The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mips/mips/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  * This code is derived from software contributed to Berkeley by
   10  * the Systems Programming Group of the University of Utah Computer
   11  * Science Department and William Jolitz of UUNET Technologies Inc.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   38  *      from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
   39  *      JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
   40  */
   41 
   42 /*
   43  *      Manages physical address maps.
   44  *
   45  *      Since the information managed by this module is
   46  *      also stored by the logical address mapping module,
   47  *      this module may throw away valid virtual-to-physical
   48  *      mappings at almost any time.  However, invalidations
   49  *      of virtual-to-physical mappings must be done as
   50  *      requested.
   51  *
   52  *      In order to cope with hardware architectures which
   53  *      make virtual-to-physical map invalidates expensive,
   54  *      this module may delay invalidate or reduced protection
   55  *      operations until such time as they are actually
   56  *      necessary.  This module is given full information as
   57  *      to which processors are currently using which maps,
   58  *      and to when physical maps must be made correct.
   59  */
   60 
   61 #include <sys/cdefs.h>
   62 __FBSDID("$FreeBSD: releng/11.0/sys/mips/mips/pmap.c 298859 2016-04-30 19:29:03Z rwatson $");
   63 
   64 #include "opt_ddb.h"
   65 #include "opt_pmap.h"
   66 
   67 #include <sys/param.h>
   68 #include <sys/systm.h>
   69 #include <sys/lock.h>
   70 #include <sys/mman.h>
   71 #include <sys/msgbuf.h>
   72 #include <sys/mutex.h>
   73 #include <sys/pcpu.h>
   74 #include <sys/proc.h>
   75 #include <sys/rwlock.h>
   76 #include <sys/sched.h>
   77 #ifdef SMP
   78 #include <sys/smp.h>
   79 #else
   80 #include <sys/cpuset.h>
   81 #endif
   82 #include <sys/sysctl.h>
   83 #include <sys/vmmeter.h>
   84 
   85 #ifdef DDB
   86 #include <ddb/ddb.h>
   87 #endif
   88 
   89 #include <vm/vm.h>
   90 #include <vm/vm_param.h>
   91 #include <vm/vm_kern.h>
   92 #include <vm/vm_page.h>
   93 #include <vm/vm_map.h>
   94 #include <vm/vm_object.h>
   95 #include <vm/vm_extern.h>
   96 #include <vm/vm_pageout.h>
   97 #include <vm/vm_pager.h>
   98 #include <vm/uma.h>
   99 
  100 #include <machine/cache.h>
  101 #include <machine/md_var.h>
  102 #include <machine/tlb.h>
  103 
  104 #undef PMAP_DEBUG
  105 
  106 #if !defined(DIAGNOSTIC)
  107 #define PMAP_INLINE __inline
  108 #else
  109 #define PMAP_INLINE
  110 #endif
  111 
  112 #ifdef PV_STATS
  113 #define PV_STAT(x)      do { x ; } while (0)
  114 #else
  115 #define PV_STAT(x)      do { } while (0)
  116 #endif
  117 
  118 /*
  119  * Get PDEs and PTEs for user/kernel address space
  120  */
  121 #define pmap_seg_index(v)       (((v) >> SEGSHIFT) & (NPDEPG - 1))
  122 #define pmap_pde_index(v)       (((v) >> PDRSHIFT) & (NPDEPG - 1))
  123 #define pmap_pte_index(v)       (((v) >> PAGE_SHIFT) & (NPTEPG - 1))
  124 #define pmap_pde_pindex(v)      ((v) >> PDRSHIFT)
  125 
  126 #ifdef __mips_n64
  127 #define NUPDE                   (NPDEPG * NPDEPG)
  128 #define NUSERPGTBLS             (NUPDE + NPDEPG)
  129 #else
  130 #define NUPDE                   (NPDEPG)
  131 #define NUSERPGTBLS             (NUPDE)
  132 #endif
  133 
  134 #define is_kernel_pmap(x)       ((x) == kernel_pmap)
  135 
  136 struct pmap kernel_pmap_store;
  137 pd_entry_t *kernel_segmap;
  138 
  139 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  140 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  141 
  142 static int nkpt;
  143 unsigned pmap_max_asid;         /* max ASID supported by the system */
  144 
  145 #define PMAP_ASID_RESERVED      0
  146 
  147 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
  148 
  149 static void pmap_asid_alloc(pmap_t pmap);
  150 
  151 static struct rwlock_padalign pvh_global_lock;
  152 
  153 /*
  154  * Data for the pv entry allocation mechanism
  155  */
  156 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
  157 static int pv_entry_count;
  158 
  159 static void free_pv_chunk(struct pv_chunk *pc);
  160 static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
  161 static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
  162 static vm_page_t pmap_pv_reclaim(pmap_t locked_pmap);
  163 static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
  164 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
  165     vm_offset_t va);
  166 static vm_page_t pmap_alloc_direct_page(unsigned int index, int req);
  167 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
  168     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
  169 static void pmap_grow_direct_page(int req);
  170 static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
  171     pd_entry_t pde);
  172 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
  173 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
  174 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
  175     vm_offset_t va, vm_page_t m);
  176 static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte);
  177 static void pmap_invalidate_all(pmap_t pmap);
  178 static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
  179 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m);
  180 
  181 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
  182 static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, u_int flags);
  183 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t);
  184 static pt_entry_t init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot);
  185 
  186 static void pmap_invalidate_page_action(void *arg);
  187 static void pmap_invalidate_range_action(void *arg);
  188 static void pmap_update_page_action(void *arg);
  189 
  190 #ifndef __mips_n64
  191 /*
  192  * This structure is for high memory (memory above 512Meg in 32 bit) support.
  193  * The highmem area does not have a KSEG0 mapping, and we need a mechanism to
  194  * do temporary per-CPU mappings for pmap_zero_page, pmap_copy_page etc.
  195  *
  196  * At bootup, we reserve 2 virtual pages per CPU for mapping highmem pages. To 
  197  * access a highmem physical address on a CPU, we map the physical address to
  198  * the reserved virtual address for the CPU in the kernel pagetable.  This is 
  199  * done with interrupts disabled(although a spinlock and sched_pin would be 
  200  * sufficient).
  201  */
  202 struct local_sysmaps {
  203         vm_offset_t     base;
  204         uint32_t        saved_intr;
  205         uint16_t        valid1, valid2;
  206 };
  207 static struct local_sysmaps sysmap_lmem[MAXCPU];
  208 
  209 static __inline void
  210 pmap_alloc_lmem_map(void)
  211 {
  212         int i;
  213 
  214         for (i = 0; i < MAXCPU; i++) {
  215                 sysmap_lmem[i].base = virtual_avail;
  216                 virtual_avail += PAGE_SIZE * 2;
  217                 sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
  218         }
  219 }
  220 
  221 static __inline vm_offset_t
  222 pmap_lmem_map1(vm_paddr_t phys)
  223 {
  224         struct local_sysmaps *sysm;
  225         pt_entry_t *pte, npte;
  226         vm_offset_t va;
  227         uint32_t intr;
  228         int cpu;
  229 
  230         intr = intr_disable();
  231         cpu = PCPU_GET(cpuid);
  232         sysm = &sysmap_lmem[cpu];
  233         sysm->saved_intr = intr;
  234         va = sysm->base;
  235         npte = TLBLO_PA_TO_PFN(phys) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
  236         pte = pmap_pte(kernel_pmap, va);
  237         *pte = npte;
  238         sysm->valid1 = 1;
  239         return (va);
  240 }
  241 
  242 static __inline vm_offset_t
  243 pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
  244 {
  245         struct local_sysmaps *sysm;
  246         pt_entry_t *pte, npte;
  247         vm_offset_t va1, va2;
  248         uint32_t intr;
  249         int cpu;
  250 
  251         intr = intr_disable();
  252         cpu = PCPU_GET(cpuid);
  253         sysm = &sysmap_lmem[cpu];
  254         sysm->saved_intr = intr;
  255         va1 = sysm->base;
  256         va2 = sysm->base + PAGE_SIZE;
  257         npte = TLBLO_PA_TO_PFN(phys1) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
  258         pte = pmap_pte(kernel_pmap, va1);
  259         *pte = npte;
  260         npte = TLBLO_PA_TO_PFN(phys2) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
  261         pte = pmap_pte(kernel_pmap, va2);
  262         *pte = npte;
  263         sysm->valid1 = 1;
  264         sysm->valid2 = 1;
  265         return (va1);
  266 }
  267 
  268 static __inline void
  269 pmap_lmem_unmap(void)
  270 {
  271         struct local_sysmaps *sysm;
  272         pt_entry_t *pte;
  273         int cpu;
  274 
  275         cpu = PCPU_GET(cpuid);
  276         sysm = &sysmap_lmem[cpu];
  277         pte = pmap_pte(kernel_pmap, sysm->base);
  278         *pte = PTE_G;
  279         tlb_invalidate_address(kernel_pmap, sysm->base);
  280         sysm->valid1 = 0;
  281         if (sysm->valid2) {
  282                 pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);
  283                 *pte = PTE_G;
  284                 tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);
  285                 sysm->valid2 = 0;
  286         }
  287         intr_restore(sysm->saved_intr);
  288 }
  289 #else  /* __mips_n64 */
  290 
  291 static __inline void
  292 pmap_alloc_lmem_map(void)
  293 {
  294 }
  295 
  296 static __inline vm_offset_t
  297 pmap_lmem_map1(vm_paddr_t phys)
  298 {
  299 
  300         return (0);
  301 }
  302 
  303 static __inline vm_offset_t
  304 pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
  305 {
  306 
  307         return (0);
  308 }
  309 
  310 static __inline vm_offset_t 
  311 pmap_lmem_unmap(void)
  312 {
  313 
  314         return (0);
  315 }
  316 #endif /* !__mips_n64 */
  317 
  318 static __inline int
  319 is_cacheable_page(vm_paddr_t pa, vm_page_t m)
  320 {
  321 
  322         return ((m->md.pv_flags & PV_MEMATTR_UNCACHEABLE) == 0 &&
  323             is_cacheable_mem(pa));
  324 
  325 }
  326 
  327 /*
  328  * Page table entry lookup routines.
  329  */
  330 static __inline pd_entry_t *
  331 pmap_segmap(pmap_t pmap, vm_offset_t va)
  332 {
  333 
  334         return (&pmap->pm_segtab[pmap_seg_index(va)]);
  335 }
  336 
  337 #ifdef __mips_n64
  338 static __inline pd_entry_t *
  339 pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
  340 {
  341         pd_entry_t *pde;
  342 
  343         pde = (pd_entry_t *)*pdpe;
  344         return (&pde[pmap_pde_index(va)]);
  345 }
  346 
  347 static __inline pd_entry_t *
  348 pmap_pde(pmap_t pmap, vm_offset_t va)
  349 {
  350         pd_entry_t *pdpe;
  351 
  352         pdpe = pmap_segmap(pmap, va);
  353         if (*pdpe == NULL)
  354                 return (NULL);
  355 
  356         return (pmap_pdpe_to_pde(pdpe, va));
  357 }
  358 #else
  359 static __inline pd_entry_t *
  360 pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
  361 {
  362 
  363         return (pdpe);
  364 }
  365 
  366 static __inline 
  367 pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va)
  368 {
  369 
  370         return (pmap_segmap(pmap, va));
  371 }
  372 #endif
  373 
  374 static __inline pt_entry_t *
  375 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
  376 {
  377         pt_entry_t *pte;
  378 
  379         pte = (pt_entry_t *)*pde;
  380         return (&pte[pmap_pte_index(va)]);
  381 }
  382 
  383 pt_entry_t *
  384 pmap_pte(pmap_t pmap, vm_offset_t va)
  385 {
  386         pd_entry_t *pde;
  387 
  388         pde = pmap_pde(pmap, va);
  389         if (pde == NULL || *pde == NULL)
  390                 return (NULL);
  391 
  392         return (pmap_pde_to_pte(pde, va));
  393 }
  394 
  395 vm_offset_t
  396 pmap_steal_memory(vm_size_t size)
  397 {
  398         vm_paddr_t bank_size, pa;
  399         vm_offset_t va;
  400 
  401         size = round_page(size);
  402         bank_size = phys_avail[1] - phys_avail[0];
  403         while (size > bank_size) {
  404                 int i;
  405 
  406                 for (i = 0; phys_avail[i + 2]; i += 2) {
  407                         phys_avail[i] = phys_avail[i + 2];
  408                         phys_avail[i + 1] = phys_avail[i + 3];
  409                 }
  410                 phys_avail[i] = 0;
  411                 phys_avail[i + 1] = 0;
  412                 if (!phys_avail[0])
  413                         panic("pmap_steal_memory: out of memory");
  414                 bank_size = phys_avail[1] - phys_avail[0];
  415         }
  416 
  417         pa = phys_avail[0];
  418         phys_avail[0] += size;
  419         if (MIPS_DIRECT_MAPPABLE(pa) == 0)
  420                 panic("Out of memory below 512Meg?");
  421         va = MIPS_PHYS_TO_DIRECT(pa);
  422         bzero((caddr_t)va, size);
  423         return (va);
  424 }
  425 
  426 /*
  427  * Bootstrap the system enough to run with virtual memory.  This
  428  * assumes that the phys_avail array has been initialized.
  429  */
  430 static void 
  431 pmap_create_kernel_pagetable(void)
  432 {
  433         int i, j;
  434         vm_offset_t ptaddr;
  435         pt_entry_t *pte;
  436 #ifdef __mips_n64
  437         pd_entry_t *pde;
  438         vm_offset_t pdaddr;
  439         int npt, npde;
  440 #endif
  441 
  442         /*
  443          * Allocate segment table for the kernel
  444          */
  445         kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
  446 
  447         /*
  448          * Allocate second level page tables for the kernel
  449          */
  450 #ifdef __mips_n64
  451         npde = howmany(NKPT, NPDEPG);
  452         pdaddr = pmap_steal_memory(PAGE_SIZE * npde);
  453 #endif
  454         nkpt = NKPT;
  455         ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt);
  456 
  457         /*
  458          * The R[4-7]?00 stores only one copy of the Global bit in the
  459          * translation lookaside buffer for each 2 page entry. Thus invalid
  460          * entrys must have the Global bit set so when Entry LO and Entry HI
  461          * G bits are anded together they will produce a global bit to store
  462          * in the tlb.
  463          */
  464         for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++)
  465                 *pte = PTE_G;
  466 
  467 #ifdef __mips_n64
  468         for (i = 0,  npt = nkpt; npt > 0; i++) {
  469                 kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE);
  470                 pde = (pd_entry_t *)kernel_segmap[i];
  471 
  472                 for (j = 0; j < NPDEPG && npt > 0; j++, npt--)
  473                         pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE);
  474         }
  475 #else
  476         for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++)
  477                 kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE));
  478 #endif
  479 
  480         PMAP_LOCK_INIT(kernel_pmap);
  481         kernel_pmap->pm_segtab = kernel_segmap;
  482         CPU_FILL(&kernel_pmap->pm_active);
  483         TAILQ_INIT(&kernel_pmap->pm_pvchunk);
  484         kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
  485         kernel_pmap->pm_asid[0].gen = 0;
  486         kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE;
  487 }
  488 
  489 void
  490 pmap_bootstrap(void)
  491 {
  492         int i;
  493         int need_local_mappings = 0; 
  494 
  495         /* Sort. */
  496 again:
  497         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  498                 /*
  499                  * Keep the memory aligned on page boundary.
  500                  */
  501                 phys_avail[i] = round_page(phys_avail[i]);
  502                 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
  503 
  504                 if (i < 2)
  505                         continue;
  506                 if (phys_avail[i - 2] > phys_avail[i]) {
  507                         vm_paddr_t ptemp[2];
  508 
  509                         ptemp[0] = phys_avail[i + 0];
  510                         ptemp[1] = phys_avail[i + 1];
  511 
  512                         phys_avail[i + 0] = phys_avail[i - 2];
  513                         phys_avail[i + 1] = phys_avail[i - 1];
  514 
  515                         phys_avail[i - 2] = ptemp[0];
  516                         phys_avail[i - 1] = ptemp[1];
  517                         goto again;
  518                 }
  519         }
  520 
  521         /*
  522          * In 32 bit, we may have memory which cannot be mapped directly.
  523          * This memory will need temporary mapping before it can be
  524          * accessed.
  525          */
  526         if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1] - 1))
  527                 need_local_mappings = 1;
  528 
  529         /*
  530          * Copy the phys_avail[] array before we start stealing memory from it.
  531          */
  532         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  533                 physmem_desc[i] = phys_avail[i];
  534                 physmem_desc[i + 1] = phys_avail[i + 1];
  535         }
  536 
  537         Maxmem = atop(phys_avail[i - 1]);
  538 
  539         if (bootverbose) {
  540                 printf("Physical memory chunk(s):\n");
  541                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  542                         vm_paddr_t size;
  543 
  544                         size = phys_avail[i + 1] - phys_avail[i];
  545                         printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
  546                             (uintmax_t) phys_avail[i],
  547                             (uintmax_t) phys_avail[i + 1] - 1,
  548                             (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
  549                 }
  550                 printf("Maxmem is 0x%0jx\n", ptoa((uintmax_t)Maxmem));
  551         }
  552         /*
  553          * Steal the message buffer from the beginning of memory.
  554          */
  555         msgbufp = (struct msgbuf *)pmap_steal_memory(msgbufsize);
  556         msgbufinit(msgbufp, msgbufsize);
  557 
  558         /*
  559          * Steal thread0 kstack.
  560          */
  561         kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
  562 
  563         virtual_avail = VM_MIN_KERNEL_ADDRESS;
  564         virtual_end = VM_MAX_KERNEL_ADDRESS;
  565 
  566 #ifdef SMP
  567         /*
  568          * Steal some virtual address space to map the pcpu area.
  569          */
  570         virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
  571         pcpup = (struct pcpu *)virtual_avail;
  572         virtual_avail += PAGE_SIZE * 2;
  573 
  574         /*
  575          * Initialize the wired TLB entry mapping the pcpu region for
  576          * the BSP at 'pcpup'. Up until this point we were operating
  577          * with the 'pcpup' for the BSP pointing to a virtual address
  578          * in KSEG0 so there was no need for a TLB mapping.
  579          */
  580         mips_pcpu_tlb_init(PCPU_ADDR(0));
  581 
  582         if (bootverbose)
  583                 printf("pcpu is available at virtual address %p.\n", pcpup);
  584 #endif
  585 
  586         if (need_local_mappings)
  587                 pmap_alloc_lmem_map();
  588         pmap_create_kernel_pagetable();
  589         pmap_max_asid = VMNUM_PIDS;
  590         mips_wr_entryhi(0);
  591         mips_wr_pagemask(0);
  592 
  593         /*
  594          * Initialize the global pv list lock.
  595          */
  596         rw_init(&pvh_global_lock, "pmap pv global");
  597 }
  598 
  599 /*
  600  * Initialize a vm_page's machine-dependent fields.
  601  */
  602 void
  603 pmap_page_init(vm_page_t m)
  604 {
  605 
  606         TAILQ_INIT(&m->md.pv_list);
  607         m->md.pv_flags = 0;
  608 }
  609 
  610 /*
  611  *      Initialize the pmap module.
  612  *      Called by vm_init, to initialize any structures that the pmap
  613  *      system needs to map virtual memory.
  614  */
  615 void
  616 pmap_init(void)
  617 {
  618 }
  619 
  620 /***************************************************
  621  * Low level helper routines.....
  622  ***************************************************/
  623 
  624 #ifdef  SMP
  625 static __inline void
  626 pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
  627 {
  628         int     cpuid, cpu, self;
  629         cpuset_t active_cpus;
  630 
  631         sched_pin();
  632         if (is_kernel_pmap(pmap)) {
  633                 smp_rendezvous(NULL, fn, NULL, arg);
  634                 goto out;
  635         }
  636         /* Force ASID update on inactive CPUs */
  637         CPU_FOREACH(cpu) {
  638                 if (!CPU_ISSET(cpu, &pmap->pm_active))
  639                         pmap->pm_asid[cpu].gen = 0;
  640         }
  641         cpuid = PCPU_GET(cpuid);
  642         /* 
  643          * XXX: barrier/locking for active? 
  644          *
  645          * Take a snapshot of active here, any further changes are ignored.
  646          * tlb update/invalidate should be harmless on inactive CPUs
  647          */
  648         active_cpus = pmap->pm_active;
  649         self = CPU_ISSET(cpuid, &active_cpus);
  650         CPU_CLR(cpuid, &active_cpus);
  651         /* Optimize for the case where this cpu is the only active one */
  652         if (CPU_EMPTY(&active_cpus)) {
  653                 if (self)
  654                         fn(arg);
  655         } else {
  656                 if (self)
  657                         CPU_SET(cpuid, &active_cpus);
  658                 smp_rendezvous_cpus(active_cpus, NULL, fn, NULL, arg);
  659         }
  660 out:
  661         sched_unpin();
  662 }
  663 #else /* !SMP */
  664 static __inline void
  665 pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
  666 {
  667         int     cpuid;
  668 
  669         if (is_kernel_pmap(pmap)) {
  670                 fn(arg);
  671                 return;
  672         }
  673         cpuid = PCPU_GET(cpuid);
  674         if (!CPU_ISSET(cpuid, &pmap->pm_active))
  675                 pmap->pm_asid[cpuid].gen = 0;
  676         else
  677                 fn(arg);
  678 }
  679 #endif /* SMP */
  680 
  681 static void
  682 pmap_invalidate_all(pmap_t pmap)
  683 {
  684 
  685         pmap_call_on_active_cpus(pmap,
  686             (void (*)(void *))tlb_invalidate_all_user, pmap);
  687 }
  688 
  689 struct pmap_invalidate_page_arg {
  690         pmap_t pmap;
  691         vm_offset_t va;
  692 };
  693 
  694 static void
  695 pmap_invalidate_page_action(void *arg)
  696 {
  697         struct pmap_invalidate_page_arg *p = arg;
  698 
  699         tlb_invalidate_address(p->pmap, p->va);
  700 }
  701 
  702 static void
  703 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  704 {
  705         struct pmap_invalidate_page_arg arg;
  706 
  707         arg.pmap = pmap;
  708         arg.va = va;
  709         pmap_call_on_active_cpus(pmap, pmap_invalidate_page_action, &arg);
  710 }
  711 
  712 struct pmap_invalidate_range_arg {
  713         pmap_t pmap;
  714         vm_offset_t sva;
  715         vm_offset_t eva;
  716 };
  717 
  718 static void
  719 pmap_invalidate_range_action(void *arg)
  720 {
  721         struct pmap_invalidate_range_arg *p = arg;
  722 
  723         tlb_invalidate_range(p->pmap, p->sva, p->eva);
  724 }
  725 
  726 static void
  727 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  728 {
  729         struct pmap_invalidate_range_arg arg;
  730 
  731         arg.pmap = pmap;
  732         arg.sva = sva;
  733         arg.eva = eva;
  734         pmap_call_on_active_cpus(pmap, pmap_invalidate_range_action, &arg);
  735 }
  736 
  737 struct pmap_update_page_arg {
  738         pmap_t pmap;
  739         vm_offset_t va;
  740         pt_entry_t pte;
  741 };
  742 
  743 static void
  744 pmap_update_page_action(void *arg)
  745 {
  746         struct pmap_update_page_arg *p = arg;
  747 
  748         tlb_update(p->pmap, p->va, p->pte);
  749 }
  750 
  751 static void
  752 pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
  753 {
  754         struct pmap_update_page_arg arg;
  755 
  756         arg.pmap = pmap;
  757         arg.va = va;
  758         arg.pte = pte;
  759         pmap_call_on_active_cpus(pmap, pmap_update_page_action, &arg);
  760 }
  761 
  762 /*
  763  *      Routine:        pmap_extract
  764  *      Function:
  765  *              Extract the physical page address associated
  766  *              with the given map/virtual_address pair.
  767  */
  768 vm_paddr_t
  769 pmap_extract(pmap_t pmap, vm_offset_t va)
  770 {
  771         pt_entry_t *pte;
  772         vm_offset_t retval = 0;
  773 
  774         PMAP_LOCK(pmap);
  775         pte = pmap_pte(pmap, va);
  776         if (pte) {
  777                 retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
  778         }
  779         PMAP_UNLOCK(pmap);
  780         return (retval);
  781 }
  782 
  783 /*
  784  *      Routine:        pmap_extract_and_hold
  785  *      Function:
  786  *              Atomically extract and hold the physical page
  787  *              with the given pmap and virtual address pair
  788  *              if that mapping permits the given protection.
  789  */
  790 vm_page_t
  791 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
  792 {
  793         pt_entry_t pte, *ptep;
  794         vm_paddr_t pa, pte_pa;
  795         vm_page_t m;
  796 
  797         m = NULL;
  798         pa = 0;
  799         PMAP_LOCK(pmap);
  800 retry:
  801         ptep = pmap_pte(pmap, va);
  802         if (ptep != NULL) {
  803                 pte = *ptep;
  804                 if (pte_test(&pte, PTE_V) && (!pte_test(&pte, PTE_RO) ||
  805                     (prot & VM_PROT_WRITE) == 0)) {
  806                         pte_pa = TLBLO_PTE_TO_PA(pte);
  807                         if (vm_page_pa_tryrelock(pmap, pte_pa, &pa))
  808                                 goto retry;
  809                         m = PHYS_TO_VM_PAGE(pte_pa);
  810                         vm_page_hold(m);
  811                 }
  812         }
  813         PA_UNLOCK_COND(pa);
  814         PMAP_UNLOCK(pmap);
  815         return (m);
  816 }
  817 
  818 /***************************************************
  819  * Low level mapping routines.....
  820  ***************************************************/
  821 
  822 /*
  823  * add a wired page to the kva
  824  */
  825 void
  826 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int attr)
  827 {
  828         pt_entry_t *pte;
  829         pt_entry_t opte, npte;
  830 
  831 #ifdef PMAP_DEBUG
  832         printf("pmap_kenter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
  833 #endif
  834 
  835         pte = pmap_pte(kernel_pmap, va);
  836         opte = *pte;
  837         npte = TLBLO_PA_TO_PFN(pa) | attr | PTE_D | PTE_V | PTE_G;
  838         *pte = npte;
  839         if (pte_test(&opte, PTE_V) && opte != npte)
  840                 pmap_update_page(kernel_pmap, va, npte);
  841 }
  842 
  843 void
  844 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
  845 {
  846 
  847         KASSERT(is_cacheable_mem(pa),
  848                 ("pmap_kenter: memory at 0x%lx is not cacheable", (u_long)pa));
  849 
  850         pmap_kenter_attr(va, pa, PTE_C_CACHE);
  851 }
  852 
  853 /*
  854  * remove a page from the kernel pagetables
  855  */
  856  /* PMAP_INLINE */ void
  857 pmap_kremove(vm_offset_t va)
  858 {
  859         pt_entry_t *pte;
  860 
  861         /*
  862          * Write back all caches from the page being destroyed
  863          */
  864         mips_dcache_wbinv_range_index(va, PAGE_SIZE);
  865 
  866         pte = pmap_pte(kernel_pmap, va);
  867         *pte = PTE_G;
  868         pmap_invalidate_page(kernel_pmap, va);
  869 }
  870 
  871 /*
  872  *      Used to map a range of physical addresses into kernel
  873  *      virtual address space.
  874  *
  875  *      The value passed in '*virt' is a suggested virtual address for
  876  *      the mapping. Architectures which can support a direct-mapped
  877  *      physical to virtual region can return the appropriate address
  878  *      within that region, leaving '*virt' unchanged. Other
  879  *      architectures should map the pages starting at '*virt' and
  880  *      update '*virt' with the first usable address after the mapped
  881  *      region.
  882  *
  883  *      Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
  884  */
  885 vm_offset_t
  886 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
  887 {
  888         vm_offset_t va, sva;
  889 
  890         if (MIPS_DIRECT_MAPPABLE(end - 1))
  891                 return (MIPS_PHYS_TO_DIRECT(start));
  892 
  893         va = sva = *virt;
  894         while (start < end) {
  895                 pmap_kenter(va, start);
  896                 va += PAGE_SIZE;
  897                 start += PAGE_SIZE;
  898         }
  899         *virt = va;
  900         return (sva);
  901 }
  902 
  903 /*
  904  * Add a list of wired pages to the kva
  905  * this routine is only used for temporary
  906  * kernel mappings that do not need to have
  907  * page modification or references recorded.
  908  * Note that old mappings are simply written
  909  * over.  The page *must* be wired.
  910  */
  911 void
  912 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
  913 {
  914         int i;
  915         vm_offset_t origva = va;
  916 
  917         for (i = 0; i < count; i++) {
  918                 pmap_flush_pvcache(m[i]);
  919                 pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
  920                 va += PAGE_SIZE;
  921         }
  922 
  923         mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
  924 }
  925 
  926 /*
  927  * this routine jerks page mappings from the
  928  * kernel -- it is meant only for temporary mappings.
  929  */
  930 void
  931 pmap_qremove(vm_offset_t va, int count)
  932 {
  933         pt_entry_t *pte;
  934         vm_offset_t origva;
  935 
  936         if (count < 1)
  937                 return;
  938         mips_dcache_wbinv_range_index(va, PAGE_SIZE * count);
  939         origva = va;
  940         do {
  941                 pte = pmap_pte(kernel_pmap, va);
  942                 *pte = PTE_G;
  943                 va += PAGE_SIZE;
  944         } while (--count > 0);
  945         pmap_invalidate_range(kernel_pmap, origva, va);
  946 }
  947 
  948 /***************************************************
  949  * Page table page management routines.....
  950  ***************************************************/
  951 
  952 /*
  953  * Decrements a page table page's wire count, which is used to record the
  954  * number of valid page table entries within the page.  If the wire count
  955  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
  956  * page table page was unmapped and FALSE otherwise.
  957  */
  958 static PMAP_INLINE boolean_t
  959 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
  960 {
  961 
  962         --m->wire_count;
  963         if (m->wire_count == 0) {
  964                 _pmap_unwire_ptp(pmap, va, m);
  965                 return (TRUE);
  966         } else
  967                 return (FALSE);
  968 }
  969 
  970 static void
  971 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
  972 {
  973         pd_entry_t *pde;
  974 
  975         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
  976         /*
  977          * unmap the page table page
  978          */
  979 #ifdef __mips_n64
  980         if (m->pindex < NUPDE)
  981                 pde = pmap_pde(pmap, va);
  982         else
  983                 pde = pmap_segmap(pmap, va);
  984 #else
  985         pde = pmap_pde(pmap, va);
  986 #endif
  987         *pde = 0;
  988         pmap->pm_stats.resident_count--;
  989 
  990 #ifdef __mips_n64
  991         if (m->pindex < NUPDE) {
  992                 pd_entry_t *pdp;
  993                 vm_page_t pdpg;
  994 
  995                 /*
  996                  * Recursively decrement next level pagetable refcount
  997                  */
  998                 pdp = (pd_entry_t *)*pmap_segmap(pmap, va);
  999                 pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp));
 1000                 pmap_unwire_ptp(pmap, va, pdpg);
 1001         }
 1002 #endif
 1003 
 1004         /*
 1005          * If the page is finally unwired, simply free it.
 1006          */
 1007         vm_page_free_zero(m);
 1008         atomic_subtract_int(&vm_cnt.v_wire_count, 1);
 1009 }
 1010 
 1011 /*
 1012  * After removing a page table entry, this routine is used to
 1013  * conditionally free the page, and manage the hold/wire counts.
 1014  */
 1015 static int
 1016 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
 1017 {
 1018         vm_page_t mpte;
 1019 
 1020         if (va >= VM_MAXUSER_ADDRESS)
 1021                 return (0);
 1022         KASSERT(pde != 0, ("pmap_unuse_pt: pde != 0"));
 1023         mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pde));
 1024         return (pmap_unwire_ptp(pmap, va, mpte));
 1025 }
 1026 
 1027 void
 1028 pmap_pinit0(pmap_t pmap)
 1029 {
 1030         int i;
 1031 
 1032         PMAP_LOCK_INIT(pmap);
 1033         pmap->pm_segtab = kernel_segmap;
 1034         CPU_ZERO(&pmap->pm_active);
 1035         for (i = 0; i < MAXCPU; i++) {
 1036                 pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
 1037                 pmap->pm_asid[i].gen = 0;
 1038         }
 1039         PCPU_SET(curpmap, pmap);
 1040         TAILQ_INIT(&pmap->pm_pvchunk);
 1041         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1042 }
 1043 
 1044 static void
 1045 pmap_grow_direct_page(int req)
 1046 {
 1047 
 1048 #ifdef __mips_n64
 1049         VM_WAIT;
 1050 #else
 1051         if (!vm_page_reclaim_contig(req, 1, 0, MIPS_KSEG0_LARGEST_PHYS,
 1052             PAGE_SIZE, 0))
 1053                 VM_WAIT;
 1054 #endif
 1055 }
 1056 
 1057 static vm_page_t
 1058 pmap_alloc_direct_page(unsigned int index, int req)
 1059 {
 1060         vm_page_t m;
 1061 
 1062         m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, req | VM_ALLOC_WIRED |
 1063             VM_ALLOC_ZERO);
 1064         if (m == NULL)
 1065                 return (NULL);
 1066 
 1067         if ((m->flags & PG_ZERO) == 0)
 1068                 pmap_zero_page(m);
 1069 
 1070         m->pindex = index;
 1071         return (m);
 1072 }
 1073 
 1074 /*
 1075  * Initialize a preallocated and zeroed pmap structure,
 1076  * such as one in a vmspace structure.
 1077  */
 1078 int
 1079 pmap_pinit(pmap_t pmap)
 1080 {
 1081         vm_offset_t ptdva;
 1082         vm_page_t ptdpg;
 1083         int i, req_class;
 1084 
 1085         /*
 1086          * allocate the page directory page
 1087          */
 1088         req_class = VM_ALLOC_NORMAL;
 1089         while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, req_class)) ==
 1090             NULL)
 1091                 pmap_grow_direct_page(req_class);
 1092 
 1093         ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
 1094         pmap->pm_segtab = (pd_entry_t *)ptdva;
 1095         CPU_ZERO(&pmap->pm_active);
 1096         for (i = 0; i < MAXCPU; i++) {
 1097                 pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
 1098                 pmap->pm_asid[i].gen = 0;
 1099         }
 1100         TAILQ_INIT(&pmap->pm_pvchunk);
 1101         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1102 
 1103         return (1);
 1104 }
 1105 
 1106 /*
 1107  * this routine is called if the page table page is not
 1108  * mapped correctly.
 1109  */
 1110 static vm_page_t
 1111 _pmap_allocpte(pmap_t pmap, unsigned ptepindex, u_int flags)
 1112 {
 1113         vm_offset_t pageva;
 1114         vm_page_t m;
 1115         int req_class;
 1116 
 1117         /*
 1118          * Find or fabricate a new pagetable page
 1119          */
 1120         req_class = VM_ALLOC_NORMAL;
 1121         if ((m = pmap_alloc_direct_page(ptepindex, req_class)) == NULL) {
 1122                 if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
 1123                         PMAP_UNLOCK(pmap);
 1124                         rw_wunlock(&pvh_global_lock);
 1125                         pmap_grow_direct_page(req_class);
 1126                         rw_wlock(&pvh_global_lock);
 1127                         PMAP_LOCK(pmap);
 1128                 }
 1129 
 1130                 /*
 1131                  * Indicate the need to retry.  While waiting, the page
 1132                  * table page may have been allocated.
 1133                  */
 1134                 return (NULL);
 1135         }
 1136 
 1137         /*
 1138          * Map the pagetable page into the process address space, if it
 1139          * isn't already there.
 1140          */
 1141         pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
 1142 
 1143 #ifdef __mips_n64
 1144         if (ptepindex >= NUPDE) {
 1145                 pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva;
 1146         } else {
 1147                 pd_entry_t *pdep, *pde;
 1148                 int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT);
 1149                 int pdeindex = ptepindex & (NPDEPG - 1);
 1150                 vm_page_t pg;
 1151                 
 1152                 pdep = &pmap->pm_segtab[segindex];
 1153                 if (*pdep == NULL) { 
 1154                         /* recurse for allocating page dir */
 1155                         if (_pmap_allocpte(pmap, NUPDE + segindex, 
 1156                             flags) == NULL) {
 1157                                 /* alloc failed, release current */
 1158                                 --m->wire_count;
 1159                                 atomic_subtract_int(&vm_cnt.v_wire_count, 1);
 1160                                 vm_page_free_zero(m);
 1161                                 return (NULL);
 1162                         }
 1163                 } else {
 1164                         pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep));
 1165                         pg->wire_count++;
 1166                 }
 1167                 /* Next level entry */
 1168                 pde = (pd_entry_t *)*pdep;
 1169                 pde[pdeindex] = (pd_entry_t)pageva;
 1170         }
 1171 #else
 1172         pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva;
 1173 #endif
 1174         pmap->pm_stats.resident_count++;
 1175         return (m);
 1176 }
 1177 
 1178 static vm_page_t
 1179 pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
 1180 {
 1181         unsigned ptepindex;
 1182         pd_entry_t *pde;
 1183         vm_page_t m;
 1184 
 1185         /*
 1186          * Calculate pagetable page index
 1187          */
 1188         ptepindex = pmap_pde_pindex(va);
 1189 retry:
 1190         /*
 1191          * Get the page directory entry
 1192          */
 1193         pde = pmap_pde(pmap, va);
 1194 
 1195         /*
 1196          * If the page table page is mapped, we just increment the hold
 1197          * count, and activate it.
 1198          */
 1199         if (pde != NULL && *pde != NULL) {
 1200                 m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde));
 1201                 m->wire_count++;
 1202         } else {
 1203                 /*
 1204                  * Here if the pte page isn't mapped, or if it has been
 1205                  * deallocated.
 1206                  */
 1207                 m = _pmap_allocpte(pmap, ptepindex, flags);
 1208                 if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
 1209                         goto retry;
 1210         }
 1211         return (m);
 1212 }
 1213 
 1214 
 1215 /***************************************************
 1216  * Pmap allocation/deallocation routines.
 1217  ***************************************************/
 1218 
 1219 /*
 1220  * Release any resources held by the given physical map.
 1221  * Called when a pmap initialized by pmap_pinit is being released.
 1222  * Should only be called if the map contains no valid mappings.
 1223  */
 1224 void
 1225 pmap_release(pmap_t pmap)
 1226 {
 1227         vm_offset_t ptdva;
 1228         vm_page_t ptdpg;
 1229 
 1230         KASSERT(pmap->pm_stats.resident_count == 0,
 1231             ("pmap_release: pmap resident count %ld != 0",
 1232             pmap->pm_stats.resident_count));
 1233 
 1234         ptdva = (vm_offset_t)pmap->pm_segtab;
 1235         ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva));
 1236 
 1237         ptdpg->wire_count--;
 1238         atomic_subtract_int(&vm_cnt.v_wire_count, 1);
 1239         vm_page_free_zero(ptdpg);
 1240 }
 1241 
 1242 /*
 1243  * grow the number of kernel page table entries, if needed
 1244  */
 1245 void
 1246 pmap_growkernel(vm_offset_t addr)
 1247 {
 1248         vm_page_t nkpg;
 1249         pd_entry_t *pde, *pdpe;
 1250         pt_entry_t *pte;
 1251         int i, req_class;
 1252 
 1253         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 1254         req_class = VM_ALLOC_INTERRUPT;
 1255         addr = roundup2(addr, NBSEG);
 1256         if (addr - 1 >= kernel_map->max_offset)
 1257                 addr = kernel_map->max_offset;
 1258         while (kernel_vm_end < addr) {
 1259                 pdpe = pmap_segmap(kernel_pmap, kernel_vm_end);
 1260 #ifdef __mips_n64
 1261                 if (*pdpe == 0) {
 1262                         /* new intermediate page table entry */
 1263                         nkpg = pmap_alloc_direct_page(nkpt, req_class);
 1264                         if (nkpg == NULL)
 1265                                 panic("pmap_growkernel: no memory to grow kernel");
 1266                         *pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
 1267                         continue; /* try again */
 1268                 }
 1269 #endif
 1270                 pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
 1271                 if (*pde != 0) {
 1272                         kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 1273                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1274                                 kernel_vm_end = kernel_map->max_offset;
 1275                                 break;
 1276                         }
 1277                         continue;
 1278                 }
 1279 
 1280                 /*
 1281                  * This index is bogus, but out of the way
 1282                  */
 1283                 nkpg = pmap_alloc_direct_page(nkpt, req_class);
 1284 #ifndef __mips_n64
 1285                 if (nkpg == NULL && vm_page_reclaim_contig(req_class, 1,
 1286                     0, MIPS_KSEG0_LARGEST_PHYS, PAGE_SIZE, 0))
 1287                         nkpg = pmap_alloc_direct_page(nkpt, req_class);
 1288 #endif
 1289                 if (nkpg == NULL)
 1290                         panic("pmap_growkernel: no memory to grow kernel");
 1291                 nkpt++;
 1292                 *pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
 1293 
 1294                 /*
 1295                  * The R[4-7]?00 stores only one copy of the Global bit in
 1296                  * the translation lookaside buffer for each 2 page entry.
 1297                  * Thus invalid entrys must have the Global bit set so when
 1298                  * Entry LO and Entry HI G bits are anded together they will
 1299                  * produce a global bit to store in the tlb.
 1300                  */
 1301                 pte = (pt_entry_t *)*pde;
 1302                 for (i = 0; i < NPTEPG; i++)
 1303                         pte[i] = PTE_G;
 1304 
 1305                 kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 1306                 if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1307                         kernel_vm_end = kernel_map->max_offset;
 1308                         break;
 1309                 }
 1310         }
 1311 }
 1312 
 1313 /***************************************************
 1314  * page management routines.
 1315  ***************************************************/
 1316 
 1317 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
 1318 #ifdef __mips_n64
 1319 CTASSERT(_NPCM == 3);
 1320 CTASSERT(_NPCPV == 168);
 1321 #else
 1322 CTASSERT(_NPCM == 11);
 1323 CTASSERT(_NPCPV == 336);
 1324 #endif
 1325 
 1326 static __inline struct pv_chunk *
 1327 pv_to_chunk(pv_entry_t pv)
 1328 {
 1329 
 1330         return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
 1331 }
 1332 
 1333 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
 1334 
 1335 #ifdef __mips_n64
 1336 #define PC_FREE0_1      0xfffffffffffffffful
 1337 #define PC_FREE2        0x000000fffffffffful
 1338 #else
 1339 #define PC_FREE0_9      0xfffffffful    /* Free values for index 0 through 9 */
 1340 #define PC_FREE10       0x0000fffful    /* Free values for index 10 */
 1341 #endif
 1342 
 1343 static const u_long pc_freemask[_NPCM] = {
 1344 #ifdef __mips_n64
 1345         PC_FREE0_1, PC_FREE0_1, PC_FREE2
 1346 #else
 1347         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1348         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1349         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1350         PC_FREE0_9, PC_FREE10
 1351 #endif
 1352 };
 1353 
 1354 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
 1355 
 1356 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
 1357     "Current number of pv entries");
 1358 
 1359 #ifdef PV_STATS
 1360 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
 1361 
 1362 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
 1363     "Current number of pv entry chunks");
 1364 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
 1365     "Current number of pv entry chunks allocated");
 1366 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
 1367     "Current number of pv entry chunks frees");
 1368 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
 1369     "Number of times tried to get a chunk page but failed.");
 1370 
 1371 static long pv_entry_frees, pv_entry_allocs;
 1372 static int pv_entry_spare;
 1373 
 1374 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
 1375     "Current number of pv entry frees");
 1376 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
 1377     "Current number of pv entry allocs");
 1378 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
 1379     "Current number of spare pv entries");
 1380 #endif
 1381 
 1382 /*
 1383  * We are in a serious low memory condition.  Resort to
 1384  * drastic measures to free some pages so we can allocate
 1385  * another pv entry chunk.
 1386  */
 1387 static vm_page_t
 1388 pmap_pv_reclaim(pmap_t locked_pmap)
 1389 {
 1390         struct pch newtail;
 1391         struct pv_chunk *pc;
 1392         pd_entry_t *pde;
 1393         pmap_t pmap;
 1394         pt_entry_t *pte, oldpte;
 1395         pv_entry_t pv;
 1396         vm_offset_t va;
 1397         vm_page_t m, m_pc;
 1398         u_long inuse;
 1399         int bit, field, freed, idx;
 1400 
 1401         PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
 1402         pmap = NULL;
 1403         m_pc = NULL;
 1404         TAILQ_INIT(&newtail);
 1405         while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL) {
 1406                 TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 1407                 if (pmap != pc->pc_pmap) {
 1408                         if (pmap != NULL) {
 1409                                 pmap_invalidate_all(pmap);
 1410                                 if (pmap != locked_pmap)
 1411                                         PMAP_UNLOCK(pmap);
 1412                         }
 1413                         pmap = pc->pc_pmap;
 1414                         /* Avoid deadlock and lock recursion. */
 1415                         if (pmap > locked_pmap)
 1416                                 PMAP_LOCK(pmap);
 1417                         else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
 1418                                 pmap = NULL;
 1419                                 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 1420                                 continue;
 1421                         }
 1422                 }
 1423 
 1424                 /*
 1425                  * Destroy every non-wired, 4 KB page mapping in the chunk.
 1426                  */
 1427                 freed = 0;
 1428                 for (field = 0; field < _NPCM; field++) {
 1429                         for (inuse = ~pc->pc_map[field] & pc_freemask[field];
 1430                             inuse != 0; inuse &= ~(1UL << bit)) {
 1431                                 bit = ffsl(inuse) - 1;
 1432                                 idx = field * sizeof(inuse) * NBBY + bit;
 1433                                 pv = &pc->pc_pventry[idx];
 1434                                 va = pv->pv_va;
 1435                                 pde = pmap_pde(pmap, va);
 1436                                 KASSERT(pde != NULL && *pde != 0,
 1437                                     ("pmap_pv_reclaim: pde"));
 1438                                 pte = pmap_pde_to_pte(pde, va);
 1439                                 oldpte = *pte;
 1440                                 if (pte_test(&oldpte, PTE_W))
 1441                                         continue;
 1442                                 if (is_kernel_pmap(pmap))
 1443                                         *pte = PTE_G;
 1444                                 else
 1445                                         *pte = 0;
 1446                                 m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(oldpte));
 1447                                 if (pte_test(&oldpte, PTE_D))
 1448                                         vm_page_dirty(m);
 1449                                 if (m->md.pv_flags & PV_TABLE_REF)
 1450                                         vm_page_aflag_set(m, PGA_REFERENCED);
 1451                                 m->md.pv_flags &= ~PV_TABLE_REF;
 1452                                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1453                                 if (TAILQ_EMPTY(&m->md.pv_list))
 1454                                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 1455                                 pc->pc_map[field] |= 1UL << bit;
 1456                                 pmap_unuse_pt(pmap, va, *pde);
 1457                                 freed++;
 1458                         }
 1459                 }
 1460                 if (freed == 0) {
 1461                         TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 1462                         continue;
 1463                 }
 1464                 /* Every freed mapping is for a 4 KB page. */
 1465                 pmap->pm_stats.resident_count -= freed;
 1466                 PV_STAT(pv_entry_frees += freed);
 1467                 PV_STAT(pv_entry_spare += freed);
 1468                 pv_entry_count -= freed;
 1469                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 1470                 for (field = 0; field < _NPCM; field++)
 1471                         if (pc->pc_map[field] != pc_freemask[field]) {
 1472                                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
 1473                                     pc_list);
 1474                                 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 1475 
 1476                                 /*
 1477                                  * One freed pv entry in locked_pmap is
 1478                                  * sufficient.
 1479                                  */
 1480                                 if (pmap == locked_pmap)
 1481                                         goto out;
 1482                                 break;
 1483                         }
 1484                 if (field == _NPCM) {
 1485                         PV_STAT(pv_entry_spare -= _NPCPV);
 1486                         PV_STAT(pc_chunk_count--);
 1487                         PV_STAT(pc_chunk_frees++);
 1488                         /* Entire chunk is free; return it. */
 1489                         m_pc = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(
 1490                             (vm_offset_t)pc));
 1491                         break;
 1492                 }
 1493         }
 1494 out:
 1495         TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
 1496         if (pmap != NULL) {
 1497                 pmap_invalidate_all(pmap);
 1498                 if (pmap != locked_pmap)
 1499                         PMAP_UNLOCK(pmap);
 1500         }
 1501         return (m_pc);
 1502 }
 1503 
 1504 /*
 1505  * free the pv_entry back to the free list
 1506  */
 1507 static void
 1508 free_pv_entry(pmap_t pmap, pv_entry_t pv)
 1509 {
 1510         struct pv_chunk *pc;
 1511         int bit, field, idx;
 1512 
 1513         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1514         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1515         PV_STAT(pv_entry_frees++);
 1516         PV_STAT(pv_entry_spare++);
 1517         pv_entry_count--;
 1518         pc = pv_to_chunk(pv);
 1519         idx = pv - &pc->pc_pventry[0];
 1520         field = idx / (sizeof(u_long) * NBBY);
 1521         bit = idx % (sizeof(u_long) * NBBY);
 1522         pc->pc_map[field] |= 1ul << bit;
 1523         for (idx = 0; idx < _NPCM; idx++)
 1524                 if (pc->pc_map[idx] != pc_freemask[idx]) {
 1525                         /*
 1526                          * 98% of the time, pc is already at the head of the
 1527                          * list.  If it isn't already, move it to the head.
 1528                          */
 1529                         if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
 1530                             pc)) {
 1531                                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 1532                                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
 1533                                     pc_list);
 1534                         }
 1535                         return;
 1536                 }
 1537         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 1538         free_pv_chunk(pc);
 1539 }
 1540 
 1541 static void
 1542 free_pv_chunk(struct pv_chunk *pc)
 1543 {
 1544         vm_page_t m;
 1545 
 1546         TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 1547         PV_STAT(pv_entry_spare -= _NPCPV);
 1548         PV_STAT(pc_chunk_count--);
 1549         PV_STAT(pc_chunk_frees++);
 1550         /* entire chunk is free, return it */
 1551         m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS((vm_offset_t)pc));
 1552         vm_page_unwire(m, PQ_NONE);
 1553         vm_page_free(m);
 1554 }
 1555 
 1556 /*
 1557  * get a new pv_entry, allocating a block from the system
 1558  * when needed.
 1559  */
 1560 static pv_entry_t
 1561 get_pv_entry(pmap_t pmap, boolean_t try)
 1562 {
 1563         struct pv_chunk *pc;
 1564         pv_entry_t pv;
 1565         vm_page_t m;
 1566         int bit, field, idx;
 1567 
 1568         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1569         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1570         PV_STAT(pv_entry_allocs++);
 1571         pv_entry_count++;
 1572 retry:
 1573         pc = TAILQ_FIRST(&pmap->pm_pvchunk);
 1574         if (pc != NULL) {
 1575                 for (field = 0; field < _NPCM; field++) {
 1576                         if (pc->pc_map[field]) {
 1577                                 bit = ffsl(pc->pc_map[field]) - 1;
 1578                                 break;
 1579                         }
 1580                 }
 1581                 if (field < _NPCM) {
 1582                         idx = field * sizeof(pc->pc_map[field]) * NBBY + bit;
 1583                         pv = &pc->pc_pventry[idx];
 1584                         pc->pc_map[field] &= ~(1ul << bit);
 1585                         /* If this was the last item, move it to tail */
 1586                         for (field = 0; field < _NPCM; field++)
 1587                                 if (pc->pc_map[field] != 0) {
 1588                                         PV_STAT(pv_entry_spare--);
 1589                                         return (pv);    /* not full, return */
 1590                                 }
 1591                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 1592                         TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
 1593                         PV_STAT(pv_entry_spare--);
 1594                         return (pv);
 1595                 }
 1596         }
 1597         /* No free items, allocate another chunk */
 1598         m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, VM_ALLOC_NORMAL |
 1599             VM_ALLOC_WIRED);
 1600         if (m == NULL) {
 1601                 if (try) {
 1602                         pv_entry_count--;
 1603                         PV_STAT(pc_chunk_tryfail++);
 1604                         return (NULL);
 1605                 }
 1606                 m = pmap_pv_reclaim(pmap);
 1607                 if (m == NULL)
 1608                         goto retry;
 1609         }
 1610         PV_STAT(pc_chunk_count++);
 1611         PV_STAT(pc_chunk_allocs++);
 1612         pc = (struct pv_chunk *)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
 1613         pc->pc_pmap = pmap;
 1614         pc->pc_map[0] = pc_freemask[0] & ~1ul;  /* preallocated bit 0 */
 1615         for (field = 1; field < _NPCM; field++)
 1616                 pc->pc_map[field] = pc_freemask[field];
 1617         TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
 1618         pv = &pc->pc_pventry[0];
 1619         TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 1620         PV_STAT(pv_entry_spare += _NPCPV - 1);
 1621         return (pv);
 1622 }
 1623 
 1624 static pv_entry_t
 1625 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 1626 {
 1627         pv_entry_t pv;
 1628 
 1629         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1630         TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
 1631                 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
 1632                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
 1633                         break;
 1634                 }
 1635         }
 1636         return (pv);
 1637 }
 1638 
 1639 static void
 1640 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 1641 {
 1642         pv_entry_t pv;
 1643 
 1644         pv = pmap_pvh_remove(pvh, pmap, va);
 1645         KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
 1646              (u_long)VM_PAGE_TO_PHYS(__containerof(pvh, struct vm_page, md)),
 1647              (u_long)va));
 1648         free_pv_entry(pmap, pv);
 1649 }
 1650 
 1651 static void
 1652 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
 1653 {
 1654 
 1655         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1656         pmap_pvh_free(&m->md, pmap, va);
 1657         if (TAILQ_EMPTY(&m->md.pv_list))
 1658                 vm_page_aflag_clear(m, PGA_WRITEABLE);
 1659 }
 1660 
 1661 /*
 1662  * Conditionally create a pv entry.
 1663  */
 1664 static boolean_t
 1665 pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
 1666     vm_page_t m)
 1667 {
 1668         pv_entry_t pv;
 1669 
 1670         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1671         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1672         if ((pv = get_pv_entry(pmap, TRUE)) != NULL) {
 1673                 pv->pv_va = va;
 1674                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 1675                 return (TRUE);
 1676         } else
 1677                 return (FALSE);
 1678 }
 1679 
 1680 /*
 1681  * pmap_remove_pte: do the things to unmap a page in a process
 1682  */
 1683 static int
 1684 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va, 
 1685     pd_entry_t pde)
 1686 {
 1687         pt_entry_t oldpte;
 1688         vm_page_t m;
 1689         vm_paddr_t pa;
 1690 
 1691         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1692         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1693 
 1694         /*
 1695          * Write back all cache lines from the page being unmapped.
 1696          */
 1697         mips_dcache_wbinv_range_index(va, PAGE_SIZE);
 1698 
 1699         oldpte = *ptq;
 1700         if (is_kernel_pmap(pmap))
 1701                 *ptq = PTE_G;
 1702         else
 1703                 *ptq = 0;
 1704 
 1705         if (pte_test(&oldpte, PTE_W))
 1706                 pmap->pm_stats.wired_count -= 1;
 1707 
 1708         pmap->pm_stats.resident_count -= 1;
 1709 
 1710         if (pte_test(&oldpte, PTE_MANAGED)) {
 1711                 pa = TLBLO_PTE_TO_PA(oldpte);
 1712                 m = PHYS_TO_VM_PAGE(pa);
 1713                 if (pte_test(&oldpte, PTE_D)) {
 1714                         KASSERT(!pte_test(&oldpte, PTE_RO),
 1715                             ("%s: modified page not writable: va: %p, pte: %#jx",
 1716                             __func__, (void *)va, (uintmax_t)oldpte));
 1717                         vm_page_dirty(m);
 1718                 }
 1719                 if (m->md.pv_flags & PV_TABLE_REF)
 1720                         vm_page_aflag_set(m, PGA_REFERENCED);
 1721                 m->md.pv_flags &= ~PV_TABLE_REF;
 1722 
 1723                 pmap_remove_entry(pmap, m, va);
 1724         }
 1725         return (pmap_unuse_pt(pmap, va, pde));
 1726 }
 1727 
 1728 /*
 1729  * Remove a single page from a process address space
 1730  */
 1731 static void
 1732 pmap_remove_page(struct pmap *pmap, vm_offset_t va)
 1733 {
 1734         pd_entry_t *pde;
 1735         pt_entry_t *ptq;
 1736 
 1737         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1738         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1739         pde = pmap_pde(pmap, va);
 1740         if (pde == NULL || *pde == 0)
 1741                 return;
 1742         ptq = pmap_pde_to_pte(pde, va);
 1743 
 1744         /*
 1745          * If there is no pte for this address, just skip it!
 1746          */
 1747         if (!pte_test(ptq, PTE_V))
 1748                 return;
 1749 
 1750         (void)pmap_remove_pte(pmap, ptq, va, *pde);
 1751         pmap_invalidate_page(pmap, va);
 1752 }
 1753 
 1754 /*
 1755  *      Remove the given range of addresses from the specified map.
 1756  *
 1757  *      It is assumed that the start and end are properly
 1758  *      rounded to the page size.
 1759  */
 1760 void
 1761 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 1762 {
 1763         pd_entry_t *pde, *pdpe;
 1764         pt_entry_t *pte;
 1765         vm_offset_t va, va_next;
 1766 
 1767         /*
 1768          * Perform an unsynchronized read.  This is, however, safe.
 1769          */
 1770         if (pmap->pm_stats.resident_count == 0)
 1771                 return;
 1772 
 1773         rw_wlock(&pvh_global_lock);
 1774         PMAP_LOCK(pmap);
 1775 
 1776         /*
 1777          * special handling of removing one page.  a very common operation
 1778          * and easy to short circuit some code.
 1779          */
 1780         if ((sva + PAGE_SIZE) == eva) {
 1781                 pmap_remove_page(pmap, sva);
 1782                 goto out;
 1783         }
 1784         for (; sva < eva; sva = va_next) {
 1785                 pdpe = pmap_segmap(pmap, sva);
 1786 #ifdef __mips_n64
 1787                 if (*pdpe == 0) {
 1788                         va_next = (sva + NBSEG) & ~SEGMASK;
 1789                         if (va_next < sva)
 1790                                 va_next = eva;
 1791                         continue;
 1792                 }
 1793 #endif
 1794                 va_next = (sva + NBPDR) & ~PDRMASK;
 1795                 if (va_next < sva)
 1796                         va_next = eva;
 1797 
 1798                 pde = pmap_pdpe_to_pde(pdpe, sva);
 1799                 if (*pde == NULL)
 1800                         continue;
 1801 
 1802                 /*
 1803                  * Limit our scan to either the end of the va represented
 1804                  * by the current page table page, or to the end of the
 1805                  * range being removed.
 1806                  */
 1807                 if (va_next > eva)
 1808                         va_next = eva;
 1809 
 1810                 va = va_next;
 1811                 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 1812                     sva += PAGE_SIZE) {
 1813                         if (!pte_test(pte, PTE_V)) {
 1814                                 if (va != va_next) {
 1815                                         pmap_invalidate_range(pmap, va, sva);
 1816                                         va = va_next;
 1817                                 }
 1818                                 continue;
 1819                         }
 1820                         if (va == va_next)
 1821                                 va = sva;
 1822                         if (pmap_remove_pte(pmap, pte, sva, *pde)) {
 1823                                 sva += PAGE_SIZE;
 1824                                 break;
 1825                         }
 1826                 }
 1827                 if (va != va_next)
 1828                         pmap_invalidate_range(pmap, va, sva);
 1829         }
 1830 out:
 1831         rw_wunlock(&pvh_global_lock);
 1832         PMAP_UNLOCK(pmap);
 1833 }
 1834 
 1835 /*
 1836  *      Routine:        pmap_remove_all
 1837  *      Function:
 1838  *              Removes this physical page from
 1839  *              all physical maps in which it resides.
 1840  *              Reflects back modify bits to the pager.
 1841  *
 1842  *      Notes:
 1843  *              Original versions of this routine were very
 1844  *              inefficient because they iteratively called
 1845  *              pmap_remove (slow...)
 1846  */
 1847 
 1848 void
 1849 pmap_remove_all(vm_page_t m)
 1850 {
 1851         pv_entry_t pv;
 1852         pmap_t pmap;
 1853         pd_entry_t *pde;
 1854         pt_entry_t *pte, tpte;
 1855 
 1856         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1857             ("pmap_remove_all: page %p is not managed", m));
 1858         rw_wlock(&pvh_global_lock);
 1859 
 1860         if (m->md.pv_flags & PV_TABLE_REF)
 1861                 vm_page_aflag_set(m, PGA_REFERENCED);
 1862 
 1863         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 1864                 pmap = PV_PMAP(pv);
 1865                 PMAP_LOCK(pmap);
 1866 
 1867                 /*
 1868                  * If it's last mapping writeback all caches from 
 1869                  * the page being destroyed
 1870                  */
 1871                 if (TAILQ_NEXT(pv, pv_list) == NULL)
 1872                         mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
 1873 
 1874                 pmap->pm_stats.resident_count--;
 1875 
 1876                 pde = pmap_pde(pmap, pv->pv_va);
 1877                 KASSERT(pde != NULL && *pde != 0, ("pmap_remove_all: pde"));
 1878                 pte = pmap_pde_to_pte(pde, pv->pv_va);
 1879 
 1880                 tpte = *pte;
 1881                 if (is_kernel_pmap(pmap))
 1882                         *pte = PTE_G;
 1883                 else
 1884                         *pte = 0;
 1885 
 1886                 if (pte_test(&tpte, PTE_W))
 1887                         pmap->pm_stats.wired_count--;
 1888 
 1889                 /*
 1890                  * Update the vm_page_t clean and reference bits.
 1891                  */
 1892                 if (pte_test(&tpte, PTE_D)) {
 1893                         KASSERT(!pte_test(&tpte, PTE_RO),
 1894                             ("%s: modified page not writable: va: %p, pte: %#jx",
 1895                             __func__, (void *)pv->pv_va, (uintmax_t)tpte));
 1896                         vm_page_dirty(m);
 1897                 }
 1898                 pmap_invalidate_page(pmap, pv->pv_va);
 1899 
 1900                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1901                 pmap_unuse_pt(pmap, pv->pv_va, *pde);
 1902                 free_pv_entry(pmap, pv);
 1903                 PMAP_UNLOCK(pmap);
 1904         }
 1905 
 1906         vm_page_aflag_clear(m, PGA_WRITEABLE);
 1907         m->md.pv_flags &= ~PV_TABLE_REF;
 1908         rw_wunlock(&pvh_global_lock);
 1909 }
 1910 
 1911 /*
 1912  *      Set the physical protection on the
 1913  *      specified range of this map as requested.
 1914  */
 1915 void
 1916 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 1917 {
 1918         pt_entry_t pbits, *pte;
 1919         pd_entry_t *pde, *pdpe;
 1920         vm_offset_t va, va_next;
 1921         vm_paddr_t pa;
 1922         vm_page_t m;
 1923 
 1924         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 1925                 pmap_remove(pmap, sva, eva);
 1926                 return;
 1927         }
 1928         if (prot & VM_PROT_WRITE)
 1929                 return;
 1930 
 1931         PMAP_LOCK(pmap);
 1932         for (; sva < eva; sva = va_next) {
 1933                 pdpe = pmap_segmap(pmap, sva);
 1934 #ifdef __mips_n64
 1935                 if (*pdpe == 0) {
 1936                         va_next = (sva + NBSEG) & ~SEGMASK;
 1937                         if (va_next < sva)
 1938                                 va_next = eva;
 1939                         continue;
 1940                 }
 1941 #endif
 1942                 va_next = (sva + NBPDR) & ~PDRMASK;
 1943                 if (va_next < sva)
 1944                         va_next = eva;
 1945 
 1946                 pde = pmap_pdpe_to_pde(pdpe, sva);
 1947                 if (*pde == NULL)
 1948                         continue;
 1949 
 1950                 /*
 1951                  * Limit our scan to either the end of the va represented
 1952                  * by the current page table page, or to the end of the
 1953                  * range being write protected.
 1954                  */
 1955                 if (va_next > eva)
 1956                         va_next = eva;
 1957 
 1958                 va = va_next;
 1959                 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 1960                     sva += PAGE_SIZE) {
 1961                         pbits = *pte;
 1962                         if (!pte_test(&pbits, PTE_V) || pte_test(&pbits,
 1963                             PTE_RO)) {
 1964                                 if (va != va_next) {
 1965                                         pmap_invalidate_range(pmap, va, sva);
 1966                                         va = va_next;
 1967                                 }
 1968                                 continue;
 1969                         }
 1970                         pte_set(&pbits, PTE_RO);
 1971                         if (pte_test(&pbits, PTE_D)) {
 1972                                 pte_clear(&pbits, PTE_D);
 1973                                 if (pte_test(&pbits, PTE_MANAGED)) {
 1974                                         pa = TLBLO_PTE_TO_PA(pbits);
 1975                                         m = PHYS_TO_VM_PAGE(pa);
 1976                                         vm_page_dirty(m);
 1977                                 }
 1978                                 if (va == va_next)
 1979                                         va = sva;
 1980                         } else {
 1981                                 /*
 1982                                  * Unless PTE_D is set, any TLB entries
 1983                                  * mapping "sva" don't allow write access, so
 1984                                  * they needn't be invalidated.
 1985                                  */
 1986                                 if (va != va_next) {
 1987                                         pmap_invalidate_range(pmap, va, sva);
 1988                                         va = va_next;
 1989                                 }
 1990                         }
 1991                         *pte = pbits;
 1992                 }
 1993                 if (va != va_next)
 1994                         pmap_invalidate_range(pmap, va, sva);
 1995         }
 1996         PMAP_UNLOCK(pmap);
 1997 }
 1998 
 1999 /*
 2000  *      Insert the given physical page (p) at
 2001  *      the specified virtual address (v) in the
 2002  *      target physical map with the protection requested.
 2003  *
 2004  *      If specified, the page will be wired down, meaning
 2005  *      that the related pte can not be reclaimed.
 2006  *
 2007  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 2008  *      or lose information.  That is, this routine must actually
 2009  *      insert this page into the given map NOW.
 2010  */
 2011 int
 2012 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
 2013     u_int flags, int8_t psind __unused)
 2014 {
 2015         vm_paddr_t pa, opa;
 2016         pt_entry_t *pte;
 2017         pt_entry_t origpte, newpte;
 2018         pv_entry_t pv;
 2019         vm_page_t mpte, om;
 2020 
 2021         va &= ~PAGE_MASK;
 2022         KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
 2023         KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
 2024             va >= kmi.clean_eva,
 2025             ("pmap_enter: managed mapping within the clean submap"));
 2026         if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
 2027                 VM_OBJECT_ASSERT_LOCKED(m->object);
 2028         pa = VM_PAGE_TO_PHYS(m);
 2029         newpte = TLBLO_PA_TO_PFN(pa) | init_pte_prot(m, flags, prot);
 2030         if ((flags & PMAP_ENTER_WIRED) != 0)
 2031                 newpte |= PTE_W;
 2032         if (is_kernel_pmap(pmap))
 2033                 newpte |= PTE_G;
 2034         if (is_cacheable_page(pa, m))
 2035                 newpte |= PTE_C_CACHE;
 2036         else
 2037                 newpte |= PTE_C_UNCACHED;
 2038 
 2039         mpte = NULL;
 2040 
 2041         rw_wlock(&pvh_global_lock);
 2042         PMAP_LOCK(pmap);
 2043 
 2044         /*
 2045          * In the case that a page table page is not resident, we are
 2046          * creating it here.
 2047          */
 2048         if (va < VM_MAXUSER_ADDRESS) {
 2049                 mpte = pmap_allocpte(pmap, va, flags);
 2050                 if (mpte == NULL) {
 2051                         KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
 2052                             ("pmap_allocpte failed with sleep allowed"));
 2053                         rw_wunlock(&pvh_global_lock);
 2054                         PMAP_UNLOCK(pmap);
 2055                         return (KERN_RESOURCE_SHORTAGE);
 2056                 }
 2057         }
 2058         pte = pmap_pte(pmap, va);
 2059 
 2060         /*
 2061          * Page Directory table entry not valid, we need a new PT page
 2062          */
 2063         if (pte == NULL) {
 2064                 panic("pmap_enter: invalid page directory, pdir=%p, va=%p",
 2065                     (void *)pmap->pm_segtab, (void *)va);
 2066         }
 2067         om = NULL;
 2068         origpte = *pte;
 2069         opa = TLBLO_PTE_TO_PA(origpte);
 2070 
 2071         /*
 2072          * Mapping has not changed, must be protection or wiring change.
 2073          */
 2074         if (pte_test(&origpte, PTE_V) && opa == pa) {
 2075                 /*
 2076                  * Wiring change, just update stats. We don't worry about
 2077                  * wiring PT pages as they remain resident as long as there
 2078                  * are valid mappings in them. Hence, if a user page is
 2079                  * wired, the PT page will be also.
 2080                  */
 2081                 if (pte_test(&newpte, PTE_W) && !pte_test(&origpte, PTE_W))
 2082                         pmap->pm_stats.wired_count++;
 2083                 else if (!pte_test(&newpte, PTE_W) && pte_test(&origpte,
 2084                     PTE_W))
 2085                         pmap->pm_stats.wired_count--;
 2086 
 2087                 KASSERT(!pte_test(&origpte, PTE_D | PTE_RO),
 2088                     ("%s: modified page not writable: va: %p, pte: %#jx",
 2089                     __func__, (void *)va, (uintmax_t)origpte));
 2090 
 2091                 /*
 2092                  * Remove extra pte reference
 2093                  */
 2094                 if (mpte)
 2095                         mpte->wire_count--;
 2096 
 2097                 if (pte_test(&origpte, PTE_MANAGED)) {
 2098                         m->md.pv_flags |= PV_TABLE_REF;
 2099                         om = m;
 2100                         newpte |= PTE_MANAGED;
 2101                         if (!pte_test(&newpte, PTE_RO))
 2102                                 vm_page_aflag_set(m, PGA_WRITEABLE);
 2103                 }
 2104                 goto validate;
 2105         }
 2106 
 2107         pv = NULL;
 2108 
 2109         /*
 2110          * Mapping has changed, invalidate old range and fall through to
 2111          * handle validating new mapping.
 2112          */
 2113         if (opa) {
 2114                 if (pte_test(&origpte, PTE_W))
 2115                         pmap->pm_stats.wired_count--;
 2116 
 2117                 if (pte_test(&origpte, PTE_MANAGED)) {
 2118                         om = PHYS_TO_VM_PAGE(opa);
 2119                         pv = pmap_pvh_remove(&om->md, pmap, va);
 2120                 }
 2121                 if (mpte != NULL) {
 2122                         mpte->wire_count--;
 2123                         KASSERT(mpte->wire_count > 0,
 2124                             ("pmap_enter: missing reference to page table page,"
 2125                             " va: %p", (void *)va));
 2126                 }
 2127         } else
 2128                 pmap->pm_stats.resident_count++;
 2129 
 2130         /*
 2131          * Enter on the PV list if part of our managed memory.
 2132          */
 2133         if ((m->oflags & VPO_UNMANAGED) == 0) {
 2134                 m->md.pv_flags |= PV_TABLE_REF;
 2135                 if (pv == NULL)
 2136                         pv = get_pv_entry(pmap, FALSE);
 2137                 pv->pv_va = va;
 2138                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 2139                 newpte |= PTE_MANAGED;
 2140                 if (!pte_test(&newpte, PTE_RO))
 2141                         vm_page_aflag_set(m, PGA_WRITEABLE);
 2142         } else if (pv != NULL)
 2143                 free_pv_entry(pmap, pv);
 2144 
 2145         /*
 2146          * Increment counters
 2147          */
 2148         if (pte_test(&newpte, PTE_W))
 2149                 pmap->pm_stats.wired_count++;
 2150 
 2151 validate:
 2152 
 2153 #ifdef PMAP_DEBUG
 2154         printf("pmap_enter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
 2155 #endif
 2156 
 2157         /*
 2158          * if the mapping or permission bits are different, we need to
 2159          * update the pte.
 2160          */
 2161         if (origpte != newpte) {
 2162                 *pte = newpte;
 2163                 if (pte_test(&origpte, PTE_V)) {
 2164                         if (pte_test(&origpte, PTE_MANAGED) && opa != pa) {
 2165                                 if (om->md.pv_flags & PV_TABLE_REF)
 2166                                         vm_page_aflag_set(om, PGA_REFERENCED);
 2167                                 om->md.pv_flags &= ~PV_TABLE_REF;
 2168                         }
 2169                         if (pte_test(&origpte, PTE_D)) {
 2170                                 KASSERT(!pte_test(&origpte, PTE_RO),
 2171                                     ("pmap_enter: modified page not writable:"
 2172                                     " va: %p, pte: %#jx", (void *)va, (uintmax_t)origpte));
 2173                                 if (pte_test(&origpte, PTE_MANAGED))
 2174                                         vm_page_dirty(om);
 2175                         }
 2176                         if (pte_test(&origpte, PTE_MANAGED) &&
 2177                             TAILQ_EMPTY(&om->md.pv_list))
 2178                                 vm_page_aflag_clear(om, PGA_WRITEABLE);
 2179                         pmap_update_page(pmap, va, newpte);
 2180                 }
 2181         }
 2182 
 2183         /*
 2184          * Sync I & D caches for executable pages.  Do this only if the
 2185          * target pmap belongs to the current process.  Otherwise, an
 2186          * unresolvable TLB miss may occur.
 2187          */
 2188         if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
 2189             (prot & VM_PROT_EXECUTE)) {
 2190                 mips_icache_sync_range(va, PAGE_SIZE);
 2191                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2192         }
 2193         rw_wunlock(&pvh_global_lock);
 2194         PMAP_UNLOCK(pmap);
 2195         return (KERN_SUCCESS);
 2196 }
 2197 
 2198 /*
 2199  * this code makes some *MAJOR* assumptions:
 2200  * 1. Current pmap & pmap exists.
 2201  * 2. Not wired.
 2202  * 3. Read access.
 2203  * 4. No page table pages.
 2204  * but is *MUCH* faster than pmap_enter...
 2205  */
 2206 
 2207 void
 2208 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 2209 {
 2210 
 2211         rw_wlock(&pvh_global_lock);
 2212         PMAP_LOCK(pmap);
 2213         (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
 2214         rw_wunlock(&pvh_global_lock);
 2215         PMAP_UNLOCK(pmap);
 2216 }
 2217 
 2218 static vm_page_t
 2219 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
 2220     vm_prot_t prot, vm_page_t mpte)
 2221 {
 2222         pt_entry_t *pte;
 2223         vm_paddr_t pa;
 2224 
 2225         KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
 2226             (m->oflags & VPO_UNMANAGED) != 0,
 2227             ("pmap_enter_quick_locked: managed mapping within the clean submap"));
 2228         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2229         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2230 
 2231         /*
 2232          * In the case that a page table page is not resident, we are
 2233          * creating it here.
 2234          */
 2235         if (va < VM_MAXUSER_ADDRESS) {
 2236                 pd_entry_t *pde;
 2237                 unsigned ptepindex;
 2238 
 2239                 /*
 2240                  * Calculate pagetable page index
 2241                  */
 2242                 ptepindex = pmap_pde_pindex(va);
 2243                 if (mpte && (mpte->pindex == ptepindex)) {
 2244                         mpte->wire_count++;
 2245                 } else {
 2246                         /*
 2247                          * Get the page directory entry
 2248                          */
 2249                         pde = pmap_pde(pmap, va);
 2250 
 2251                         /*
 2252                          * If the page table page is mapped, we just
 2253                          * increment the hold count, and activate it.
 2254                          */
 2255                         if (pde && *pde != 0) {
 2256                                 mpte = PHYS_TO_VM_PAGE(
 2257                                     MIPS_DIRECT_TO_PHYS(*pde));
 2258                                 mpte->wire_count++;
 2259                         } else {
 2260                                 mpte = _pmap_allocpte(pmap, ptepindex,
 2261                                     PMAP_ENTER_NOSLEEP);
 2262                                 if (mpte == NULL)
 2263                                         return (mpte);
 2264                         }
 2265                 }
 2266         } else {
 2267                 mpte = NULL;
 2268         }
 2269 
 2270         pte = pmap_pte(pmap, va);
 2271         if (pte_test(pte, PTE_V)) {
 2272                 if (mpte != NULL) {
 2273                         mpte->wire_count--;
 2274                         mpte = NULL;
 2275                 }
 2276                 return (mpte);
 2277         }
 2278 
 2279         /*
 2280          * Enter on the PV list if part of our managed memory.
 2281          */
 2282         if ((m->oflags & VPO_UNMANAGED) == 0 &&
 2283             !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
 2284                 if (mpte != NULL) {
 2285                         pmap_unwire_ptp(pmap, va, mpte);
 2286                         mpte = NULL;
 2287                 }
 2288                 return (mpte);
 2289         }
 2290 
 2291         /*
 2292          * Increment counters
 2293          */
 2294         pmap->pm_stats.resident_count++;
 2295 
 2296         pa = VM_PAGE_TO_PHYS(m);
 2297 
 2298         /*
 2299          * Now validate mapping with RO protection
 2300          */
 2301         *pte = PTE_RO | TLBLO_PA_TO_PFN(pa) | PTE_V;
 2302         if ((m->oflags & VPO_UNMANAGED) == 0)
 2303                 *pte |= PTE_MANAGED;
 2304 
 2305         if (is_cacheable_page(pa, m))
 2306                 *pte |= PTE_C_CACHE;
 2307         else
 2308                 *pte |= PTE_C_UNCACHED;
 2309 
 2310         if (is_kernel_pmap(pmap))
 2311                 *pte |= PTE_G;
 2312         else {
 2313                 /*
 2314                  * Sync I & D caches.  Do this only if the target pmap
 2315                  * belongs to the current process.  Otherwise, an
 2316                  * unresolvable TLB miss may occur. */
 2317                 if (pmap == &curproc->p_vmspace->vm_pmap) {
 2318                         va &= ~PAGE_MASK;
 2319                         mips_icache_sync_range(va, PAGE_SIZE);
 2320                         mips_dcache_wbinv_range(va, PAGE_SIZE);
 2321                 }
 2322         }
 2323         return (mpte);
 2324 }
 2325 
 2326 /*
 2327  * Make a temporary mapping for a physical address.  This is only intended
 2328  * to be used for panic dumps.
 2329  *
 2330  * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
 2331  */
 2332 void *
 2333 pmap_kenter_temporary(vm_paddr_t pa, int i)
 2334 {
 2335         vm_offset_t va;
 2336 
 2337         if (i != 0)
 2338                 printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
 2339                     __func__);
 2340 
 2341         if (MIPS_DIRECT_MAPPABLE(pa)) {
 2342                 va = MIPS_PHYS_TO_DIRECT(pa);
 2343         } else {
 2344 #ifndef __mips_n64    /* XXX : to be converted to new style */
 2345                 int cpu;
 2346                 register_t intr;
 2347                 struct local_sysmaps *sysm;
 2348                 pt_entry_t *pte, npte;
 2349 
 2350                 /* If this is used other than for dumps, we may need to leave
 2351                  * interrupts disasbled on return. If crash dumps don't work when
 2352                  * we get to this point, we might want to consider this (leaving things
 2353                  * disabled as a starting point ;-)
 2354                  */
 2355                 intr = intr_disable();
 2356                 cpu = PCPU_GET(cpuid);
 2357                 sysm = &sysmap_lmem[cpu];
 2358                 /* Since this is for the debugger, no locks or any other fun */
 2359                 npte = TLBLO_PA_TO_PFN(pa) | PTE_C_CACHE | PTE_D | PTE_V |
 2360                     PTE_G;
 2361                 pte = pmap_pte(kernel_pmap, sysm->base);
 2362                 *pte = npte;
 2363                 sysm->valid1 = 1;
 2364                 pmap_update_page(kernel_pmap, sysm->base, npte);
 2365                 va = sysm->base;
 2366                 intr_restore(intr);
 2367 #endif
 2368         }
 2369         return ((void *)va);
 2370 }
 2371 
 2372 void
 2373 pmap_kenter_temporary_free(vm_paddr_t pa)
 2374 {
 2375 #ifndef __mips_n64    /* XXX : to be converted to new style */
 2376         int cpu;
 2377         register_t intr;
 2378         struct local_sysmaps *sysm;
 2379 #endif
 2380 
 2381         if (MIPS_DIRECT_MAPPABLE(pa)) {
 2382                 /* nothing to do for this case */
 2383                 return;
 2384         }
 2385 #ifndef __mips_n64    /* XXX : to be converted to new style */
 2386         cpu = PCPU_GET(cpuid);
 2387         sysm = &sysmap_lmem[cpu];
 2388         if (sysm->valid1) {
 2389                 pt_entry_t *pte;
 2390 
 2391                 intr = intr_disable();
 2392                 pte = pmap_pte(kernel_pmap, sysm->base);
 2393                 *pte = PTE_G;
 2394                 pmap_invalidate_page(kernel_pmap, sysm->base);
 2395                 intr_restore(intr);
 2396                 sysm->valid1 = 0;
 2397         }
 2398 #endif
 2399 }
 2400 
 2401 /*
 2402  * Maps a sequence of resident pages belonging to the same object.
 2403  * The sequence begins with the given page m_start.  This page is
 2404  * mapped at the given virtual address start.  Each subsequent page is
 2405  * mapped at a virtual address that is offset from start by the same
 2406  * amount as the page is offset from m_start within the object.  The
 2407  * last page in the sequence is the page with the largest offset from
 2408  * m_start that can be mapped at a virtual address less than the given
 2409  * virtual address end.  Not every virtual page between start and end
 2410  * is mapped; only those for which a resident page exists with the
 2411  * corresponding offset from m_start are mapped.
 2412  */
 2413 void
 2414 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
 2415     vm_page_t m_start, vm_prot_t prot)
 2416 {
 2417         vm_page_t m, mpte;
 2418         vm_pindex_t diff, psize;
 2419 
 2420         VM_OBJECT_ASSERT_LOCKED(m_start->object);
 2421 
 2422         psize = atop(end - start);
 2423         mpte = NULL;
 2424         m = m_start;
 2425         rw_wlock(&pvh_global_lock);
 2426         PMAP_LOCK(pmap);
 2427         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 2428                 mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
 2429                     prot, mpte);
 2430                 m = TAILQ_NEXT(m, listq);
 2431         }
 2432         rw_wunlock(&pvh_global_lock);
 2433         PMAP_UNLOCK(pmap);
 2434 }
 2435 
 2436 /*
 2437  * pmap_object_init_pt preloads the ptes for a given object
 2438  * into the specified pmap.  This eliminates the blast of soft
 2439  * faults on process startup and immediately after an mmap.
 2440  */
 2441 void
 2442 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
 2443     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
 2444 {
 2445         VM_OBJECT_ASSERT_WLOCKED(object);
 2446         KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
 2447             ("pmap_object_init_pt: non-device object"));
 2448 }
 2449 
 2450 /*
 2451  *      Clear the wired attribute from the mappings for the specified range of
 2452  *      addresses in the given pmap.  Every valid mapping within that range
 2453  *      must have the wired attribute set.  In contrast, invalid mappings
 2454  *      cannot have the wired attribute set, so they are ignored.
 2455  *
 2456  *      The wired attribute of the page table entry is not a hardware feature,
 2457  *      so there is no need to invalidate any TLB entries.
 2458  */
 2459 void
 2460 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 2461 {
 2462         pd_entry_t *pde, *pdpe;
 2463         pt_entry_t *pte;
 2464         vm_offset_t va_next;
 2465 
 2466         PMAP_LOCK(pmap);
 2467         for (; sva < eva; sva = va_next) {
 2468                 pdpe = pmap_segmap(pmap, sva);
 2469 #ifdef __mips_n64
 2470                 if (*pdpe == NULL) {
 2471                         va_next = (sva + NBSEG) & ~SEGMASK;
 2472                         if (va_next < sva)
 2473                                 va_next = eva;
 2474                         continue;
 2475                 }
 2476 #endif
 2477                 va_next = (sva + NBPDR) & ~PDRMASK;
 2478                 if (va_next < sva)
 2479                         va_next = eva;
 2480                 pde = pmap_pdpe_to_pde(pdpe, sva);
 2481                 if (*pde == NULL)
 2482                         continue;
 2483                 if (va_next > eva)
 2484                         va_next = eva;
 2485                 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 2486                     sva += PAGE_SIZE) {
 2487                         if (!pte_test(pte, PTE_V))
 2488                                 continue;
 2489                         if (!pte_test(pte, PTE_W))
 2490                                 panic("pmap_unwire: pte %#jx is missing PG_W",
 2491                                     (uintmax_t)*pte);
 2492                         pte_clear(pte, PTE_W);
 2493                         pmap->pm_stats.wired_count--;
 2494                 }
 2495         }
 2496         PMAP_UNLOCK(pmap);
 2497 }
 2498 
 2499 /*
 2500  *      Copy the range specified by src_addr/len
 2501  *      from the source map to the range dst_addr/len
 2502  *      in the destination map.
 2503  *
 2504  *      This routine is only advisory and need not do anything.
 2505  */
 2506 
 2507 void
 2508 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
 2509     vm_size_t len, vm_offset_t src_addr)
 2510 {
 2511 }
 2512 
 2513 /*
 2514  *      pmap_zero_page zeros the specified hardware page by mapping
 2515  *      the page into KVM and using bzero to clear its contents.
 2516  *
 2517  *      Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
 2518  */
 2519 void
 2520 pmap_zero_page(vm_page_t m)
 2521 {
 2522         vm_offset_t va;
 2523         vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
 2524 
 2525         if (MIPS_DIRECT_MAPPABLE(phys)) {
 2526                 va = MIPS_PHYS_TO_DIRECT(phys);
 2527                 bzero((caddr_t)va, PAGE_SIZE);
 2528                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2529         } else {
 2530                 va = pmap_lmem_map1(phys);
 2531                 bzero((caddr_t)va, PAGE_SIZE);
 2532                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2533                 pmap_lmem_unmap();
 2534         }
 2535 }
 2536 
 2537 /*
 2538  *      pmap_zero_page_area zeros the specified hardware page by mapping
 2539  *      the page into KVM and using bzero to clear its contents.
 2540  *
 2541  *      off and size may not cover an area beyond a single hardware page.
 2542  */
 2543 void
 2544 pmap_zero_page_area(vm_page_t m, int off, int size)
 2545 {
 2546         vm_offset_t va;
 2547         vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
 2548 
 2549         if (MIPS_DIRECT_MAPPABLE(phys)) {
 2550                 va = MIPS_PHYS_TO_DIRECT(phys);
 2551                 bzero((char *)(caddr_t)va + off, size);
 2552                 mips_dcache_wbinv_range(va + off, size);
 2553         } else {
 2554                 va = pmap_lmem_map1(phys);
 2555                 bzero((char *)va + off, size);
 2556                 mips_dcache_wbinv_range(va + off, size);
 2557                 pmap_lmem_unmap();
 2558         }
 2559 }
 2560 
 2561 void
 2562 pmap_zero_page_idle(vm_page_t m)
 2563 {
 2564         vm_offset_t va;
 2565         vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
 2566 
 2567         if (MIPS_DIRECT_MAPPABLE(phys)) {
 2568                 va = MIPS_PHYS_TO_DIRECT(phys);
 2569                 bzero((caddr_t)va, PAGE_SIZE);
 2570                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2571         } else {
 2572                 va = pmap_lmem_map1(phys);
 2573                 bzero((caddr_t)va, PAGE_SIZE);
 2574                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2575                 pmap_lmem_unmap();
 2576         }
 2577 }
 2578 
 2579 /*
 2580  *      pmap_copy_page copies the specified (machine independent)
 2581  *      page by mapping the page into virtual memory and using
 2582  *      bcopy to copy the page, one machine dependent page at a
 2583  *      time.
 2584  *
 2585  *      Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
 2586  */
 2587 void
 2588 pmap_copy_page(vm_page_t src, vm_page_t dst)
 2589 {
 2590         vm_offset_t va_src, va_dst;
 2591         vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src);
 2592         vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst);
 2593 
 2594         if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) {
 2595                 /* easy case, all can be accessed via KSEG0 */
 2596                 /*
 2597                  * Flush all caches for VA that are mapped to this page
 2598                  * to make sure that data in SDRAM is up to date
 2599                  */
 2600                 pmap_flush_pvcache(src);
 2601                 mips_dcache_wbinv_range_index(
 2602                     MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE);
 2603                 va_src = MIPS_PHYS_TO_DIRECT(phys_src);
 2604                 va_dst = MIPS_PHYS_TO_DIRECT(phys_dst);
 2605                 bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
 2606                 mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
 2607         } else {
 2608                 va_src = pmap_lmem_map2(phys_src, phys_dst);
 2609                 va_dst = va_src + PAGE_SIZE;
 2610                 bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
 2611                 mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
 2612                 pmap_lmem_unmap();
 2613         }
 2614 }
 2615 
 2616 int unmapped_buf_allowed;
 2617 
 2618 void
 2619 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
 2620     vm_offset_t b_offset, int xfersize)
 2621 {
 2622         char *a_cp, *b_cp;
 2623         vm_page_t a_m, b_m;
 2624         vm_offset_t a_pg_offset, b_pg_offset;
 2625         vm_paddr_t a_phys, b_phys;
 2626         int cnt;
 2627 
 2628         while (xfersize > 0) {
 2629                 a_pg_offset = a_offset & PAGE_MASK;
 2630                 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
 2631                 a_m = ma[a_offset >> PAGE_SHIFT];
 2632                 a_phys = VM_PAGE_TO_PHYS(a_m);
 2633                 b_pg_offset = b_offset & PAGE_MASK;
 2634                 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
 2635                 b_m = mb[b_offset >> PAGE_SHIFT];
 2636                 b_phys = VM_PAGE_TO_PHYS(b_m);
 2637                 if (MIPS_DIRECT_MAPPABLE(a_phys) &&
 2638                     MIPS_DIRECT_MAPPABLE(b_phys)) {
 2639                         pmap_flush_pvcache(a_m);
 2640                         mips_dcache_wbinv_range_index(
 2641                             MIPS_PHYS_TO_DIRECT(b_phys), PAGE_SIZE);
 2642                         a_cp = (char *)MIPS_PHYS_TO_DIRECT(a_phys) +
 2643                             a_pg_offset;
 2644                         b_cp = (char *)MIPS_PHYS_TO_DIRECT(b_phys) +
 2645                             b_pg_offset;
 2646                         bcopy(a_cp, b_cp, cnt);
 2647                         mips_dcache_wbinv_range((vm_offset_t)b_cp, cnt);
 2648                 } else {
 2649                         a_cp = (char *)pmap_lmem_map2(a_phys, b_phys);
 2650                         b_cp = (char *)a_cp + PAGE_SIZE;
 2651                         a_cp += a_pg_offset;
 2652                         b_cp += b_pg_offset;
 2653                         bcopy(a_cp, b_cp, cnt);
 2654                         mips_dcache_wbinv_range((vm_offset_t)b_cp, cnt);
 2655                         pmap_lmem_unmap();
 2656                 }
 2657                 a_offset += cnt;
 2658                 b_offset += cnt;
 2659                 xfersize -= cnt;
 2660         }
 2661 }
 2662 
 2663 vm_offset_t
 2664 pmap_quick_enter_page(vm_page_t m)
 2665 {
 2666 #if defined(__mips_n64)
 2667         return MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
 2668 #else
 2669         vm_paddr_t pa;
 2670         struct local_sysmaps *sysm;
 2671         pt_entry_t *pte;
 2672 
 2673         pa = VM_PAGE_TO_PHYS(m);
 2674 
 2675         if (MIPS_DIRECT_MAPPABLE(pa)) {
 2676                 if (m->md.pv_flags & PV_MEMATTR_UNCACHEABLE)
 2677                         return (MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
 2678                 else
 2679                         return (MIPS_PHYS_TO_DIRECT(pa));
 2680         }
 2681         critical_enter();
 2682         sysm = &sysmap_lmem[PCPU_GET(cpuid)];
 2683 
 2684         KASSERT(sysm->valid1 == 0, ("pmap_quick_enter_page: PTE busy"));
 2685 
 2686         pte = pmap_pte(kernel_pmap, sysm->base);
 2687         *pte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G |
 2688             (is_cacheable_page(pa, m) ? PTE_C_CACHE : PTE_C_UNCACHED);
 2689         sysm->valid1 = 1;
 2690 
 2691         return (sysm->base);
 2692 #endif
 2693 }
 2694 
 2695 void
 2696 pmap_quick_remove_page(vm_offset_t addr)
 2697 {
 2698         mips_dcache_wbinv_range(addr, PAGE_SIZE);
 2699 
 2700 #if !defined(__mips_n64)
 2701         struct local_sysmaps *sysm;
 2702         pt_entry_t *pte;
 2703 
 2704         if (addr >= MIPS_KSEG0_START && addr < MIPS_KSEG0_END)
 2705                 return;
 2706 
 2707         sysm = &sysmap_lmem[PCPU_GET(cpuid)];
 2708 
 2709         KASSERT(sysm->valid1 != 0,
 2710             ("pmap_quick_remove_page: PTE not in use"));
 2711         KASSERT(sysm->base == addr,
 2712             ("pmap_quick_remove_page: invalid address"));
 2713 
 2714         pte = pmap_pte(kernel_pmap, addr);
 2715         *pte = PTE_G;
 2716         tlb_invalidate_address(kernel_pmap, addr);
 2717         sysm->valid1 = 0;
 2718         critical_exit();
 2719 #endif
 2720 }
 2721 
 2722 /*
 2723  * Returns true if the pmap's pv is one of the first
 2724  * 16 pvs linked to from this page.  This count may
 2725  * be changed upwards or downwards in the future; it
 2726  * is only necessary that true be returned for a small
 2727  * subset of pmaps for proper page aging.
 2728  */
 2729 boolean_t
 2730 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 2731 {
 2732         pv_entry_t pv;
 2733         int loops = 0;
 2734         boolean_t rv;
 2735 
 2736         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2737             ("pmap_page_exists_quick: page %p is not managed", m));
 2738         rv = FALSE;
 2739         rw_wlock(&pvh_global_lock);
 2740         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2741                 if (PV_PMAP(pv) == pmap) {
 2742                         rv = TRUE;
 2743                         break;
 2744                 }
 2745                 loops++;
 2746                 if (loops >= 16)
 2747                         break;
 2748         }
 2749         rw_wunlock(&pvh_global_lock);
 2750         return (rv);
 2751 }
 2752 
 2753 /*
 2754  * Remove all pages from specified address space
 2755  * this aids process exit speeds.  Also, this code
 2756  * is special cased for current process only, but
 2757  * can have the more generic (and slightly slower)
 2758  * mode enabled.  This is much faster than pmap_remove
 2759  * in the case of running down an entire address space.
 2760  */
 2761 void
 2762 pmap_remove_pages(pmap_t pmap)
 2763 {
 2764         pd_entry_t *pde;
 2765         pt_entry_t *pte, tpte;
 2766         pv_entry_t pv;
 2767         vm_page_t m;
 2768         struct pv_chunk *pc, *npc;
 2769         u_long inuse, bitmask;
 2770         int allfree, bit, field, idx;
 2771 
 2772         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
 2773                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 2774                 return;
 2775         }
 2776         rw_wlock(&pvh_global_lock);
 2777         PMAP_LOCK(pmap);
 2778         TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
 2779                 allfree = 1;
 2780                 for (field = 0; field < _NPCM; field++) {
 2781                         inuse = ~pc->pc_map[field] & pc_freemask[field];
 2782                         while (inuse != 0) {
 2783                                 bit = ffsl(inuse) - 1;
 2784                                 bitmask = 1UL << bit;
 2785                                 idx = field * sizeof(inuse) * NBBY + bit;
 2786                                 pv = &pc->pc_pventry[idx];
 2787                                 inuse &= ~bitmask;
 2788 
 2789                                 pde = pmap_pde(pmap, pv->pv_va);
 2790                                 KASSERT(pde != NULL && *pde != 0,
 2791                                     ("pmap_remove_pages: pde"));
 2792                                 pte = pmap_pde_to_pte(pde, pv->pv_va);
 2793                                 if (!pte_test(pte, PTE_V))
 2794                                         panic("pmap_remove_pages: bad pte");
 2795                                 tpte = *pte;
 2796 
 2797 /*
 2798  * We cannot remove wired pages from a process' mapping at this time
 2799  */
 2800                                 if (pte_test(&tpte, PTE_W)) {
 2801                                         allfree = 0;
 2802                                         continue;
 2803                                 }
 2804                                 *pte = is_kernel_pmap(pmap) ? PTE_G : 0;
 2805 
 2806                                 m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
 2807                                 KASSERT(m != NULL,
 2808                                     ("pmap_remove_pages: bad tpte %#jx",
 2809                                     (uintmax_t)tpte));
 2810 
 2811                                 /*
 2812                                  * Update the vm_page_t clean and reference bits.
 2813                                  */
 2814                                 if (pte_test(&tpte, PTE_D))
 2815                                         vm_page_dirty(m);
 2816 
 2817                                 /* Mark free */
 2818                                 PV_STAT(pv_entry_frees++);
 2819                                 PV_STAT(pv_entry_spare++);
 2820                                 pv_entry_count--;
 2821                                 pc->pc_map[field] |= bitmask;
 2822                                 pmap->pm_stats.resident_count--;
 2823                                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2824                                 if (TAILQ_EMPTY(&m->md.pv_list))
 2825                                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 2826                                 pmap_unuse_pt(pmap, pv->pv_va, *pde);
 2827                         }
 2828                 }
 2829                 if (allfree) {
 2830                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2831                         free_pv_chunk(pc);
 2832                 }
 2833         }
 2834         pmap_invalidate_all(pmap);
 2835         PMAP_UNLOCK(pmap);
 2836         rw_wunlock(&pvh_global_lock);
 2837 }
 2838 
 2839 /*
 2840  * pmap_testbit tests bits in pte's
 2841  */
 2842 static boolean_t
 2843 pmap_testbit(vm_page_t m, int bit)
 2844 {
 2845         pv_entry_t pv;
 2846         pmap_t pmap;
 2847         pt_entry_t *pte;
 2848         boolean_t rv = FALSE;
 2849 
 2850         if (m->oflags & VPO_UNMANAGED)
 2851                 return (rv);
 2852 
 2853         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2854         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2855                 pmap = PV_PMAP(pv);
 2856                 PMAP_LOCK(pmap);
 2857                 pte = pmap_pte(pmap, pv->pv_va);
 2858                 rv = pte_test(pte, bit);
 2859                 PMAP_UNLOCK(pmap);
 2860                 if (rv)
 2861                         break;
 2862         }
 2863         return (rv);
 2864 }
 2865 
 2866 /*
 2867  *      pmap_page_wired_mappings:
 2868  *
 2869  *      Return the number of managed mappings to the given physical page
 2870  *      that are wired.
 2871  */
 2872 int
 2873 pmap_page_wired_mappings(vm_page_t m)
 2874 {
 2875         pv_entry_t pv;
 2876         pmap_t pmap;
 2877         pt_entry_t *pte;
 2878         int count;
 2879 
 2880         count = 0;
 2881         if ((m->oflags & VPO_UNMANAGED) != 0)
 2882                 return (count);
 2883         rw_wlock(&pvh_global_lock);
 2884         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2885                 pmap = PV_PMAP(pv);
 2886                 PMAP_LOCK(pmap);
 2887                 pte = pmap_pte(pmap, pv->pv_va);
 2888                 if (pte_test(pte, PTE_W))
 2889                         count++;
 2890                 PMAP_UNLOCK(pmap);
 2891         }
 2892         rw_wunlock(&pvh_global_lock);
 2893         return (count);
 2894 }
 2895 
 2896 /*
 2897  * Clear the write and modified bits in each of the given page's mappings.
 2898  */
 2899 void
 2900 pmap_remove_write(vm_page_t m)
 2901 {
 2902         pmap_t pmap;
 2903         pt_entry_t pbits, *pte;
 2904         pv_entry_t pv;
 2905 
 2906         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2907             ("pmap_remove_write: page %p is not managed", m));
 2908 
 2909         /*
 2910          * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
 2911          * set by another thread while the object is locked.  Thus,
 2912          * if PGA_WRITEABLE is clear, no page table entries need updating.
 2913          */
 2914         VM_OBJECT_ASSERT_WLOCKED(m->object);
 2915         if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
 2916                 return;
 2917         rw_wlock(&pvh_global_lock);
 2918         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2919                 pmap = PV_PMAP(pv);
 2920                 PMAP_LOCK(pmap);
 2921                 pte = pmap_pte(pmap, pv->pv_va);
 2922                 KASSERT(pte != NULL && pte_test(pte, PTE_V),
 2923                     ("page on pv_list has no pte"));
 2924                 pbits = *pte;
 2925                 if (pte_test(&pbits, PTE_D)) {
 2926                         pte_clear(&pbits, PTE_D);
 2927                         vm_page_dirty(m);
 2928                 }
 2929                 pte_set(&pbits, PTE_RO);
 2930                 if (pbits != *pte) {
 2931                         *pte = pbits;
 2932                         pmap_update_page(pmap, pv->pv_va, pbits);
 2933                 }
 2934                 PMAP_UNLOCK(pmap);
 2935         }
 2936         vm_page_aflag_clear(m, PGA_WRITEABLE);
 2937         rw_wunlock(&pvh_global_lock);
 2938 }
 2939 
 2940 /*
 2941  *      pmap_ts_referenced:
 2942  *
 2943  *      Return the count of reference bits for a page, clearing all of them.
 2944  */
 2945 int
 2946 pmap_ts_referenced(vm_page_t m)
 2947 {
 2948 
 2949         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2950             ("pmap_ts_referenced: page %p is not managed", m));
 2951         if (m->md.pv_flags & PV_TABLE_REF) {
 2952                 rw_wlock(&pvh_global_lock);
 2953                 m->md.pv_flags &= ~PV_TABLE_REF;
 2954                 rw_wunlock(&pvh_global_lock);
 2955                 return (1);
 2956         }
 2957         return (0);
 2958 }
 2959 
 2960 /*
 2961  *      pmap_is_modified:
 2962  *
 2963  *      Return whether or not the specified physical page was modified
 2964  *      in any physical maps.
 2965  */
 2966 boolean_t
 2967 pmap_is_modified(vm_page_t m)
 2968 {
 2969         boolean_t rv;
 2970 
 2971         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2972             ("pmap_is_modified: page %p is not managed", m));
 2973 
 2974         /*
 2975          * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
 2976          * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
 2977          * is clear, no PTEs can have PTE_D set.
 2978          */
 2979         VM_OBJECT_ASSERT_WLOCKED(m->object);
 2980         if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
 2981                 return (FALSE);
 2982         rw_wlock(&pvh_global_lock);
 2983         rv = pmap_testbit(m, PTE_D);
 2984         rw_wunlock(&pvh_global_lock);
 2985         return (rv);
 2986 }
 2987 
 2988 /* N/C */
 2989 
 2990 /*
 2991  *      pmap_is_prefaultable:
 2992  *
 2993  *      Return whether or not the specified virtual address is elgible
 2994  *      for prefault.
 2995  */
 2996 boolean_t
 2997 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 2998 {
 2999         pd_entry_t *pde;
 3000         pt_entry_t *pte;
 3001         boolean_t rv;
 3002 
 3003         rv = FALSE;
 3004         PMAP_LOCK(pmap);
 3005         pde = pmap_pde(pmap, addr);
 3006         if (pde != NULL && *pde != 0) {
 3007                 pte = pmap_pde_to_pte(pde, addr);
 3008                 rv = (*pte == 0);
 3009         }
 3010         PMAP_UNLOCK(pmap);
 3011         return (rv);
 3012 }
 3013 
 3014 /*
 3015  *      Apply the given advice to the specified range of addresses within the
 3016  *      given pmap.  Depending on the advice, clear the referenced and/or
 3017  *      modified flags in each mapping and set the mapped page's dirty field.
 3018  */
 3019 void
 3020 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
 3021 {
 3022         pd_entry_t *pde, *pdpe;
 3023         pt_entry_t *pte;
 3024         vm_offset_t va, va_next;
 3025         vm_paddr_t pa;
 3026         vm_page_t m;
 3027 
 3028         if (advice != MADV_DONTNEED && advice != MADV_FREE)
 3029                 return;
 3030         rw_wlock(&pvh_global_lock);
 3031         PMAP_LOCK(pmap);
 3032         for (; sva < eva; sva = va_next) {
 3033                 pdpe = pmap_segmap(pmap, sva);
 3034 #ifdef __mips_n64
 3035                 if (*pdpe == 0) {
 3036                         va_next = (sva + NBSEG) & ~SEGMASK;
 3037                         if (va_next < sva)
 3038                                 va_next = eva;
 3039                         continue;
 3040                 }
 3041 #endif
 3042                 va_next = (sva + NBPDR) & ~PDRMASK;
 3043                 if (va_next < sva)
 3044                         va_next = eva;
 3045 
 3046                 pde = pmap_pdpe_to_pde(pdpe, sva);
 3047                 if (*pde == NULL)
 3048                         continue;
 3049 
 3050                 /*
 3051                  * Limit our scan to either the end of the va represented
 3052                  * by the current page table page, or to the end of the
 3053                  * range being write protected.
 3054                  */
 3055                 if (va_next > eva)
 3056                         va_next = eva;
 3057 
 3058                 va = va_next;
 3059                 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 3060                     sva += PAGE_SIZE) {
 3061                         if (!pte_test(pte, PTE_MANAGED | PTE_V)) {
 3062                                 if (va != va_next) {
 3063                                         pmap_invalidate_range(pmap, va, sva);
 3064                                         va = va_next;
 3065                                 }
 3066                                 continue;
 3067                         }
 3068                         pa = TLBLO_PTE_TO_PA(*pte);
 3069                         m = PHYS_TO_VM_PAGE(pa);
 3070                         m->md.pv_flags &= ~PV_TABLE_REF;
 3071                         if (pte_test(pte, PTE_D)) {
 3072                                 if (advice == MADV_DONTNEED) {
 3073                                         /*
 3074                                          * Future calls to pmap_is_modified()
 3075                                          * can be avoided by making the page
 3076                                          * dirty now.
 3077                                          */
 3078                                         vm_page_dirty(m);
 3079                                 } else {
 3080                                         pte_clear(pte, PTE_D);
 3081                                         if (va == va_next)
 3082                                                 va = sva;
 3083                                 }
 3084                         } else {
 3085                                 /*
 3086                                  * Unless PTE_D is set, any TLB entries
 3087                                  * mapping "sva" don't allow write access, so
 3088                                  * they needn't be invalidated.
 3089                                  */
 3090                                 if (va != va_next) {
 3091                                         pmap_invalidate_range(pmap, va, sva);
 3092                                         va = va_next;
 3093                                 }
 3094                         }
 3095                 }
 3096                 if (va != va_next)
 3097                         pmap_invalidate_range(pmap, va, sva);
 3098         }
 3099         rw_wunlock(&pvh_global_lock);
 3100         PMAP_UNLOCK(pmap);
 3101 }
 3102 
 3103 /*
 3104  *      Clear the modify bits on the specified physical page.
 3105  */
 3106 void
 3107 pmap_clear_modify(vm_page_t m)
 3108 {
 3109         pmap_t pmap;
 3110         pt_entry_t *pte;
 3111         pv_entry_t pv;
 3112 
 3113         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3114             ("pmap_clear_modify: page %p is not managed", m));
 3115         VM_OBJECT_ASSERT_WLOCKED(m->object);
 3116         KASSERT(!vm_page_xbusied(m),
 3117             ("pmap_clear_modify: page %p is exclusive busied", m));
 3118 
 3119         /*
 3120          * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_D set.
 3121          * If the object containing the page is locked and the page is not
 3122          * write busied, then PGA_WRITEABLE cannot be concurrently set.
 3123          */
 3124         if ((m->aflags & PGA_WRITEABLE) == 0)
 3125                 return;
 3126         rw_wlock(&pvh_global_lock);
 3127         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3128                 pmap = PV_PMAP(pv);
 3129                 PMAP_LOCK(pmap);
 3130                 pte = pmap_pte(pmap, pv->pv_va);
 3131                 if (pte_test(pte, PTE_D)) {
 3132                         pte_clear(pte, PTE_D);
 3133                         pmap_update_page(pmap, pv->pv_va, *pte);
 3134                 }
 3135                 PMAP_UNLOCK(pmap);
 3136         }
 3137         rw_wunlock(&pvh_global_lock);
 3138 }
 3139 
 3140 /*
 3141  *      pmap_is_referenced:
 3142  *
 3143  *      Return whether or not the specified physical page was referenced
 3144  *      in any physical maps.
 3145  */
 3146 boolean_t
 3147 pmap_is_referenced(vm_page_t m)
 3148 {
 3149 
 3150         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3151             ("pmap_is_referenced: page %p is not managed", m));
 3152         return ((m->md.pv_flags & PV_TABLE_REF) != 0);
 3153 }
 3154 
 3155 /*
 3156  * Miscellaneous support routines follow
 3157  */
 3158 
 3159 /*
 3160  * Map a set of physical memory pages into the kernel virtual
 3161  * address space. Return a pointer to where it is mapped. This
 3162  * routine is intended to be used for mapping device memory,
 3163  * NOT real memory.
 3164  *
 3165  * Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
 3166  */
 3167 void *
 3168 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
 3169 {
 3170         vm_offset_t va, tmpva, offset;
 3171 
 3172         /* 
 3173          * KSEG1 maps only first 512M of phys address space. For 
 3174          * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
 3175          */
 3176         if (MIPS_DIRECT_MAPPABLE(pa + size - 1))
 3177                 return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
 3178         else {
 3179                 offset = pa & PAGE_MASK;
 3180                 size = roundup(size + offset, PAGE_SIZE);
 3181         
 3182                 va = kva_alloc(size);
 3183                 if (!va)
 3184                         panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 3185                 pa = trunc_page(pa);
 3186                 for (tmpva = va; size > 0;) {
 3187                         pmap_kenter_attr(tmpva, pa, PTE_C_UNCACHED);
 3188                         size -= PAGE_SIZE;
 3189                         tmpva += PAGE_SIZE;
 3190                         pa += PAGE_SIZE;
 3191                 }
 3192         }
 3193 
 3194         return ((void *)(va + offset));
 3195 }
 3196 
 3197 void
 3198 pmap_unmapdev(vm_offset_t va, vm_size_t size)
 3199 {
 3200 #ifndef __mips_n64
 3201         vm_offset_t base, offset;
 3202 
 3203         /* If the address is within KSEG1 then there is nothing to do */
 3204         if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
 3205                 return;
 3206 
 3207         base = trunc_page(va);
 3208         offset = va & PAGE_MASK;
 3209         size = roundup(size + offset, PAGE_SIZE);
 3210         kva_free(base, size);
 3211 #endif
 3212 }
 3213 
 3214 /*
 3215  * perform the pmap work for mincore
 3216  */
 3217 int
 3218 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
 3219 {
 3220         pt_entry_t *ptep, pte;
 3221         vm_paddr_t pa;
 3222         vm_page_t m;
 3223         int val;
 3224 
 3225         PMAP_LOCK(pmap);
 3226 retry:
 3227         ptep = pmap_pte(pmap, addr);
 3228         pte = (ptep != NULL) ? *ptep : 0;
 3229         if (!pte_test(&pte, PTE_V)) {
 3230                 val = 0;
 3231                 goto out;
 3232         }
 3233         val = MINCORE_INCORE;
 3234         if (pte_test(&pte, PTE_D))
 3235                 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
 3236         pa = TLBLO_PTE_TO_PA(pte);
 3237         if (pte_test(&pte, PTE_MANAGED)) {
 3238                 /*
 3239                  * This may falsely report the given address as
 3240                  * MINCORE_REFERENCED.  Unfortunately, due to the lack of
 3241                  * per-PTE reference information, it is impossible to
 3242                  * determine if the address is MINCORE_REFERENCED.  
 3243                  */
 3244                 m = PHYS_TO_VM_PAGE(pa);
 3245                 if ((m->aflags & PGA_REFERENCED) != 0)
 3246                         val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
 3247         }
 3248         if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
 3249             (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
 3250             pte_test(&pte, PTE_MANAGED)) {
 3251                 /* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
 3252                 if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
 3253                         goto retry;
 3254         } else
 3255 out:
 3256                 PA_UNLOCK_COND(*locked_pa);
 3257         PMAP_UNLOCK(pmap);
 3258         return (val);
 3259 }
 3260 
 3261 void
 3262 pmap_activate(struct thread *td)
 3263 {
 3264         pmap_t pmap, oldpmap;
 3265         struct proc *p = td->td_proc;
 3266         u_int cpuid;
 3267 
 3268         critical_enter();
 3269 
 3270         pmap = vmspace_pmap(p->p_vmspace);
 3271         oldpmap = PCPU_GET(curpmap);
 3272         cpuid = PCPU_GET(cpuid);
 3273 
 3274         if (oldpmap)
 3275                 CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
 3276         CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
 3277         pmap_asid_alloc(pmap);
 3278         if (td == curthread) {
 3279                 PCPU_SET(segbase, pmap->pm_segtab);
 3280                 mips_wr_entryhi(pmap->pm_asid[cpuid].asid);
 3281         }
 3282 
 3283         PCPU_SET(curpmap, pmap);
 3284         critical_exit();
 3285 }
 3286 
 3287 void
 3288 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
 3289 {
 3290 }
 3291 
 3292 /*
 3293  *      Increase the starting virtual address of the given mapping if a
 3294  *      different alignment might result in more superpage mappings.
 3295  */
 3296 void
 3297 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
 3298     vm_offset_t *addr, vm_size_t size)
 3299 {
 3300         vm_offset_t superpage_offset;
 3301 
 3302         if (size < PDRSIZE)
 3303                 return;
 3304         if (object != NULL && (object->flags & OBJ_COLORED) != 0)
 3305                 offset += ptoa(object->pg_color);
 3306         superpage_offset = offset & PDRMASK;
 3307         if (size - ((PDRSIZE - superpage_offset) & PDRMASK) < PDRSIZE ||
 3308             (*addr & PDRMASK) == superpage_offset)
 3309                 return;
 3310         if ((*addr & PDRMASK) < superpage_offset)
 3311                 *addr = (*addr & ~PDRMASK) + superpage_offset;
 3312         else
 3313                 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
 3314 }
 3315 
 3316 #ifdef DDB
 3317 DB_SHOW_COMMAND(ptable, ddb_pid_dump)
 3318 {
 3319         pmap_t pmap;
 3320         struct thread *td = NULL;
 3321         struct proc *p;
 3322         int i, j, k;
 3323         vm_paddr_t pa;
 3324         vm_offset_t va;
 3325 
 3326         if (have_addr) {
 3327                 td = db_lookup_thread(addr, true);
 3328                 if (td == NULL) {
 3329                         db_printf("Invalid pid or tid");
 3330                         return;
 3331                 }
 3332                 p = td->td_proc;
 3333                 if (p->p_vmspace == NULL) {
 3334                         db_printf("No vmspace for process");
 3335                         return;
 3336                 }
 3337                         pmap = vmspace_pmap(p->p_vmspace);
 3338         } else
 3339                 pmap = kernel_pmap;
 3340 
 3341         db_printf("pmap:%p segtab:%p asid:%x generation:%x\n",
 3342             pmap, pmap->pm_segtab, pmap->pm_asid[0].asid,
 3343             pmap->pm_asid[0].gen);
 3344         for (i = 0; i < NPDEPG; i++) {
 3345                 pd_entry_t *pdpe;
 3346                 pt_entry_t *pde;
 3347                 pt_entry_t pte;
 3348 
 3349                 pdpe = (pd_entry_t *)pmap->pm_segtab[i];
 3350                 if (pdpe == NULL)
 3351                         continue;
 3352                 db_printf("[%4d] %p\n", i, pdpe);
 3353 #ifdef __mips_n64
 3354                 for (j = 0; j < NPDEPG; j++) {
 3355                         pde = (pt_entry_t *)pdpe[j];
 3356                         if (pde == NULL)
 3357                                 continue;
 3358                         db_printf("\t[%4d] %p\n", j, pde);
 3359 #else
 3360                 {
 3361                         j = 0;
 3362                         pde =  (pt_entry_t *)pdpe;
 3363 #endif
 3364                         for (k = 0; k < NPTEPG; k++) {
 3365                                 pte = pde[k];
 3366                                 if (pte == 0 || !pte_test(&pte, PTE_V))
 3367                                         continue;
 3368                                 pa = TLBLO_PTE_TO_PA(pte);
 3369                                 va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT);
 3370                                 db_printf("\t\t[%04d] va: %p pte: %8jx pa:%jx\n",
 3371                                        k, (void *)va, (uintmax_t)pte, (uintmax_t)pa);
 3372                         }
 3373                 }
 3374         }
 3375 }
 3376 #endif
 3377 
 3378 /*
 3379  * Allocate TLB address space tag (called ASID or TLBPID) and return it.
 3380  * It takes almost as much or more time to search the TLB for a
 3381  * specific ASID and flush those entries as it does to flush the entire TLB.
 3382  * Therefore, when we allocate a new ASID, we just take the next number. When
 3383  * we run out of numbers, we flush the TLB, increment the generation count
 3384  * and start over. ASID zero is reserved for kernel use.
 3385  */
 3386 static void
 3387 pmap_asid_alloc(pmap)
 3388         pmap_t pmap;
 3389 {
 3390         if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
 3391             pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
 3392         else {
 3393                 if (PCPU_GET(next_asid) == pmap_max_asid) {
 3394                         tlb_invalidate_all_user(NULL);
 3395                         PCPU_SET(asid_generation,
 3396                             (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
 3397                         if (PCPU_GET(asid_generation) == 0) {
 3398                                 PCPU_SET(asid_generation, 1);
 3399                         }
 3400                         PCPU_SET(next_asid, 1); /* 0 means invalid */
 3401                 }
 3402                 pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
 3403                 pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
 3404                 PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
 3405         }
 3406 }
 3407 
 3408 static pt_entry_t
 3409 init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot)
 3410 {
 3411         pt_entry_t rw;
 3412 
 3413         if (!(prot & VM_PROT_WRITE))
 3414                 rw = PTE_V | PTE_RO;
 3415         else if ((m->oflags & VPO_UNMANAGED) == 0) {
 3416                 if ((access & VM_PROT_WRITE) != 0)
 3417                         rw = PTE_V | PTE_D;
 3418                 else
 3419                         rw = PTE_V;
 3420         } else
 3421                 /* Needn't emulate a modified bit for unmanaged pages. */
 3422                 rw = PTE_V | PTE_D;
 3423         return (rw);
 3424 }
 3425 
 3426 /*
 3427  * pmap_emulate_modified : do dirty bit emulation
 3428  *
 3429  * On SMP, update just the local TLB, other CPUs will update their
 3430  * TLBs from PTE lazily, if they get the exception.
 3431  * Returns 0 in case of sucess, 1 if the page is read only and we
 3432  * need to fault.
 3433  */
 3434 int
 3435 pmap_emulate_modified(pmap_t pmap, vm_offset_t va)
 3436 {
 3437         pt_entry_t *pte;
 3438 
 3439         PMAP_LOCK(pmap);
 3440         pte = pmap_pte(pmap, va);
 3441         if (pte == NULL)
 3442                 panic("pmap_emulate_modified: can't find PTE");
 3443 #ifdef SMP
 3444         /* It is possible that some other CPU changed m-bit */
 3445         if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) {
 3446                 tlb_update(pmap, va, *pte);
 3447                 PMAP_UNLOCK(pmap);
 3448                 return (0);
 3449         }
 3450 #else
 3451         if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D))
 3452                 panic("pmap_emulate_modified: invalid pte");
 3453 #endif
 3454         if (pte_test(pte, PTE_RO)) {
 3455                 PMAP_UNLOCK(pmap);
 3456                 return (1);
 3457         }
 3458         pte_set(pte, PTE_D);
 3459         tlb_update(pmap, va, *pte);
 3460         if (!pte_test(pte, PTE_MANAGED))
 3461                 panic("pmap_emulate_modified: unmanaged page");
 3462         PMAP_UNLOCK(pmap);
 3463         return (0);
 3464 }
 3465 
 3466 /*
 3467  *      Routine:        pmap_kextract
 3468  *      Function:
 3469  *              Extract the physical page address associated
 3470  *              virtual address.
 3471  */
 3472 vm_paddr_t
 3473 pmap_kextract(vm_offset_t va)
 3474 {
 3475         int mapped;
 3476 
 3477         /*
 3478          * First, the direct-mapped regions.
 3479          */
 3480 #if defined(__mips_n64)
 3481         if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
 3482                 return (MIPS_XKPHYS_TO_PHYS(va));
 3483 #endif
 3484         if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
 3485                 return (MIPS_KSEG0_TO_PHYS(va));
 3486 
 3487         if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
 3488                 return (MIPS_KSEG1_TO_PHYS(va));
 3489 
 3490         /*
 3491          * User virtual addresses.
 3492          */
 3493         if (va < VM_MAXUSER_ADDRESS) {
 3494                 pt_entry_t *ptep;
 3495 
 3496                 if (curproc && curproc->p_vmspace) {
 3497                         ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
 3498                         if (ptep) {
 3499                                 return (TLBLO_PTE_TO_PA(*ptep) |
 3500                                     (va & PAGE_MASK));
 3501                         }
 3502                         return (0);
 3503                 }
 3504         }
 3505 
 3506         /*
 3507          * Should be kernel virtual here, otherwise fail
 3508          */
 3509         mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
 3510 #if defined(__mips_n64)
 3511         mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
 3512 #endif 
 3513         /*
 3514          * Kernel virtual.
 3515          */
 3516 
 3517         if (mapped) {
 3518                 pt_entry_t *ptep;
 3519 
 3520                 /* Is the kernel pmap initialized? */
 3521                 if (!CPU_EMPTY(&kernel_pmap->pm_active)) {
 3522                         /* It's inside the virtual address range */
 3523                         ptep = pmap_pte(kernel_pmap, va);
 3524                         if (ptep) {
 3525                                 return (TLBLO_PTE_TO_PA(*ptep) |
 3526                                     (va & PAGE_MASK));
 3527                         }
 3528                 }
 3529                 return (0);
 3530         }
 3531 
 3532         panic("%s for unknown address space %p.", __func__, (void *)va);
 3533 }
 3534 
 3535 
 3536 void 
 3537 pmap_flush_pvcache(vm_page_t m)
 3538 {
 3539         pv_entry_t pv;
 3540 
 3541         if (m != NULL) {
 3542                 for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
 3543                     pv = TAILQ_NEXT(pv, pv_list)) {
 3544                         mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
 3545                 }
 3546         }
 3547 }
 3548 
 3549 void
 3550 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
 3551 {
 3552 
 3553         /*
 3554          * It appears that this function can only be called before any mappings
 3555          * for the page are established.  If this ever changes, this code will
 3556          * need to walk the pv_list and make each of the existing mappings
 3557          * uncacheable, being careful to sync caches and PTEs (and maybe
 3558          * invalidate TLB?) for any current mapping it modifies.
 3559          */
 3560         if (TAILQ_FIRST(&m->md.pv_list) != NULL)
 3561                 panic("Can't change memattr on page with existing mappings");
 3562 
 3563         /*
 3564          * The only memattr we support is UNCACHEABLE, translate the (semi-)MI
 3565          * representation of that into our internal flag in the page MD struct.
 3566          */
 3567         if (ma == VM_MEMATTR_UNCACHEABLE)
 3568                 m->md.pv_flags |= PV_MEMATTR_UNCACHEABLE;
 3569         else
 3570                 m->md.pv_flags &= ~PV_MEMATTR_UNCACHEABLE;
 3571 }

Cache object: c94e8765b87e24fde4a9b074c1e89662


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.