The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mips/mips/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1991 Regents of the University of California.
    5  * All rights reserved.
    6  * Copyright (c) 1994 John S. Dyson
    7  * All rights reserved.
    8  * Copyright (c) 1994 David Greenman
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * the Systems Programming Group of the University of Utah Computer
   13  * Science Department and William Jolitz of UUNET Technologies Inc.
   14  *
   15  * Redistribution and use in source and binary forms, with or without
   16  * modification, are permitted provided that the following conditions
   17  * are met:
   18  * 1. Redistributions of source code must retain the above copyright
   19  *    notice, this list of conditions and the following disclaimer.
   20  * 2. Redistributions in binary form must reproduce the above copyright
   21  *    notice, this list of conditions and the following disclaimer in the
   22  *    documentation and/or other materials provided with the distribution.
   23  * 3. Neither the name of the University nor the names of its contributors
   24  *    may be used to endorse or promote products derived from this software
   25  *    without specific prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   37  * SUCH DAMAGE.
   38  *
   39  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   40  *      from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
   41  *      JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
   42  */
   43 
   44 /*
   45  *      Manages physical address maps.
   46  *
   47  *      Since the information managed by this module is
   48  *      also stored by the logical address mapping module,
   49  *      this module may throw away valid virtual-to-physical
   50  *      mappings at almost any time.  However, invalidations
   51  *      of virtual-to-physical mappings must be done as
   52  *      requested.
   53  *
   54  *      In order to cope with hardware architectures which
   55  *      make virtual-to-physical map invalidates expensive,
   56  *      this module may delay invalidate or reduced protection
   57  *      operations until such time as they are actually
   58  *      necessary.  This module is given full information as
   59  *      to which processors are currently using which maps,
   60  *      and to when physical maps must be made correct.
   61  */
   62 
   63 #include <sys/cdefs.h>
   64 __FBSDID("$FreeBSD: releng/12.0/sys/mips/mips/pmap.c 338370 2018-08-29 12:24:19Z kib $");
   65 
   66 #include "opt_ddb.h"
   67 #include "opt_pmap.h"
   68 
   69 #include <sys/param.h>
   70 #include <sys/systm.h>
   71 #include <sys/lock.h>
   72 #include <sys/mman.h>
   73 #include <sys/msgbuf.h>
   74 #include <sys/mutex.h>
   75 #include <sys/pcpu.h>
   76 #include <sys/proc.h>
   77 #include <sys/rwlock.h>
   78 #include <sys/sched.h>
   79 #include <sys/smp.h>
   80 #include <sys/sysctl.h>
   81 #include <sys/vmmeter.h>
   82 
   83 #ifdef DDB
   84 #include <ddb/ddb.h>
   85 #endif
   86 
   87 #include <vm/vm.h>
   88 #include <vm/vm_param.h>
   89 #include <vm/vm_kern.h>
   90 #include <vm/vm_page.h>
   91 #include <vm/vm_map.h>
   92 #include <vm/vm_object.h>
   93 #include <vm/vm_extern.h>
   94 #include <vm/vm_pageout.h>
   95 #include <vm/vm_pager.h>
   96 #include <vm/uma.h>
   97 
   98 #include <machine/cache.h>
   99 #include <machine/md_var.h>
  100 #include <machine/tlb.h>
  101 
  102 #undef PMAP_DEBUG
  103 
  104 #if !defined(DIAGNOSTIC)
  105 #define PMAP_INLINE __inline
  106 #else
  107 #define PMAP_INLINE
  108 #endif
  109 
  110 #ifdef PV_STATS
  111 #define PV_STAT(x)      do { x ; } while (0)
  112 #else
  113 #define PV_STAT(x)      do { } while (0)
  114 #endif
  115 
  116 /*
  117  * Get PDEs and PTEs for user/kernel address space
  118  */
  119 #define pmap_seg_index(v)       (((v) >> SEGSHIFT) & (NPDEPG - 1))
  120 #define pmap_pde_index(v)       (((v) >> PDRSHIFT) & (NPDEPG - 1))
  121 #define pmap_pte_index(v)       (((v) >> PAGE_SHIFT) & (NPTEPG - 1))
  122 #define pmap_pde_pindex(v)      ((v) >> PDRSHIFT)
  123 
  124 #ifdef __mips_n64
  125 #define NUPDE                   (NPDEPG * NPDEPG)
  126 #define NUSERPGTBLS             (NUPDE + NPDEPG)
  127 #else
  128 #define NUPDE                   (NPDEPG)
  129 #define NUSERPGTBLS             (NUPDE)
  130 #endif
  131 
  132 #define is_kernel_pmap(x)       ((x) == kernel_pmap)
  133 
  134 struct pmap kernel_pmap_store;
  135 pd_entry_t *kernel_segmap;
  136 
  137 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  138 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  139 
  140 static int nkpt;
  141 unsigned pmap_max_asid;         /* max ASID supported by the system */
  142 
  143 #define PMAP_ASID_RESERVED      0
  144 
  145 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
  146 
  147 static void pmap_asid_alloc(pmap_t pmap);
  148 
  149 static struct rwlock_padalign pvh_global_lock;
  150 
  151 /*
  152  * Data for the pv entry allocation mechanism
  153  */
  154 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
  155 static int pv_entry_count;
  156 
  157 static void free_pv_chunk(struct pv_chunk *pc);
  158 static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
  159 static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
  160 static vm_page_t pmap_pv_reclaim(pmap_t locked_pmap);
  161 static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
  162 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
  163     vm_offset_t va);
  164 static vm_page_t pmap_alloc_direct_page(unsigned int index, int req);
  165 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
  166     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
  167 static void pmap_grow_direct_page(int req);
  168 static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
  169     pd_entry_t pde);
  170 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
  171 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
  172 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
  173     vm_offset_t va, vm_page_t m);
  174 static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte);
  175 static void pmap_invalidate_all(pmap_t pmap);
  176 static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
  177 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m);
  178 
  179 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
  180 static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, u_int flags);
  181 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t);
  182 static pt_entry_t init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot);
  183 
  184 static void pmap_invalidate_page_action(void *arg);
  185 static void pmap_invalidate_range_action(void *arg);
  186 static void pmap_update_page_action(void *arg);
  187 
  188 #ifndef __mips_n64
  189 /*
  190  * This structure is for high memory (memory above 512Meg in 32 bit) support.
  191  * The highmem area does not have a KSEG0 mapping, and we need a mechanism to
  192  * do temporary per-CPU mappings for pmap_zero_page, pmap_copy_page etc.
  193  *
  194  * At bootup, we reserve 2 virtual pages per CPU for mapping highmem pages. To
  195  * access a highmem physical address on a CPU, we map the physical address to
  196  * the reserved virtual address for the CPU in the kernel pagetable.  This is
  197  * done with interrupts disabled(although a spinlock and sched_pin would be
  198  * sufficient).
  199  */
  200 struct local_sysmaps {
  201         vm_offset_t     base;
  202         uint32_t        saved_intr;
  203         uint16_t        valid1, valid2;
  204 };
  205 static struct local_sysmaps sysmap_lmem[MAXCPU];
  206 
  207 static __inline void
  208 pmap_alloc_lmem_map(void)
  209 {
  210         int i;
  211 
  212         for (i = 0; i < MAXCPU; i++) {
  213                 sysmap_lmem[i].base = virtual_avail;
  214                 virtual_avail += PAGE_SIZE * 2;
  215                 sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
  216         }
  217 }
  218 
  219 static __inline vm_offset_t
  220 pmap_lmem_map1(vm_paddr_t phys)
  221 {
  222         struct local_sysmaps *sysm;
  223         pt_entry_t *pte, npte;
  224         vm_offset_t va;
  225         uint32_t intr;
  226         int cpu;
  227 
  228         intr = intr_disable();
  229         cpu = PCPU_GET(cpuid);
  230         sysm = &sysmap_lmem[cpu];
  231         sysm->saved_intr = intr;
  232         va = sysm->base;
  233         npte = TLBLO_PA_TO_PFN(phys) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
  234         pte = pmap_pte(kernel_pmap, va);
  235         *pte = npte;
  236         sysm->valid1 = 1;
  237         return (va);
  238 }
  239 
  240 static __inline vm_offset_t
  241 pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
  242 {
  243         struct local_sysmaps *sysm;
  244         pt_entry_t *pte, npte;
  245         vm_offset_t va1, va2;
  246         uint32_t intr;
  247         int cpu;
  248 
  249         intr = intr_disable();
  250         cpu = PCPU_GET(cpuid);
  251         sysm = &sysmap_lmem[cpu];
  252         sysm->saved_intr = intr;
  253         va1 = sysm->base;
  254         va2 = sysm->base + PAGE_SIZE;
  255         npte = TLBLO_PA_TO_PFN(phys1) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
  256         pte = pmap_pte(kernel_pmap, va1);
  257         *pte = npte;
  258         npte = TLBLO_PA_TO_PFN(phys2) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
  259         pte = pmap_pte(kernel_pmap, va2);
  260         *pte = npte;
  261         sysm->valid1 = 1;
  262         sysm->valid2 = 1;
  263         return (va1);
  264 }
  265 
  266 static __inline void
  267 pmap_lmem_unmap(void)
  268 {
  269         struct local_sysmaps *sysm;
  270         pt_entry_t *pte;
  271         int cpu;
  272 
  273         cpu = PCPU_GET(cpuid);
  274         sysm = &sysmap_lmem[cpu];
  275         pte = pmap_pte(kernel_pmap, sysm->base);
  276         *pte = PTE_G;
  277         tlb_invalidate_address(kernel_pmap, sysm->base);
  278         sysm->valid1 = 0;
  279         if (sysm->valid2) {
  280                 pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);
  281                 *pte = PTE_G;
  282                 tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);
  283                 sysm->valid2 = 0;
  284         }
  285         intr_restore(sysm->saved_intr);
  286 }
  287 #else  /* __mips_n64 */
  288 
  289 static __inline void
  290 pmap_alloc_lmem_map(void)
  291 {
  292 }
  293 
  294 static __inline vm_offset_t
  295 pmap_lmem_map1(vm_paddr_t phys)
  296 {
  297 
  298         return (0);
  299 }
  300 
  301 static __inline vm_offset_t
  302 pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
  303 {
  304 
  305         return (0);
  306 }
  307 
  308 static __inline vm_offset_t
  309 pmap_lmem_unmap(void)
  310 {
  311 
  312         return (0);
  313 }
  314 #endif /* !__mips_n64 */
  315 
  316 static __inline int
  317 pmap_pte_cache_bits(vm_paddr_t pa, vm_page_t m)
  318 {
  319         vm_memattr_t ma;
  320 
  321         ma = pmap_page_get_memattr(m);
  322         if (ma == VM_MEMATTR_WRITE_BACK && !is_cacheable_mem(pa))
  323                 ma = VM_MEMATTR_UNCACHEABLE;
  324         return PTE_C(ma);
  325 }
  326 #define PMAP_PTE_SET_CACHE_BITS(pte, ps, m) {   \
  327         pte &= ~PTE_C_MASK;                     \
  328         pte |= pmap_pte_cache_bits(pa, m);      \
  329 }
  330 
  331 /*
  332  * Page table entry lookup routines.
  333  */
  334 static __inline pd_entry_t *
  335 pmap_segmap(pmap_t pmap, vm_offset_t va)
  336 {
  337 
  338         return (&pmap->pm_segtab[pmap_seg_index(va)]);
  339 }
  340 
  341 #ifdef __mips_n64
  342 static __inline pd_entry_t *
  343 pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
  344 {
  345         pd_entry_t *pde;
  346 
  347         pde = (pd_entry_t *)*pdpe;
  348         return (&pde[pmap_pde_index(va)]);
  349 }
  350 
  351 static __inline pd_entry_t *
  352 pmap_pde(pmap_t pmap, vm_offset_t va)
  353 {
  354         pd_entry_t *pdpe;
  355 
  356         pdpe = pmap_segmap(pmap, va);
  357         if (*pdpe == NULL)
  358                 return (NULL);
  359 
  360         return (pmap_pdpe_to_pde(pdpe, va));
  361 }
  362 #else
  363 static __inline pd_entry_t *
  364 pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
  365 {
  366 
  367         return (pdpe);
  368 }
  369 
  370 static __inline
  371 pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va)
  372 {
  373 
  374         return (pmap_segmap(pmap, va));
  375 }
  376 #endif
  377 
  378 static __inline pt_entry_t *
  379 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
  380 {
  381         pt_entry_t *pte;
  382 
  383         pte = (pt_entry_t *)*pde;
  384         return (&pte[pmap_pte_index(va)]);
  385 }
  386 
  387 pt_entry_t *
  388 pmap_pte(pmap_t pmap, vm_offset_t va)
  389 {
  390         pd_entry_t *pde;
  391 
  392         pde = pmap_pde(pmap, va);
  393         if (pde == NULL || *pde == NULL)
  394                 return (NULL);
  395 
  396         return (pmap_pde_to_pte(pde, va));
  397 }
  398 
  399 vm_offset_t
  400 pmap_steal_memory(vm_size_t size)
  401 {
  402         vm_paddr_t bank_size, pa;
  403         vm_offset_t va;
  404 
  405         size = round_page(size);
  406         bank_size = phys_avail[1] - phys_avail[0];
  407         while (size > bank_size) {
  408                 int i;
  409 
  410                 for (i = 0; phys_avail[i + 2]; i += 2) {
  411                         phys_avail[i] = phys_avail[i + 2];
  412                         phys_avail[i + 1] = phys_avail[i + 3];
  413                 }
  414                 phys_avail[i] = 0;
  415                 phys_avail[i + 1] = 0;
  416                 if (!phys_avail[0])
  417                         panic("pmap_steal_memory: out of memory");
  418                 bank_size = phys_avail[1] - phys_avail[0];
  419         }
  420 
  421         pa = phys_avail[0];
  422         phys_avail[0] += size;
  423         if (MIPS_DIRECT_MAPPABLE(pa) == 0)
  424                 panic("Out of memory below 512Meg?");
  425         va = MIPS_PHYS_TO_DIRECT(pa);
  426         bzero((caddr_t)va, size);
  427         return (va);
  428 }
  429 
  430 /*
  431  * Bootstrap the system enough to run with virtual memory.  This
  432  * assumes that the phys_avail array has been initialized.
  433  */
  434 static void
  435 pmap_create_kernel_pagetable(void)
  436 {
  437         int i, j;
  438         vm_offset_t ptaddr;
  439         pt_entry_t *pte;
  440 #ifdef __mips_n64
  441         pd_entry_t *pde;
  442         vm_offset_t pdaddr;
  443         int npt, npde;
  444 #endif
  445 
  446         /*
  447          * Allocate segment table for the kernel
  448          */
  449         kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
  450 
  451         /*
  452          * Allocate second level page tables for the kernel
  453          */
  454 #ifdef __mips_n64
  455         npde = howmany(NKPT, NPDEPG);
  456         pdaddr = pmap_steal_memory(PAGE_SIZE * npde);
  457 #endif
  458         nkpt = NKPT;
  459         ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt);
  460 
  461         /*
  462          * The R[4-7]?00 stores only one copy of the Global bit in the
  463          * translation lookaside buffer for each 2 page entry. Thus invalid
  464          * entrys must have the Global bit set so when Entry LO and Entry HI
  465          * G bits are anded together they will produce a global bit to store
  466          * in the tlb.
  467          */
  468         for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++)
  469                 *pte = PTE_G;
  470 
  471 #ifdef __mips_n64
  472         for (i = 0,  npt = nkpt; npt > 0; i++) {
  473                 kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE);
  474                 pde = (pd_entry_t *)kernel_segmap[i];
  475 
  476                 for (j = 0; j < NPDEPG && npt > 0; j++, npt--)
  477                         pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE);
  478         }
  479 #else
  480         for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++)
  481                 kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE));
  482 #endif
  483 
  484         PMAP_LOCK_INIT(kernel_pmap);
  485         kernel_pmap->pm_segtab = kernel_segmap;
  486         CPU_FILL(&kernel_pmap->pm_active);
  487         TAILQ_INIT(&kernel_pmap->pm_pvchunk);
  488         kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
  489         kernel_pmap->pm_asid[0].gen = 0;
  490         kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE;
  491 }
  492 
  493 void
  494 pmap_bootstrap(void)
  495 {
  496         int i;
  497         int need_local_mappings = 0;
  498 
  499         /* Sort. */
  500 again:
  501         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  502                 /*
  503                  * Keep the memory aligned on page boundary.
  504                  */
  505                 phys_avail[i] = round_page(phys_avail[i]);
  506                 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
  507 
  508                 if (i < 2)
  509                         continue;
  510                 if (phys_avail[i - 2] > phys_avail[i]) {
  511                         vm_paddr_t ptemp[2];
  512 
  513                         ptemp[0] = phys_avail[i + 0];
  514                         ptemp[1] = phys_avail[i + 1];
  515 
  516                         phys_avail[i + 0] = phys_avail[i - 2];
  517                         phys_avail[i + 1] = phys_avail[i - 1];
  518 
  519                         phys_avail[i - 2] = ptemp[0];
  520                         phys_avail[i - 1] = ptemp[1];
  521                         goto again;
  522                 }
  523         }
  524 
  525         /*
  526          * In 32 bit, we may have memory which cannot be mapped directly.
  527          * This memory will need temporary mapping before it can be
  528          * accessed.
  529          */
  530         if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1] - 1))
  531                 need_local_mappings = 1;
  532 
  533         /*
  534          * Copy the phys_avail[] array before we start stealing memory from it.
  535          */
  536         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  537                 physmem_desc[i] = phys_avail[i];
  538                 physmem_desc[i + 1] = phys_avail[i + 1];
  539         }
  540 
  541         Maxmem = atop(phys_avail[i - 1]);
  542 
  543         if (bootverbose) {
  544                 printf("Physical memory chunk(s):\n");
  545                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  546                         vm_paddr_t size;
  547 
  548                         size = phys_avail[i + 1] - phys_avail[i];
  549                         printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
  550                             (uintmax_t) phys_avail[i],
  551                             (uintmax_t) phys_avail[i + 1] - 1,
  552                             (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
  553                 }
  554                 printf("Maxmem is 0x%0jx\n", ptoa((uintmax_t)Maxmem));
  555         }
  556         /*
  557          * Steal the message buffer from the beginning of memory.
  558          */
  559         msgbufp = (struct msgbuf *)pmap_steal_memory(msgbufsize);
  560         msgbufinit(msgbufp, msgbufsize);
  561 
  562         /*
  563          * Steal thread0 kstack.
  564          */
  565         kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
  566 
  567         virtual_avail = VM_MIN_KERNEL_ADDRESS;
  568         virtual_end = VM_MAX_KERNEL_ADDRESS;
  569 
  570 #ifdef SMP
  571         /*
  572          * Steal some virtual address space to map the pcpu area.
  573          */
  574         virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
  575         pcpup = (struct pcpu *)virtual_avail;
  576         virtual_avail += PAGE_SIZE * 2;
  577 
  578         /*
  579          * Initialize the wired TLB entry mapping the pcpu region for
  580          * the BSP at 'pcpup'. Up until this point we were operating
  581          * with the 'pcpup' for the BSP pointing to a virtual address
  582          * in KSEG0 so there was no need for a TLB mapping.
  583          */
  584         mips_pcpu_tlb_init(PCPU_ADDR(0));
  585 
  586         if (bootverbose)
  587                 printf("pcpu is available at virtual address %p.\n", pcpup);
  588 #endif
  589 
  590         if (need_local_mappings)
  591                 pmap_alloc_lmem_map();
  592         pmap_create_kernel_pagetable();
  593         pmap_max_asid = VMNUM_PIDS;
  594         mips_wr_entryhi(0);
  595         mips_wr_pagemask(0);
  596 
  597         /*
  598          * Initialize the global pv list lock.
  599          */
  600         rw_init(&pvh_global_lock, "pmap pv global");
  601 }
  602 
  603 /*
  604  * Initialize a vm_page's machine-dependent fields.
  605  */
  606 void
  607 pmap_page_init(vm_page_t m)
  608 {
  609 
  610         TAILQ_INIT(&m->md.pv_list);
  611         m->md.pv_flags = VM_MEMATTR_DEFAULT << PV_MEMATTR_SHIFT;
  612 }
  613 
  614 /*
  615  *      Initialize the pmap module.
  616  *      Called by vm_init, to initialize any structures that the pmap
  617  *      system needs to map virtual memory.
  618  */
  619 void
  620 pmap_init(void)
  621 {
  622 }
  623 
  624 /***************************************************
  625  * Low level helper routines.....
  626  ***************************************************/
  627 
  628 #ifdef  SMP
  629 static __inline void
  630 pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
  631 {
  632         int     cpuid, cpu, self;
  633         cpuset_t active_cpus;
  634 
  635         sched_pin();
  636         if (is_kernel_pmap(pmap)) {
  637                 smp_rendezvous(NULL, fn, NULL, arg);
  638                 goto out;
  639         }
  640         /* Force ASID update on inactive CPUs */
  641         CPU_FOREACH(cpu) {
  642                 if (!CPU_ISSET(cpu, &pmap->pm_active))
  643                         pmap->pm_asid[cpu].gen = 0;
  644         }
  645         cpuid = PCPU_GET(cpuid);
  646         /*
  647          * XXX: barrier/locking for active?
  648          *
  649          * Take a snapshot of active here, any further changes are ignored.
  650          * tlb update/invalidate should be harmless on inactive CPUs
  651          */
  652         active_cpus = pmap->pm_active;
  653         self = CPU_ISSET(cpuid, &active_cpus);
  654         CPU_CLR(cpuid, &active_cpus);
  655         /* Optimize for the case where this cpu is the only active one */
  656         if (CPU_EMPTY(&active_cpus)) {
  657                 if (self)
  658                         fn(arg);
  659         } else {
  660                 if (self)
  661                         CPU_SET(cpuid, &active_cpus);
  662                 smp_rendezvous_cpus(active_cpus, NULL, fn, NULL, arg);
  663         }
  664 out:
  665         sched_unpin();
  666 }
  667 #else /* !SMP */
  668 static __inline void
  669 pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
  670 {
  671         int     cpuid;
  672 
  673         if (is_kernel_pmap(pmap)) {
  674                 fn(arg);
  675                 return;
  676         }
  677         cpuid = PCPU_GET(cpuid);
  678         if (!CPU_ISSET(cpuid, &pmap->pm_active))
  679                 pmap->pm_asid[cpuid].gen = 0;
  680         else
  681                 fn(arg);
  682 }
  683 #endif /* SMP */
  684 
  685 static void
  686 pmap_invalidate_all(pmap_t pmap)
  687 {
  688 
  689         pmap_call_on_active_cpus(pmap,
  690             (void (*)(void *))tlb_invalidate_all_user, pmap);
  691 }
  692 
  693 struct pmap_invalidate_page_arg {
  694         pmap_t pmap;
  695         vm_offset_t va;
  696 };
  697 
  698 static void
  699 pmap_invalidate_page_action(void *arg)
  700 {
  701         struct pmap_invalidate_page_arg *p = arg;
  702 
  703         tlb_invalidate_address(p->pmap, p->va);
  704 }
  705 
  706 static void
  707 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  708 {
  709         struct pmap_invalidate_page_arg arg;
  710 
  711         arg.pmap = pmap;
  712         arg.va = va;
  713         pmap_call_on_active_cpus(pmap, pmap_invalidate_page_action, &arg);
  714 }
  715 
  716 struct pmap_invalidate_range_arg {
  717         pmap_t pmap;
  718         vm_offset_t sva;
  719         vm_offset_t eva;
  720 };
  721 
  722 static void
  723 pmap_invalidate_range_action(void *arg)
  724 {
  725         struct pmap_invalidate_range_arg *p = arg;
  726 
  727         tlb_invalidate_range(p->pmap, p->sva, p->eva);
  728 }
  729 
  730 static void
  731 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  732 {
  733         struct pmap_invalidate_range_arg arg;
  734 
  735         arg.pmap = pmap;
  736         arg.sva = sva;
  737         arg.eva = eva;
  738         pmap_call_on_active_cpus(pmap, pmap_invalidate_range_action, &arg);
  739 }
  740 
  741 struct pmap_update_page_arg {
  742         pmap_t pmap;
  743         vm_offset_t va;
  744         pt_entry_t pte;
  745 };
  746 
  747 static void
  748 pmap_update_page_action(void *arg)
  749 {
  750         struct pmap_update_page_arg *p = arg;
  751 
  752         tlb_update(p->pmap, p->va, p->pte);
  753 }
  754 
  755 static void
  756 pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
  757 {
  758         struct pmap_update_page_arg arg;
  759 
  760         arg.pmap = pmap;
  761         arg.va = va;
  762         arg.pte = pte;
  763         pmap_call_on_active_cpus(pmap, pmap_update_page_action, &arg);
  764 }
  765 
  766 /*
  767  *      Routine:        pmap_extract
  768  *      Function:
  769  *              Extract the physical page address associated
  770  *              with the given map/virtual_address pair.
  771  */
  772 vm_paddr_t
  773 pmap_extract(pmap_t pmap, vm_offset_t va)
  774 {
  775         pt_entry_t *pte;
  776         vm_offset_t retval = 0;
  777 
  778         PMAP_LOCK(pmap);
  779         pte = pmap_pte(pmap, va);
  780         if (pte) {
  781                 retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
  782         }
  783         PMAP_UNLOCK(pmap);
  784         return (retval);
  785 }
  786 
  787 /*
  788  *      Routine:        pmap_extract_and_hold
  789  *      Function:
  790  *              Atomically extract and hold the physical page
  791  *              with the given pmap and virtual address pair
  792  *              if that mapping permits the given protection.
  793  */
  794 vm_page_t
  795 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
  796 {
  797         pt_entry_t pte, *ptep;
  798         vm_paddr_t pa, pte_pa;
  799         vm_page_t m;
  800 
  801         m = NULL;
  802         pa = 0;
  803         PMAP_LOCK(pmap);
  804 retry:
  805         ptep = pmap_pte(pmap, va);
  806         if (ptep != NULL) {
  807                 pte = *ptep;
  808                 if (pte_test(&pte, PTE_V) && (!pte_test(&pte, PTE_RO) ||
  809                     (prot & VM_PROT_WRITE) == 0)) {
  810                         pte_pa = TLBLO_PTE_TO_PA(pte);
  811                         if (vm_page_pa_tryrelock(pmap, pte_pa, &pa))
  812                                 goto retry;
  813                         m = PHYS_TO_VM_PAGE(pte_pa);
  814                         vm_page_hold(m);
  815                 }
  816         }
  817         PA_UNLOCK_COND(pa);
  818         PMAP_UNLOCK(pmap);
  819         return (m);
  820 }
  821 
  822 /***************************************************
  823  * Low level mapping routines.....
  824  ***************************************************/
  825 
  826 /*
  827  * add a wired page to the kva
  828  */
  829 void
  830 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
  831 {
  832         pt_entry_t *pte;
  833         pt_entry_t opte, npte;
  834 
  835 #ifdef PMAP_DEBUG
  836         printf("pmap_kenter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
  837 #endif
  838 
  839         pte = pmap_pte(kernel_pmap, va);
  840         opte = *pte;
  841         npte = TLBLO_PA_TO_PFN(pa) | PTE_C(ma) | PTE_D | PTE_V | PTE_G;
  842         *pte = npte;
  843         if (pte_test(&opte, PTE_V) && opte != npte)
  844                 pmap_update_page(kernel_pmap, va, npte);
  845 }
  846 
  847 void
  848 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
  849 {
  850 
  851         KASSERT(is_cacheable_mem(pa),
  852                 ("pmap_kenter: memory at 0x%lx is not cacheable", (u_long)pa));
  853 
  854         pmap_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
  855 }
  856 
  857 /*
  858  * remove a page from the kernel pagetables
  859  */
  860  /* PMAP_INLINE */ void
  861 pmap_kremove(vm_offset_t va)
  862 {
  863         pt_entry_t *pte;
  864 
  865         /*
  866          * Write back all caches from the page being destroyed
  867          */
  868         mips_dcache_wbinv_range_index(va, PAGE_SIZE);
  869 
  870         pte = pmap_pte(kernel_pmap, va);
  871         *pte = PTE_G;
  872         pmap_invalidate_page(kernel_pmap, va);
  873 }
  874 
  875 /*
  876  *      Used to map a range of physical addresses into kernel
  877  *      virtual address space.
  878  *
  879  *      The value passed in '*virt' is a suggested virtual address for
  880  *      the mapping. Architectures which can support a direct-mapped
  881  *      physical to virtual region can return the appropriate address
  882  *      within that region, leaving '*virt' unchanged. Other
  883  *      architectures should map the pages starting at '*virt' and
  884  *      update '*virt' with the first usable address after the mapped
  885  *      region.
  886  *
  887  *      Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
  888  */
  889 vm_offset_t
  890 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
  891 {
  892         vm_offset_t va, sva;
  893 
  894         if (MIPS_DIRECT_MAPPABLE(end - 1))
  895                 return (MIPS_PHYS_TO_DIRECT(start));
  896 
  897         va = sva = *virt;
  898         while (start < end) {
  899                 pmap_kenter(va, start);
  900                 va += PAGE_SIZE;
  901                 start += PAGE_SIZE;
  902         }
  903         *virt = va;
  904         return (sva);
  905 }
  906 
  907 /*
  908  * Add a list of wired pages to the kva
  909  * this routine is only used for temporary
  910  * kernel mappings that do not need to have
  911  * page modification or references recorded.
  912  * Note that old mappings are simply written
  913  * over.  The page *must* be wired.
  914  */
  915 void
  916 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
  917 {
  918         int i;
  919         vm_offset_t origva = va;
  920 
  921         for (i = 0; i < count; i++) {
  922                 pmap_flush_pvcache(m[i]);
  923                 pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
  924                 va += PAGE_SIZE;
  925         }
  926 
  927         mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
  928 }
  929 
  930 /*
  931  * this routine jerks page mappings from the
  932  * kernel -- it is meant only for temporary mappings.
  933  */
  934 void
  935 pmap_qremove(vm_offset_t va, int count)
  936 {
  937         pt_entry_t *pte;
  938         vm_offset_t origva;
  939 
  940         if (count < 1)
  941                 return;
  942         mips_dcache_wbinv_range_index(va, PAGE_SIZE * count);
  943         origva = va;
  944         do {
  945                 pte = pmap_pte(kernel_pmap, va);
  946                 *pte = PTE_G;
  947                 va += PAGE_SIZE;
  948         } while (--count > 0);
  949         pmap_invalidate_range(kernel_pmap, origva, va);
  950 }
  951 
  952 /***************************************************
  953  * Page table page management routines.....
  954  ***************************************************/
  955 
  956 /*
  957  * Decrements a page table page's wire count, which is used to record the
  958  * number of valid page table entries within the page.  If the wire count
  959  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
  960  * page table page was unmapped and FALSE otherwise.
  961  */
  962 static PMAP_INLINE boolean_t
  963 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
  964 {
  965 
  966         --m->wire_count;
  967         if (m->wire_count == 0) {
  968                 _pmap_unwire_ptp(pmap, va, m);
  969                 return (TRUE);
  970         } else
  971                 return (FALSE);
  972 }
  973 
  974 static void
  975 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
  976 {
  977         pd_entry_t *pde;
  978 
  979         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
  980         /*
  981          * unmap the page table page
  982          */
  983 #ifdef __mips_n64
  984         if (m->pindex < NUPDE)
  985                 pde = pmap_pde(pmap, va);
  986         else
  987                 pde = pmap_segmap(pmap, va);
  988 #else
  989         pde = pmap_pde(pmap, va);
  990 #endif
  991         *pde = 0;
  992         pmap->pm_stats.resident_count--;
  993 
  994 #ifdef __mips_n64
  995         if (m->pindex < NUPDE) {
  996                 pd_entry_t *pdp;
  997                 vm_page_t pdpg;
  998 
  999                 /*
 1000                  * Recursively decrement next level pagetable refcount
 1001                  */
 1002                 pdp = (pd_entry_t *)*pmap_segmap(pmap, va);
 1003                 pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp));
 1004                 pmap_unwire_ptp(pmap, va, pdpg);
 1005         }
 1006 #endif
 1007 
 1008         /*
 1009          * If the page is finally unwired, simply free it.
 1010          */
 1011         vm_page_free_zero(m);
 1012         vm_wire_sub(1);
 1013 }
 1014 
 1015 /*
 1016  * After removing a page table entry, this routine is used to
 1017  * conditionally free the page, and manage the hold/wire counts.
 1018  */
 1019 static int
 1020 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
 1021 {
 1022         vm_page_t mpte;
 1023 
 1024         if (va >= VM_MAXUSER_ADDRESS)
 1025                 return (0);
 1026         KASSERT(pde != 0, ("pmap_unuse_pt: pde != 0"));
 1027         mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pde));
 1028         return (pmap_unwire_ptp(pmap, va, mpte));
 1029 }
 1030 
 1031 void
 1032 pmap_pinit0(pmap_t pmap)
 1033 {
 1034         int i;
 1035 
 1036         PMAP_LOCK_INIT(pmap);
 1037         pmap->pm_segtab = kernel_segmap;
 1038         CPU_ZERO(&pmap->pm_active);
 1039         for (i = 0; i < MAXCPU; i++) {
 1040                 pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
 1041                 pmap->pm_asid[i].gen = 0;
 1042         }
 1043         PCPU_SET(curpmap, pmap);
 1044         TAILQ_INIT(&pmap->pm_pvchunk);
 1045         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1046 }
 1047 
 1048 static void
 1049 pmap_grow_direct_page(int req)
 1050 {
 1051 
 1052 #ifdef __mips_n64
 1053         vm_wait(NULL);
 1054 #else
 1055         if (!vm_page_reclaim_contig(req, 1, 0, MIPS_KSEG0_LARGEST_PHYS,
 1056             PAGE_SIZE, 0))
 1057                 vm_wait(NULL);
 1058 #endif
 1059 }
 1060 
 1061 static vm_page_t
 1062 pmap_alloc_direct_page(unsigned int index, int req)
 1063 {
 1064         vm_page_t m;
 1065 
 1066         m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, req | VM_ALLOC_WIRED |
 1067             VM_ALLOC_ZERO);
 1068         if (m == NULL)
 1069                 return (NULL);
 1070 
 1071         if ((m->flags & PG_ZERO) == 0)
 1072                 pmap_zero_page(m);
 1073 
 1074         m->pindex = index;
 1075         return (m);
 1076 }
 1077 
 1078 /*
 1079  * Initialize a preallocated and zeroed pmap structure,
 1080  * such as one in a vmspace structure.
 1081  */
 1082 int
 1083 pmap_pinit(pmap_t pmap)
 1084 {
 1085         vm_offset_t ptdva;
 1086         vm_page_t ptdpg;
 1087         int i, req_class;
 1088 
 1089         /*
 1090          * allocate the page directory page
 1091          */
 1092         req_class = VM_ALLOC_NORMAL;
 1093         while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, req_class)) ==
 1094             NULL)
 1095                 pmap_grow_direct_page(req_class);
 1096 
 1097         ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
 1098         pmap->pm_segtab = (pd_entry_t *)ptdva;
 1099         CPU_ZERO(&pmap->pm_active);
 1100         for (i = 0; i < MAXCPU; i++) {
 1101                 pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
 1102                 pmap->pm_asid[i].gen = 0;
 1103         }
 1104         TAILQ_INIT(&pmap->pm_pvchunk);
 1105         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1106 
 1107         return (1);
 1108 }
 1109 
 1110 /*
 1111  * this routine is called if the page table page is not
 1112  * mapped correctly.
 1113  */
 1114 static vm_page_t
 1115 _pmap_allocpte(pmap_t pmap, unsigned ptepindex, u_int flags)
 1116 {
 1117         vm_offset_t pageva;
 1118         vm_page_t m;
 1119         int req_class;
 1120 
 1121         /*
 1122          * Find or fabricate a new pagetable page
 1123          */
 1124         req_class = VM_ALLOC_NORMAL;
 1125         if ((m = pmap_alloc_direct_page(ptepindex, req_class)) == NULL) {
 1126                 if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
 1127                         PMAP_UNLOCK(pmap);
 1128                         rw_wunlock(&pvh_global_lock);
 1129                         pmap_grow_direct_page(req_class);
 1130                         rw_wlock(&pvh_global_lock);
 1131                         PMAP_LOCK(pmap);
 1132                 }
 1133 
 1134                 /*
 1135                  * Indicate the need to retry.  While waiting, the page
 1136                  * table page may have been allocated.
 1137                  */
 1138                 return (NULL);
 1139         }
 1140 
 1141         /*
 1142          * Map the pagetable page into the process address space, if it
 1143          * isn't already there.
 1144          */
 1145         pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
 1146 
 1147 #ifdef __mips_n64
 1148         if (ptepindex >= NUPDE) {
 1149                 pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva;
 1150         } else {
 1151                 pd_entry_t *pdep, *pde;
 1152                 int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT);
 1153                 int pdeindex = ptepindex & (NPDEPG - 1);
 1154                 vm_page_t pg;
 1155 
 1156                 pdep = &pmap->pm_segtab[segindex];
 1157                 if (*pdep == NULL) {
 1158                         /* recurse for allocating page dir */
 1159                         if (_pmap_allocpte(pmap, NUPDE + segindex,
 1160                             flags) == NULL) {
 1161                                 /* alloc failed, release current */
 1162                                 vm_page_unwire_noq(m);
 1163                                 vm_page_free_zero(m);
 1164                                 return (NULL);
 1165                         }
 1166                 } else {
 1167                         pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep));
 1168                         pg->wire_count++;
 1169                 }
 1170                 /* Next level entry */
 1171                 pde = (pd_entry_t *)*pdep;
 1172                 pde[pdeindex] = (pd_entry_t)pageva;
 1173         }
 1174 #else
 1175         pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva;
 1176 #endif
 1177         pmap->pm_stats.resident_count++;
 1178         return (m);
 1179 }
 1180 
 1181 static vm_page_t
 1182 pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
 1183 {
 1184         unsigned ptepindex;
 1185         pd_entry_t *pde;
 1186         vm_page_t m;
 1187 
 1188         /*
 1189          * Calculate pagetable page index
 1190          */
 1191         ptepindex = pmap_pde_pindex(va);
 1192 retry:
 1193         /*
 1194          * Get the page directory entry
 1195          */
 1196         pde = pmap_pde(pmap, va);
 1197 
 1198         /*
 1199          * If the page table page is mapped, we just increment the hold
 1200          * count, and activate it.
 1201          */
 1202         if (pde != NULL && *pde != NULL) {
 1203                 m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde));
 1204                 m->wire_count++;
 1205         } else {
 1206                 /*
 1207                  * Here if the pte page isn't mapped, or if it has been
 1208                  * deallocated.
 1209                  */
 1210                 m = _pmap_allocpte(pmap, ptepindex, flags);
 1211                 if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
 1212                         goto retry;
 1213         }
 1214         return (m);
 1215 }
 1216 
 1217 
 1218 /***************************************************
 1219  * Pmap allocation/deallocation routines.
 1220  ***************************************************/
 1221 
 1222 /*
 1223  * Release any resources held by the given physical map.
 1224  * Called when a pmap initialized by pmap_pinit is being released.
 1225  * Should only be called if the map contains no valid mappings.
 1226  */
 1227 void
 1228 pmap_release(pmap_t pmap)
 1229 {
 1230         vm_offset_t ptdva;
 1231         vm_page_t ptdpg;
 1232 
 1233         KASSERT(pmap->pm_stats.resident_count == 0,
 1234             ("pmap_release: pmap resident count %ld != 0",
 1235             pmap->pm_stats.resident_count));
 1236 
 1237         ptdva = (vm_offset_t)pmap->pm_segtab;
 1238         ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva));
 1239 
 1240         vm_page_unwire_noq(ptdpg);
 1241         vm_page_free_zero(ptdpg);
 1242 }
 1243 
 1244 /*
 1245  * grow the number of kernel page table entries, if needed
 1246  */
 1247 void
 1248 pmap_growkernel(vm_offset_t addr)
 1249 {
 1250         vm_page_t nkpg;
 1251         pd_entry_t *pde, *pdpe;
 1252         pt_entry_t *pte;
 1253         int i, req_class;
 1254 
 1255         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 1256         req_class = VM_ALLOC_INTERRUPT;
 1257         addr = roundup2(addr, NBSEG);
 1258         if (addr - 1 >= vm_map_max(kernel_map))
 1259                 addr = vm_map_max(kernel_map);
 1260         while (kernel_vm_end < addr) {
 1261                 pdpe = pmap_segmap(kernel_pmap, kernel_vm_end);
 1262 #ifdef __mips_n64
 1263                 if (*pdpe == 0) {
 1264                         /* new intermediate page table entry */
 1265                         nkpg = pmap_alloc_direct_page(nkpt, req_class);
 1266                         if (nkpg == NULL)
 1267                                 panic("pmap_growkernel: no memory to grow kernel");
 1268                         *pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
 1269                         continue; /* try again */
 1270                 }
 1271 #endif
 1272                 pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
 1273                 if (*pde != 0) {
 1274                         kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 1275                         if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
 1276                                 kernel_vm_end = vm_map_max(kernel_map);
 1277                                 break;
 1278                         }
 1279                         continue;
 1280                 }
 1281 
 1282                 /*
 1283                  * This index is bogus, but out of the way
 1284                  */
 1285                 nkpg = pmap_alloc_direct_page(nkpt, req_class);
 1286 #ifndef __mips_n64
 1287                 if (nkpg == NULL && vm_page_reclaim_contig(req_class, 1,
 1288                     0, MIPS_KSEG0_LARGEST_PHYS, PAGE_SIZE, 0))
 1289                         nkpg = pmap_alloc_direct_page(nkpt, req_class);
 1290 #endif
 1291                 if (nkpg == NULL)
 1292                         panic("pmap_growkernel: no memory to grow kernel");
 1293                 nkpt++;
 1294                 *pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
 1295 
 1296                 /*
 1297                  * The R[4-7]?00 stores only one copy of the Global bit in
 1298                  * the translation lookaside buffer for each 2 page entry.
 1299                  * Thus invalid entrys must have the Global bit set so when
 1300                  * Entry LO and Entry HI G bits are anded together they will
 1301                  * produce a global bit to store in the tlb.
 1302                  */
 1303                 pte = (pt_entry_t *)*pde;
 1304                 for (i = 0; i < NPTEPG; i++)
 1305                         pte[i] = PTE_G;
 1306 
 1307                 kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 1308                 if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
 1309                         kernel_vm_end = vm_map_max(kernel_map);
 1310                         break;
 1311                 }
 1312         }
 1313 }
 1314 
 1315 /***************************************************
 1316  * page management routines.
 1317  ***************************************************/
 1318 
 1319 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
 1320 #ifdef __mips_n64
 1321 CTASSERT(_NPCM == 3);
 1322 CTASSERT(_NPCPV == 168);
 1323 #else
 1324 CTASSERT(_NPCM == 11);
 1325 CTASSERT(_NPCPV == 336);
 1326 #endif
 1327 
 1328 static __inline struct pv_chunk *
 1329 pv_to_chunk(pv_entry_t pv)
 1330 {
 1331 
 1332         return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
 1333 }
 1334 
 1335 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
 1336 
 1337 #ifdef __mips_n64
 1338 #define PC_FREE0_1      0xfffffffffffffffful
 1339 #define PC_FREE2        0x000000fffffffffful
 1340 #else
 1341 #define PC_FREE0_9      0xfffffffful    /* Free values for index 0 through 9 */
 1342 #define PC_FREE10       0x0000fffful    /* Free values for index 10 */
 1343 #endif
 1344 
 1345 static const u_long pc_freemask[_NPCM] = {
 1346 #ifdef __mips_n64
 1347         PC_FREE0_1, PC_FREE0_1, PC_FREE2
 1348 #else
 1349         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1350         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1351         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1352         PC_FREE0_9, PC_FREE10
 1353 #endif
 1354 };
 1355 
 1356 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
 1357 
 1358 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
 1359     "Current number of pv entries");
 1360 
 1361 #ifdef PV_STATS
 1362 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
 1363 
 1364 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
 1365     "Current number of pv entry chunks");
 1366 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
 1367     "Current number of pv entry chunks allocated");
 1368 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
 1369     "Current number of pv entry chunks frees");
 1370 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
 1371     "Number of times tried to get a chunk page but failed.");
 1372 
 1373 static long pv_entry_frees, pv_entry_allocs;
 1374 static int pv_entry_spare;
 1375 
 1376 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
 1377     "Current number of pv entry frees");
 1378 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
 1379     "Current number of pv entry allocs");
 1380 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
 1381     "Current number of spare pv entries");
 1382 #endif
 1383 
 1384 /*
 1385  * We are in a serious low memory condition.  Resort to
 1386  * drastic measures to free some pages so we can allocate
 1387  * another pv entry chunk.
 1388  */
 1389 static vm_page_t
 1390 pmap_pv_reclaim(pmap_t locked_pmap)
 1391 {
 1392         struct pch newtail;
 1393         struct pv_chunk *pc;
 1394         pd_entry_t *pde;
 1395         pmap_t pmap;
 1396         pt_entry_t *pte, oldpte;
 1397         pv_entry_t pv;
 1398         vm_offset_t va;
 1399         vm_page_t m, m_pc;
 1400         u_long inuse;
 1401         int bit, field, freed, idx;
 1402 
 1403         PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
 1404         pmap = NULL;
 1405         m_pc = NULL;
 1406         TAILQ_INIT(&newtail);
 1407         while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL) {
 1408                 TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 1409                 if (pmap != pc->pc_pmap) {
 1410                         if (pmap != NULL) {
 1411                                 pmap_invalidate_all(pmap);
 1412                                 if (pmap != locked_pmap)
 1413                                         PMAP_UNLOCK(pmap);
 1414                         }
 1415                         pmap = pc->pc_pmap;
 1416                         /* Avoid deadlock and lock recursion. */
 1417                         if (pmap > locked_pmap)
 1418                                 PMAP_LOCK(pmap);
 1419                         else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
 1420                                 pmap = NULL;
 1421                                 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 1422                                 continue;
 1423                         }
 1424                 }
 1425 
 1426                 /*
 1427                  * Destroy every non-wired, 4 KB page mapping in the chunk.
 1428                  */
 1429                 freed = 0;
 1430                 for (field = 0; field < _NPCM; field++) {
 1431                         for (inuse = ~pc->pc_map[field] & pc_freemask[field];
 1432                             inuse != 0; inuse &= ~(1UL << bit)) {
 1433                                 bit = ffsl(inuse) - 1;
 1434                                 idx = field * sizeof(inuse) * NBBY + bit;
 1435                                 pv = &pc->pc_pventry[idx];
 1436                                 va = pv->pv_va;
 1437                                 pde = pmap_pde(pmap, va);
 1438                                 KASSERT(pde != NULL && *pde != 0,
 1439                                     ("pmap_pv_reclaim: pde"));
 1440                                 pte = pmap_pde_to_pte(pde, va);
 1441                                 oldpte = *pte;
 1442                                 if (pte_test(&oldpte, PTE_W))
 1443                                         continue;
 1444                                 if (is_kernel_pmap(pmap))
 1445                                         *pte = PTE_G;
 1446                                 else
 1447                                         *pte = 0;
 1448                                 m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(oldpte));
 1449                                 if (pte_test(&oldpte, PTE_D))
 1450                                         vm_page_dirty(m);
 1451                                 if (m->md.pv_flags & PV_TABLE_REF)
 1452                                         vm_page_aflag_set(m, PGA_REFERENCED);
 1453                                 m->md.pv_flags &= ~PV_TABLE_REF;
 1454                                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1455                                 if (TAILQ_EMPTY(&m->md.pv_list))
 1456                                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 1457                                 pc->pc_map[field] |= 1UL << bit;
 1458                                 pmap_unuse_pt(pmap, va, *pde);
 1459                                 freed++;
 1460                         }
 1461                 }
 1462                 if (freed == 0) {
 1463                         TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 1464                         continue;
 1465                 }
 1466                 /* Every freed mapping is for a 4 KB page. */
 1467                 pmap->pm_stats.resident_count -= freed;
 1468                 PV_STAT(pv_entry_frees += freed);
 1469                 PV_STAT(pv_entry_spare += freed);
 1470                 pv_entry_count -= freed;
 1471                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 1472                 for (field = 0; field < _NPCM; field++)
 1473                         if (pc->pc_map[field] != pc_freemask[field]) {
 1474                                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
 1475                                     pc_list);
 1476                                 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 1477 
 1478                                 /*
 1479                                  * One freed pv entry in locked_pmap is
 1480                                  * sufficient.
 1481                                  */
 1482                                 if (pmap == locked_pmap)
 1483                                         goto out;
 1484                                 break;
 1485                         }
 1486                 if (field == _NPCM) {
 1487                         PV_STAT(pv_entry_spare -= _NPCPV);
 1488                         PV_STAT(pc_chunk_count--);
 1489                         PV_STAT(pc_chunk_frees++);
 1490                         /* Entire chunk is free; return it. */
 1491                         m_pc = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(
 1492                             (vm_offset_t)pc));
 1493                         dump_drop_page(m_pc->phys_addr);
 1494                         break;
 1495                 }
 1496         }
 1497 out:
 1498         TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
 1499         if (pmap != NULL) {
 1500                 pmap_invalidate_all(pmap);
 1501                 if (pmap != locked_pmap)
 1502                         PMAP_UNLOCK(pmap);
 1503         }
 1504         return (m_pc);
 1505 }
 1506 
 1507 /*
 1508  * free the pv_entry back to the free list
 1509  */
 1510 static void
 1511 free_pv_entry(pmap_t pmap, pv_entry_t pv)
 1512 {
 1513         struct pv_chunk *pc;
 1514         int bit, field, idx;
 1515 
 1516         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1517         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1518         PV_STAT(pv_entry_frees++);
 1519         PV_STAT(pv_entry_spare++);
 1520         pv_entry_count--;
 1521         pc = pv_to_chunk(pv);
 1522         idx = pv - &pc->pc_pventry[0];
 1523         field = idx / (sizeof(u_long) * NBBY);
 1524         bit = idx % (sizeof(u_long) * NBBY);
 1525         pc->pc_map[field] |= 1ul << bit;
 1526         for (idx = 0; idx < _NPCM; idx++)
 1527                 if (pc->pc_map[idx] != pc_freemask[idx]) {
 1528                         /*
 1529                          * 98% of the time, pc is already at the head of the
 1530                          * list.  If it isn't already, move it to the head.
 1531                          */
 1532                         if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
 1533                             pc)) {
 1534                                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 1535                                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
 1536                                     pc_list);
 1537                         }
 1538                         return;
 1539                 }
 1540         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 1541         free_pv_chunk(pc);
 1542 }
 1543 
 1544 static void
 1545 free_pv_chunk(struct pv_chunk *pc)
 1546 {
 1547         vm_page_t m;
 1548 
 1549         TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 1550         PV_STAT(pv_entry_spare -= _NPCPV);
 1551         PV_STAT(pc_chunk_count--);
 1552         PV_STAT(pc_chunk_frees++);
 1553         /* entire chunk is free, return it */
 1554         m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS((vm_offset_t)pc));
 1555         dump_drop_page(m->phys_addr);
 1556         vm_page_unwire(m, PQ_NONE);
 1557         vm_page_free(m);
 1558 }
 1559 
 1560 /*
 1561  * get a new pv_entry, allocating a block from the system
 1562  * when needed.
 1563  */
 1564 static pv_entry_t
 1565 get_pv_entry(pmap_t pmap, boolean_t try)
 1566 {
 1567         struct pv_chunk *pc;
 1568         pv_entry_t pv;
 1569         vm_page_t m;
 1570         int bit, field, idx;
 1571 
 1572         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1573         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1574         PV_STAT(pv_entry_allocs++);
 1575         pv_entry_count++;
 1576 retry:
 1577         pc = TAILQ_FIRST(&pmap->pm_pvchunk);
 1578         if (pc != NULL) {
 1579                 for (field = 0; field < _NPCM; field++) {
 1580                         if (pc->pc_map[field]) {
 1581                                 bit = ffsl(pc->pc_map[field]) - 1;
 1582                                 break;
 1583                         }
 1584                 }
 1585                 if (field < _NPCM) {
 1586                         idx = field * sizeof(pc->pc_map[field]) * NBBY + bit;
 1587                         pv = &pc->pc_pventry[idx];
 1588                         pc->pc_map[field] &= ~(1ul << bit);
 1589                         /* If this was the last item, move it to tail */
 1590                         for (field = 0; field < _NPCM; field++)
 1591                                 if (pc->pc_map[field] != 0) {
 1592                                         PV_STAT(pv_entry_spare--);
 1593                                         return (pv);    /* not full, return */
 1594                                 }
 1595                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 1596                         TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
 1597                         PV_STAT(pv_entry_spare--);
 1598                         return (pv);
 1599                 }
 1600         }
 1601         /* No free items, allocate another chunk */
 1602         m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, VM_ALLOC_NORMAL |
 1603             VM_ALLOC_WIRED);
 1604         if (m == NULL) {
 1605                 if (try) {
 1606                         pv_entry_count--;
 1607                         PV_STAT(pc_chunk_tryfail++);
 1608                         return (NULL);
 1609                 }
 1610                 m = pmap_pv_reclaim(pmap);
 1611                 if (m == NULL)
 1612                         goto retry;
 1613         }
 1614         PV_STAT(pc_chunk_count++);
 1615         PV_STAT(pc_chunk_allocs++);
 1616         dump_add_page(m->phys_addr);
 1617         pc = (struct pv_chunk *)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
 1618         pc->pc_pmap = pmap;
 1619         pc->pc_map[0] = pc_freemask[0] & ~1ul;  /* preallocated bit 0 */
 1620         for (field = 1; field < _NPCM; field++)
 1621                 pc->pc_map[field] = pc_freemask[field];
 1622         TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
 1623         pv = &pc->pc_pventry[0];
 1624         TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 1625         PV_STAT(pv_entry_spare += _NPCPV - 1);
 1626         return (pv);
 1627 }
 1628 
 1629 static pv_entry_t
 1630 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 1631 {
 1632         pv_entry_t pv;
 1633 
 1634         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1635         TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
 1636                 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
 1637                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
 1638                         break;
 1639                 }
 1640         }
 1641         return (pv);
 1642 }
 1643 
 1644 static void
 1645 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 1646 {
 1647         pv_entry_t pv;
 1648 
 1649         pv = pmap_pvh_remove(pvh, pmap, va);
 1650         KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
 1651              (u_long)VM_PAGE_TO_PHYS(__containerof(pvh, struct vm_page, md)),
 1652              (u_long)va));
 1653         free_pv_entry(pmap, pv);
 1654 }
 1655 
 1656 static void
 1657 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
 1658 {
 1659 
 1660         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1661         pmap_pvh_free(&m->md, pmap, va);
 1662         if (TAILQ_EMPTY(&m->md.pv_list))
 1663                 vm_page_aflag_clear(m, PGA_WRITEABLE);
 1664 }
 1665 
 1666 /*
 1667  * Conditionally create a pv entry.
 1668  */
 1669 static boolean_t
 1670 pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
 1671     vm_page_t m)
 1672 {
 1673         pv_entry_t pv;
 1674 
 1675         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1676         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1677         if ((pv = get_pv_entry(pmap, TRUE)) != NULL) {
 1678                 pv->pv_va = va;
 1679                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 1680                 return (TRUE);
 1681         } else
 1682                 return (FALSE);
 1683 }
 1684 
 1685 /*
 1686  * pmap_remove_pte: do the things to unmap a page in a process
 1687  */
 1688 static int
 1689 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
 1690     pd_entry_t pde)
 1691 {
 1692         pt_entry_t oldpte;
 1693         vm_page_t m;
 1694         vm_paddr_t pa;
 1695 
 1696         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1697         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1698 
 1699         /*
 1700          * Write back all cache lines from the page being unmapped.
 1701          */
 1702         mips_dcache_wbinv_range_index(va, PAGE_SIZE);
 1703 
 1704         oldpte = *ptq;
 1705         if (is_kernel_pmap(pmap))
 1706                 *ptq = PTE_G;
 1707         else
 1708                 *ptq = 0;
 1709 
 1710         if (pte_test(&oldpte, PTE_W))
 1711                 pmap->pm_stats.wired_count -= 1;
 1712 
 1713         pmap->pm_stats.resident_count -= 1;
 1714 
 1715         if (pte_test(&oldpte, PTE_MANAGED)) {
 1716                 pa = TLBLO_PTE_TO_PA(oldpte);
 1717                 m = PHYS_TO_VM_PAGE(pa);
 1718                 if (pte_test(&oldpte, PTE_D)) {
 1719                         KASSERT(!pte_test(&oldpte, PTE_RO),
 1720                             ("%s: modified page not writable: va: %p, pte: %#jx",
 1721                             __func__, (void *)va, (uintmax_t)oldpte));
 1722                         vm_page_dirty(m);
 1723                 }
 1724                 if (m->md.pv_flags & PV_TABLE_REF)
 1725                         vm_page_aflag_set(m, PGA_REFERENCED);
 1726                 m->md.pv_flags &= ~PV_TABLE_REF;
 1727 
 1728                 pmap_remove_entry(pmap, m, va);
 1729         }
 1730         return (pmap_unuse_pt(pmap, va, pde));
 1731 }
 1732 
 1733 /*
 1734  * Remove a single page from a process address space
 1735  */
 1736 static void
 1737 pmap_remove_page(struct pmap *pmap, vm_offset_t va)
 1738 {
 1739         pd_entry_t *pde;
 1740         pt_entry_t *ptq;
 1741 
 1742         rw_assert(&pvh_global_lock, RA_WLOCKED);
 1743         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1744         pde = pmap_pde(pmap, va);
 1745         if (pde == NULL || *pde == 0)
 1746                 return;
 1747         ptq = pmap_pde_to_pte(pde, va);
 1748 
 1749         /*
 1750          * If there is no pte for this address, just skip it!
 1751          */
 1752         if (!pte_test(ptq, PTE_V))
 1753                 return;
 1754 
 1755         (void)pmap_remove_pte(pmap, ptq, va, *pde);
 1756         pmap_invalidate_page(pmap, va);
 1757 }
 1758 
 1759 /*
 1760  *      Remove the given range of addresses from the specified map.
 1761  *
 1762  *      It is assumed that the start and end are properly
 1763  *      rounded to the page size.
 1764  */
 1765 void
 1766 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 1767 {
 1768         pd_entry_t *pde, *pdpe;
 1769         pt_entry_t *pte;
 1770         vm_offset_t va, va_next;
 1771 
 1772         /*
 1773          * Perform an unsynchronized read.  This is, however, safe.
 1774          */
 1775         if (pmap->pm_stats.resident_count == 0)
 1776                 return;
 1777 
 1778         rw_wlock(&pvh_global_lock);
 1779         PMAP_LOCK(pmap);
 1780 
 1781         /*
 1782          * special handling of removing one page.  a very common operation
 1783          * and easy to short circuit some code.
 1784          */
 1785         if ((sva + PAGE_SIZE) == eva) {
 1786                 pmap_remove_page(pmap, sva);
 1787                 goto out;
 1788         }
 1789         for (; sva < eva; sva = va_next) {
 1790                 pdpe = pmap_segmap(pmap, sva);
 1791 #ifdef __mips_n64
 1792                 if (*pdpe == 0) {
 1793                         va_next = (sva + NBSEG) & ~SEGMASK;
 1794                         if (va_next < sva)
 1795                                 va_next = eva;
 1796                         continue;
 1797                 }
 1798 #endif
 1799                 va_next = (sva + NBPDR) & ~PDRMASK;
 1800                 if (va_next < sva)
 1801                         va_next = eva;
 1802 
 1803                 pde = pmap_pdpe_to_pde(pdpe, sva);
 1804                 if (*pde == NULL)
 1805                         continue;
 1806 
 1807                 /*
 1808                  * Limit our scan to either the end of the va represented
 1809                  * by the current page table page, or to the end of the
 1810                  * range being removed.
 1811                  */
 1812                 if (va_next > eva)
 1813                         va_next = eva;
 1814 
 1815                 va = va_next;
 1816                 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 1817                     sva += PAGE_SIZE) {
 1818                         if (!pte_test(pte, PTE_V)) {
 1819                                 if (va != va_next) {
 1820                                         pmap_invalidate_range(pmap, va, sva);
 1821                                         va = va_next;
 1822                                 }
 1823                                 continue;
 1824                         }
 1825                         if (va == va_next)
 1826                                 va = sva;
 1827                         if (pmap_remove_pte(pmap, pte, sva, *pde)) {
 1828                                 sva += PAGE_SIZE;
 1829                                 break;
 1830                         }
 1831                 }
 1832                 if (va != va_next)
 1833                         pmap_invalidate_range(pmap, va, sva);
 1834         }
 1835 out:
 1836         rw_wunlock(&pvh_global_lock);
 1837         PMAP_UNLOCK(pmap);
 1838 }
 1839 
 1840 /*
 1841  *      Routine:        pmap_remove_all
 1842  *      Function:
 1843  *              Removes this physical page from
 1844  *              all physical maps in which it resides.
 1845  *              Reflects back modify bits to the pager.
 1846  *
 1847  *      Notes:
 1848  *              Original versions of this routine were very
 1849  *              inefficient because they iteratively called
 1850  *              pmap_remove (slow...)
 1851  */
 1852 
 1853 void
 1854 pmap_remove_all(vm_page_t m)
 1855 {
 1856         pv_entry_t pv;
 1857         pmap_t pmap;
 1858         pd_entry_t *pde;
 1859         pt_entry_t *pte, tpte;
 1860 
 1861         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1862             ("pmap_remove_all: page %p is not managed", m));
 1863         rw_wlock(&pvh_global_lock);
 1864 
 1865         if (m->md.pv_flags & PV_TABLE_REF)
 1866                 vm_page_aflag_set(m, PGA_REFERENCED);
 1867 
 1868         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 1869                 pmap = PV_PMAP(pv);
 1870                 PMAP_LOCK(pmap);
 1871 
 1872                 /*
 1873                  * If it's last mapping writeback all caches from
 1874                  * the page being destroyed
 1875                  */
 1876                 if (TAILQ_NEXT(pv, pv_list) == NULL)
 1877                         mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
 1878 
 1879                 pmap->pm_stats.resident_count--;
 1880 
 1881                 pde = pmap_pde(pmap, pv->pv_va);
 1882                 KASSERT(pde != NULL && *pde != 0, ("pmap_remove_all: pde"));
 1883                 pte = pmap_pde_to_pte(pde, pv->pv_va);
 1884 
 1885                 tpte = *pte;
 1886                 if (is_kernel_pmap(pmap))
 1887                         *pte = PTE_G;
 1888                 else
 1889                         *pte = 0;
 1890 
 1891                 if (pte_test(&tpte, PTE_W))
 1892                         pmap->pm_stats.wired_count--;
 1893 
 1894                 /*
 1895                  * Update the vm_page_t clean and reference bits.
 1896                  */
 1897                 if (pte_test(&tpte, PTE_D)) {
 1898                         KASSERT(!pte_test(&tpte, PTE_RO),
 1899                             ("%s: modified page not writable: va: %p, pte: %#jx",
 1900                             __func__, (void *)pv->pv_va, (uintmax_t)tpte));
 1901                         vm_page_dirty(m);
 1902                 }
 1903                 pmap_invalidate_page(pmap, pv->pv_va);
 1904 
 1905                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1906                 pmap_unuse_pt(pmap, pv->pv_va, *pde);
 1907                 free_pv_entry(pmap, pv);
 1908                 PMAP_UNLOCK(pmap);
 1909         }
 1910 
 1911         vm_page_aflag_clear(m, PGA_WRITEABLE);
 1912         m->md.pv_flags &= ~PV_TABLE_REF;
 1913         rw_wunlock(&pvh_global_lock);
 1914 }
 1915 
 1916 /*
 1917  *      Set the physical protection on the
 1918  *      specified range of this map as requested.
 1919  */
 1920 void
 1921 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 1922 {
 1923         pt_entry_t pbits, *pte;
 1924         pd_entry_t *pde, *pdpe;
 1925         vm_offset_t va, va_next;
 1926         vm_paddr_t pa;
 1927         vm_page_t m;
 1928 
 1929         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 1930                 pmap_remove(pmap, sva, eva);
 1931                 return;
 1932         }
 1933         if (prot & VM_PROT_WRITE)
 1934                 return;
 1935 
 1936         PMAP_LOCK(pmap);
 1937         for (; sva < eva; sva = va_next) {
 1938                 pdpe = pmap_segmap(pmap, sva);
 1939 #ifdef __mips_n64
 1940                 if (*pdpe == 0) {
 1941                         va_next = (sva + NBSEG) & ~SEGMASK;
 1942                         if (va_next < sva)
 1943                                 va_next = eva;
 1944                         continue;
 1945                 }
 1946 #endif
 1947                 va_next = (sva + NBPDR) & ~PDRMASK;
 1948                 if (va_next < sva)
 1949                         va_next = eva;
 1950 
 1951                 pde = pmap_pdpe_to_pde(pdpe, sva);
 1952                 if (*pde == NULL)
 1953                         continue;
 1954 
 1955                 /*
 1956                  * Limit our scan to either the end of the va represented
 1957                  * by the current page table page, or to the end of the
 1958                  * range being write protected.
 1959                  */
 1960                 if (va_next > eva)
 1961                         va_next = eva;
 1962 
 1963                 va = va_next;
 1964                 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 1965                     sva += PAGE_SIZE) {
 1966                         pbits = *pte;
 1967                         if (!pte_test(&pbits, PTE_V) || pte_test(&pbits,
 1968                             PTE_RO)) {
 1969                                 if (va != va_next) {
 1970                                         pmap_invalidate_range(pmap, va, sva);
 1971                                         va = va_next;
 1972                                 }
 1973                                 continue;
 1974                         }
 1975                         pte_set(&pbits, PTE_RO);
 1976                         if (pte_test(&pbits, PTE_D)) {
 1977                                 pte_clear(&pbits, PTE_D);
 1978                                 if (pte_test(&pbits, PTE_MANAGED)) {
 1979                                         pa = TLBLO_PTE_TO_PA(pbits);
 1980                                         m = PHYS_TO_VM_PAGE(pa);
 1981                                         vm_page_dirty(m);
 1982                                 }
 1983                                 if (va == va_next)
 1984                                         va = sva;
 1985                         } else {
 1986                                 /*
 1987                                  * Unless PTE_D is set, any TLB entries
 1988                                  * mapping "sva" don't allow write access, so
 1989                                  * they needn't be invalidated.
 1990                                  */
 1991                                 if (va != va_next) {
 1992                                         pmap_invalidate_range(pmap, va, sva);
 1993                                         va = va_next;
 1994                                 }
 1995                         }
 1996                         *pte = pbits;
 1997                 }
 1998                 if (va != va_next)
 1999                         pmap_invalidate_range(pmap, va, sva);
 2000         }
 2001         PMAP_UNLOCK(pmap);
 2002 }
 2003 
 2004 /*
 2005  *      Insert the given physical page (p) at
 2006  *      the specified virtual address (v) in the
 2007  *      target physical map with the protection requested.
 2008  *
 2009  *      If specified, the page will be wired down, meaning
 2010  *      that the related pte can not be reclaimed.
 2011  *
 2012  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 2013  *      or lose information.  That is, this routine must actually
 2014  *      insert this page into the given map NOW.
 2015  */
 2016 int
 2017 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
 2018     u_int flags, int8_t psind __unused)
 2019 {
 2020         vm_paddr_t pa, opa;
 2021         pt_entry_t *pte;
 2022         pt_entry_t origpte, newpte;
 2023         pv_entry_t pv;
 2024         vm_page_t mpte, om;
 2025 
 2026         va &= ~PAGE_MASK;
 2027         KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
 2028         KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
 2029             va >= kmi.clean_eva,
 2030             ("pmap_enter: managed mapping within the clean submap"));
 2031         if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
 2032                 VM_OBJECT_ASSERT_LOCKED(m->object);
 2033         pa = VM_PAGE_TO_PHYS(m);
 2034         newpte = TLBLO_PA_TO_PFN(pa) | init_pte_prot(m, flags, prot);
 2035         if ((flags & PMAP_ENTER_WIRED) != 0)
 2036                 newpte |= PTE_W;
 2037         if (is_kernel_pmap(pmap))
 2038                 newpte |= PTE_G;
 2039         PMAP_PTE_SET_CACHE_BITS(newpte, pa, m);
 2040         if ((m->oflags & VPO_UNMANAGED) == 0)
 2041                 newpte |= PTE_MANAGED;
 2042 
 2043         mpte = NULL;
 2044 
 2045         rw_wlock(&pvh_global_lock);
 2046         PMAP_LOCK(pmap);
 2047 
 2048         /*
 2049          * In the case that a page table page is not resident, we are
 2050          * creating it here.
 2051          */
 2052         if (va < VM_MAXUSER_ADDRESS) {
 2053                 mpte = pmap_allocpte(pmap, va, flags);
 2054                 if (mpte == NULL) {
 2055                         KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
 2056                             ("pmap_allocpte failed with sleep allowed"));
 2057                         rw_wunlock(&pvh_global_lock);
 2058                         PMAP_UNLOCK(pmap);
 2059                         return (KERN_RESOURCE_SHORTAGE);
 2060                 }
 2061         }
 2062         pte = pmap_pte(pmap, va);
 2063 
 2064         /*
 2065          * Page Directory table entry not valid, we need a new PT page
 2066          */
 2067         if (pte == NULL) {
 2068                 panic("pmap_enter: invalid page directory, pdir=%p, va=%p",
 2069                     (void *)pmap->pm_segtab, (void *)va);
 2070         }
 2071 
 2072         origpte = *pte;
 2073         KASSERT(!pte_test(&origpte, PTE_D | PTE_RO | PTE_V),
 2074             ("pmap_enter: modified page not writable: va: %p, pte: %#jx",
 2075             (void *)va, (uintmax_t)origpte));
 2076         opa = TLBLO_PTE_TO_PA(origpte);
 2077 
 2078         /*
 2079          * Mapping has not changed, must be protection or wiring change.
 2080          */
 2081         if (pte_test(&origpte, PTE_V) && opa == pa) {
 2082                 /*
 2083                  * Wiring change, just update stats. We don't worry about
 2084                  * wiring PT pages as they remain resident as long as there
 2085                  * are valid mappings in them. Hence, if a user page is
 2086                  * wired, the PT page will be also.
 2087                  */
 2088                 if (pte_test(&newpte, PTE_W) && !pte_test(&origpte, PTE_W))
 2089                         pmap->pm_stats.wired_count++;
 2090                 else if (!pte_test(&newpte, PTE_W) && pte_test(&origpte,
 2091                     PTE_W))
 2092                         pmap->pm_stats.wired_count--;
 2093 
 2094                 /*
 2095                  * Remove extra pte reference
 2096                  */
 2097                 if (mpte)
 2098                         mpte->wire_count--;
 2099 
 2100                 if (pte_test(&origpte, PTE_MANAGED)) {
 2101                         m->md.pv_flags |= PV_TABLE_REF;
 2102                         if (!pte_test(&newpte, PTE_RO))
 2103                                 vm_page_aflag_set(m, PGA_WRITEABLE);
 2104                 }
 2105                 goto validate;
 2106         }
 2107 
 2108         pv = NULL;
 2109 
 2110         /*
 2111          * Mapping has changed, invalidate old range and fall through to
 2112          * handle validating new mapping.
 2113          */
 2114         if (opa) {
 2115                 if (is_kernel_pmap(pmap))
 2116                         *pte = PTE_G;
 2117                 else
 2118                         *pte = 0;
 2119                 if (pte_test(&origpte, PTE_W))
 2120                         pmap->pm_stats.wired_count--;
 2121                 if (pte_test(&origpte, PTE_MANAGED)) {
 2122                         om = PHYS_TO_VM_PAGE(opa);
 2123                         if (pte_test(&origpte, PTE_D))
 2124                                 vm_page_dirty(om);
 2125                         if ((om->md.pv_flags & PV_TABLE_REF) != 0) {
 2126                                 om->md.pv_flags &= ~PV_TABLE_REF;
 2127                                 vm_page_aflag_set(om, PGA_REFERENCED);
 2128                         }
 2129                         pv = pmap_pvh_remove(&om->md, pmap, va);
 2130                         if (!pte_test(&newpte, PTE_MANAGED))
 2131                                 free_pv_entry(pmap, pv);
 2132                         if ((om->aflags & PGA_WRITEABLE) != 0 &&
 2133                             TAILQ_EMPTY(&om->md.pv_list))
 2134                                 vm_page_aflag_clear(om, PGA_WRITEABLE);
 2135                 }
 2136                 pmap_invalidate_page(pmap, va);
 2137                 origpte = 0;
 2138                 if (mpte != NULL) {
 2139                         mpte->wire_count--;
 2140                         KASSERT(mpte->wire_count > 0,
 2141                             ("pmap_enter: missing reference to page table page,"
 2142                             " va: %p", (void *)va));
 2143                 }
 2144         } else
 2145                 pmap->pm_stats.resident_count++;
 2146 
 2147         /*
 2148          * Enter on the PV list if part of our managed memory.
 2149          */
 2150         if (pte_test(&newpte, PTE_MANAGED)) {
 2151                 m->md.pv_flags |= PV_TABLE_REF;
 2152                 if (pv == NULL) {
 2153                         pv = get_pv_entry(pmap, FALSE);
 2154                         pv->pv_va = va;
 2155                 }
 2156                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 2157                 if (!pte_test(&newpte, PTE_RO))
 2158                         vm_page_aflag_set(m, PGA_WRITEABLE);
 2159         }
 2160 
 2161         /*
 2162          * Increment counters
 2163          */
 2164         if (pte_test(&newpte, PTE_W))
 2165                 pmap->pm_stats.wired_count++;
 2166 
 2167 validate:
 2168 
 2169 #ifdef PMAP_DEBUG
 2170         printf("pmap_enter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
 2171 #endif
 2172 
 2173         /*
 2174          * if the mapping or permission bits are different, we need to
 2175          * update the pte.
 2176          */
 2177         if (origpte != newpte) {
 2178                 *pte = newpte;
 2179                 if (pte_test(&origpte, PTE_V)) {
 2180                         KASSERT(opa == pa, ("pmap_enter: invalid update"));
 2181                         if (pte_test(&origpte, PTE_D)) {
 2182                                 if (pte_test(&origpte, PTE_MANAGED))
 2183                                         vm_page_dirty(m);
 2184                         }
 2185                         pmap_update_page(pmap, va, newpte);
 2186                 }
 2187         }
 2188 
 2189         /*
 2190          * Sync I & D caches for executable pages.  Do this only if the
 2191          * target pmap belongs to the current process.  Otherwise, an
 2192          * unresolvable TLB miss may occur.
 2193          */
 2194         if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
 2195             (prot & VM_PROT_EXECUTE)) {
 2196                 mips_icache_sync_range(va, PAGE_SIZE);
 2197                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2198         }
 2199         rw_wunlock(&pvh_global_lock);
 2200         PMAP_UNLOCK(pmap);
 2201         return (KERN_SUCCESS);
 2202 }
 2203 
 2204 /*
 2205  * this code makes some *MAJOR* assumptions:
 2206  * 1. Current pmap & pmap exists.
 2207  * 2. Not wired.
 2208  * 3. Read access.
 2209  * 4. No page table pages.
 2210  * but is *MUCH* faster than pmap_enter...
 2211  */
 2212 
 2213 void
 2214 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 2215 {
 2216 
 2217         rw_wlock(&pvh_global_lock);
 2218         PMAP_LOCK(pmap);
 2219         (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
 2220         rw_wunlock(&pvh_global_lock);
 2221         PMAP_UNLOCK(pmap);
 2222 }
 2223 
 2224 static vm_page_t
 2225 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
 2226     vm_prot_t prot, vm_page_t mpte)
 2227 {
 2228         pt_entry_t *pte, npte;
 2229         vm_paddr_t pa;
 2230 
 2231         KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
 2232             (m->oflags & VPO_UNMANAGED) != 0,
 2233             ("pmap_enter_quick_locked: managed mapping within the clean submap"));
 2234         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2235         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2236 
 2237         /*
 2238          * In the case that a page table page is not resident, we are
 2239          * creating it here.
 2240          */
 2241         if (va < VM_MAXUSER_ADDRESS) {
 2242                 pd_entry_t *pde;
 2243                 unsigned ptepindex;
 2244 
 2245                 /*
 2246                  * Calculate pagetable page index
 2247                  */
 2248                 ptepindex = pmap_pde_pindex(va);
 2249                 if (mpte && (mpte->pindex == ptepindex)) {
 2250                         mpte->wire_count++;
 2251                 } else {
 2252                         /*
 2253                          * Get the page directory entry
 2254                          */
 2255                         pde = pmap_pde(pmap, va);
 2256 
 2257                         /*
 2258                          * If the page table page is mapped, we just
 2259                          * increment the hold count, and activate it.
 2260                          */
 2261                         if (pde && *pde != 0) {
 2262                                 mpte = PHYS_TO_VM_PAGE(
 2263                                     MIPS_DIRECT_TO_PHYS(*pde));
 2264                                 mpte->wire_count++;
 2265                         } else {
 2266                                 mpte = _pmap_allocpte(pmap, ptepindex,
 2267                                     PMAP_ENTER_NOSLEEP);
 2268                                 if (mpte == NULL)
 2269                                         return (mpte);
 2270                         }
 2271                 }
 2272         } else {
 2273                 mpte = NULL;
 2274         }
 2275 
 2276         pte = pmap_pte(pmap, va);
 2277         if (pte_test(pte, PTE_V)) {
 2278                 if (mpte != NULL) {
 2279                         mpte->wire_count--;
 2280                         mpte = NULL;
 2281                 }
 2282                 return (mpte);
 2283         }
 2284 
 2285         /*
 2286          * Enter on the PV list if part of our managed memory.
 2287          */
 2288         if ((m->oflags & VPO_UNMANAGED) == 0 &&
 2289             !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
 2290                 if (mpte != NULL) {
 2291                         pmap_unwire_ptp(pmap, va, mpte);
 2292                         mpte = NULL;
 2293                 }
 2294                 return (mpte);
 2295         }
 2296 
 2297         /*
 2298          * Increment counters
 2299          */
 2300         pmap->pm_stats.resident_count++;
 2301 
 2302         pa = VM_PAGE_TO_PHYS(m);
 2303 
 2304         /*
 2305          * Now validate mapping with RO protection
 2306          */
 2307         npte = PTE_RO | TLBLO_PA_TO_PFN(pa) | PTE_V;
 2308         if ((m->oflags & VPO_UNMANAGED) == 0)
 2309                 npte |= PTE_MANAGED;
 2310 
 2311         PMAP_PTE_SET_CACHE_BITS(npte, pa, m);
 2312 
 2313         if (is_kernel_pmap(pmap))
 2314                 *pte = npte | PTE_G;
 2315         else {
 2316                 *pte = npte;
 2317                 /*
 2318                  * Sync I & D caches.  Do this only if the target pmap
 2319                  * belongs to the current process.  Otherwise, an
 2320                  * unresolvable TLB miss may occur. */
 2321                 if (pmap == &curproc->p_vmspace->vm_pmap) {
 2322                         va &= ~PAGE_MASK;
 2323                         mips_icache_sync_range(va, PAGE_SIZE);
 2324                         mips_dcache_wbinv_range(va, PAGE_SIZE);
 2325                 }
 2326         }
 2327         return (mpte);
 2328 }
 2329 
 2330 /*
 2331  * Make a temporary mapping for a physical address.  This is only intended
 2332  * to be used for panic dumps.
 2333  *
 2334  * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
 2335  */
 2336 void *
 2337 pmap_kenter_temporary(vm_paddr_t pa, int i)
 2338 {
 2339         vm_offset_t va;
 2340 
 2341         if (i != 0)
 2342                 printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
 2343                     __func__);
 2344 
 2345         if (MIPS_DIRECT_MAPPABLE(pa)) {
 2346                 va = MIPS_PHYS_TO_DIRECT(pa);
 2347         } else {
 2348 #ifndef __mips_n64    /* XXX : to be converted to new style */
 2349                 int cpu;
 2350                 register_t intr;
 2351                 struct local_sysmaps *sysm;
 2352                 pt_entry_t *pte, npte;
 2353 
 2354                 /* If this is used other than for dumps, we may need to leave
 2355                  * interrupts disasbled on return. If crash dumps don't work when
 2356                  * we get to this point, we might want to consider this (leaving things
 2357                  * disabled as a starting point ;-)
 2358                  */
 2359                 intr = intr_disable();
 2360                 cpu = PCPU_GET(cpuid);
 2361                 sysm = &sysmap_lmem[cpu];
 2362                 /* Since this is for the debugger, no locks or any other fun */
 2363                 npte = TLBLO_PA_TO_PFN(pa) | PTE_C_CACHE | PTE_D | PTE_V |
 2364                     PTE_G;
 2365                 pte = pmap_pte(kernel_pmap, sysm->base);
 2366                 *pte = npte;
 2367                 sysm->valid1 = 1;
 2368                 pmap_update_page(kernel_pmap, sysm->base, npte);
 2369                 va = sysm->base;
 2370                 intr_restore(intr);
 2371 #endif
 2372         }
 2373         return ((void *)va);
 2374 }
 2375 
 2376 void
 2377 pmap_kenter_temporary_free(vm_paddr_t pa)
 2378 {
 2379 #ifndef __mips_n64    /* XXX : to be converted to new style */
 2380         int cpu;
 2381         register_t intr;
 2382         struct local_sysmaps *sysm;
 2383 #endif
 2384 
 2385         if (MIPS_DIRECT_MAPPABLE(pa)) {
 2386                 /* nothing to do for this case */
 2387                 return;
 2388         }
 2389 #ifndef __mips_n64    /* XXX : to be converted to new style */
 2390         cpu = PCPU_GET(cpuid);
 2391         sysm = &sysmap_lmem[cpu];
 2392         if (sysm->valid1) {
 2393                 pt_entry_t *pte;
 2394 
 2395                 intr = intr_disable();
 2396                 pte = pmap_pte(kernel_pmap, sysm->base);
 2397                 *pte = PTE_G;
 2398                 pmap_invalidate_page(kernel_pmap, sysm->base);
 2399                 intr_restore(intr);
 2400                 sysm->valid1 = 0;
 2401         }
 2402 #endif
 2403 }
 2404 
 2405 /*
 2406  * Maps a sequence of resident pages belonging to the same object.
 2407  * The sequence begins with the given page m_start.  This page is
 2408  * mapped at the given virtual address start.  Each subsequent page is
 2409  * mapped at a virtual address that is offset from start by the same
 2410  * amount as the page is offset from m_start within the object.  The
 2411  * last page in the sequence is the page with the largest offset from
 2412  * m_start that can be mapped at a virtual address less than the given
 2413  * virtual address end.  Not every virtual page between start and end
 2414  * is mapped; only those for which a resident page exists with the
 2415  * corresponding offset from m_start are mapped.
 2416  */
 2417 void
 2418 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
 2419     vm_page_t m_start, vm_prot_t prot)
 2420 {
 2421         vm_page_t m, mpte;
 2422         vm_pindex_t diff, psize;
 2423 
 2424         VM_OBJECT_ASSERT_LOCKED(m_start->object);
 2425 
 2426         psize = atop(end - start);
 2427         mpte = NULL;
 2428         m = m_start;
 2429         rw_wlock(&pvh_global_lock);
 2430         PMAP_LOCK(pmap);
 2431         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 2432                 mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
 2433                     prot, mpte);
 2434                 m = TAILQ_NEXT(m, listq);
 2435         }
 2436         rw_wunlock(&pvh_global_lock);
 2437         PMAP_UNLOCK(pmap);
 2438 }
 2439 
 2440 /*
 2441  * pmap_object_init_pt preloads the ptes for a given object
 2442  * into the specified pmap.  This eliminates the blast of soft
 2443  * faults on process startup and immediately after an mmap.
 2444  */
 2445 void
 2446 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
 2447     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
 2448 {
 2449         VM_OBJECT_ASSERT_WLOCKED(object);
 2450         KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
 2451             ("pmap_object_init_pt: non-device object"));
 2452 }
 2453 
 2454 /*
 2455  *      Clear the wired attribute from the mappings for the specified range of
 2456  *      addresses in the given pmap.  Every valid mapping within that range
 2457  *      must have the wired attribute set.  In contrast, invalid mappings
 2458  *      cannot have the wired attribute set, so they are ignored.
 2459  *
 2460  *      The wired attribute of the page table entry is not a hardware feature,
 2461  *      so there is no need to invalidate any TLB entries.
 2462  */
 2463 void
 2464 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 2465 {
 2466         pd_entry_t *pde, *pdpe;
 2467         pt_entry_t *pte;
 2468         vm_offset_t va_next;
 2469 
 2470         PMAP_LOCK(pmap);
 2471         for (; sva < eva; sva = va_next) {
 2472                 pdpe = pmap_segmap(pmap, sva);
 2473 #ifdef __mips_n64
 2474                 if (*pdpe == NULL) {
 2475                         va_next = (sva + NBSEG) & ~SEGMASK;
 2476                         if (va_next < sva)
 2477                                 va_next = eva;
 2478                         continue;
 2479                 }
 2480 #endif
 2481                 va_next = (sva + NBPDR) & ~PDRMASK;
 2482                 if (va_next < sva)
 2483                         va_next = eva;
 2484                 pde = pmap_pdpe_to_pde(pdpe, sva);
 2485                 if (*pde == NULL)
 2486                         continue;
 2487                 if (va_next > eva)
 2488                         va_next = eva;
 2489                 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 2490                     sva += PAGE_SIZE) {
 2491                         if (!pte_test(pte, PTE_V))
 2492                                 continue;
 2493                         if (!pte_test(pte, PTE_W))
 2494                                 panic("pmap_unwire: pte %#jx is missing PG_W",
 2495                                     (uintmax_t)*pte);
 2496                         pte_clear(pte, PTE_W);
 2497                         pmap->pm_stats.wired_count--;
 2498                 }
 2499         }
 2500         PMAP_UNLOCK(pmap);
 2501 }
 2502 
 2503 /*
 2504  *      Copy the range specified by src_addr/len
 2505  *      from the source map to the range dst_addr/len
 2506  *      in the destination map.
 2507  *
 2508  *      This routine is only advisory and need not do anything.
 2509  */
 2510 
 2511 void
 2512 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
 2513     vm_size_t len, vm_offset_t src_addr)
 2514 {
 2515 }
 2516 
 2517 /*
 2518  *      pmap_zero_page zeros the specified hardware page by mapping
 2519  *      the page into KVM and using bzero to clear its contents.
 2520  *
 2521  *      Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
 2522  */
 2523 void
 2524 pmap_zero_page(vm_page_t m)
 2525 {
 2526         vm_offset_t va;
 2527         vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
 2528 
 2529         if (MIPS_DIRECT_MAPPABLE(phys)) {
 2530                 va = MIPS_PHYS_TO_DIRECT(phys);
 2531                 bzero((caddr_t)va, PAGE_SIZE);
 2532                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2533         } else {
 2534                 va = pmap_lmem_map1(phys);
 2535                 bzero((caddr_t)va, PAGE_SIZE);
 2536                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2537                 pmap_lmem_unmap();
 2538         }
 2539 }
 2540 
 2541 /*
 2542  *      pmap_zero_page_area zeros the specified hardware page by mapping
 2543  *      the page into KVM and using bzero to clear its contents.
 2544  *
 2545  *      off and size may not cover an area beyond a single hardware page.
 2546  */
 2547 void
 2548 pmap_zero_page_area(vm_page_t m, int off, int size)
 2549 {
 2550         vm_offset_t va;
 2551         vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
 2552 
 2553         if (MIPS_DIRECT_MAPPABLE(phys)) {
 2554                 va = MIPS_PHYS_TO_DIRECT(phys);
 2555                 bzero((char *)(caddr_t)va + off, size);
 2556                 mips_dcache_wbinv_range(va + off, size);
 2557         } else {
 2558                 va = pmap_lmem_map1(phys);
 2559                 bzero((char *)va + off, size);
 2560                 mips_dcache_wbinv_range(va + off, size);
 2561                 pmap_lmem_unmap();
 2562         }
 2563 }
 2564 
 2565 /*
 2566  *      pmap_copy_page copies the specified (machine independent)
 2567  *      page by mapping the page into virtual memory and using
 2568  *      bcopy to copy the page, one machine dependent page at a
 2569  *      time.
 2570  *
 2571  *      Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
 2572  */
 2573 void
 2574 pmap_copy_page(vm_page_t src, vm_page_t dst)
 2575 {
 2576         vm_offset_t va_src, va_dst;
 2577         vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src);
 2578         vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst);
 2579 
 2580         if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) {
 2581                 /* easy case, all can be accessed via KSEG0 */
 2582                 /*
 2583                  * Flush all caches for VA that are mapped to this page
 2584                  * to make sure that data in SDRAM is up to date
 2585                  */
 2586                 pmap_flush_pvcache(src);
 2587                 mips_dcache_wbinv_range_index(
 2588                     MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE);
 2589                 va_src = MIPS_PHYS_TO_DIRECT(phys_src);
 2590                 va_dst = MIPS_PHYS_TO_DIRECT(phys_dst);
 2591                 bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
 2592                 mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
 2593         } else {
 2594                 va_src = pmap_lmem_map2(phys_src, phys_dst);
 2595                 va_dst = va_src + PAGE_SIZE;
 2596                 bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
 2597                 mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
 2598                 pmap_lmem_unmap();
 2599         }
 2600 }
 2601 
 2602 int unmapped_buf_allowed;
 2603 
 2604 void
 2605 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
 2606     vm_offset_t b_offset, int xfersize)
 2607 {
 2608         char *a_cp, *b_cp;
 2609         vm_page_t a_m, b_m;
 2610         vm_offset_t a_pg_offset, b_pg_offset;
 2611         vm_paddr_t a_phys, b_phys;
 2612         int cnt;
 2613 
 2614         while (xfersize > 0) {
 2615                 a_pg_offset = a_offset & PAGE_MASK;
 2616                 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
 2617                 a_m = ma[a_offset >> PAGE_SHIFT];
 2618                 a_phys = VM_PAGE_TO_PHYS(a_m);
 2619                 b_pg_offset = b_offset & PAGE_MASK;
 2620                 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
 2621                 b_m = mb[b_offset >> PAGE_SHIFT];
 2622                 b_phys = VM_PAGE_TO_PHYS(b_m);
 2623                 if (MIPS_DIRECT_MAPPABLE(a_phys) &&
 2624                     MIPS_DIRECT_MAPPABLE(b_phys)) {
 2625                         pmap_flush_pvcache(a_m);
 2626                         mips_dcache_wbinv_range_index(
 2627                             MIPS_PHYS_TO_DIRECT(b_phys), PAGE_SIZE);
 2628                         a_cp = (char *)MIPS_PHYS_TO_DIRECT(a_phys) +
 2629                             a_pg_offset;
 2630                         b_cp = (char *)MIPS_PHYS_TO_DIRECT(b_phys) +
 2631                             b_pg_offset;
 2632                         bcopy(a_cp, b_cp, cnt);
 2633                         mips_dcache_wbinv_range((vm_offset_t)b_cp, cnt);
 2634                 } else {
 2635                         a_cp = (char *)pmap_lmem_map2(a_phys, b_phys);
 2636                         b_cp = (char *)a_cp + PAGE_SIZE;
 2637                         a_cp += a_pg_offset;
 2638                         b_cp += b_pg_offset;
 2639                         bcopy(a_cp, b_cp, cnt);
 2640                         mips_dcache_wbinv_range((vm_offset_t)b_cp, cnt);
 2641                         pmap_lmem_unmap();
 2642                 }
 2643                 a_offset += cnt;
 2644                 b_offset += cnt;
 2645                 xfersize -= cnt;
 2646         }
 2647 }
 2648 
 2649 vm_offset_t
 2650 pmap_quick_enter_page(vm_page_t m)
 2651 {
 2652 #if defined(__mips_n64)
 2653         return MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
 2654 #else
 2655         vm_paddr_t pa;
 2656         struct local_sysmaps *sysm;
 2657         pt_entry_t *pte, npte;
 2658 
 2659         pa = VM_PAGE_TO_PHYS(m);
 2660 
 2661         if (MIPS_DIRECT_MAPPABLE(pa)) {
 2662                 if (pmap_page_get_memattr(m) != VM_MEMATTR_WRITE_BACK)
 2663                         return (MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
 2664                 else
 2665                         return (MIPS_PHYS_TO_DIRECT(pa));
 2666         }
 2667         critical_enter();
 2668         sysm = &sysmap_lmem[PCPU_GET(cpuid)];
 2669 
 2670         KASSERT(sysm->valid1 == 0, ("pmap_quick_enter_page: PTE busy"));
 2671 
 2672         pte = pmap_pte(kernel_pmap, sysm->base);
 2673         npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G;
 2674         PMAP_PTE_SET_CACHE_BITS(npte, pa, m);
 2675         *pte = npte;
 2676         sysm->valid1 = 1;
 2677 
 2678         return (sysm->base);
 2679 #endif
 2680 }
 2681 
 2682 void
 2683 pmap_quick_remove_page(vm_offset_t addr)
 2684 {
 2685         mips_dcache_wbinv_range(addr, PAGE_SIZE);
 2686 
 2687 #if !defined(__mips_n64)
 2688         struct local_sysmaps *sysm;
 2689         pt_entry_t *pte;
 2690 
 2691         if (addr >= MIPS_KSEG0_START && addr < MIPS_KSEG0_END)
 2692                 return;
 2693 
 2694         sysm = &sysmap_lmem[PCPU_GET(cpuid)];
 2695 
 2696         KASSERT(sysm->valid1 != 0,
 2697             ("pmap_quick_remove_page: PTE not in use"));
 2698         KASSERT(sysm->base == addr,
 2699             ("pmap_quick_remove_page: invalid address"));
 2700 
 2701         pte = pmap_pte(kernel_pmap, addr);
 2702         *pte = PTE_G;
 2703         tlb_invalidate_address(kernel_pmap, addr);
 2704         sysm->valid1 = 0;
 2705         critical_exit();
 2706 #endif
 2707 }
 2708 
 2709 /*
 2710  * Returns true if the pmap's pv is one of the first
 2711  * 16 pvs linked to from this page.  This count may
 2712  * be changed upwards or downwards in the future; it
 2713  * is only necessary that true be returned for a small
 2714  * subset of pmaps for proper page aging.
 2715  */
 2716 boolean_t
 2717 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 2718 {
 2719         pv_entry_t pv;
 2720         int loops = 0;
 2721         boolean_t rv;
 2722 
 2723         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2724             ("pmap_page_exists_quick: page %p is not managed", m));
 2725         rv = FALSE;
 2726         rw_wlock(&pvh_global_lock);
 2727         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2728                 if (PV_PMAP(pv) == pmap) {
 2729                         rv = TRUE;
 2730                         break;
 2731                 }
 2732                 loops++;
 2733                 if (loops >= 16)
 2734                         break;
 2735         }
 2736         rw_wunlock(&pvh_global_lock);
 2737         return (rv);
 2738 }
 2739 
 2740 /*
 2741  * Remove all pages from specified address space
 2742  * this aids process exit speeds.  Also, this code
 2743  * is special cased for current process only, but
 2744  * can have the more generic (and slightly slower)
 2745  * mode enabled.  This is much faster than pmap_remove
 2746  * in the case of running down an entire address space.
 2747  */
 2748 void
 2749 pmap_remove_pages(pmap_t pmap)
 2750 {
 2751         pd_entry_t *pde;
 2752         pt_entry_t *pte, tpte;
 2753         pv_entry_t pv;
 2754         vm_page_t m;
 2755         struct pv_chunk *pc, *npc;
 2756         u_long inuse, bitmask;
 2757         int allfree, bit, field, idx;
 2758 
 2759         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
 2760                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 2761                 return;
 2762         }
 2763         rw_wlock(&pvh_global_lock);
 2764         PMAP_LOCK(pmap);
 2765         TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
 2766                 allfree = 1;
 2767                 for (field = 0; field < _NPCM; field++) {
 2768                         inuse = ~pc->pc_map[field] & pc_freemask[field];
 2769                         while (inuse != 0) {
 2770                                 bit = ffsl(inuse) - 1;
 2771                                 bitmask = 1UL << bit;
 2772                                 idx = field * sizeof(inuse) * NBBY + bit;
 2773                                 pv = &pc->pc_pventry[idx];
 2774                                 inuse &= ~bitmask;
 2775 
 2776                                 pde = pmap_pde(pmap, pv->pv_va);
 2777                                 KASSERT(pde != NULL && *pde != 0,
 2778                                     ("pmap_remove_pages: pde"));
 2779                                 pte = pmap_pde_to_pte(pde, pv->pv_va);
 2780                                 if (!pte_test(pte, PTE_V))
 2781                                         panic("pmap_remove_pages: bad pte");
 2782                                 tpte = *pte;
 2783 
 2784 /*
 2785  * We cannot remove wired pages from a process' mapping at this time
 2786  */
 2787                                 if (pte_test(&tpte, PTE_W)) {
 2788                                         allfree = 0;
 2789                                         continue;
 2790                                 }
 2791                                 *pte = is_kernel_pmap(pmap) ? PTE_G : 0;
 2792 
 2793                                 m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
 2794                                 KASSERT(m != NULL,
 2795                                     ("pmap_remove_pages: bad tpte %#jx",
 2796                                     (uintmax_t)tpte));
 2797 
 2798                                 /*
 2799                                  * Update the vm_page_t clean and reference bits.
 2800                                  */
 2801                                 if (pte_test(&tpte, PTE_D))
 2802                                         vm_page_dirty(m);
 2803 
 2804                                 /* Mark free */
 2805                                 PV_STAT(pv_entry_frees++);
 2806                                 PV_STAT(pv_entry_spare++);
 2807                                 pv_entry_count--;
 2808                                 pc->pc_map[field] |= bitmask;
 2809                                 pmap->pm_stats.resident_count--;
 2810                                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2811                                 if (TAILQ_EMPTY(&m->md.pv_list))
 2812                                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 2813                                 pmap_unuse_pt(pmap, pv->pv_va, *pde);
 2814                         }
 2815                 }
 2816                 if (allfree) {
 2817                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2818                         free_pv_chunk(pc);
 2819                 }
 2820         }
 2821         pmap_invalidate_all(pmap);
 2822         PMAP_UNLOCK(pmap);
 2823         rw_wunlock(&pvh_global_lock);
 2824 }
 2825 
 2826 /*
 2827  * pmap_testbit tests bits in pte's
 2828  */
 2829 static boolean_t
 2830 pmap_testbit(vm_page_t m, int bit)
 2831 {
 2832         pv_entry_t pv;
 2833         pmap_t pmap;
 2834         pt_entry_t *pte;
 2835         boolean_t rv = FALSE;
 2836 
 2837         if (m->oflags & VPO_UNMANAGED)
 2838                 return (rv);
 2839 
 2840         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2841         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2842                 pmap = PV_PMAP(pv);
 2843                 PMAP_LOCK(pmap);
 2844                 pte = pmap_pte(pmap, pv->pv_va);
 2845                 rv = pte_test(pte, bit);
 2846                 PMAP_UNLOCK(pmap);
 2847                 if (rv)
 2848                         break;
 2849         }
 2850         return (rv);
 2851 }
 2852 
 2853 /*
 2854  *      pmap_page_wired_mappings:
 2855  *
 2856  *      Return the number of managed mappings to the given physical page
 2857  *      that are wired.
 2858  */
 2859 int
 2860 pmap_page_wired_mappings(vm_page_t m)
 2861 {
 2862         pv_entry_t pv;
 2863         pmap_t pmap;
 2864         pt_entry_t *pte;
 2865         int count;
 2866 
 2867         count = 0;
 2868         if ((m->oflags & VPO_UNMANAGED) != 0)
 2869                 return (count);
 2870         rw_wlock(&pvh_global_lock);
 2871         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2872                 pmap = PV_PMAP(pv);
 2873                 PMAP_LOCK(pmap);
 2874                 pte = pmap_pte(pmap, pv->pv_va);
 2875                 if (pte_test(pte, PTE_W))
 2876                         count++;
 2877                 PMAP_UNLOCK(pmap);
 2878         }
 2879         rw_wunlock(&pvh_global_lock);
 2880         return (count);
 2881 }
 2882 
 2883 /*
 2884  * Clear the write and modified bits in each of the given page's mappings.
 2885  */
 2886 void
 2887 pmap_remove_write(vm_page_t m)
 2888 {
 2889         pmap_t pmap;
 2890         pt_entry_t pbits, *pte;
 2891         pv_entry_t pv;
 2892 
 2893         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2894             ("pmap_remove_write: page %p is not managed", m));
 2895 
 2896         /*
 2897          * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
 2898          * set by another thread while the object is locked.  Thus,
 2899          * if PGA_WRITEABLE is clear, no page table entries need updating.
 2900          */
 2901         VM_OBJECT_ASSERT_WLOCKED(m->object);
 2902         if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
 2903                 return;
 2904         rw_wlock(&pvh_global_lock);
 2905         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2906                 pmap = PV_PMAP(pv);
 2907                 PMAP_LOCK(pmap);
 2908                 pte = pmap_pte(pmap, pv->pv_va);
 2909                 KASSERT(pte != NULL && pte_test(pte, PTE_V),
 2910                     ("page on pv_list has no pte"));
 2911                 pbits = *pte;
 2912                 if (pte_test(&pbits, PTE_D)) {
 2913                         pte_clear(&pbits, PTE_D);
 2914                         vm_page_dirty(m);
 2915                 }
 2916                 pte_set(&pbits, PTE_RO);
 2917                 if (pbits != *pte) {
 2918                         *pte = pbits;
 2919                         pmap_update_page(pmap, pv->pv_va, pbits);
 2920                 }
 2921                 PMAP_UNLOCK(pmap);
 2922         }
 2923         vm_page_aflag_clear(m, PGA_WRITEABLE);
 2924         rw_wunlock(&pvh_global_lock);
 2925 }
 2926 
 2927 /*
 2928  *      pmap_ts_referenced:
 2929  *
 2930  *      Return the count of reference bits for a page, clearing all of them.
 2931  */
 2932 int
 2933 pmap_ts_referenced(vm_page_t m)
 2934 {
 2935 
 2936         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2937             ("pmap_ts_referenced: page %p is not managed", m));
 2938         if (m->md.pv_flags & PV_TABLE_REF) {
 2939                 rw_wlock(&pvh_global_lock);
 2940                 m->md.pv_flags &= ~PV_TABLE_REF;
 2941                 rw_wunlock(&pvh_global_lock);
 2942                 return (1);
 2943         }
 2944         return (0);
 2945 }
 2946 
 2947 /*
 2948  *      pmap_is_modified:
 2949  *
 2950  *      Return whether or not the specified physical page was modified
 2951  *      in any physical maps.
 2952  */
 2953 boolean_t
 2954 pmap_is_modified(vm_page_t m)
 2955 {
 2956         boolean_t rv;
 2957 
 2958         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2959             ("pmap_is_modified: page %p is not managed", m));
 2960 
 2961         /*
 2962          * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
 2963          * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
 2964          * is clear, no PTEs can have PTE_D set.
 2965          */
 2966         VM_OBJECT_ASSERT_WLOCKED(m->object);
 2967         if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
 2968                 return (FALSE);
 2969         rw_wlock(&pvh_global_lock);
 2970         rv = pmap_testbit(m, PTE_D);
 2971         rw_wunlock(&pvh_global_lock);
 2972         return (rv);
 2973 }
 2974 
 2975 /* N/C */
 2976 
 2977 /*
 2978  *      pmap_is_prefaultable:
 2979  *
 2980  *      Return whether or not the specified virtual address is elgible
 2981  *      for prefault.
 2982  */
 2983 boolean_t
 2984 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 2985 {
 2986         pd_entry_t *pde;
 2987         pt_entry_t *pte;
 2988         boolean_t rv;
 2989 
 2990         rv = FALSE;
 2991         PMAP_LOCK(pmap);
 2992         pde = pmap_pde(pmap, addr);
 2993         if (pde != NULL && *pde != 0) {
 2994                 pte = pmap_pde_to_pte(pde, addr);
 2995                 rv = (*pte == 0);
 2996         }
 2997         PMAP_UNLOCK(pmap);
 2998         return (rv);
 2999 }
 3000 
 3001 /*
 3002  *      Apply the given advice to the specified range of addresses within the
 3003  *      given pmap.  Depending on the advice, clear the referenced and/or
 3004  *      modified flags in each mapping and set the mapped page's dirty field.
 3005  */
 3006 void
 3007 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
 3008 {
 3009         pd_entry_t *pde, *pdpe;
 3010         pt_entry_t *pte;
 3011         vm_offset_t va, va_next;
 3012         vm_paddr_t pa;
 3013         vm_page_t m;
 3014 
 3015         if (advice != MADV_DONTNEED && advice != MADV_FREE)
 3016                 return;
 3017         rw_wlock(&pvh_global_lock);
 3018         PMAP_LOCK(pmap);
 3019         for (; sva < eva; sva = va_next) {
 3020                 pdpe = pmap_segmap(pmap, sva);
 3021 #ifdef __mips_n64
 3022                 if (*pdpe == 0) {
 3023                         va_next = (sva + NBSEG) & ~SEGMASK;
 3024                         if (va_next < sva)
 3025                                 va_next = eva;
 3026                         continue;
 3027                 }
 3028 #endif
 3029                 va_next = (sva + NBPDR) & ~PDRMASK;
 3030                 if (va_next < sva)
 3031                         va_next = eva;
 3032 
 3033                 pde = pmap_pdpe_to_pde(pdpe, sva);
 3034                 if (*pde == NULL)
 3035                         continue;
 3036 
 3037                 /*
 3038                  * Limit our scan to either the end of the va represented
 3039                  * by the current page table page, or to the end of the
 3040                  * range being write protected.
 3041                  */
 3042                 if (va_next > eva)
 3043                         va_next = eva;
 3044 
 3045                 va = va_next;
 3046                 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 3047                     sva += PAGE_SIZE) {
 3048                         if (!pte_test(pte, PTE_MANAGED | PTE_V)) {
 3049                                 if (va != va_next) {
 3050                                         pmap_invalidate_range(pmap, va, sva);
 3051                                         va = va_next;
 3052                                 }
 3053                                 continue;
 3054                         }
 3055                         pa = TLBLO_PTE_TO_PA(*pte);
 3056                         m = PHYS_TO_VM_PAGE(pa);
 3057                         m->md.pv_flags &= ~PV_TABLE_REF;
 3058                         if (pte_test(pte, PTE_D)) {
 3059                                 if (advice == MADV_DONTNEED) {
 3060                                         /*
 3061                                          * Future calls to pmap_is_modified()
 3062                                          * can be avoided by making the page
 3063                                          * dirty now.
 3064                                          */
 3065                                         vm_page_dirty(m);
 3066                                 } else {
 3067                                         pte_clear(pte, PTE_D);
 3068                                         if (va == va_next)
 3069                                                 va = sva;
 3070                                 }
 3071                         } else {
 3072                                 /*
 3073                                  * Unless PTE_D is set, any TLB entries
 3074                                  * mapping "sva" don't allow write access, so
 3075                                  * they needn't be invalidated.
 3076                                  */
 3077                                 if (va != va_next) {
 3078                                         pmap_invalidate_range(pmap, va, sva);
 3079                                         va = va_next;
 3080                                 }
 3081                         }
 3082                 }
 3083                 if (va != va_next)
 3084                         pmap_invalidate_range(pmap, va, sva);
 3085         }
 3086         rw_wunlock(&pvh_global_lock);
 3087         PMAP_UNLOCK(pmap);
 3088 }
 3089 
 3090 /*
 3091  *      Clear the modify bits on the specified physical page.
 3092  */
 3093 void
 3094 pmap_clear_modify(vm_page_t m)
 3095 {
 3096         pmap_t pmap;
 3097         pt_entry_t *pte;
 3098         pv_entry_t pv;
 3099 
 3100         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3101             ("pmap_clear_modify: page %p is not managed", m));
 3102         VM_OBJECT_ASSERT_WLOCKED(m->object);
 3103         KASSERT(!vm_page_xbusied(m),
 3104             ("pmap_clear_modify: page %p is exclusive busied", m));
 3105 
 3106         /*
 3107          * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_D set.
 3108          * If the object containing the page is locked and the page is not
 3109          * write busied, then PGA_WRITEABLE cannot be concurrently set.
 3110          */
 3111         if ((m->aflags & PGA_WRITEABLE) == 0)
 3112                 return;
 3113         rw_wlock(&pvh_global_lock);
 3114         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3115                 pmap = PV_PMAP(pv);
 3116                 PMAP_LOCK(pmap);
 3117                 pte = pmap_pte(pmap, pv->pv_va);
 3118                 if (pte_test(pte, PTE_D)) {
 3119                         pte_clear(pte, PTE_D);
 3120                         pmap_update_page(pmap, pv->pv_va, *pte);
 3121                 }
 3122                 PMAP_UNLOCK(pmap);
 3123         }
 3124         rw_wunlock(&pvh_global_lock);
 3125 }
 3126 
 3127 /*
 3128  *      pmap_is_referenced:
 3129  *
 3130  *      Return whether or not the specified physical page was referenced
 3131  *      in any physical maps.
 3132  */
 3133 boolean_t
 3134 pmap_is_referenced(vm_page_t m)
 3135 {
 3136 
 3137         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3138             ("pmap_is_referenced: page %p is not managed", m));
 3139         return ((m->md.pv_flags & PV_TABLE_REF) != 0);
 3140 }
 3141 
 3142 /*
 3143  * Miscellaneous support routines follow
 3144  */
 3145 
 3146 /*
 3147  * Map a set of physical memory pages into the kernel virtual
 3148  * address space. Return a pointer to where it is mapped. This
 3149  * routine is intended to be used for mapping device memory,
 3150  * NOT real memory.
 3151  *
 3152  * Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
 3153  */
 3154 void *
 3155 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
 3156 {
 3157         vm_offset_t va, tmpva, offset;
 3158 
 3159         /*
 3160          * KSEG1 maps only first 512M of phys address space. For
 3161          * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
 3162          */
 3163         if (MIPS_DIRECT_MAPPABLE(pa + size - 1) && ma == VM_MEMATTR_UNCACHEABLE)
 3164                 return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
 3165         else {
 3166                 offset = pa & PAGE_MASK;
 3167                 size = roundup(size + offset, PAGE_SIZE);
 3168 
 3169                 va = kva_alloc(size);
 3170                 if (!va)
 3171                         panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 3172                 pa = trunc_page(pa);
 3173                 for (tmpva = va; size > 0;) {
 3174                         pmap_kenter_attr(tmpva, pa, ma);
 3175                         size -= PAGE_SIZE;
 3176                         tmpva += PAGE_SIZE;
 3177                         pa += PAGE_SIZE;
 3178                 }
 3179         }
 3180 
 3181         return ((void *)(va + offset));
 3182 }
 3183 
 3184 void *
 3185 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
 3186 {
 3187         return pmap_mapdev_attr(pa, size, VM_MEMATTR_UNCACHEABLE);
 3188 }
 3189 
 3190 void
 3191 pmap_unmapdev(vm_offset_t va, vm_size_t size)
 3192 {
 3193 #ifndef __mips_n64
 3194         vm_offset_t base, offset;
 3195 
 3196         /* If the address is within KSEG1 then there is nothing to do */
 3197         if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
 3198                 return;
 3199 
 3200         base = trunc_page(va);
 3201         offset = va & PAGE_MASK;
 3202         size = roundup(size + offset, PAGE_SIZE);
 3203         kva_free(base, size);
 3204 #endif
 3205 }
 3206 
 3207 /*
 3208  * perform the pmap work for mincore
 3209  */
 3210 int
 3211 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
 3212 {
 3213         pt_entry_t *ptep, pte;
 3214         vm_paddr_t pa;
 3215         vm_page_t m;
 3216         int val;
 3217 
 3218         PMAP_LOCK(pmap);
 3219 retry:
 3220         ptep = pmap_pte(pmap, addr);
 3221         pte = (ptep != NULL) ? *ptep : 0;
 3222         if (!pte_test(&pte, PTE_V)) {
 3223                 val = 0;
 3224                 goto out;
 3225         }
 3226         val = MINCORE_INCORE;
 3227         if (pte_test(&pte, PTE_D))
 3228                 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
 3229         pa = TLBLO_PTE_TO_PA(pte);
 3230         if (pte_test(&pte, PTE_MANAGED)) {
 3231                 /*
 3232                  * This may falsely report the given address as
 3233                  * MINCORE_REFERENCED.  Unfortunately, due to the lack of
 3234                  * per-PTE reference information, it is impossible to
 3235                  * determine if the address is MINCORE_REFERENCED.
 3236                  */
 3237                 m = PHYS_TO_VM_PAGE(pa);
 3238                 if ((m->aflags & PGA_REFERENCED) != 0)
 3239                         val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
 3240         }
 3241         if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
 3242             (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
 3243             pte_test(&pte, PTE_MANAGED)) {
 3244                 /* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
 3245                 if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
 3246                         goto retry;
 3247         } else
 3248 out:
 3249                 PA_UNLOCK_COND(*locked_pa);
 3250         PMAP_UNLOCK(pmap);
 3251         return (val);
 3252 }
 3253 
 3254 void
 3255 pmap_activate(struct thread *td)
 3256 {
 3257         pmap_t pmap, oldpmap;
 3258         struct proc *p = td->td_proc;
 3259         u_int cpuid;
 3260 
 3261         critical_enter();
 3262 
 3263         pmap = vmspace_pmap(p->p_vmspace);
 3264         oldpmap = PCPU_GET(curpmap);
 3265         cpuid = PCPU_GET(cpuid);
 3266 
 3267         if (oldpmap)
 3268                 CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
 3269         CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
 3270         pmap_asid_alloc(pmap);
 3271         if (td == curthread) {
 3272                 PCPU_SET(segbase, pmap->pm_segtab);
 3273                 mips_wr_entryhi(pmap->pm_asid[cpuid].asid);
 3274         }
 3275 
 3276         PCPU_SET(curpmap, pmap);
 3277         critical_exit();
 3278 }
 3279 
 3280 static void
 3281 pmap_sync_icache_one(void *arg __unused)
 3282 {
 3283 
 3284         mips_icache_sync_all();
 3285         mips_dcache_wbinv_all();
 3286 }
 3287 
 3288 void
 3289 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
 3290 {
 3291 
 3292         smp_rendezvous(NULL, pmap_sync_icache_one, NULL, NULL);
 3293 }
 3294 
 3295 /*
 3296  *      Increase the starting virtual address of the given mapping if a
 3297  *      different alignment might result in more superpage mappings.
 3298  */
 3299 void
 3300 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
 3301     vm_offset_t *addr, vm_size_t size)
 3302 {
 3303         vm_offset_t superpage_offset;
 3304 
 3305         if (size < PDRSIZE)
 3306                 return;
 3307         if (object != NULL && (object->flags & OBJ_COLORED) != 0)
 3308                 offset += ptoa(object->pg_color);
 3309         superpage_offset = offset & PDRMASK;
 3310         if (size - ((PDRSIZE - superpage_offset) & PDRMASK) < PDRSIZE ||
 3311             (*addr & PDRMASK) == superpage_offset)
 3312                 return;
 3313         if ((*addr & PDRMASK) < superpage_offset)
 3314                 *addr = (*addr & ~PDRMASK) + superpage_offset;
 3315         else
 3316                 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
 3317 }
 3318 
 3319 #ifdef DDB
 3320 DB_SHOW_COMMAND(ptable, ddb_pid_dump)
 3321 {
 3322         pmap_t pmap;
 3323         struct thread *td = NULL;
 3324         struct proc *p;
 3325         int i, j, k;
 3326         vm_paddr_t pa;
 3327         vm_offset_t va;
 3328 
 3329         if (have_addr) {
 3330                 td = db_lookup_thread(addr, true);
 3331                 if (td == NULL) {
 3332                         db_printf("Invalid pid or tid");
 3333                         return;
 3334                 }
 3335                 p = td->td_proc;
 3336                 if (p->p_vmspace == NULL) {
 3337                         db_printf("No vmspace for process");
 3338                         return;
 3339                 }
 3340                         pmap = vmspace_pmap(p->p_vmspace);
 3341         } else
 3342                 pmap = kernel_pmap;
 3343 
 3344         db_printf("pmap:%p segtab:%p asid:%x generation:%x\n",
 3345             pmap, pmap->pm_segtab, pmap->pm_asid[0].asid,
 3346             pmap->pm_asid[0].gen);
 3347         for (i = 0; i < NPDEPG; i++) {
 3348                 pd_entry_t *pdpe;
 3349                 pt_entry_t *pde;
 3350                 pt_entry_t pte;
 3351 
 3352                 pdpe = (pd_entry_t *)pmap->pm_segtab[i];
 3353                 if (pdpe == NULL)
 3354                         continue;
 3355                 db_printf("[%4d] %p\n", i, pdpe);
 3356 #ifdef __mips_n64
 3357                 for (j = 0; j < NPDEPG; j++) {
 3358                         pde = (pt_entry_t *)pdpe[j];
 3359                         if (pde == NULL)
 3360                                 continue;
 3361                         db_printf("\t[%4d] %p\n", j, pde);
 3362 #else
 3363                 {
 3364                         j = 0;
 3365                         pde =  (pt_entry_t *)pdpe;
 3366 #endif
 3367                         for (k = 0; k < NPTEPG; k++) {
 3368                                 pte = pde[k];
 3369                                 if (pte == 0 || !pte_test(&pte, PTE_V))
 3370                                         continue;
 3371                                 pa = TLBLO_PTE_TO_PA(pte);
 3372                                 va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT);
 3373                                 db_printf("\t\t[%04d] va: %p pte: %8jx pa:%jx\n",
 3374                                        k, (void *)va, (uintmax_t)pte, (uintmax_t)pa);
 3375                         }
 3376                 }
 3377         }
 3378 }
 3379 #endif
 3380 
 3381 /*
 3382  * Allocate TLB address space tag (called ASID or TLBPID) and return it.
 3383  * It takes almost as much or more time to search the TLB for a
 3384  * specific ASID and flush those entries as it does to flush the entire TLB.
 3385  * Therefore, when we allocate a new ASID, we just take the next number. When
 3386  * we run out of numbers, we flush the TLB, increment the generation count
 3387  * and start over. ASID zero is reserved for kernel use.
 3388  */
 3389 static void
 3390 pmap_asid_alloc(pmap)
 3391         pmap_t pmap;
 3392 {
 3393         if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
 3394             pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
 3395         else {
 3396                 if (PCPU_GET(next_asid) == pmap_max_asid) {
 3397                         tlb_invalidate_all_user(NULL);
 3398                         PCPU_SET(asid_generation,
 3399                             (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
 3400                         if (PCPU_GET(asid_generation) == 0) {
 3401                                 PCPU_SET(asid_generation, 1);
 3402                         }
 3403                         PCPU_SET(next_asid, 1); /* 0 means invalid */
 3404                 }
 3405                 pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
 3406                 pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
 3407                 PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
 3408         }
 3409 }
 3410 
 3411 static pt_entry_t
 3412 init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot)
 3413 {
 3414         pt_entry_t rw;
 3415 
 3416         if (!(prot & VM_PROT_WRITE))
 3417                 rw = PTE_V | PTE_RO;
 3418         else if ((m->oflags & VPO_UNMANAGED) == 0) {
 3419                 if ((access & VM_PROT_WRITE) != 0)
 3420                         rw = PTE_V | PTE_D;
 3421                 else
 3422                         rw = PTE_V;
 3423         } else
 3424                 /* Needn't emulate a modified bit for unmanaged pages. */
 3425                 rw = PTE_V | PTE_D;
 3426         return (rw);
 3427 }
 3428 
 3429 /*
 3430  * pmap_emulate_modified : do dirty bit emulation
 3431  *
 3432  * On SMP, update just the local TLB, other CPUs will update their
 3433  * TLBs from PTE lazily, if they get the exception.
 3434  * Returns 0 in case of sucess, 1 if the page is read only and we
 3435  * need to fault.
 3436  */
 3437 int
 3438 pmap_emulate_modified(pmap_t pmap, vm_offset_t va)
 3439 {
 3440         pt_entry_t *pte;
 3441 
 3442         PMAP_LOCK(pmap);
 3443         pte = pmap_pte(pmap, va);
 3444         if (pte == NULL)
 3445                 panic("pmap_emulate_modified: can't find PTE");
 3446 #ifdef SMP
 3447         /* It is possible that some other CPU changed m-bit */
 3448         if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) {
 3449                 tlb_update(pmap, va, *pte);
 3450                 PMAP_UNLOCK(pmap);
 3451                 return (0);
 3452         }
 3453 #else
 3454         if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D))
 3455                 panic("pmap_emulate_modified: invalid pte");
 3456 #endif
 3457         if (pte_test(pte, PTE_RO)) {
 3458                 PMAP_UNLOCK(pmap);
 3459                 return (1);
 3460         }
 3461         pte_set(pte, PTE_D);
 3462         tlb_update(pmap, va, *pte);
 3463         if (!pte_test(pte, PTE_MANAGED))
 3464                 panic("pmap_emulate_modified: unmanaged page");
 3465         PMAP_UNLOCK(pmap);
 3466         return (0);
 3467 }
 3468 
 3469 /*
 3470  *      Routine:        pmap_kextract
 3471  *      Function:
 3472  *              Extract the physical page address associated
 3473  *              virtual address.
 3474  */
 3475 vm_paddr_t
 3476 pmap_kextract(vm_offset_t va)
 3477 {
 3478         int mapped;
 3479 
 3480         /*
 3481          * First, the direct-mapped regions.
 3482          */
 3483 #if defined(__mips_n64)
 3484         if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
 3485                 return (MIPS_XKPHYS_TO_PHYS(va));
 3486 #endif
 3487         if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
 3488                 return (MIPS_KSEG0_TO_PHYS(va));
 3489 
 3490         if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
 3491                 return (MIPS_KSEG1_TO_PHYS(va));
 3492 
 3493         /*
 3494          * User virtual addresses.
 3495          */
 3496         if (va < VM_MAXUSER_ADDRESS) {
 3497                 pt_entry_t *ptep;
 3498 
 3499                 if (curproc && curproc->p_vmspace) {
 3500                         ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
 3501                         if (ptep) {
 3502                                 return (TLBLO_PTE_TO_PA(*ptep) |
 3503                                     (va & PAGE_MASK));
 3504                         }
 3505                         return (0);
 3506                 }
 3507         }
 3508 
 3509         /*
 3510          * Should be kernel virtual here, otherwise fail
 3511          */
 3512         mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
 3513 #if defined(__mips_n64)
 3514         mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
 3515 #endif
 3516         /*
 3517          * Kernel virtual.
 3518          */
 3519 
 3520         if (mapped) {
 3521                 pt_entry_t *ptep;
 3522 
 3523                 /* Is the kernel pmap initialized? */
 3524                 if (!CPU_EMPTY(&kernel_pmap->pm_active)) {
 3525                         /* It's inside the virtual address range */
 3526                         ptep = pmap_pte(kernel_pmap, va);
 3527                         if (ptep) {
 3528                                 return (TLBLO_PTE_TO_PA(*ptep) |
 3529                                     (va & PAGE_MASK));
 3530                         }
 3531                 }
 3532                 return (0);
 3533         }
 3534 
 3535         panic("%s for unknown address space %p.", __func__, (void *)va);
 3536 }
 3537 
 3538 
 3539 void
 3540 pmap_flush_pvcache(vm_page_t m)
 3541 {
 3542         pv_entry_t pv;
 3543 
 3544         if (m != NULL) {
 3545                 for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
 3546                     pv = TAILQ_NEXT(pv, pv_list)) {
 3547                         mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
 3548                 }
 3549         }
 3550 }
 3551 
 3552 void
 3553 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
 3554 {
 3555 
 3556         /*
 3557          * It appears that this function can only be called before any mappings
 3558          * for the page are established.  If this ever changes, this code will
 3559          * need to walk the pv_list and make each of the existing mappings
 3560          * uncacheable, being careful to sync caches and PTEs (and maybe
 3561          * invalidate TLB?) for any current mapping it modifies.
 3562          */
 3563         if (TAILQ_FIRST(&m->md.pv_list) != NULL)
 3564                 panic("Can't change memattr on page with existing mappings");
 3565 
 3566         /* Clean memattr portion of pv_flags */
 3567         m->md.pv_flags &= ~PV_MEMATTR_MASK;
 3568         m->md.pv_flags |= (ma << PV_MEMATTR_SHIFT) & PV_MEMATTR_MASK;
 3569 }
 3570 
 3571 static __inline void
 3572 pmap_pte_attr(pt_entry_t *pte, vm_memattr_t ma)
 3573 {
 3574         u_int npte;
 3575 
 3576         npte = *(u_int *)pte;
 3577         npte &= ~PTE_C_MASK;
 3578         npte |= PTE_C(ma);
 3579         *pte = npte;
 3580 }
 3581 
 3582 int
 3583 pmap_change_attr(vm_offset_t sva, vm_size_t size, vm_memattr_t ma)
 3584 {
 3585         pd_entry_t *pde, *pdpe;
 3586         pt_entry_t *pte;
 3587         vm_offset_t ova, eva, va, va_next;
 3588         pmap_t pmap;
 3589 
 3590         ova = sva;
 3591         eva = sva + size;
 3592         if (eva < sva)
 3593                 return (EINVAL);
 3594 
 3595         pmap = kernel_pmap;
 3596         PMAP_LOCK(pmap);
 3597 
 3598         for (; sva < eva; sva = va_next) {
 3599                 pdpe = pmap_segmap(pmap, sva);
 3600 #ifdef __mips_n64
 3601                 if (*pdpe == 0) {
 3602                         va_next = (sva + NBSEG) & ~SEGMASK;
 3603                         if (va_next < sva)
 3604                                 va_next = eva;
 3605                         continue;
 3606                 }
 3607 #endif
 3608                 va_next = (sva + NBPDR) & ~PDRMASK;
 3609                 if (va_next < sva)
 3610                         va_next = eva;
 3611 
 3612                 pde = pmap_pdpe_to_pde(pdpe, sva);
 3613                 if (*pde == NULL)
 3614                         continue;
 3615 
 3616                 /*
 3617                  * Limit our scan to either the end of the va represented
 3618                  * by the current page table page, or to the end of the
 3619                  * range being removed.
 3620                  */
 3621                 if (va_next > eva)
 3622                         va_next = eva;
 3623 
 3624                 va = va_next;
 3625                 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 3626                     sva += PAGE_SIZE) {
 3627                         if (!pte_test(pte, PTE_V) || pte_cache_bits(pte) == ma) {
 3628                                 if (va != va_next) {
 3629                                         pmap_invalidate_range(pmap, va, sva);
 3630                                         va = va_next;
 3631                                 }
 3632                                 continue;
 3633                         }
 3634                         if (va == va_next)
 3635                                 va = sva;
 3636 
 3637                         pmap_pte_attr(pte, ma);
 3638                 }
 3639                 if (va != va_next)
 3640                         pmap_invalidate_range(pmap, va, sva);
 3641         }
 3642         PMAP_UNLOCK(pmap);
 3643 
 3644         /* Flush caches to be in the safe side */
 3645         mips_dcache_wbinv_range(ova, size);
 3646         return 0;
 3647 }
 3648 
 3649 boolean_t
 3650 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
 3651 {
 3652 
 3653         switch (mode) {
 3654         case VM_MEMATTR_UNCACHEABLE:
 3655         case VM_MEMATTR_WRITE_BACK:
 3656 #ifdef MIPS_CCA_WC
 3657         case VM_MEMATTR_WRITE_COMBINING:
 3658 #endif
 3659                 return (TRUE);
 3660         default:
 3661                 return (FALSE);
 3662         }
 3663 }

Cache object: e6307c76c0bdba0af0bf7aaa1b212e7a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.