV_PMAP(pv);
 1843                 PMAP_LOCK(pmap);
 1844 
 1845                 /*
 1846                  * If it's last mapping writeback all caches from 
 1847                  * the page being destroyed
 1848                  */
 1849                 if (TAILQ_NEXT(pv, pv_list) == NULL)
 1850                         mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
 1851 
 1852                 pmap->pm_stats.resident_count--;
 1853 
 1854                 pde = pmap_pde(pmap, pv->pv_va);
 1855                 KASSERT(pde != NULL && *pde != 0, ("pmap_remove_all: pde"));
 1856                 pte = pmap_pde_to_pte(pde, pv->pv_va);
 1857 
 1858                 tpte = *pte;
 1859                 if (is_kernel_pmap(pmap))
 1860                         *pte = PTE_G;
 1861                 else
 1862                         *pte = 0;
 1863 
 1864                 if (pte_test(&tpte, PTE_W))
 1865                         pmap->pm_stats.wired_count--;
 1866 
 1867                 /*
 1868                  * Update the vm_page_t clean and reference bits.
 1869                  */
 1870                 if (pte_test(&tpte, PTE_D)) {
 1871                         KASSERT(!pte_test(&tpte, PTE_RO),
 1872                             ("%s: modified page not writable: va: %p, pte: %#jx",
 1873                             __func__, (void *)pv->pv_va, (uintmax_t)tpte));
 1874                         vm_page_dirty(m);
 1875                 }
 1876                 pmap_invalidate_page(pmap, pv->pv_va);
 1877 
 1878                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1879                 pmap_unuse_pt(pmap, pv->pv_va, *pde);
 1880                 free_pv_entry(pmap, pv);
 1881                 PMAP_UNLOCK(pmap);
 1882         }
 1883 
 1884         vm_page_aflag_clear(m, PGA_WRITEABLE);
 1885         m->md.pv_flags &= ~PV_TABLE_REF;
 1886         rw_wunlock(&pvh_global_lock);
 1887 }
 1888 
 1889 /*
 1890  *      Set the physical protection on the
 1891  *      specified range of this map as requested.
 1892  */
 1893 void
 1894 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 1895 {
 1896         pt_entry_t pbits, *pte;
 1897         pd_entry_t *pde, *pdpe;
 1898         vm_offset_t va, va_next;
 1899         vm_paddr_t pa;
 1900         vm_page_t m;
 1901 
 1902         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 1903                 pmap_remove(pmap, sva, eva);
 1904                 return;
 1905         }
 1906         if (prot & VM_PROT_WRITE)
 1907                 return;
 1908 
 1909         PMAP_LOCK(pmap);
 1910         for (; sva < eva; sva = va_next) {
 1911                 pdpe = pmap_segmap(pmap, sva);
 1912 #ifdef __mips_n64
 1913                 if (*pdpe == 0) {
 1914                         va_next = (sva + NBSEG) & ~SEGMASK;
 1915                         if (va_next < sva)
 1916                                 va_next = eva;
 1917                         continue;
 1918                 }
 1919 #endif
 1920                 va_next = (sva + NBPDR) & ~PDRMASK;
 1921                 if (va_next < sva)
 1922                         va_next = eva;
 1923 
 1924                 pde = pmap_pdpe_to_pde(pdpe, sva);
 1925                 if (*pde == NULL)
 1926                         continue;
 1927 
 1928                 /*
 1929                  * Limit our scan to either the end of the va represented
 1930                  * by the current page table page, or to the end of the
 1931                  * range being write protected.
 1932                  */
 1933                 if (va_next > eva)
 1934                         va_next = eva;
 1935 
 1936                 va = va_next;
 1937                 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 1938                     sva += PAGE_SIZE) {
 1939                         pbits = *pte;
 1940                         if (!pte_test(&pbits, PTE_V) || pte_test(&pbits,
 1941                             PTE_RO)) {
 1942                                 if (va != va_next) {
 1943                                         pmap_invalidate_range(pmap, va, sva);
 1944                                         va = va_next;
 1945                                 }
 1946                                 continue;
 1947                         }
 1948                         pte_set(&pbits, PTE_RO);
 1949                         if (pte_test(&pbits, PTE_D)) {
 1950                                 pte_clear(&pbits, PTE_D);
 1951                                 if (pte_test(&pbits, PTE_MANAGED)) {
 1952                                         pa = TLBLO_PTE_TO_PA(pbits);
 1953                                         m = PHYS_TO_VM_PAGE(pa);
 1954                                         vm_page_dirty(m);
 1955                                 }
 1956                                 if (va == va_next)
 1957                                         va = sva;
 1958                         } else {
 1959                                 /*
 1960                                  * Unless PTE_D is set, any TLB entries
 1961                                  * mapping "sva" don't allow write access, so
 1962                                  * they needn't be invalidated.
 1963                                  */
 1964                                 if (va != va_next) {
 1965                                         pmap_invalidate_range(pmap, va, sva);
 1966                                         va = va_next;
 1967                                 }
 1968                         }
 1969                         *pte = pbits;
 1970                 }
 1971                 if (va != va_next)
 1972                         pmap_invalidate_range(pmap, va, sva);
 1973         }
 1974         PMAP_UNLOCK(pmap);
 1975 }
 1976 
 1977 /*
 1978  *      Insert the given physical page (p) at
 1979  *      the specified virtual address (v) in the
 1980  *      target physical map with the protection requested.
 1981  *
 1982  *      If specified, the page will be wired down, meaning
 1983  *      that the related pte can not be reclaimed.
 1984  *
 1985  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 1986  *      or lose information.  That is, this routine must actually
 1987  *      insert this page into the given map NOW.
 1988  */
 1989 int
 1990 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
 1991     u_int flags, int8_t psind __unused)
 1992 {
 1993         vm_paddr_t pa, opa;
 1994         pt_entry_t *pte;
 1995         pt_entry_t origpte, newpte;
 1996         pv_entry_t pv;
 1997         vm_page_t mpte, om;
 1998 
 1999         va &= ~PAGE_MASK;
 2000         KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
 2001         KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
 2002             va >= kmi.clean_eva,
 2003             ("pmap_enter: managed mapping within the clean submap"));
 2004         if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
 2005                 VM_OBJECT_ASSERT_LOCKED(m->object);
 2006         pa = VM_PAGE_TO_PHYS(m);
 2007         newpte = TLBLO_PA_TO_PFN(pa) | init_pte_prot(m, flags, prot);
 2008         if ((flags & PMAP_ENTER_WIRED) != 0)
 2009                 newpte |= PTE_W;
 2010         if (is_kernel_pmap(pmap))
 2011                 newpte |= PTE_G;
 2012         if (is_cacheable_mem(pa))
 2013                 newpte |= PTE_C_CACHE;
 2014         else
 2015                 newpte |= PTE_C_UNCACHED;
 2016 
 2017         mpte = NULL;
 2018 
 2019         rw_wlock(&pvh_global_lock);
 2020         PMAP_LOCK(pmap);
 2021 
 2022         /*
 2023          * In the case that a page table page is not resident, we are
 2024          * creating it here.
 2025          */
 2026         if (va < VM_MAXUSER_ADDRESS) {
 2027                 mpte = pmap_allocpte(pmap, va, flags);
 2028                 if (mpte == NULL) {
 2029                         KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
 2030                             ("pmap_allocpte failed with sleep allowed"));
 2031                         rw_wunlock(&pvh_global_lock);
 2032                         PMAP_UNLOCK(pmap);
 2033                         return (KERN_RESOURCE_SHORTAGE);
 2034                 }
 2035         }
 2036         pte = pmap_pte(pmap, va);
 2037 
 2038         /*
 2039          * Page Directory table entry not valid, we need a new PT page
 2040          */
 2041         if (pte == NULL) {
 2042                 panic("pmap_enter: invalid page directory, pdir=%p, va=%p",
 2043                     (void *)pmap->pm_segtab, (void *)va);
 2044         }
 2045         om = NULL;
 2046         origpte = *pte;
 2047         opa = TLBLO_PTE_TO_PA(origpte);
 2048 
 2049         /*
 2050          * Mapping has not changed, must be protection or wiring change.
 2051          */
 2052         if (pte_test(&origpte, PTE_V) && opa == pa) {
 2053                 /*
 2054                  * Wiring change, just update stats. We don't worry about
 2055                  * wiring PT pages as they remain resident as long as there
 2056                  * are valid mappings in them. Hence, if a user page is
 2057                  * wired, the PT page will be also.
 2058                  */
 2059                 if (pte_test(&newpte, PTE_W) && !pte_test(&origpte, PTE_W))
 2060                         pmap->pm_stats.wired_count++;
 2061                 else if (!pte_test(&newpte, PTE_W) && pte_test(&origpte,
 2062                     PTE_W))
 2063                         pmap->pm_stats.wired_count--;
 2064 
 2065                 KASSERT(!pte_test(&origpte, PTE_D | PTE_RO),
 2066                     ("%s: modified page not writable: va: %p, pte: %#jx",
 2067                     __func__, (void *)va, (uintmax_t)origpte));
 2068 
 2069                 /*
 2070                  * Remove extra pte reference
 2071                  */
 2072                 if (mpte)
 2073                         mpte->wire_count--;
 2074 
 2075                 if (pte_test(&origpte, PTE_MANAGED)) {
 2076                         m->md.pv_flags |= PV_TABLE_REF;
 2077                         om = m;
 2078                         newpte |= PTE_MANAGED;
 2079                         if (!pte_test(&newpte, PTE_RO))
 2080                                 vm_page_aflag_set(m, PGA_WRITEABLE);
 2081                 }
 2082                 goto validate;
 2083         }
 2084 
 2085         pv = NULL;
 2086 
 2087         /*
 2088          * Mapping has changed, invalidate old range and fall through to
 2089          * handle validating new mapping.
 2090          */
 2091         if (opa) {
 2092                 if (pte_test(&origpte, PTE_W))
 2093                         pmap->pm_stats.wired_count--;
 2094 
 2095                 if (pte_test(&origpte, PTE_MANAGED)) {
 2096                         om = PHYS_TO_VM_PAGE(opa);
 2097                         pv = pmap_pvh_remove(&om->md, pmap, va);
 2098                 }
 2099                 if (mpte != NULL) {
 2100                         mpte->wire_count--;
 2101                         KASSERT(mpte->wire_count > 0,
 2102                             ("pmap_enter: missing reference to page table page,"
 2103                             " va: %p", (void *)va));
 2104                 }
 2105         } else
 2106                 pmap->pm_stats.resident_count++;
 2107 
 2108         /*
 2109          * Enter on the PV list if part of our managed memory.
 2110          */
 2111         if ((m->oflags & VPO_UNMANAGED) == 0) {
 2112                 m->md.pv_flags |= PV_TABLE_REF;
 2113                 if (pv == NULL)
 2114                         pv = get_pv_entry(pmap, FALSE);
 2115                 pv->pv_va = va;
 2116                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 2117                 newpte |= PTE_MANAGED;
 2118                 if (!pte_test(&newpte, PTE_RO))
 2119                         vm_page_aflag_set(m, PGA_WRITEABLE);
 2120         } else if (pv != NULL)
 2121                 free_pv_entry(pmap, pv);
 2122 
 2123         /*
 2124          * Increment counters
 2125          */
 2126         if (pte_test(&newpte, PTE_W))
 2127                 pmap->pm_stats.wired_count++;
 2128 
 2129 validate:
 2130 
 2131 #ifdef PMAP_DEBUG
 2132         printf("pmap_enter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
 2133 #endif
 2134 
 2135         /*
 2136          * if the mapping or permission bits are different, we need to
 2137          * update the pte.
 2138          */
 2139         if (origpte != newpte) {
 2140                 *pte = newpte;
 2141                 if (pte_test(&origpte, PTE_V)) {
 2142                         if (pte_test(&origpte, PTE_MANAGED) && opa != pa) {
 2143                                 if (om->md.pv_flags & PV_TABLE_REF)
 2144                                         vm_page_aflag_set(om, PGA_REFERENCED);
 2145                                 om->md.pv_flags &= ~PV_TABLE_REF;
 2146                         }
 2147                         if (pte_test(&origpte, PTE_D)) {
 2148                                 KASSERT(!pte_test(&origpte, PTE_RO),
 2149                                     ("pmap_enter: modified page not writable:"
 2150                                     " va: %p, pte: %#jx", (void *)va, (uintmax_t)origpte));
 2151                                 if (pte_test(&origpte, PTE_MANAGED))
 2152                                         vm_page_dirty(om);
 2153                         }
 2154                         if (pte_test(&origpte, PTE_MANAGED) &&
 2155                             TAILQ_EMPTY(&om->md.pv_list))
 2156                                 vm_page_aflag_clear(om, PGA_WRITEABLE);
 2157                         pmap_update_page(pmap, va, newpte);
 2158                 }
 2159         }
 2160 
 2161         /*
 2162          * Sync I & D caches for executable pages.  Do this only if the
 2163          * target pmap belongs to the current process.  Otherwise, an
 2164          * unresolvable TLB miss may occur.
 2165          */
 2166         if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
 2167             (prot & VM_PROT_EXECUTE)) {
 2168                 mips_icache_sync_range(va, PAGE_SIZE);
 2169                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2170         }
 2171         rw_wunlock(&pvh_global_lock);
 2172         PMAP_UNLOCK(pmap);
 2173         return (KERN_SUCCESS);
 2174 }
 2175 
 2176 /*
 2177  * this code makes some *MAJOR* assumptions:
 2178  * 1. Current pmap & pmap exists.
 2179  * 2. Not wired.
 2180  * 3. Read access.
 2181  * 4. No page table pages.
 2182  * but is *MUCH* faster than pmap_enter...
 2183  */
 2184 
 2185 void
 2186 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 2187 {
 2188 
 2189         rw_wlock(&pvh_global_lock);
 2190         PMAP_LOCK(pmap);
 2191         (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
 2192         rw_wunlock(&pvh_global_lock);
 2193         PMAP_UNLOCK(pmap);
 2194 }
 2195 
 2196 static vm_page_t
 2197 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
 2198     vm_prot_t prot, vm_page_t mpte)
 2199 {
 2200         pt_entry_t *pte;
 2201         vm_paddr_t pa;
 2202 
 2203         KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
 2204             (m->oflags & VPO_UNMANAGED) != 0,
 2205             ("pmap_enter_quick_locked: managed mapping within the clean submap"));
 2206         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2207         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2208 
 2209         /*
 2210          * In the case that a page table page is not resident, we are
 2211          * creating it here.
 2212          */
 2213         if (va < VM_MAXUSER_ADDRESS) {
 2214                 pd_entry_t *pde;
 2215                 unsigned ptepindex;
 2216 
 2217                 /*
 2218                  * Calculate pagetable page index
 2219                  */
 2220                 ptepindex = pmap_pde_pindex(va);
 2221                 if (mpte && (mpte->pindex == ptepindex)) {
 2222                         mpte->wire_count++;
 2223                 } else {
 2224                         /*
 2225                          * Get the page directory entry
 2226                          */
 2227                         pde = pmap_pde(pmap, va);
 2228 
 2229                         /*
 2230                          * If the page table page is mapped, we just
 2231                          * increment the hold count, and activate it.
 2232                          */
 2233                         if (pde && *pde != 0) {
 2234                                 mpte = PHYS_TO_VM_PAGE(
 2235                                     MIPS_DIRECT_TO_PHYS(*pde));
 2236                                 mpte->wire_count++;
 2237                         } else {
 2238                                 mpte = _pmap_allocpte(pmap, ptepindex,
 2239                                     PMAP_ENTER_NOSLEEP);
 2240                                 if (mpte == NULL)
 2241                                         return (mpte);
 2242                         }
 2243                 }
 2244         } else {
 2245                 mpte = NULL;
 2246         }
 2247 
 2248         pte = pmap_pte(pmap, va);
 2249         if (pte_test(pte, PTE_V)) {
 2250                 if (mpte != NULL) {
 2251                         mpte->wire_count--;
 2252                         mpte = NULL;
 2253                 }
 2254                 return (mpte);
 2255         }
 2256 
 2257         /*
 2258          * Enter on the PV list if part of our managed memory.
 2259          */
 2260         if ((m->oflags & VPO_UNMANAGED) == 0 &&
 2261             !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
 2262                 if (mpte != NULL) {
 2263                         pmap_unwire_ptp(pmap, va, mpte);
 2264                         mpte = NULL;
 2265                 }
 2266                 return (mpte);
 2267         }
 2268 
 2269         /*
 2270          * Increment counters
 2271          */
 2272         pmap->pm_stats.resident_count++;
 2273 
 2274         pa = VM_PAGE_TO_PHYS(m);
 2275 
 2276         /*
 2277          * Now validate mapping with RO protection
 2278          */
 2279         *pte = PTE_RO | TLBLO_PA_TO_PFN(pa) | PTE_V;
 2280         if ((m->oflags & VPO_UNMANAGED) == 0)
 2281                 *pte |= PTE_MANAGED;
 2282 
 2283         if (is_cacheable_mem(pa))
 2284                 *pte |= PTE_C_CACHE;
 2285         else
 2286                 *pte |= PTE_C_UNCACHED;
 2287 
 2288         if (is_kernel_pmap(pmap))
 2289                 *pte |= PTE_G;
 2290         else {
 2291                 /*
 2292                  * Sync I & D caches.  Do this only if the target pmap
 2293                  * belongs to the current process.  Otherwise, an
 2294                  * unresolvable TLB miss may occur. */
 2295                 if (pmap == &curproc->p_vmspace->vm_pmap) {
 2296                         va &= ~PAGE_MASK;
 2297                         mips_icache_sync_range(va, PAGE_SIZE);
 2298                         mips_dcache_wbinv_range(va, PAGE_SIZE);
 2299                 }
 2300         }
 2301         return (mpte);
 2302 }
 2303 
 2304 /*
 2305  * Make a temporary mapping for a physical address.  This is only intended
 2306  * to be used for panic dumps.
 2307  *
 2308  * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
 2309  */
 2310 void *
 2311 pmap_kenter_temporary(vm_paddr_t pa, int i)
 2312 {
 2313         vm_offset_t va;
 2314 
 2315         if (i != 0)
 2316                 printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
 2317                     __func__);
 2318 
 2319         if (MIPS_DIRECT_MAPPABLE(pa)) {
 2320                 va = MIPS_PHYS_TO_DIRECT(pa);
 2321         } else {
 2322 #ifndef __mips_n64    /* XXX : to be converted to new style */
 2323                 int cpu;
 2324                 register_t intr;
 2325                 struct local_sysmaps *sysm;
 2326                 pt_entry_t *pte, npte;
 2327 
 2328                 /* If this is used other than for dumps, we may need to leave
 2329                  * interrupts disasbled on return. If crash dumps don't work when
 2330                  * we get to this point, we might want to consider this (leaving things
 2331                  * disabled as a starting point ;-)
 2332                  */
 2333                 intr = intr_disable();
 2334                 cpu = PCPU_GET(cpuid);
 2335                 sysm = &sysmap_lmem[cpu];
 2336                 /* Since this is for the debugger, no locks or any other fun */
 2337                 npte = TLBLO_PA_TO_PFN(pa) | PTE_C_CACHE | PTE_D | PTE_V |
 2338                     PTE_G;
 2339                 pte = pmap_pte(kernel_pmap, sysm->base);
 2340                 *pte = npte;
 2341                 sysm->valid1 = 1;
 2342                 pmap_update_page(kernel_pmap, sysm->base, npte);
 2343                 va = sysm->base;
 2344                 intr_restore(intr);
 2345 #endif
 2346         }
 2347         return ((void *)va);
 2348 }
 2349 
 2350 void
 2351 pmap_kenter_temporary_free(vm_paddr_t pa)
 2352 {
 2353 #ifndef __mips_n64    /* XXX : to be converted to new style */
 2354         int cpu;
 2355         register_t intr;
 2356         struct local_sysmaps *sysm;
 2357 #endif
 2358 
 2359         if (MIPS_DIRECT_MAPPABLE(pa)) {
 2360                 /* nothing to do for this case */
 2361                 return;
 2362         }
 2363 #ifndef __mips_n64    /* XXX : to be converted to new style */
 2364         cpu = PCPU_GET(cpuid);
 2365         sysm = &sysmap_lmem[cpu];
 2366         if (sysm->valid1) {
 2367                 pt_entry_t *pte;
 2368 
 2369                 intr = intr_disable();
 2370                 pte = pmap_pte(kernel_pmap, sysm->base);
 2371                 *pte = PTE_G;
 2372                 pmap_invalidate_page(kernel_pmap, sysm->base);
 2373                 intr_restore(intr);
 2374                 sysm->valid1 = 0;
 2375         }
 2376 #endif
 2377 }
 2378 
 2379 /*
 2380  * Maps a sequence of resident pages belonging to the same object.
 2381  * The sequence begins with the given page m_start.  This page is
 2382  * mapped at the given virtual address start.  Each subsequent page is
 2383  * mapped at a virtual address that is offset from start by the same
 2384  * amount as the page is offset from m_start within the object.  The
 2385  * last page in the sequence is the page with the largest offset from
 2386  * m_start that can be mapped at a virtual address less than the given
 2387  * virtual address end.  Not every virtual page between start and end
 2388  * is mapped; only those for which a resident page exists with the
 2389  * corresponding offset from m_start are mapped.
 2390  */
 2391 void
 2392 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
 2393     vm_page_t m_start, vm_prot_t prot)
 2394 {
 2395         vm_page_t m, mpte;
 2396         vm_pindex_t diff, psize;
 2397 
 2398         VM_OBJECT_ASSERT_LOCKED(m_start->object);
 2399 
 2400         psize = atop(end - start);
 2401         mpte = NULL;
 2402         m = m_start;
 2403         rw_wlock(&pvh_global_lock);
 2404         PMAP_LOCK(pmap);
 2405         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 2406                 mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
 2407                     prot, mpte);
 2408                 m = TAILQ_NEXT(m, listq);
 2409         }
 2410         rw_wunlock(&pvh_global_lock);
 2411         PMAP_UNLOCK(pmap);
 2412 }
 2413 
 2414 /*
 2415  * pmap_object_init_pt preloads the ptes for a given object
 2416  * into the specified pmap.  This eliminates the blast of soft
 2417  * faults on process startup and immediately after an mmap.
 2418  */
 2419 void
 2420 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
 2421     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
 2422 {
 2423         VM_OBJECT_ASSERT_WLOCKED(object);
 2424         KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
 2425             ("pmap_object_init_pt: non-device object"));
 2426 }
 2427 
 2428 /*
 2429  *      Clear the wired attribute from the mappings for the specified range of
 2430  *      addresses in the given pmap.  Every valid mapping within that range
 2431  *      must have the wired attribute set.  In contrast, invalid mappings
 2432  *      cannot have the wired attribute set, so they are ignored.
 2433  *
 2434  *      The wired attribute of the page table entry is not a hardware feature,
 2435  *      so there is no need to invalidate any TLB entries.
 2436  */
 2437 void
 2438 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 2439 {
 2440         pd_entry_t *pde, *pdpe;
 2441         pt_entry_t *pte;
 2442         vm_offset_t va_next;
 2443 
 2444         PMAP_LOCK(pmap);
 2445         for (; sva < eva; sva = va_next) {
 2446                 pdpe = pmap_segmap(pmap, sva);
 2447 #ifdef __mips_n64
 2448                 if (*pdpe == NULL) {
 2449                         va_next = (sva + NBSEG) & ~SEGMASK;
 2450                         if (va_next < sva)
 2451                                 va_next = eva;
 2452                         continue;
 2453                 }
 2454 #endif
 2455                 va_next = (sva + NBPDR) & ~PDRMASK;
 2456                 if (va_next < sva)
 2457                         va_next = eva;
 2458                 pde = pmap_pdpe_to_pde(pdpe, sva);
 2459                 if (*pde == NULL)
 2460                         continue;
 2461                 if (va_next > eva)
 2462                         va_next = eva;
 2463                 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 2464                     sva += PAGE_SIZE) {
 2465                         if (!pte_test(pte, PTE_V))
 2466                                 continue;
 2467                         if (!pte_test(pte, PTE_W))
 2468                                 panic("pmap_unwire: pte %#jx is missing PG_W",
 2469                                     (uintmax_t)*pte);
 2470                         pte_clear(pte, PTE_W);
 2471                         pmap->pm_stats.wired_count--;
 2472                 }
 2473         }
 2474         PMAP_UNLOCK(pmap);
 2475 }
 2476 
 2477 /*
 2478  *      Copy the range specified by src_addr/len
 2479  *      from the source map to the range dst_addr/len
 2480  *      in the destination map.
 2481  *
 2482  *      This routine is only advisory and need not do anything.
 2483  */
 2484 
 2485 void
 2486 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
 2487     vm_size_t len, vm_offset_t src_addr)
 2488 {
 2489 }
 2490 
 2491 /*
 2492  *      pmap_zero_page zeros the specified hardware page by mapping
 2493  *      the page into KVM and using bzero to clear its contents.
 2494  *
 2495  *      Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
 2496  */
 2497 void
 2498 pmap_zero_page(vm_page_t m)
 2499 {
 2500         vm_offset_t va;
 2501         vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
 2502 
 2503         if (MIPS_DIRECT_MAPPABLE(phys)) {
 2504                 va = MIPS_PHYS_TO_DIRECT(phys);
 2505                 bzero((caddr_t)va, PAGE_SIZE);
 2506                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2507         } else {
 2508                 va = pmap_lmem_map1(phys);
 2509                 bzero((caddr_t)va, PAGE_SIZE);
 2510                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2511                 pmap_lmem_unmap();
 2512         }
 2513 }
 2514 
 2515 /*
 2516  *      pmap_zero_page_area zeros the specified hardware page by mapping
 2517  *      the page into KVM and using bzero to clear its contents.
 2518  *
 2519  *      off and size may not cover an area beyond a single hardware page.
 2520  */
 2521 void
 2522 pmap_zero_page_area(vm_page_t m, int off, int size)
 2523 {
 2524         vm_offset_t va;
 2525         vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
 2526 
 2527         if (MIPS_DIRECT_MAPPABLE(phys)) {
 2528                 va = MIPS_PHYS_TO_DIRECT(phys);
 2529                 bzero((char *)(caddr_t)va + off, size);
 2530                 mips_dcache_wbinv_range(va + off, size);
 2531         } else {
 2532                 va = pmap_lmem_map1(phys);
 2533                 bzero((char *)va + off, size);
 2534                 mips_dcache_wbinv_range(va + off, size);
 2535                 pmap_lmem_unmap();
 2536         }
 2537 }
 2538 
 2539 void
 2540 pmap_zero_page_idle(vm_page_t m)
 2541 {
 2542         vm_offset_t va;
 2543         vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
 2544 
 2545         if (MIPS_DIRECT_MAPPABLE(phys)) {
 2546                 va = MIPS_PHYS_TO_DIRECT(phys);
 2547                 bzero((caddr_t)va, PAGE_SIZE);
 2548                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2549         } else {
 2550                 va = pmap_lmem_map1(phys);
 2551                 bzero((caddr_t)va, PAGE_SIZE);
 2552                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2553                 pmap_lmem_unmap();
 2554         }
 2555 }
 2556 
 2557 /*
 2558  *      pmap_copy_page copies the specified (machine independent)
 2559  *      page by mapping the page into virtual memory and using
 2560  *      bcopy to copy the page, one machine dependent page at a
 2561  *      time.
 2562  *
 2563  *      Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
 2564  */
 2565 void
 2566 pmap_copy_page(vm_page_t src, vm_page_t dst)
 2567 {
 2568         vm_offset_t va_src, va_dst;
 2569         vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src);
 2570         vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst);
 2571 
 2572         if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) {
 2573                 /* easy case, all can be accessed via KSEG0 */
 2574                 /*
 2575                  * Flush all caches for VA that are mapped to this page
 2576                  * to make sure that data in SDRAM is up to date
 2577                  */
 2578                 pmap_flush_pvcache(src);
 2579                 mips_dcache_wbinv_range_index(
 2580                     MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE);
 2581                 va_src = MIPS_PHYS_TO_DIRECT(phys_src);
 2582                 va_dst = MIPS_PHYS_TO_DIRECT(phys_dst);
 2583                 bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
 2584                 mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
 2585         } else {
 2586                 va_src = pmap_lmem_map2(phys_src, phys_dst);
 2587                 va_dst = va_src + PAGE_SIZE;
 2588                 bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
 2589                 mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
 2590                 pmap_lmem_unmap();
 2591         }
 2592 }
 2593 
 2594 int unmapped_buf_allowed;
 2595 
 2596 void
 2597 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
 2598     vm_offset_t b_offset, int xfersize)
 2599 {
 2600         char *a_cp, *b_cp;
 2601         vm_page_t a_m, b_m;
 2602         vm_offset_t a_pg_offset, b_pg_offset;
 2603         vm_paddr_t a_phys, b_phys;
 2604         int cnt;
 2605 
 2606         while (xfersize > 0) {
 2607                 a_pg_offset = a_offset & PAGE_MASK;
 2608                 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
 2609                 a_m = ma[a_offset >> PAGE_SHIFT];
 2610                 a_phys = VM_PAGE_TO_PHYS(a_m);
 2611                 b_pg_offset = b_offset & PAGE_MASK;
 2612                 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
 2613                 b_m = mb[b_offset >> PAGE_SHIFT];
 2614                 b_phys = VM_PAGE_TO_PHYS(b_m);
 2615                 if (MIPS_DIRECT_MAPPABLE(a_phys) &&
 2616                     MIPS_DIRECT_MAPPABLE(b_phys)) {
 2617                         pmap_flush_pvcache(a_m);
 2618                         mips_dcache_wbinv_range_index(
 2619                             MIPS_PHYS_TO_DIRECT(b_phys), PAGE_SIZE);
 2620                         a_cp = (char *)MIPS_PHYS_TO_DIRECT(a_phys) +
 2621                             a_pg_offset;
 2622                         b_cp = (char *)MIPS_PHYS_TO_DIRECT(b_phys) +
 2623                             b_pg_offset;
 2624                         bcopy(a_cp, b_cp, cnt);
 2625                         mips_dcache_wbinv_range((vm_offset_t)b_cp, cnt);
 2626                 } else {
 2627                         a_cp = (char *)pmap_lmem_map2(a_phys, b_phys);
 2628                         b_cp = (char *)a_cp + PAGE_SIZE;
 2629                         a_cp += a_pg_offset;
 2630                         b_cp += b_pg_offset;
 2631                         bcopy(a_cp, b_cp, cnt);
 2632                         mips_dcache_wbinv_range((vm_offset_t)b_cp, cnt);
 2633                         pmap_lmem_unmap();
 2634                 }
 2635                 a_offset += cnt;
 2636                 b_offset += cnt;
 2637                 xfersize -= cnt;
 2638         }
 2639 }
 2640 
 2641 /*
 2642  * Returns true if the pmap's pv is one of the first
 2643  * 16 pvs linked to from this page.  This count may
 2644  * be changed upwards or downwards in the future; it
 2645  * is only necessary that true be returned for a small
 2646  * subset of pmaps for proper page aging.
 2647  */
 2648 boolean_t
 2649 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 2650 {
 2651         pv_entry_t pv;
 2652         int loops = 0;
 2653         boolean_t rv;
 2654 
 2655         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2656             ("pmap_page_exists_quick: page %p is not managed", m));
 2657         rv = FALSE;
 2658         rw_wlock(&pvh_global_lock);
 2659         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2660                 if (PV_PMAP(pv) == pmap) {
 2661                         rv = TRUE;
 2662                         break;
 2663                 }
 2664                 loops++;
 2665                 if (loops >= 16)
 2666                         break;
 2667         }
 2668         rw_wunlock(&pvh_global_lock);
 2669         return (rv);
 2670 }
 2671 
 2672 /*
 2673  * Remove all pages from specified address space
 2674  * this aids process exit speeds.  Also, this code
 2675  * is special cased for current process only, but
 2676  * can have the more generic (and slightly slower)
 2677  * mode enabled.  This is much faster than pmap_remove
 2678  * in the case of running down an entire address space.
 2679  */
 2680 void
 2681 pmap_remove_pages(pmap_t pmap)
 2682 {
 2683         pd_entry_t *pde;
 2684         pt_entry_t *pte, tpte;
 2685         pv_entry_t pv;
 2686         vm_page_t m;
 2687         struct pv_chunk *pc, *npc;
 2688         u_long inuse, bitmask;
 2689         int allfree, bit, field, idx;
 2690 
 2691         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
 2692                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 2693                 return;
 2694         }
 2695         rw_wlock(&pvh_global_lock);
 2696         PMAP_LOCK(pmap);
 2697         TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
 2698                 allfree = 1;
 2699                 for (field = 0; field < _NPCM; field++) {
 2700                         inuse = ~pc->pc_map[field] & pc_freemask[field];
 2701                         while (inuse != 0) {
 2702                                 bit = ffsl(inuse) - 1;
 2703                                 bitmask = 1UL << bit;
 2704                                 idx = field * sizeof(inuse) * NBBY + bit;
 2705                                 pv = &pc->pc_pventry[idx];
 2706                                 inuse &= ~bitmask;
 2707 
 2708                                 pde = pmap_pde(pmap, pv->pv_va);
 2709                                 KASSERT(pde != NULL && *pde != 0,
 2710                                     ("pmap_remove_pages: pde"));
 2711                                 pte = pmap_pde_to_pte(pde, pv->pv_va);
 2712                                 if (!pte_test(pte, PTE_V))
 2713                                         panic("pmap_remove_pages: bad pte");
 2714                                 tpte = *pte;
 2715 
 2716 /*
 2717  * We cannot remove wired pages from a process' mapping at this time
 2718  */
 2719                                 if (pte_test(&tpte, PTE_W)) {
 2720                                         allfree = 0;
 2721                                         continue;
 2722                                 }
 2723                                 *pte = is_kernel_pmap(pmap) ? PTE_G : 0;
 2724 
 2725                                 m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
 2726                                 KASSERT(m != NULL,
 2727                                     ("pmap_remove_pages: bad tpte %#jx",
 2728                                     (uintmax_t)tpte));
 2729 
 2730                                 /*
 2731                                  * Update the vm_page_t clean and reference bits.
 2732                                  */
 2733                                 if (pte_test(&tpte, PTE_D))
 2734                                         vm_page_dirty(m);
 2735 
 2736                                 /* Mark free */
 2737                                 PV_STAT(pv_entry_frees++);
 2738                                 PV_STAT(pv_entry_spare++);
 2739                                 pv_entry_count--;
 2740                                 pc->pc_map[field] |= bitmask;
 2741                                 pmap->pm_stats.resident_count--;
 2742                                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2743                                 if (TAILQ_EMPTY(&m->md.pv_list))
 2744                                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 2745                                 pmap_unuse_pt(pmap, pv->pv_va, *pde);
 2746                         }
 2747                 }
 2748                 if (allfree) {
 2749                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2750                         free_pv_chunk(pc);
 2751                 }
 2752         }
 2753         pmap_invalidate_all(pmap);
 2754         PMAP_UNLOCK(pmap);
 2755         rw_wunlock(&pvh_global_lock);
 2756 }
 2757 
 2758 /*
 2759  * pmap_testbit tests bits in pte's
 2760  */
 2761 static boolean_t
 2762 pmap_testbit(vm_page_t m, int bit)
 2763 {
 2764         pv_entry_t pv;
 2765         pmap_t pmap;
 2766         pt_entry_t *pte;
 2767         boolean_t rv = FALSE;
 2768 
 2769         if (m->oflags & VPO_UNMANAGED)
 2770                 return (rv);
 2771 
 2772         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2773         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2774                 pmap = PV_PMAP(pv);
 2775                 PMAP_LOCK(pmap);
 2776                 pte = pmap_pte(pmap, pv->pv_va);
 2777                 rv = pte_test(pte, bit);
 2778                 PMAP_UNLOCK(pmap);
 2779                 if (rv)
 2780                         break;
 2781         }
 2782         return (rv);
 2783 }
 2784 
 2785 /*
 2786  *      pmap_page_wired_mappings:
 2787  *
 2788  *      Return the number of managed mappings to the given physical page
 2789  *      that are wired.
 2790  */
 2791 int
 2792 pmap_page_wired_mappings(vm_page_t m)
 2793 {
 2794         pv_entry_t pv;
 2795         pmap_t pmap;
 2796         pt_entry_t *pte;
 2797         int count;
 2798 
 2799         count = 0;
 2800         if ((m->oflags & VPO_UNMANAGED) != 0)
 2801                 return (count);
 2802         rw_wlock(&pvh_global_lock);
 2803         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2804                 pmap = PV_PMAP(pv);
 2805                 PMAP_LOCK(pmap);
 2806                 pte = pmap_pte(pmap, pv->pv_va);
 2807                 if (pte_test(pte, PTE_W))
 2808                         count++;
 2809                 PMAP_UNLOCK(pmap);
 2810         }
 2811         rw_wunlock(&pvh_global_lock);
 2812         return (count);
 2813 }
 2814 
 2815 /*
 2816  * Clear the write and modified bits in each of the given page's mappings.
 2817  */
 2818 void
 2819 pmap_remove_write(vm_page_t m)
 2820 {
 2821         pmap_t pmap;
 2822         pt_entry_t pbits, *pte;
 2823         pv_entry_t pv;
 2824 
 2825         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2826             ("pmap_remove_write: page %p is not managed", m));
 2827 
 2828         /*
 2829          * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
 2830          * set by another thread while the object is locked.  Thus,
 2831          * if PGA_WRITEABLE is clear, no page table entries need updating.
 2832          */
 2833         VM_OBJECT_ASSERT_WLOCKED(m->object);
 2834         if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
 2835                 return;
 2836         rw_wlock(&pvh_global_lock);
 2837         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2838                 pmap = PV_PMAP(pv);
 2839                 PMAP_LOCK(pmap);
 2840                 pte = pmap_pte(pmap, pv->pv_va);
 2841                 KASSERT(pte != NULL && pte_test(pte, PTE_V),
 2842                     ("page on pv_list has no pte"));
 2843                 pbits = *pte;
 2844                 if (pte_test(&pbits, PTE_D)) {
 2845                         pte_clear(&pbits, PTE_D);
 2846                         vm_page_dirty(m);
 2847                 }
 2848                 pte_set(&pbits, PTE_RO);
 2849                 if (pbits != *pte) {
 2850                         *pte = pbits;
 2851                         pmap_update_page(pmap, pv->pv_va, pbits);
 2852                 }
 2853                 PMAP_UNLOCK(pmap);
 2854         }
 2855         vm_page_aflag_clear(m, PGA_WRITEABLE);
 2856         rw_wunlock(&pvh_global_lock);
 2857 }
 2858 
 2859 /*
 2860  *      pmap_ts_referenced:
 2861  *
 2862  *      Return the count of reference bits for a page, clearing all of them.
 2863  */
 2864 int
 2865 pmap_ts_referenced(vm_page_t m)
 2866 {
 2867 
 2868         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2869             ("pmap_ts_referenced: page %p is not managed", m));
 2870         if (m->md.pv_flags & PV_TABLE_REF) {
 2871                 rw_wlock(&pvh_global_lock);
 2872                 m->md.pv_flags &= ~PV_TABLE_REF;
 2873                 rw_wunlock(&pvh_global_lock);
 2874                 return (1);
 2875         }
 2876         return (0);
 2877 }
 2878 
 2879 /*
 2880  *      pmap_is_modified:
 2881  *
 2882  *      Return whether or not the specified physical page was modified
 2883  *      in any physical maps.
 2884  */
 2885 boolean_t
 2886 pmap_is_modified(vm_page_t m)
 2887 {
 2888         boolean_t rv;
 2889 
 2890         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2891             ("pmap_is_modified: page %p is not managed", m));
 2892 
 2893         /*
 2894          * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
 2895          * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
 2896          * is clear, no PTEs can have PTE_D set.
 2897          */
 2898         VM_OBJECT_ASSERT_WLOCKED(m->object);
 2899         if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
 2900                 return (FALSE);
 2901         rw_wlock(&pvh_global_lock);
 2902         rv = pmap_testbit(m, PTE_D);
 2903         rw_wunlock(&pvh_global_lock);
 2904         return (rv);
 2905 }
 2906 
 2907 /* N/C */
 2908 
 2909 /*
 2910  *      pmap_is_prefaultable:
 2911  *
 2912  *      Return whether or not the specified virtual address is elgible
 2913  *      for prefault.
 2914  */
 2915 boolean_t
 2916 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 2917 {
 2918         pd_entry_t *pde;
 2919         pt_entry_t *pte;
 2920         boolean_t rv;
 2921 
 2922         rv = FALSE;
 2923         PMAP_LOCK(pmap);
 2924         pde = pmap_pde(pmap, addr);
 2925         if (pde != NULL && *pde != 0) {
 2926                 pte = pmap_pde_to_pte(pde, addr);
 2927                 rv = (*pte == 0);
 2928         }
 2929         PMAP_UNLOCK(pmap);
 2930         return (rv);
 2931 }
 2932 
 2933 /*
 2934  *      Apply the given advice to the specified range of addresses within the
 2935  *      given pmap.  Depending on the advice, clear the referenced and/or
 2936  *      modified flags in each mapping and set the mapped page's dirty field.
 2937  */
 2938 void
 2939 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
 2940 {
 2941         pd_entry_t *pde, *pdpe;
 2942         pt_entry_t *pte;
 2943         vm_offset_t va, va_next;
 2944         vm_paddr_t pa;
 2945         vm_page_t m;
 2946 
 2947         if (advice != MADV_DONTNEED && advice != MADV_FREE)
 2948                 return;
 2949         rw_wlock(&pvh_global_lock);
 2950         PMAP_LOCK(pmap);
 2951         for (; sva < eva; sva = va_next) {
 2952                 pdpe = pmap_segmap(pmap, sva);
 2953 #ifdef __mips_n64
 2954                 if (*pdpe == 0) {
 2955                         va_next = (sva + NBSEG) & ~SEGMASK;
 2956                         if (va_next < sva)
 2957                                 va_next = eva;
 2958                         continue;
 2959                 }
 2960 #endif
 2961                 va_next = (sva + NBPDR) & ~PDRMASK;
 2962                 if (va_next < sva)
 2963                         va_next = eva;
 2964 
 2965                 pde = pmap_pdpe_to_pde(pdpe, sva);
 2966                 if (*pde == NULL)
 2967                         continue;
 2968 
 2969                 /*
 2970                  * Limit our scan to either the end of the va represented
 2971                  * by the current page table page, or to the end of the
 2972                  * range being write protected.
 2973                  */
 2974                 if (va_next > eva)
 2975                         va_next = eva;
 2976 
 2977                 va = va_next;
 2978                 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 2979                     sva += PAGE_SIZE) {
 2980                         if (!pte_test(pte, PTE_MANAGED | PTE_V)) {
 2981                                 if (va != va_next) {
 2982                                         pmap_invalidate_range(pmap, va, sva);
 2983                                         va = va_next;
 2984                                 }
 2985                                 continue;
 2986                         }
 2987                         pa = TLBLO_PTE_TO_PA(*pte);
 2988                         m = PHYS_TO_VM_PAGE(pa);
 2989                         m->md.pv_flags &= ~PV_TABLE_REF;
 2990                         if (pte_test(pte, PTE_D)) {
 2991                                 if (advice == MADV_DONTNEED) {
 2992                                         /*
 2993                                          * Future calls to pmap_is_modified()
 2994                                          * can be avoided by making the page
 2995                                          * dirty now.
 2996                                          */
 2997                                         vm_page_dirty(m);
 2998                                 } else {
 2999                                         pte_clear(pte, PTE_D);
 3000                                         if (va == va_next)
 3001                                                 va = sva;
 3002                                 }
 3003                         } else {
 3004                                 /*
 3005                                  * Unless PTE_D is set, any TLB entries
 3006                                  * mapping "sva" don't allow write access, so
 3007                                  * they needn't be invalidated.
 3008                                  */
 3009                                 if (va != va_next) {
 3010                                         pmap_invalidate_range(pmap, va, sva);
 3011                                         va = va_next;
 3012                                 }
 3013                         }
 3014                 }
 3015                 if (va != va_next)
 3016                         pmap_invalidate_range(pmap, va, sva);
 3017         }
 3018         rw_wunlock(&pvh_global_lock);
 3019         PMAP_UNLOCK(pmap);
 3020 }
 3021 
 3022 /*
 3023  *      Clear the modify bits on the specified physical page.
 3024  */
 3025 void
 3026 pmap_clear_modify(vm_page_t m)
 3027 {
 3028         pmap_t pmap;
 3029         pt_entry_t *pte;
 3030         pv_entry_t pv;
 3031 
 3032         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3033             ("pmap_clear_modify: page %p is not managed", m));
 3034         VM_OBJECT_ASSERT_WLOCKED(m->object);
 3035         KASSERT(!vm_page_xbusied(m),
 3036             ("pmap_clear_modify: page %p is exclusive busied", m));
 3037 
 3038         /*
 3039          * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_D set.
 3040          * If the object containing the page is locked and the page is not
 3041          * write busied, then PGA_WRITEABLE cannot be concurrently set.
 3042          */
 3043         if ((m->aflags & PGA_WRITEABLE) == 0)
 3044                 return;
 3045         rw_wlock(&pvh_global_lock);
 3046         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3047                 pmap = PV_PMAP(pv);
 3048                 PMAP_LOCK(pmap);
 3049                 pte = pmap_pte(pmap, pv->pv_va);
 3050                 if (pte_test(pte, PTE_D)) {
 3051                         pte_clear(pte, PTE_D);
 3052                         pmap_update_page(pmap, pv->pv_va, *pte);
 3053                 }
 3054                 PMAP_UNLOCK(pmap);
 3055         }
 3056         rw_wunlock(&pvh_global_lock);
 3057 }
 3058 
 3059 /*
 3060  *      pmap_is_referenced:
 3061  *
 3062  *      Return whether or not the specified physical page was referenced
 3063  *      in any physical maps.
 3064  */
 3065 boolean_t
 3066 pmap_is_referenced(vm_page_t m)
 3067 {
 3068 
 3069         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3070             ("pmap_is_referenced: page %p is not managed", m));
 3071         return ((m->md.pv_flags & PV_TABLE_REF) != 0);
 3072 }
 3073 
 3074 /*
 3075  * Miscellaneous support routines follow
 3076  */
 3077 
 3078 /*
 3079  * Map a set of physical memory pages into the kernel virtual
 3080  * address space. Return a pointer to where it is mapped. This
 3081  * routine is intended to be used for mapping device memory,
 3082  * NOT real memory.
 3083  *
 3084  * Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
 3085  */
 3086 void *
 3087 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
 3088 {
 3089         vm_offset_t va, tmpva, offset;
 3090 
 3091         /* 
 3092          * KSEG1 maps only first 512M of phys address space. For 
 3093          * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
 3094          */
 3095         if (MIPS_DIRECT_MAPPABLE(pa + size - 1))
 3096                 return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
 3097         else {
 3098                 offset = pa & PAGE_MASK;
 3099                 size = roundup(size + offset, PAGE_SIZE);
 3100         
 3101                 va = kva_alloc(size);
 3102                 if (!va)
 3103                         panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 3104                 pa = trunc_page(pa);
 3105                 for (tmpva = va; size > 0;) {
 3106                         pmap_kenter_attr(tmpva, pa, PTE_C_UNCACHED);
 3107                         size -= PAGE_SIZE;
 3108                         tmpva += PAGE_SIZE;
 3109                         pa += PAGE_SIZE;
 3110                 }
 3111         }
 3112 
 3113         return ((void *)(va + offset));
 3114 }
 3115 
 3116 void
 3117 pmap_unmapdev(vm_offset_t va, vm_size_t size)
 3118 {
 3119 #ifndef __mips_n64
 3120         vm_offset_t base, offset;
 3121 
 3122         /* If the address is within KSEG1 then there is nothing to do */
 3123         if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
 3124                 return;
 3125 
 3126         base = trunc_page(va);
 3127         offset = va & PAGE_MASK;
 3128         size = roundup(size + offset, PAGE_SIZE);
 3129         kva_free(base, size);
 3130 #endif
 3131 }
 3132 
 3133 /*
 3134  * perform the pmap work for mincore
 3135  */
 3136 int
 3137 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
 3138 {
 3139         pt_entry_t *ptep, pte;
 3140         vm_paddr_t pa;
 3141         vm_page_t m;
 3142         int val;
 3143 
 3144         PMAP_LOCK(pmap);
 3145 retry:
 3146         ptep = pmap_pte(pmap, addr);
 3147         pte = (ptep != NULL) ? *ptep : 0;
 3148         if (!pte_test(&pte, PTE_V)) {
 3149                 val = 0;
 3150                 goto out;
 3151         }
 3152         val = MINCORE_INCORE;
 3153         if (pte_test(&pte, PTE_D))
 3154                 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
 3155         pa = TLBLO_PTE_TO_PA(pte);
 3156         if (pte_test(&pte, PTE_MANAGED)) {
 3157                 /*
 3158                  * This may falsely report the given address as
 3159                  * MINCORE_REFERENCED.  Unfortunately, due to the lack of
 3160                  * per-PTE reference information, it is impossible to
 3161                  * determine if the address is MINCORE_REFERENCED.  
 3162                  */
 3163                 m = PHYS_TO_VM_PAGE(pa);
 3164                 if ((m->aflags & PGA_REFERENCED) != 0)
 3165                         val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
 3166         }
 3167         if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
 3168             (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
 3169             pte_test(&pte, PTE_MANAGED)) {
 3170                 /* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
 3171                 if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
 3172                         goto retry;
 3173         } else
 3174 out:
 3175                 PA_UNLOCK_COND(*locked_pa);
 3176         PMAP_UNLOCK(pmap);
 3177         return (val);
 3178 }
 3179 
 3180 void
 3181 pmap_activate(struct thread *td)
 3182 {
 3183         pmap_t pmap, oldpmap;
 3184         struct proc *p = td->td_proc;
 3185         u_int cpuid;
 3186 
 3187         critical_enter();
 3188 
 3189         pmap = vmspace_pmap(p->p_vmspace);
 3190         oldpmap = PCPU_GET(curpmap);
 3191         cpuid = PCPU_GET(cpuid);
 3192 
 3193         if (oldpmap)
 3194                 CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
 3195         CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
 3196         pmap_asid_alloc(pmap);
 3197         if (td == curthread) {
 3198                 PCPU_SET(segbase, pmap->pm_segtab);
 3199                 mips_wr_entryhi(pmap->pm_asid[cpuid].asid);
 3200         }
 3201 
 3202         PCPU_SET(curpmap, pmap);
 3203         critical_exit();
 3204 }
 3205 
 3206 void
 3207 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
 3208 {
 3209 }
 3210 
 3211 /*
 3212  *      Increase the starting virtual address of the given mapping if a
 3213  *      different alignment might result in more superpage mappings.
 3214  */
 3215 void
 3216 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
 3217     vm_offset_t *addr, vm_size_t size)
 3218 {
 3219         vm_offset_t superpage_offset;
 3220 
 3221         if (size < NBSEG)
 3222                 return;
 3223         if (object != NULL && (object->flags & OBJ_COLORED) != 0)
 3224                 offset += ptoa(object->pg_color);
 3225         superpage_offset = offset & SEGMASK;
 3226         if (size - ((NBSEG - superpage_offset) & SEGMASK) < NBSEG ||
 3227             (*addr & SEGMASK) == superpage_offset)
 3228                 return;
 3229         if ((*addr & SEGMASK) < superpage_offset)
 3230                 *addr = (*addr & ~SEGMASK) + superpage_offset;
 3231         else
 3232                 *addr = ((*addr + SEGMASK) & ~SEGMASK) + superpage_offset;
 3233 }
 3234 
 3235 #ifdef DDB
 3236 DB_SHOW_COMMAND(ptable, ddb_pid_dump)
 3237 {
 3238         pmap_t pmap;
 3239         struct thread *td = NULL;
 3240         struct proc *p;
 3241         int i, j, k;
 3242         vm_paddr_t pa;
 3243         vm_offset_t va;
 3244 
 3245         if (have_addr) {
 3246                 td = db_lookup_thread(addr, TRUE);
 3247                 if (td == NULL) {
 3248                         db_printf("Invalid pid or tid");
 3249                         return;
 3250                 }
 3251                 p = td->td_proc;
 3252                 if (p->p_vmspace == NULL) {
 3253                         db_printf("No vmspace for process");
 3254                         return;
 3255                 }
 3256                         pmap = vmspace_pmap(p->p_vmspace);
 3257         } else
 3258                 pmap = kernel_pmap;
 3259 
 3260         db_printf("pmap:%p segtab:%p asid:%x generation:%x\n",
 3261             pmap, pmap->pm_segtab, pmap->pm_asid[0].asid,
 3262             pmap->pm_asid[0].gen);
 3263         for (i = 0; i < NPDEPG; i++) {
 3264                 pd_entry_t *pdpe;
 3265                 pt_entry_t *pde;
 3266                 pt_entry_t pte;
 3267 
 3268                 pdpe = (pd_entry_t *)pmap->pm_segtab[i];
 3269                 if (pdpe == NULL)
 3270                         continue;
 3271                 db_printf("[%4d] %p\n", i, pdpe);
 3272 #ifdef __mips_n64
 3273                 for (j = 0; j < NPDEPG; j++) {
 3274                         pde = (pt_entry_t *)pdpe[j];
 3275                         if (pde == NULL)
 3276                                 continue;
 3277                         db_printf("\t[%4d] %p\n", j, pde);
 3278 #else
 3279                 {
 3280                         j = 0;
 3281                         pde =  (pt_entry_t *)pdpe;
 3282 #endif
 3283                         for (k = 0; k < NPTEPG; k++) {
 3284                                 pte = pde[k];
 3285                                 if (pte == 0 || !pte_test(&pte, PTE_V))
 3286                                         continue;
 3287                                 pa = TLBLO_PTE_TO_PA(pte);
 3288                                 va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT);
 3289                                 db_printf("\t\t[%04d] va: %p pte: %8jx pa:%jx\n",
 3290                                        k, (void *)va, (uintmax_t)pte, (uintmax_t)pa);
 3291                         }
 3292                 }
 3293         }
 3294 }
 3295 #endif
 3296 
 3297 #if defined(DEBUG)
 3298 
 3299 static void pads(pmap_t pm);
 3300 void pmap_pvdump(vm_offset_t pa);
 3301 
 3302 /* print address space of pmap*/
 3303 static void
 3304 pads(pmap_t pm)
 3305 {
 3306         unsigned va, i, j;
 3307         pt_entry_t *ptep;
 3308 
 3309         if (pm == kernel_pmap)
 3310                 return;
 3311         for (i = 0; i < NPTEPG; i++)
 3312                 if (pm->pm_segtab[i])
 3313                         for (j = 0; j < NPTEPG; j++) {
 3314                                 va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
 3315                                 if (pm == kernel_pmap && va < KERNBASE)
 3316                                         continue;
 3317                                 if (pm != kernel_pmap &&
 3318                                     va >= VM_MAXUSER_ADDRESS)
 3319                                         continue;
 3320                                 ptep = pmap_pte(pm, va);
 3321                                 if (pte_test(ptep, PTE_V))
 3322                                         printf("%x:%x ", va, *(int *)ptep);
 3323                         }
 3324 
 3325 }
 3326 
 3327 void
 3328 pmap_pvdump(vm_offset_t pa)
 3329 {
 3330         register pv_entry_t pv;
 3331         vm_page_t m;
 3332 
 3333         printf("pa %x", pa);
 3334         m = PHYS_TO_VM_PAGE(pa);
 3335         for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
 3336             pv = TAILQ_NEXT(pv, pv_list)) {
 3337                 printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
 3338                 pads(pv->pv_pmap);
 3339         }
 3340         printf(" ");
 3341 }
 3342 
 3343 /* N/C */
 3344 #endif
 3345 
 3346 
 3347 /*
 3348  * Allocate TLB address space tag (called ASID or TLBPID) and return it.
 3349  * It takes almost as much or more time to search the TLB for a
 3350  * specific ASID and flush those entries as it does to flush the entire TLB.
 3351  * Therefore, when we allocate a new ASID, we just take the next number. When
 3352  * we run out of numbers, we flush the TLB, increment the generation count
 3353  * and start over. ASID zero is reserved for kernel use.
 3354  */
 3355 static void
 3356 pmap_asid_alloc(pmap)
 3357         pmap_t pmap;
 3358 {
 3359         if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
 3360             pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
 3361         else {
 3362                 if (PCPU_GET(next_asid) == pmap_max_asid) {
 3363                         tlb_invalidate_all_user(NULL);
 3364                         PCPU_SET(asid_generation,
 3365                             (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
 3366                         if (PCPU_GET(asid_generation) == 0) {
 3367                                 PCPU_SET(asid_generation, 1);
 3368                         }
 3369                         PCPU_SET(next_asid, 1); /* 0 means invalid */
 3370                 }
 3371                 pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
 3372                 pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
 3373                 PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
 3374         }
 3375 }
 3376 
 3377 static pt_entry_t
 3378 init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot)
 3379 {
 3380         pt_entry_t rw;
 3381 
 3382         if (!(prot & VM_PROT_WRITE))
 3383                 rw = PTE_V | PTE_RO;
 3384         else if ((m->oflags & VPO_UNMANAGED) == 0) {
 3385                 if ((access & VM_PROT_WRITE) != 0)
 3386                         rw = PTE_V | PTE_D;
 3387                 else
 3388                         rw = PTE_V;
 3389         } else
 3390                 /* Needn't emulate a modified bit for unmanaged pages. */
 3391                 rw = PTE_V | PTE_D;
 3392         return (rw);
 3393 }
 3394 
 3395 /*
 3396  * pmap_emulate_modified : do dirty bit emulation
 3397  *
 3398  * On SMP, update just the local TLB, other CPUs will update their
 3399  * TLBs from PTE lazily, if they get the exception.
 3400  * Returns 0 in case of sucess, 1 if the page is read only and we
 3401  * need to fault.
 3402  */
 3403 int
 3404 pmap_emulate_modified(pmap_t pmap, vm_offset_t va)
 3405 {
 3406         pt_entry_t *pte;
 3407 
 3408         PMAP_LOCK(pmap);
 3409         pte = pmap_pte(pmap, va);
 3410         if (pte == NULL)
 3411                 panic("pmap_emulate_modified: can't find PTE");
 3412 #ifdef SMP
 3413         /* It is possible that some other CPU changed m-bit */
 3414         if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) {
 3415                 tlb_update(pmap, va, *pte);
 3416                 PMAP_UNLOCK(pmap);
 3417                 return (0);
 3418         }
 3419 #else
 3420         if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D))
 3421                 panic("pmap_emulate_modified: invalid pte");
 3422 #endif
 3423         if (pte_test(pte, PTE_RO)) {
 3424                 PMAP_UNLOCK(pmap);
 3425                 return (1);
 3426         }
 3427         pte_set(pte, PTE_D);
 3428         tlb_update(pmap, va, *pte);
 3429         if (!pte_test(pte, PTE_MANAGED))
 3430                 panic("pmap_emulate_modified: unmanaged page");
 3431         PMAP_UNLOCK(pmap);
 3432         return (0);
 3433 }
 3434 
 3435 /*
 3436  *      Routine:        pmap_kextract
 3437  *      Function:
 3438  *              Extract the physical page address associated
 3439  *              virtual address.
 3440  */
 3441 vm_paddr_t
 3442 pmap_kextract(vm_offset_t va)
 3443 {
 3444         int mapped;
 3445 
 3446         /*
 3447          * First, the direct-mapped regions.
 3448          */
 3449 #if defined(__mips_n64)
 3450         if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
 3451                 return (MIPS_XKPHYS_TO_PHYS(va));
 3452 #endif
 3453         if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
 3454                 return (MIPS_KSEG0_TO_PHYS(va));
 3455 
 3456         if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
 3457                 return (MIPS_KSEG1_TO_PHYS(va));
 3458 
 3459         /*
 3460          * User virtual addresses.
 3461          */
 3462         if (va < VM_MAXUSER_ADDRESS) {
 3463                 pt_entry_t *ptep;
 3464 
 3465                 if (curproc && curproc->p_vmspace) {
 3466                         ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
 3467                         if (ptep) {
 3468                                 return (TLBLO_PTE_TO_PA(*ptep) |
 3469                                     (va & PAGE_MASK));
 3470                         }
 3471                         return (0);
 3472                 }
 3473         }
 3474 
 3475         /*
 3476          * Should be kernel virtual here, otherwise fail
 3477          */
 3478         mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
 3479 #if defined(__mips_n64)
 3480         mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
 3481 #endif 
 3482         /*
 3483          * Kernel virtual.
 3484          */
 3485 
 3486         if (mapped) {
 3487                 pt_entry_t *ptep;
 3488 
 3489                 /* Is the kernel pmap initialized? */
 3490                 if (!CPU_EMPTY(&kernel_pmap->pm_active)) {
 3491                         /* It's inside the virtual address range */
 3492                         ptep = pmap_pte(kernel_pmap, va);
 3493                         if (ptep) {
 3494                                 return (TLBLO_PTE_TO_PA(*ptep) |
 3495                                     (va & PAGE_MASK));
 3496                         }
 3497                 }
 3498                 return (0);
 3499         }
 3500 
 3501         panic("%s for unknown address space %p.", __func__, (void *)va);
 3502 }
 3503 
 3504 
 3505 void 
 3506 pmap_flush_pvcache(vm_page_t m)
 3507 {
 3508         pv_entry_t pv;
 3509 
 3510         if (m != NULL) {
 3511                 for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
 3512                     pv = TAILQ_NEXT(pv, pv_list)) {
 3513                         mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
 3514                 }
 3515         }
 3516 }

Cache object: 0f3de0667b1ff7acdd1b76e3d1bd5126


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.