The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mips/mips/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  * This code is derived from software contributed to Berkeley by
   10  * the Systems Programming Group of the University of Utah Computer
   11  * Science Department and William Jolitz of UUNET Technologies Inc.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   38  *      from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
   39  *      JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
   40  */
   41 
   42 /*
   43  *      Manages physical address maps.
   44  *
   45  *      In addition to hardware address maps, this
   46  *      module is called upon to provide software-use-only
   47  *      maps which may or may not be stored in the same
   48  *      form as hardware maps.  These pseudo-maps are
   49  *      used to store intermediate results from copy
   50  *      operations to and from address spaces.
   51  *
   52  *      Since the information managed by this module is
   53  *      also stored by the logical address mapping module,
   54  *      this module may throw away valid virtual-to-physical
   55  *      mappings at almost any time.  However, invalidations
   56  *      of virtual-to-physical mappings must be done as
   57  *      requested.
   58  *
   59  *      In order to cope with hardware architectures which
   60  *      make virtual-to-physical map invalidates expensive,
   61  *      this module may delay invalidate or reduced protection
   62  *      operations until such time as they are actually
   63  *      necessary.  This module is given full information as
   64  *      to which processors are currently using which maps,
   65  *      and to when physical maps must be made correct.
   66  */
   67 
   68 #include <sys/cdefs.h>
   69 __FBSDID("$FreeBSD: releng/9.2/sys/mips/mips/pmap.c 251897 2013-06-18 05:21:40Z scottl $");
   70 
   71 #include "opt_ddb.h"
   72 
   73 #include <sys/param.h>
   74 #include <sys/systm.h>
   75 #include <sys/proc.h>
   76 #include <sys/msgbuf.h>
   77 #include <sys/vmmeter.h>
   78 #include <sys/mman.h>
   79 #include <sys/smp.h>
   80 #ifdef DDB
   81 #include <ddb/ddb.h>
   82 #endif
   83 
   84 #include <vm/vm.h>
   85 #include <vm/vm_param.h>
   86 #include <vm/vm_phys.h>
   87 #include <sys/lock.h>
   88 #include <sys/mutex.h>
   89 #include <vm/vm_kern.h>
   90 #include <vm/vm_page.h>
   91 #include <vm/vm_map.h>
   92 #include <vm/vm_object.h>
   93 #include <vm/vm_extern.h>
   94 #include <vm/vm_pageout.h>
   95 #include <vm/vm_pager.h>
   96 #include <vm/uma.h>
   97 #include <sys/pcpu.h>
   98 #include <sys/sched.h>
   99 #ifdef SMP
  100 #include <sys/smp.h>
  101 #endif
  102 
  103 #include <machine/cache.h>
  104 #include <machine/md_var.h>
  105 #include <machine/tlb.h>
  106 
  107 #undef PMAP_DEBUG
  108 
  109 #ifndef PMAP_SHPGPERPROC
  110 #define PMAP_SHPGPERPROC 200
  111 #endif
  112 
  113 #if !defined(DIAGNOSTIC)
  114 #define PMAP_INLINE __inline
  115 #else
  116 #define PMAP_INLINE
  117 #endif
  118 
  119 /*
  120  * Get PDEs and PTEs for user/kernel address space
  121  */
  122 #define pmap_seg_index(v)       (((v) >> SEGSHIFT) & (NPDEPG - 1))
  123 #define pmap_pde_index(v)       (((v) >> PDRSHIFT) & (NPDEPG - 1))
  124 #define pmap_pte_index(v)       (((v) >> PAGE_SHIFT) & (NPTEPG - 1))
  125 #define pmap_pde_pindex(v)      ((v) >> PDRSHIFT)
  126 
  127 #ifdef __mips_n64
  128 #define NUPDE                   (NPDEPG * NPDEPG)
  129 #define NUSERPGTBLS             (NUPDE + NPDEPG)
  130 #else
  131 #define NUPDE                   (NPDEPG)
  132 #define NUSERPGTBLS             (NUPDE)
  133 #endif
  134 
  135 #define is_kernel_pmap(x)       ((x) == kernel_pmap)
  136 
  137 struct pmap kernel_pmap_store;
  138 pd_entry_t *kernel_segmap;
  139 
  140 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  141 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  142 
  143 static int nkpt;
  144 unsigned pmap_max_asid;         /* max ASID supported by the system */
  145 
  146 #define PMAP_ASID_RESERVED      0
  147 
  148 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
  149 
  150 static void pmap_asid_alloc(pmap_t pmap);
  151 
  152 /*
  153  * Data for the pv entry allocation mechanism
  154  */
  155 static uma_zone_t pvzone;
  156 static struct vm_object pvzone_obj;
  157 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
  158 
  159 static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
  160 static pv_entry_t get_pv_entry(pmap_t locked_pmap);
  161 static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
  162 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
  163     vm_offset_t va);
  164 static __inline void pmap_changebit(vm_page_t m, int bit, boolean_t setem);
  165 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
  166     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
  167 static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va);
  168 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
  169 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
  170 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
  171     vm_offset_t va, vm_page_t m);
  172 static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte);
  173 static void pmap_invalidate_all(pmap_t pmap);
  174 static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
  175 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m);
  176 
  177 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
  178 static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
  179 static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
  180 static pt_entry_t init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot);
  181 
  182 #ifdef SMP
  183 static void pmap_invalidate_page_action(void *arg);
  184 static void pmap_invalidate_all_action(void *arg);
  185 static void pmap_update_page_action(void *arg);
  186 #endif
  187 
  188 #ifndef __mips_n64
  189 /*
  190  * This structure is for high memory (memory above 512Meg in 32 bit) support.
  191  * The highmem area does not have a KSEG0 mapping, and we need a mechanism to
  192  * do temporary per-CPU mappings for pmap_zero_page, pmap_copy_page etc.
  193  *
  194  * At bootup, we reserve 2 virtual pages per CPU for mapping highmem pages. To 
  195  * access a highmem physical address on a CPU, we map the physical address to
  196  * the reserved virtual address for the CPU in the kernel pagetable.  This is 
  197  * done with interrupts disabled(although a spinlock and sched_pin would be 
  198  * sufficient).
  199  */
  200 struct local_sysmaps {
  201         vm_offset_t     base;
  202         uint32_t        saved_intr;
  203         uint16_t        valid1, valid2;
  204 };
  205 static struct local_sysmaps sysmap_lmem[MAXCPU];
  206 
  207 static __inline void
  208 pmap_alloc_lmem_map(void)
  209 {
  210         int i;
  211 
  212         for (i = 0; i < MAXCPU; i++) {
  213                 sysmap_lmem[i].base = virtual_avail;
  214                 virtual_avail += PAGE_SIZE * 2;
  215                 sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
  216         }
  217 }
  218 
  219 static __inline vm_offset_t
  220 pmap_lmem_map1(vm_paddr_t phys)
  221 {
  222         struct local_sysmaps *sysm;
  223         pt_entry_t *pte, npte;
  224         vm_offset_t va;
  225         uint32_t intr;
  226         int cpu;
  227 
  228         intr = intr_disable();
  229         cpu = PCPU_GET(cpuid);
  230         sysm = &sysmap_lmem[cpu];
  231         sysm->saved_intr = intr;
  232         va = sysm->base;
  233         npte = TLBLO_PA_TO_PFN(phys) |
  234             PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
  235         pte = pmap_pte(kernel_pmap, va);
  236         *pte = npte;
  237         sysm->valid1 = 1;
  238         return (va);
  239 }
  240 
  241 static __inline vm_offset_t
  242 pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
  243 {
  244         struct local_sysmaps *sysm;
  245         pt_entry_t *pte, npte;
  246         vm_offset_t va1, va2;
  247         uint32_t intr;
  248         int cpu;
  249 
  250         intr = intr_disable();
  251         cpu = PCPU_GET(cpuid);
  252         sysm = &sysmap_lmem[cpu];
  253         sysm->saved_intr = intr;
  254         va1 = sysm->base;
  255         va2 = sysm->base + PAGE_SIZE;
  256         npte = TLBLO_PA_TO_PFN(phys1) |
  257             PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
  258         pte = pmap_pte(kernel_pmap, va1);
  259         *pte = npte;
  260         npte =  TLBLO_PA_TO_PFN(phys2) |
  261             PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
  262         pte = pmap_pte(kernel_pmap, va2);
  263         *pte = npte;
  264         sysm->valid1 = 1;
  265         sysm->valid2 = 1;
  266         return (va1);
  267 }
  268 
  269 static __inline void
  270 pmap_lmem_unmap(void)
  271 {
  272         struct local_sysmaps *sysm;
  273         pt_entry_t *pte;
  274         int cpu;
  275 
  276         cpu = PCPU_GET(cpuid);
  277         sysm = &sysmap_lmem[cpu];
  278         pte = pmap_pte(kernel_pmap, sysm->base);
  279         *pte = PTE_G;
  280         tlb_invalidate_address(kernel_pmap, sysm->base);
  281         sysm->valid1 = 0;
  282         if (sysm->valid2) {
  283                 pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);
  284                 *pte = PTE_G;
  285                 tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);
  286                 sysm->valid2 = 0;
  287         }
  288         intr_restore(sysm->saved_intr);
  289 }
  290 #else  /* __mips_n64 */
  291 
  292 static __inline void
  293 pmap_alloc_lmem_map(void)
  294 {
  295 }
  296 
  297 static __inline vm_offset_t
  298 pmap_lmem_map1(vm_paddr_t phys)
  299 {
  300 
  301         return (0);
  302 }
  303 
  304 static __inline vm_offset_t
  305 pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
  306 {
  307 
  308         return (0);
  309 }
  310 
  311 static __inline vm_offset_t 
  312 pmap_lmem_unmap(void)
  313 {
  314 
  315         return (0);
  316 }
  317 #endif /* !__mips_n64 */
  318 
  319 /*
  320  * Page table entry lookup routines.
  321  */
  322 static __inline pd_entry_t *
  323 pmap_segmap(pmap_t pmap, vm_offset_t va)
  324 {
  325 
  326         return (&pmap->pm_segtab[pmap_seg_index(va)]);
  327 }
  328 
  329 #ifdef __mips_n64
  330 static __inline pd_entry_t *
  331 pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
  332 {
  333         pd_entry_t *pde;
  334 
  335         pde = (pd_entry_t *)*pdpe;
  336         return (&pde[pmap_pde_index(va)]);
  337 }
  338 
  339 static __inline pd_entry_t *
  340 pmap_pde(pmap_t pmap, vm_offset_t va)
  341 {
  342         pd_entry_t *pdpe;
  343 
  344         pdpe = pmap_segmap(pmap, va);
  345         if (pdpe == NULL || *pdpe == NULL)
  346                 return (NULL);
  347 
  348         return (pmap_pdpe_to_pde(pdpe, va));
  349 }
  350 #else
  351 static __inline pd_entry_t *
  352 pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
  353 {
  354 
  355         return (pdpe);
  356 }
  357 
  358 static __inline 
  359 pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va)
  360 {
  361 
  362         return (pmap_segmap(pmap, va));
  363 }
  364 #endif
  365 
  366 static __inline pt_entry_t *
  367 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
  368 {
  369         pt_entry_t *pte;
  370 
  371         pte = (pt_entry_t *)*pde;
  372         return (&pte[pmap_pte_index(va)]);
  373 }
  374 
  375 pt_entry_t *
  376 pmap_pte(pmap_t pmap, vm_offset_t va)
  377 {
  378         pd_entry_t *pde;
  379 
  380         pde = pmap_pde(pmap, va);
  381         if (pde == NULL || *pde == NULL)
  382                 return (NULL);
  383 
  384         return (pmap_pde_to_pte(pde, va));
  385 }
  386 
  387 vm_offset_t
  388 pmap_steal_memory(vm_size_t size)
  389 {
  390         vm_paddr_t bank_size, pa;
  391         vm_offset_t va;
  392 
  393         size = round_page(size);
  394         bank_size = phys_avail[1] - phys_avail[0];
  395         while (size > bank_size) {
  396                 int i;
  397 
  398                 for (i = 0; phys_avail[i + 2]; i += 2) {
  399                         phys_avail[i] = phys_avail[i + 2];
  400                         phys_avail[i + 1] = phys_avail[i + 3];
  401                 }
  402                 phys_avail[i] = 0;
  403                 phys_avail[i + 1] = 0;
  404                 if (!phys_avail[0])
  405                         panic("pmap_steal_memory: out of memory");
  406                 bank_size = phys_avail[1] - phys_avail[0];
  407         }
  408 
  409         pa = phys_avail[0];
  410         phys_avail[0] += size;
  411         if (MIPS_DIRECT_MAPPABLE(pa) == 0)
  412                 panic("Out of memory below 512Meg?");
  413         va = MIPS_PHYS_TO_DIRECT(pa);
  414         bzero((caddr_t)va, size);
  415         return (va);
  416 }
  417 
  418 /*
  419  * Bootstrap the system enough to run with virtual memory.  This
  420  * assumes that the phys_avail array has been initialized.
  421  */
  422 static void 
  423 pmap_create_kernel_pagetable(void)
  424 {
  425         int i, j;
  426         vm_offset_t ptaddr;
  427         pt_entry_t *pte;
  428 #ifdef __mips_n64
  429         pd_entry_t *pde;
  430         vm_offset_t pdaddr;
  431         int npt, npde;
  432 #endif
  433 
  434         /*
  435          * Allocate segment table for the kernel
  436          */
  437         kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
  438 
  439         /*
  440          * Allocate second level page tables for the kernel
  441          */
  442 #ifdef __mips_n64
  443         npde = howmany(NKPT, NPDEPG);
  444         pdaddr = pmap_steal_memory(PAGE_SIZE * npde);
  445 #endif
  446         nkpt = NKPT;
  447         ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt);
  448 
  449         /*
  450          * The R[4-7]?00 stores only one copy of the Global bit in the
  451          * translation lookaside buffer for each 2 page entry. Thus invalid
  452          * entrys must have the Global bit set so when Entry LO and Entry HI
  453          * G bits are anded together they will produce a global bit to store
  454          * in the tlb.
  455          */
  456         for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++)
  457                 *pte = PTE_G;
  458 
  459 #ifdef __mips_n64
  460         for (i = 0,  npt = nkpt; npt > 0; i++) {
  461                 kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE);
  462                 pde = (pd_entry_t *)kernel_segmap[i];
  463 
  464                 for (j = 0; j < NPDEPG && npt > 0; j++, npt--)
  465                         pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE);
  466         }
  467 #else
  468         for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++)
  469                 kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE));
  470 #endif
  471 
  472         PMAP_LOCK_INIT(kernel_pmap);
  473         kernel_pmap->pm_segtab = kernel_segmap;
  474         CPU_FILL(&kernel_pmap->pm_active);
  475         TAILQ_INIT(&kernel_pmap->pm_pvlist);
  476         kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
  477         kernel_pmap->pm_asid[0].gen = 0;
  478         kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE;
  479 }
  480 
  481 void
  482 pmap_bootstrap(void)
  483 {
  484         int i;
  485         int need_local_mappings = 0; 
  486 
  487         /* Sort. */
  488 again:
  489         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  490                 /*
  491                  * Keep the memory aligned on page boundary.
  492                  */
  493                 phys_avail[i] = round_page(phys_avail[i]);
  494                 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
  495 
  496                 if (i < 2)
  497                         continue;
  498                 if (phys_avail[i - 2] > phys_avail[i]) {
  499                         vm_paddr_t ptemp[2];
  500 
  501                         ptemp[0] = phys_avail[i + 0];
  502                         ptemp[1] = phys_avail[i + 1];
  503 
  504                         phys_avail[i + 0] = phys_avail[i - 2];
  505                         phys_avail[i + 1] = phys_avail[i - 1];
  506 
  507                         phys_avail[i - 2] = ptemp[0];
  508                         phys_avail[i - 1] = ptemp[1];
  509                         goto again;
  510                 }
  511         }
  512 
  513         /*
  514          * In 32 bit, we may have memory which cannot be mapped directly.
  515          * This memory will need temporary mapping before it can be
  516          * accessed.
  517          */
  518         if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1] - 1))
  519                 need_local_mappings = 1;
  520 
  521         /*
  522          * Copy the phys_avail[] array before we start stealing memory from it.
  523          */
  524         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  525                 physmem_desc[i] = phys_avail[i];
  526                 physmem_desc[i + 1] = phys_avail[i + 1];
  527         }
  528 
  529         Maxmem = atop(phys_avail[i - 1]);
  530 
  531         if (bootverbose) {
  532                 printf("Physical memory chunk(s):\n");
  533                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  534                         vm_paddr_t size;
  535 
  536                         size = phys_avail[i + 1] - phys_avail[i];
  537                         printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
  538                             (uintmax_t) phys_avail[i],
  539                             (uintmax_t) phys_avail[i + 1] - 1,
  540                             (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
  541                 }
  542                 printf("Maxmem is 0x%0jx\n", ptoa((uintmax_t)Maxmem));
  543         }
  544         /*
  545          * Steal the message buffer from the beginning of memory.
  546          */
  547         msgbufp = (struct msgbuf *)pmap_steal_memory(msgbufsize);
  548         msgbufinit(msgbufp, msgbufsize);
  549 
  550         /*
  551          * Steal thread0 kstack.
  552          */
  553         kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
  554 
  555         virtual_avail = VM_MIN_KERNEL_ADDRESS;
  556         virtual_end = VM_MAX_KERNEL_ADDRESS;
  557 
  558 #ifdef SMP
  559         /*
  560          * Steal some virtual address space to map the pcpu area.
  561          */
  562         virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
  563         pcpup = (struct pcpu *)virtual_avail;
  564         virtual_avail += PAGE_SIZE * 2;
  565 
  566         /*
  567          * Initialize the wired TLB entry mapping the pcpu region for
  568          * the BSP at 'pcpup'. Up until this point we were operating
  569          * with the 'pcpup' for the BSP pointing to a virtual address
  570          * in KSEG0 so there was no need for a TLB mapping.
  571          */
  572         mips_pcpu_tlb_init(PCPU_ADDR(0));
  573 
  574         if (bootverbose)
  575                 printf("pcpu is available at virtual address %p.\n", pcpup);
  576 #endif
  577 
  578         if (need_local_mappings)
  579                 pmap_alloc_lmem_map();
  580         pmap_create_kernel_pagetable();
  581         pmap_max_asid = VMNUM_PIDS;
  582         mips_wr_entryhi(0);
  583         mips_wr_pagemask(0);
  584 }
  585 
  586 /*
  587  * Initialize a vm_page's machine-dependent fields.
  588  */
  589 void
  590 pmap_page_init(vm_page_t m)
  591 {
  592 
  593         TAILQ_INIT(&m->md.pv_list);
  594         m->md.pv_list_count = 0;
  595         m->md.pv_flags = 0;
  596 }
  597 
  598 /*
  599  *      Initialize the pmap module.
  600  *      Called by vm_init, to initialize any structures that the pmap
  601  *      system needs to map virtual memory.
  602  *      pmap_init has been enhanced to support in a fairly consistant
  603  *      way, discontiguous physical memory.
  604  */
  605 void
  606 pmap_init(void)
  607 {
  608 
  609         /*
  610          * Initialize the address space (zone) for the pv entries.  Set a
  611          * high water mark so that the system can recover from excessive
  612          * numbers of pv entries.
  613          */
  614         pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
  615             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
  616         pv_entry_max = PMAP_SHPGPERPROC * maxproc + cnt.v_page_count;
  617         pv_entry_high_water = 9 * (pv_entry_max / 10);
  618         uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
  619 }
  620 
  621 /***************************************************
  622  * Low level helper routines.....
  623  ***************************************************/
  624 
  625 static __inline void
  626 pmap_invalidate_all_local(pmap_t pmap)
  627 {
  628         u_int cpuid;
  629 
  630         cpuid = PCPU_GET(cpuid);
  631 
  632         if (pmap == kernel_pmap) {
  633                 tlb_invalidate_all();
  634                 return;
  635         }
  636         if (CPU_ISSET(cpuid, &pmap->pm_active))
  637                 tlb_invalidate_all_user(pmap);
  638         else
  639                 pmap->pm_asid[cpuid].gen = 0;
  640 }
  641 
  642 #ifdef SMP
  643 static void
  644 pmap_invalidate_all(pmap_t pmap)
  645 {
  646 
  647         smp_rendezvous(0, pmap_invalidate_all_action, 0, pmap);
  648 }
  649 
  650 static void
  651 pmap_invalidate_all_action(void *arg)
  652 {
  653 
  654         pmap_invalidate_all_local((pmap_t)arg);
  655 }
  656 #else
  657 static void
  658 pmap_invalidate_all(pmap_t pmap)
  659 {
  660 
  661         pmap_invalidate_all_local(pmap);
  662 }
  663 #endif
  664 
  665 static __inline void
  666 pmap_invalidate_page_local(pmap_t pmap, vm_offset_t va)
  667 {
  668         u_int cpuid;
  669 
  670         cpuid = PCPU_GET(cpuid);
  671 
  672         if (is_kernel_pmap(pmap)) {
  673                 tlb_invalidate_address(pmap, va);
  674                 return;
  675         }
  676         if (pmap->pm_asid[cpuid].gen != PCPU_GET(asid_generation))
  677                 return;
  678         else if (!CPU_ISSET(cpuid, &pmap->pm_active)) {
  679                 pmap->pm_asid[cpuid].gen = 0;
  680                 return;
  681         }
  682         tlb_invalidate_address(pmap, va);
  683 }
  684 
  685 #ifdef SMP
  686 struct pmap_invalidate_page_arg {
  687         pmap_t pmap;
  688         vm_offset_t va;
  689 };
  690 
  691 static void
  692 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  693 {
  694         struct pmap_invalidate_page_arg arg;
  695 
  696         arg.pmap = pmap;
  697         arg.va = va;
  698         smp_rendezvous(0, pmap_invalidate_page_action, 0, &arg);
  699 }
  700 
  701 static void
  702 pmap_invalidate_page_action(void *arg)
  703 {
  704         struct pmap_invalidate_page_arg *p = arg;
  705 
  706         pmap_invalidate_page_local(p->pmap, p->va);
  707 }
  708 #else
  709 static void
  710 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  711 {
  712 
  713         pmap_invalidate_page_local(pmap, va);
  714 }
  715 #endif
  716 
  717 static __inline void
  718 pmap_update_page_local(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
  719 {
  720         u_int cpuid;
  721 
  722         cpuid = PCPU_GET(cpuid);
  723 
  724         if (is_kernel_pmap(pmap)) {
  725                 tlb_update(pmap, va, pte);
  726                 return;
  727         }
  728         if (pmap->pm_asid[cpuid].gen != PCPU_GET(asid_generation))
  729                 return;
  730         else if (!CPU_ISSET(cpuid, &pmap->pm_active)) {
  731                 pmap->pm_asid[cpuid].gen = 0;
  732                 return;
  733         }
  734         tlb_update(pmap, va, pte);
  735 }
  736 
  737 #ifdef SMP
  738 struct pmap_update_page_arg {
  739         pmap_t pmap;
  740         vm_offset_t va;
  741         pt_entry_t pte;
  742 };
  743 
  744 static void
  745 pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
  746 {
  747         struct pmap_update_page_arg arg;
  748 
  749         arg.pmap = pmap;
  750         arg.va = va;
  751         arg.pte = pte;
  752         smp_rendezvous(0, pmap_update_page_action, 0, &arg);
  753 }
  754 
  755 static void
  756 pmap_update_page_action(void *arg)
  757 {
  758         struct pmap_update_page_arg *p = arg;
  759 
  760         pmap_update_page_local(p->pmap, p->va, p->pte);
  761 }
  762 #else
  763 static void
  764 pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
  765 {
  766 
  767         pmap_update_page_local(pmap, va, pte);
  768 }
  769 #endif
  770 
  771 /*
  772  *      Routine:        pmap_extract
  773  *      Function:
  774  *              Extract the physical page address associated
  775  *              with the given map/virtual_address pair.
  776  */
  777 vm_paddr_t
  778 pmap_extract(pmap_t pmap, vm_offset_t va)
  779 {
  780         pt_entry_t *pte;
  781         vm_offset_t retval = 0;
  782 
  783         PMAP_LOCK(pmap);
  784         pte = pmap_pte(pmap, va);
  785         if (pte) {
  786                 retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
  787         }
  788         PMAP_UNLOCK(pmap);
  789         return (retval);
  790 }
  791 
  792 /*
  793  *      Routine:        pmap_extract_and_hold
  794  *      Function:
  795  *              Atomically extract and hold the physical page
  796  *              with the given pmap and virtual address pair
  797  *              if that mapping permits the given protection.
  798  */
  799 vm_page_t
  800 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
  801 {
  802         pt_entry_t pte;
  803         vm_page_t m;
  804         vm_paddr_t pa;
  805 
  806         m = NULL;
  807         pa = 0;
  808         PMAP_LOCK(pmap);
  809 retry:
  810         pte = *pmap_pte(pmap, va);
  811         if (pte != 0 && pte_test(&pte, PTE_V) &&
  812             (pte_test(&pte, PTE_D) || (prot & VM_PROT_WRITE) == 0)) {
  813                 if (vm_page_pa_tryrelock(pmap, TLBLO_PTE_TO_PA(pte), &pa))
  814                         goto retry;
  815 
  816                 m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(pte));
  817                 vm_page_hold(m);
  818         }
  819         PA_UNLOCK_COND(pa);
  820         PMAP_UNLOCK(pmap);
  821         return (m);
  822 }
  823 
  824 /***************************************************
  825  * Low level mapping routines.....
  826  ***************************************************/
  827 
  828 /*
  829  * add a wired page to the kva
  830  */
  831 void
  832 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int attr)
  833 {
  834         pt_entry_t *pte;
  835         pt_entry_t opte, npte;
  836 
  837 #ifdef PMAP_DEBUG
  838         printf("pmap_kenter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
  839 #endif
  840 
  841         pte = pmap_pte(kernel_pmap, va);
  842         opte = *pte;
  843         npte = TLBLO_PA_TO_PFN(pa) | attr | PTE_D | PTE_V | PTE_G;
  844         *pte = npte;
  845         if (pte_test(&opte, PTE_V) && opte != npte)
  846                 pmap_update_page(kernel_pmap, va, npte);
  847 }
  848 
  849 void
  850 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
  851 {
  852 
  853         KASSERT(is_cacheable_mem(pa),
  854                 ("pmap_kenter: memory at 0x%lx is not cacheable", (u_long)pa));
  855 
  856         pmap_kenter_attr(va, pa, PTE_C_CACHE);
  857 }
  858 
  859 /*
  860  * remove a page from the kernel pagetables
  861  */
  862  /* PMAP_INLINE */ void
  863 pmap_kremove(vm_offset_t va)
  864 {
  865         pt_entry_t *pte;
  866 
  867         /*
  868          * Write back all caches from the page being destroyed
  869          */
  870         mips_dcache_wbinv_range_index(va, PAGE_SIZE);
  871 
  872         pte = pmap_pte(kernel_pmap, va);
  873         *pte = PTE_G;
  874         pmap_invalidate_page(kernel_pmap, va);
  875 }
  876 
  877 /*
  878  *      Used to map a range of physical addresses into kernel
  879  *      virtual address space.
  880  *
  881  *      The value passed in '*virt' is a suggested virtual address for
  882  *      the mapping. Architectures which can support a direct-mapped
  883  *      physical to virtual region can return the appropriate address
  884  *      within that region, leaving '*virt' unchanged. Other
  885  *      architectures should map the pages starting at '*virt' and
  886  *      update '*virt' with the first usable address after the mapped
  887  *      region.
  888  *
  889  *      Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
  890  */
  891 vm_offset_t
  892 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
  893 {
  894         vm_offset_t va, sva;
  895 
  896         if (MIPS_DIRECT_MAPPABLE(end - 1))
  897                 return (MIPS_PHYS_TO_DIRECT(start));
  898 
  899         va = sva = *virt;
  900         while (start < end) {
  901                 pmap_kenter(va, start);
  902                 va += PAGE_SIZE;
  903                 start += PAGE_SIZE;
  904         }
  905         *virt = va;
  906         return (sva);
  907 }
  908 
  909 /*
  910  * Add a list of wired pages to the kva
  911  * this routine is only used for temporary
  912  * kernel mappings that do not need to have
  913  * page modification or references recorded.
  914  * Note that old mappings are simply written
  915  * over.  The page *must* be wired.
  916  */
  917 void
  918 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
  919 {
  920         int i;
  921         vm_offset_t origva = va;
  922 
  923         for (i = 0; i < count; i++) {
  924                 pmap_flush_pvcache(m[i]);
  925                 pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
  926                 va += PAGE_SIZE;
  927         }
  928 
  929         mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
  930 }
  931 
  932 /*
  933  * this routine jerks page mappings from the
  934  * kernel -- it is meant only for temporary mappings.
  935  */
  936 void
  937 pmap_qremove(vm_offset_t va, int count)
  938 {
  939         /*
  940          * No need to wb/inv caches here, 
  941          *   pmap_kremove will do it for us
  942          */
  943 
  944         while (count-- > 0) {
  945                 pmap_kremove(va);
  946                 va += PAGE_SIZE;
  947         }
  948 }
  949 
  950 /***************************************************
  951  * Page table page management routines.....
  952  ***************************************************/
  953 
  954 /*
  955  * Decrements a page table page's wire count, which is used to record the
  956  * number of valid page table entries within the page.  If the wire count
  957  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
  958  * page table page was unmapped and FALSE otherwise.
  959  */
  960 static PMAP_INLINE boolean_t
  961 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
  962 {
  963 
  964         --m->wire_count;
  965         if (m->wire_count == 0) {
  966                 _pmap_unwire_ptp(pmap, va, m);
  967                 return (TRUE);
  968         } else
  969                 return (FALSE);
  970 }
  971 
  972 static void
  973 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
  974 {
  975         pd_entry_t *pde;
  976 
  977         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
  978         /*
  979          * unmap the page table page
  980          */
  981 #ifdef __mips_n64
  982         if (m->pindex < NUPDE)
  983                 pde = pmap_pde(pmap, va);
  984         else
  985                 pde = pmap_segmap(pmap, va);
  986 #else
  987         pde = pmap_pde(pmap, va);
  988 #endif
  989         *pde = 0;
  990         pmap->pm_stats.resident_count--;
  991 
  992 #ifdef __mips_n64
  993         if (m->pindex < NUPDE) {
  994                 pd_entry_t *pdp;
  995                 vm_page_t pdpg;
  996 
  997                 /*
  998                  * Recursively decrement next level pagetable refcount
  999                  */
 1000                 pdp = (pd_entry_t *)*pmap_segmap(pmap, va);
 1001                 pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp));
 1002                 pmap_unwire_ptp(pmap, va, pdpg);
 1003         }
 1004 #endif
 1005         if (pmap->pm_ptphint == m)
 1006                 pmap->pm_ptphint = NULL;
 1007 
 1008         /*
 1009          * If the page is finally unwired, simply free it.
 1010          */
 1011         vm_page_free_zero(m);
 1012         atomic_subtract_int(&cnt.v_wire_count, 1);
 1013 }
 1014 
 1015 /*
 1016  * After removing a page table entry, this routine is used to
 1017  * conditionally free the page, and manage the hold/wire counts.
 1018  */
 1019 static int
 1020 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
 1021 {
 1022         unsigned ptepindex;
 1023         pd_entry_t pteva;
 1024 
 1025         if (va >= VM_MAXUSER_ADDRESS)
 1026                 return (0);
 1027 
 1028         if (mpte == NULL) {
 1029                 ptepindex = pmap_pde_pindex(va);
 1030                 if (pmap->pm_ptphint &&
 1031                     (pmap->pm_ptphint->pindex == ptepindex)) {
 1032                         mpte = pmap->pm_ptphint;
 1033                 } else {
 1034                         pteva = *pmap_pde(pmap, va);
 1035                         mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pteva));
 1036                         pmap->pm_ptphint = mpte;
 1037                 }
 1038         }
 1039         return (pmap_unwire_ptp(pmap, va, mpte));
 1040 }
 1041 
 1042 void
 1043 pmap_pinit0(pmap_t pmap)
 1044 {
 1045         int i;
 1046 
 1047         PMAP_LOCK_INIT(pmap);
 1048         pmap->pm_segtab = kernel_segmap;
 1049         CPU_ZERO(&pmap->pm_active);
 1050         pmap->pm_ptphint = NULL;
 1051         for (i = 0; i < MAXCPU; i++) {
 1052                 pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
 1053                 pmap->pm_asid[i].gen = 0;
 1054         }
 1055         PCPU_SET(curpmap, pmap);
 1056         TAILQ_INIT(&pmap->pm_pvlist);
 1057         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1058 }
 1059 
 1060 void
 1061 pmap_grow_direct_page_cache()
 1062 {
 1063 
 1064 #ifdef __mips_n64
 1065         vm_contig_grow_cache(3, 0, MIPS_XKPHYS_LARGEST_PHYS);
 1066 #else
 1067         vm_contig_grow_cache(3, 0, MIPS_KSEG0_LARGEST_PHYS);
 1068 #endif
 1069 }
 1070 
 1071 vm_page_t
 1072 pmap_alloc_direct_page(unsigned int index, int req)
 1073 {
 1074         vm_page_t m;
 1075 
 1076         m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, req);
 1077         if (m == NULL)
 1078                 return (NULL);
 1079 
 1080         if ((m->flags & PG_ZERO) == 0)
 1081                 pmap_zero_page(m);
 1082 
 1083         m->pindex = index;
 1084         atomic_add_int(&cnt.v_wire_count, 1);
 1085         m->wire_count = 1;
 1086         return (m);
 1087 }
 1088 
 1089 /*
 1090  * Initialize a preallocated and zeroed pmap structure,
 1091  * such as one in a vmspace structure.
 1092  */
 1093 int
 1094 pmap_pinit(pmap_t pmap)
 1095 {
 1096         vm_offset_t ptdva;
 1097         vm_page_t ptdpg;
 1098         int i;
 1099 
 1100         PMAP_LOCK_INIT(pmap);
 1101 
 1102         /*
 1103          * allocate the page directory page
 1104          */
 1105         while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, VM_ALLOC_NORMAL)) == NULL)
 1106                pmap_grow_direct_page_cache();
 1107 
 1108         ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
 1109         pmap->pm_segtab = (pd_entry_t *)ptdva;
 1110         CPU_ZERO(&pmap->pm_active);
 1111         pmap->pm_ptphint = NULL;
 1112         for (i = 0; i < MAXCPU; i++) {
 1113                 pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
 1114                 pmap->pm_asid[i].gen = 0;
 1115         }
 1116         TAILQ_INIT(&pmap->pm_pvlist);
 1117         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1118 
 1119         return (1);
 1120 }
 1121 
 1122 /*
 1123  * this routine is called if the page table page is not
 1124  * mapped correctly.
 1125  */
 1126 static vm_page_t
 1127 _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
 1128 {
 1129         vm_offset_t pageva;
 1130         vm_page_t m;
 1131 
 1132         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1133             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1134             ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1135 
 1136         /*
 1137          * Find or fabricate a new pagetable page
 1138          */
 1139         if ((m = pmap_alloc_direct_page(ptepindex, VM_ALLOC_NORMAL)) == NULL) {
 1140                 if (flags & M_WAITOK) {
 1141                         PMAP_UNLOCK(pmap);
 1142                         vm_page_unlock_queues();
 1143                         pmap_grow_direct_page_cache();
 1144                         vm_page_lock_queues();
 1145                         PMAP_LOCK(pmap);
 1146                 }
 1147 
 1148                 /*
 1149                  * Indicate the need to retry.  While waiting, the page
 1150                  * table page may have been allocated.
 1151                  */
 1152                 return (NULL);
 1153         }
 1154 
 1155         /*
 1156          * Map the pagetable page into the process address space, if it
 1157          * isn't already there.
 1158          */
 1159         pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
 1160 
 1161 #ifdef __mips_n64
 1162         if (ptepindex >= NUPDE) {
 1163                 pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva;
 1164         } else {
 1165                 pd_entry_t *pdep, *pde;
 1166                 int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT);
 1167                 int pdeindex = ptepindex & (NPDEPG - 1);
 1168                 vm_page_t pg;
 1169                 
 1170                 pdep = &pmap->pm_segtab[segindex];
 1171                 if (*pdep == NULL) { 
 1172                         /* recurse for allocating page dir */
 1173                         if (_pmap_allocpte(pmap, NUPDE + segindex, 
 1174                             flags) == NULL) {
 1175                                 /* alloc failed, release current */
 1176                                 --m->wire_count;
 1177                                 atomic_subtract_int(&cnt.v_wire_count, 1);
 1178                                 vm_page_free_zero(m);
 1179                                 return (NULL);
 1180                         }
 1181                 } else {
 1182                         pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep));
 1183                         pg->wire_count++;
 1184                 }
 1185                 /* Next level entry */
 1186                 pde = (pd_entry_t *)*pdep;
 1187                 pde[pdeindex] = (pd_entry_t)pageva;
 1188                 pmap->pm_ptphint = m;
 1189         }
 1190 #else
 1191         pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva;
 1192 #endif
 1193         pmap->pm_stats.resident_count++;
 1194 
 1195         /*
 1196          * Set the page table hint
 1197          */
 1198         pmap->pm_ptphint = m;
 1199         return (m);
 1200 }
 1201 
 1202 static vm_page_t
 1203 pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
 1204 {
 1205         unsigned ptepindex;
 1206         pd_entry_t *pde;
 1207         vm_page_t m;
 1208 
 1209         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1210             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1211             ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1212 
 1213         /*
 1214          * Calculate pagetable page index
 1215          */
 1216         ptepindex = pmap_pde_pindex(va);
 1217 retry:
 1218         /*
 1219          * Get the page directory entry
 1220          */
 1221         pde = pmap_pde(pmap, va);
 1222 
 1223         /*
 1224          * If the page table page is mapped, we just increment the hold
 1225          * count, and activate it.
 1226          */
 1227         if (pde != NULL && *pde != NULL) {
 1228                 /*
 1229                  * In order to get the page table page, try the hint first.
 1230                  */
 1231                 if (pmap->pm_ptphint &&
 1232                     (pmap->pm_ptphint->pindex == ptepindex)) {
 1233                         m = pmap->pm_ptphint;
 1234                 } else {
 1235                         m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde));
 1236                         pmap->pm_ptphint = m;
 1237                 }
 1238                 m->wire_count++;
 1239         } else {
 1240                 /*
 1241                  * Here if the pte page isn't mapped, or if it has been
 1242                  * deallocated.
 1243                  */
 1244                 m = _pmap_allocpte(pmap, ptepindex, flags);
 1245                 if (m == NULL && (flags & M_WAITOK))
 1246                         goto retry;
 1247         }
 1248         return (m);
 1249 }
 1250 
 1251 
 1252 /***************************************************
 1253 * Pmap allocation/deallocation routines.
 1254  ***************************************************/
 1255 /*
 1256  *  Revision 1.397
 1257  *  - Merged pmap_release and pmap_release_free_page.  When pmap_release is
 1258  *    called only the page directory page(s) can be left in the pmap pte
 1259  *    object, since all page table pages will have been freed by
 1260  *    pmap_remove_pages and pmap_remove.  In addition, there can only be one
 1261  *    reference to the pmap and the page directory is wired, so the page(s)
 1262  *    can never be busy.  So all there is to do is clear the magic mappings
 1263  *    from the page directory and free the page(s).
 1264  */
 1265 
 1266 
 1267 /*
 1268  * Release any resources held by the given physical map.
 1269  * Called when a pmap initialized by pmap_pinit is being released.
 1270  * Should only be called if the map contains no valid mappings.
 1271  */
 1272 void
 1273 pmap_release(pmap_t pmap)
 1274 {
 1275         vm_offset_t ptdva;
 1276         vm_page_t ptdpg;
 1277 
 1278         KASSERT(pmap->pm_stats.resident_count == 0,
 1279             ("pmap_release: pmap resident count %ld != 0",
 1280             pmap->pm_stats.resident_count));
 1281 
 1282         ptdva = (vm_offset_t)pmap->pm_segtab;
 1283         ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva));
 1284 
 1285         ptdpg->wire_count--;
 1286         atomic_subtract_int(&cnt.v_wire_count, 1);
 1287         vm_page_free_zero(ptdpg);
 1288         PMAP_LOCK_DESTROY(pmap);
 1289 }
 1290 
 1291 /*
 1292  * grow the number of kernel page table entries, if needed
 1293  */
 1294 void
 1295 pmap_growkernel(vm_offset_t addr)
 1296 {
 1297         vm_page_t nkpg;
 1298         pd_entry_t *pde, *pdpe;
 1299         pt_entry_t *pte;
 1300         int i;
 1301 
 1302         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 1303         addr = roundup2(addr, NBSEG);
 1304         if (addr - 1 >= kernel_map->max_offset)
 1305                 addr = kernel_map->max_offset;
 1306         while (kernel_vm_end < addr) {
 1307                 pdpe = pmap_segmap(kernel_pmap, kernel_vm_end);
 1308 #ifdef __mips_n64
 1309                 if (*pdpe == 0) {
 1310                         /* new intermediate page table entry */
 1311                         nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
 1312                         if (nkpg == NULL)
 1313                                 panic("pmap_growkernel: no memory to grow kernel");
 1314                         *pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
 1315                         continue; /* try again */
 1316                 }
 1317 #endif
 1318                 pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
 1319                 if (*pde != 0) {
 1320                         kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 1321                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1322                                 kernel_vm_end = kernel_map->max_offset;
 1323                                 break;
 1324                         }
 1325                         continue;
 1326                 }
 1327 
 1328                 /*
 1329                  * This index is bogus, but out of the way
 1330                  */
 1331                 nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
 1332                 if (!nkpg)
 1333                         panic("pmap_growkernel: no memory to grow kernel");
 1334                 nkpt++;
 1335                 *pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
 1336 
 1337                 /*
 1338                  * The R[4-7]?00 stores only one copy of the Global bit in
 1339                  * the translation lookaside buffer for each 2 page entry.
 1340                  * Thus invalid entrys must have the Global bit set so when
 1341                  * Entry LO and Entry HI G bits are anded together they will
 1342                  * produce a global bit to store in the tlb.
 1343                  */
 1344                 pte = (pt_entry_t *)*pde;
 1345                 for (i = 0; i < NPTEPG; i++)
 1346                         pte[i] = PTE_G;
 1347 
 1348                 kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 1349                 if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1350                         kernel_vm_end = kernel_map->max_offset;
 1351                         break;
 1352                 }
 1353         }
 1354 }
 1355 
 1356 /***************************************************
 1357 * page management routines.
 1358  ***************************************************/
 1359 
 1360 /*
 1361  * free the pv_entry back to the free list
 1362  */
 1363 static PMAP_INLINE void
 1364 free_pv_entry(pv_entry_t pv)
 1365 {
 1366 
 1367         pv_entry_count--;
 1368         uma_zfree(pvzone, pv);
 1369 }
 1370 
 1371 /*
 1372  * get a new pv_entry, allocating a block from the system
 1373  * when needed.
 1374  * the memory allocation is performed bypassing the malloc code
 1375  * because of the possibility of allocations at interrupt time.
 1376  */
 1377 static pv_entry_t
 1378 get_pv_entry(pmap_t locked_pmap)
 1379 {
 1380         static const struct timeval printinterval = { 60, 0 };
 1381         static struct timeval lastprint;
 1382         struct vpgqueues *vpq;
 1383         pt_entry_t *pte, oldpte;
 1384         pmap_t pmap;
 1385         pv_entry_t allocated_pv, next_pv, pv;
 1386         vm_offset_t va;
 1387         vm_page_t m;
 1388 
 1389         PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
 1390         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1391         allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
 1392         if (allocated_pv != NULL) {
 1393                 pv_entry_count++;
 1394                 if (pv_entry_count > pv_entry_high_water)
 1395                         pagedaemon_wakeup();
 1396                 else
 1397                         return (allocated_pv);
 1398         }
 1399         /*
 1400          * Reclaim pv entries: At first, destroy mappings to inactive
 1401          * pages.  After that, if a pv entry is still needed, destroy
 1402          * mappings to active pages.
 1403          */
 1404         if (ratecheck(&lastprint, &printinterval))
 1405                 printf("Approaching the limit on PV entries, "
 1406                     "increase the vm.pmap.shpgperproc tunable.\n");
 1407         vpq = &vm_page_queues[PQ_INACTIVE];
 1408 retry:
 1409         TAILQ_FOREACH(m, &vpq->pl, pageq) {
 1410                 if ((m->flags & PG_MARKER) != 0 || m->hold_count || m->busy)
 1411                         continue;
 1412                 TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
 1413                         va = pv->pv_va;
 1414                         pmap = pv->pv_pmap;
 1415                         /* Avoid deadlock and lock recursion. */
 1416                         if (pmap > locked_pmap)
 1417                                 PMAP_LOCK(pmap);
 1418                         else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
 1419                                 continue;
 1420                         pmap->pm_stats.resident_count--;
 1421                         pte = pmap_pte(pmap, va);
 1422                         KASSERT(pte != NULL, ("pte"));
 1423                         oldpte = *pte;
 1424                         if (is_kernel_pmap(pmap))
 1425                                 *pte = PTE_G;
 1426                         else
 1427                                 *pte = 0;
 1428                         KASSERT(!pte_test(&oldpte, PTE_W),
 1429                             ("wired pte for unwired page"));
 1430                         if (m->md.pv_flags & PV_TABLE_REF)
 1431                                 vm_page_aflag_set(m, PGA_REFERENCED);
 1432                         if (pte_test(&oldpte, PTE_D))
 1433                                 vm_page_dirty(m);
 1434                         pmap_invalidate_page(pmap, va);
 1435                         TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
 1436                         m->md.pv_list_count--;
 1437                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1438                         pmap_unuse_pt(pmap, va, pv->pv_ptem);
 1439                         if (pmap != locked_pmap)
 1440                                 PMAP_UNLOCK(pmap);
 1441                         if (allocated_pv == NULL)
 1442                                 allocated_pv = pv;
 1443                         else
 1444                                 free_pv_entry(pv);
 1445                 }
 1446                 if (TAILQ_EMPTY(&m->md.pv_list)) {
 1447                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 1448                         m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
 1449                 }
 1450         }
 1451         if (allocated_pv == NULL) {
 1452                 if (vpq == &vm_page_queues[PQ_INACTIVE]) {
 1453                         vpq = &vm_page_queues[PQ_ACTIVE];
 1454                         goto retry;
 1455                 }
 1456                 panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
 1457         }
 1458         return (allocated_pv);
 1459 }
 1460 
 1461 /*
 1462  *  Revision 1.370
 1463  *
 1464  *  Move pmap_collect() out of the machine-dependent code, rename it
 1465  *  to reflect its new location, and add page queue and flag locking.
 1466  *
 1467  *  Notes: (1) alpha, i386, and ia64 had identical implementations
 1468  *  of pmap_collect() in terms of machine-independent interfaces;
 1469  *  (2) sparc64 doesn't require it; (3) powerpc had it as a TODO.
 1470  *
 1471  *  MIPS implementation was identical to alpha [Junos 8.2]
 1472  */
 1473 
 1474 /*
 1475  * If it is the first entry on the list, it is actually
 1476  * in the header and we must copy the following entry up
 1477  * to the header.  Otherwise we must search the list for
 1478  * the entry.  In either case we free the now unused entry.
 1479  */
 1480 
 1481 static pv_entry_t
 1482 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 1483 {
 1484         pv_entry_t pv;
 1485 
 1486         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1487         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1488         if (pvh->pv_list_count < pmap->pm_stats.resident_count) {
 1489                 TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
 1490                         if (pmap == pv->pv_pmap && va == pv->pv_va)
 1491                                 break;
 1492                 }
 1493         } else {
 1494                 TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
 1495                         if (va == pv->pv_va)
 1496                                 break;
 1497                 }
 1498         }
 1499         if (pv != NULL) {
 1500                 TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
 1501                 pvh->pv_list_count--;
 1502                 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
 1503         }
 1504         return (pv);
 1505 }
 1506 
 1507 static void
 1508 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 1509 {
 1510         pv_entry_t pv;
 1511 
 1512         pv = pmap_pvh_remove(pvh, pmap, va);
 1513         KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
 1514              (u_long)VM_PAGE_TO_PHYS(member2struct(vm_page, md, pvh)),
 1515              (u_long)va));
 1516         free_pv_entry(pv);
 1517 }
 1518 
 1519 static void
 1520 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
 1521 {
 1522 
 1523         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1524         pmap_pvh_free(&m->md, pmap, va);
 1525         if (TAILQ_EMPTY(&m->md.pv_list))
 1526                 vm_page_aflag_clear(m, PGA_WRITEABLE);
 1527 }
 1528 
 1529 /*
 1530  * Conditionally create a pv entry.
 1531  */
 1532 static boolean_t
 1533 pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
 1534     vm_page_t m)
 1535 {
 1536         pv_entry_t pv;
 1537 
 1538         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1539         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1540         if (pv_entry_count < pv_entry_high_water && 
 1541             (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) {
 1542                 pv_entry_count++;
 1543                 pv->pv_va = va;
 1544                 pv->pv_pmap = pmap;
 1545                 pv->pv_ptem = mpte;
 1546                 TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
 1547                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 1548                 m->md.pv_list_count++;
 1549                 return (TRUE);
 1550         } else
 1551                 return (FALSE);
 1552 }
 1553 
 1554 /*
 1555  * pmap_remove_pte: do the things to unmap a page in a process
 1556  */
 1557 static int
 1558 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
 1559 {
 1560         pt_entry_t oldpte;
 1561         vm_page_t m;
 1562         vm_paddr_t pa;
 1563 
 1564         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1565         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1566 
 1567         oldpte = *ptq;
 1568         if (is_kernel_pmap(pmap))
 1569                 *ptq = PTE_G;
 1570         else
 1571                 *ptq = 0;
 1572 
 1573         if (pte_test(&oldpte, PTE_W))
 1574                 pmap->pm_stats.wired_count -= 1;
 1575 
 1576         pmap->pm_stats.resident_count -= 1;
 1577         pa = TLBLO_PTE_TO_PA(oldpte);
 1578 
 1579         if (page_is_managed(pa)) {
 1580                 m = PHYS_TO_VM_PAGE(pa);
 1581                 if (pte_test(&oldpte, PTE_D)) {
 1582                         KASSERT(!pte_test(&oldpte, PTE_RO),
 1583                             ("%s: modified page not writable: va: %p, pte: %#jx",
 1584                             __func__, (void *)va, (uintmax_t)oldpte));
 1585                         vm_page_dirty(m);
 1586                 }
 1587                 if (m->md.pv_flags & PV_TABLE_REF)
 1588                         vm_page_aflag_set(m, PGA_REFERENCED);
 1589                 m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
 1590 
 1591                 pmap_remove_entry(pmap, m, va);
 1592         }
 1593         return (pmap_unuse_pt(pmap, va, NULL));
 1594 }
 1595 
 1596 /*
 1597  * Remove a single page from a process address space
 1598  */
 1599 static void
 1600 pmap_remove_page(struct pmap *pmap, vm_offset_t va)
 1601 {
 1602         pt_entry_t *ptq;
 1603 
 1604         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1605         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1606         ptq = pmap_pte(pmap, va);
 1607 
 1608         /*
 1609          * if there is no pte for this address, just skip it!!!
 1610          */
 1611         if (!ptq || !pte_test(ptq, PTE_V)) {
 1612                 return;
 1613         }
 1614 
 1615         /*
 1616          * Write back all caches from the page being destroyed
 1617          */
 1618         mips_dcache_wbinv_range_index(va, PAGE_SIZE);
 1619 
 1620         /*
 1621          * get a local va for mappings for this pmap.
 1622          */
 1623         (void)pmap_remove_pte(pmap, ptq, va);
 1624         pmap_invalidate_page(pmap, va);
 1625 
 1626         return;
 1627 }
 1628 
 1629 /*
 1630  *      Remove the given range of addresses from the specified map.
 1631  *
 1632  *      It is assumed that the start and end are properly
 1633  *      rounded to the page size.
 1634  */
 1635 void
 1636 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
 1637 {
 1638         vm_offset_t va_next;
 1639         pd_entry_t *pde, *pdpe;
 1640         pt_entry_t *pte;
 1641 
 1642         if (pmap == NULL)
 1643                 return;
 1644 
 1645         if (pmap->pm_stats.resident_count == 0)
 1646                 return;
 1647 
 1648         vm_page_lock_queues();
 1649         PMAP_LOCK(pmap);
 1650 
 1651         /*
 1652          * special handling of removing one page.  a very common operation
 1653          * and easy to short circuit some code.
 1654          */
 1655         if ((sva + PAGE_SIZE) == eva) {
 1656                 pmap_remove_page(pmap, sva);
 1657                 goto out;
 1658         }
 1659         for (; sva < eva; sva = va_next) {
 1660                 pdpe = pmap_segmap(pmap, sva);
 1661 #ifdef __mips_n64
 1662                 if (*pdpe == 0) {
 1663                         va_next = (sva + NBSEG) & ~SEGMASK;
 1664                         if (va_next < sva)
 1665                                 va_next = eva;
 1666                         continue;
 1667                 }
 1668 #endif
 1669                 va_next = (sva + NBPDR) & ~PDRMASK;
 1670                 if (va_next < sva)
 1671                         va_next = eva;
 1672 
 1673                 pde = pmap_pdpe_to_pde(pdpe, sva);
 1674                 if (*pde == 0)
 1675                         continue;
 1676                 if (va_next > eva)
 1677                         va_next = eva;
 1678                 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; 
 1679                     pte++, sva += PAGE_SIZE) {
 1680                         pmap_remove_page(pmap, sva);
 1681                 }
 1682         }
 1683 out:
 1684         vm_page_unlock_queues();
 1685         PMAP_UNLOCK(pmap);
 1686 }
 1687 
 1688 /*
 1689  *      Routine:        pmap_remove_all
 1690  *      Function:
 1691  *              Removes this physical page from
 1692  *              all physical maps in which it resides.
 1693  *              Reflects back modify bits to the pager.
 1694  *
 1695  *      Notes:
 1696  *              Original versions of this routine were very
 1697  *              inefficient because they iteratively called
 1698  *              pmap_remove (slow...)
 1699  */
 1700 
 1701 void
 1702 pmap_remove_all(vm_page_t m)
 1703 {
 1704         pv_entry_t pv;
 1705         pt_entry_t *pte, tpte;
 1706 
 1707         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1708             ("pmap_remove_all: page %p is not managed", m));
 1709         vm_page_lock_queues();
 1710 
 1711         if (m->md.pv_flags & PV_TABLE_REF)
 1712                 vm_page_aflag_set(m, PGA_REFERENCED);
 1713 
 1714         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 1715                 PMAP_LOCK(pv->pv_pmap);
 1716 
 1717                 /*
 1718                  * If it's last mapping writeback all caches from 
 1719                  * the page being destroyed
 1720                  */
 1721                 if (m->md.pv_list_count == 1) 
 1722                         mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
 1723 
 1724                 pv->pv_pmap->pm_stats.resident_count--;
 1725 
 1726                 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
 1727 
 1728                 tpte = *pte;
 1729                 if (is_kernel_pmap(pv->pv_pmap))
 1730                         *pte = PTE_G;
 1731                 else
 1732                         *pte = 0;
 1733 
 1734                 if (pte_test(&tpte, PTE_W))
 1735                         pv->pv_pmap->pm_stats.wired_count--;
 1736 
 1737                 /*
 1738                  * Update the vm_page_t clean and reference bits.
 1739                  */
 1740                 if (pte_test(&tpte, PTE_D)) {
 1741                         KASSERT(!pte_test(&tpte, PTE_RO),
 1742                             ("%s: modified page not writable: va: %p, pte: %#jx",
 1743                             __func__, (void *)pv->pv_va, (uintmax_t)tpte));
 1744                         vm_page_dirty(m);
 1745                 }
 1746                 pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
 1747 
 1748                 TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
 1749                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1750                 m->md.pv_list_count--;
 1751                 pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
 1752                 PMAP_UNLOCK(pv->pv_pmap);
 1753                 free_pv_entry(pv);
 1754         }
 1755 
 1756         vm_page_aflag_clear(m, PGA_WRITEABLE);
 1757         m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
 1758         vm_page_unlock_queues();
 1759 }
 1760 
 1761 /*
 1762  *      Set the physical protection on the
 1763  *      specified range of this map as requested.
 1764  */
 1765 void
 1766 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 1767 {
 1768         pt_entry_t *pte;
 1769         pd_entry_t *pde, *pdpe;
 1770         vm_offset_t va_next;
 1771 
 1772         if (pmap == NULL)
 1773                 return;
 1774 
 1775         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 1776                 pmap_remove(pmap, sva, eva);
 1777                 return;
 1778         }
 1779         if (prot & VM_PROT_WRITE)
 1780                 return;
 1781 
 1782         vm_page_lock_queues();
 1783         PMAP_LOCK(pmap);
 1784         for (; sva < eva; sva = va_next) {
 1785                 pt_entry_t pbits;
 1786                 vm_page_t m;
 1787                 vm_paddr_t pa;
 1788 
 1789                 pdpe = pmap_segmap(pmap, sva);
 1790 #ifdef __mips_n64
 1791                 if (*pdpe == 0) {
 1792                         va_next = (sva + NBSEG) & ~SEGMASK;
 1793                         if (va_next < sva)
 1794                                 va_next = eva;
 1795                         continue;
 1796                 }
 1797 #endif
 1798                 va_next = (sva + NBPDR) & ~PDRMASK;
 1799                 if (va_next < sva)
 1800                         va_next = eva;
 1801 
 1802                 pde = pmap_pdpe_to_pde(pdpe, sva);
 1803                 if (pde == NULL || *pde == NULL)
 1804                         continue;
 1805                 if (va_next > eva)
 1806                         va_next = eva;
 1807 
 1808                 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 1809                      sva += PAGE_SIZE) {
 1810 
 1811                         /* Skip invalid PTEs */
 1812                         if (!pte_test(pte, PTE_V))
 1813                                 continue;
 1814                         pbits = *pte;
 1815                         pa = TLBLO_PTE_TO_PA(pbits);
 1816                         if (page_is_managed(pa) && pte_test(&pbits, PTE_D)) {
 1817                                 m = PHYS_TO_VM_PAGE(pa);
 1818                                 vm_page_dirty(m);
 1819                                 m->md.pv_flags &= ~PV_TABLE_MOD;
 1820                         }
 1821                         pte_clear(&pbits, PTE_D);
 1822                         pte_set(&pbits, PTE_RO);
 1823                         
 1824                         if (pbits != *pte) {
 1825                                 *pte = pbits;
 1826                                 pmap_update_page(pmap, sva, pbits);
 1827                         }
 1828                 }
 1829         }
 1830         vm_page_unlock_queues();
 1831         PMAP_UNLOCK(pmap);
 1832 }
 1833 
 1834 /*
 1835  *      Insert the given physical page (p) at
 1836  *      the specified virtual address (v) in the
 1837  *      target physical map with the protection requested.
 1838  *
 1839  *      If specified, the page will be wired down, meaning
 1840  *      that the related pte can not be reclaimed.
 1841  *
 1842  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 1843  *      or lose information.  That is, this routine must actually
 1844  *      insert this page into the given map NOW.
 1845  */
 1846 void
 1847 pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
 1848     vm_prot_t prot, boolean_t wired)
 1849 {
 1850         vm_paddr_t pa, opa;
 1851         pt_entry_t *pte;
 1852         pt_entry_t origpte, newpte;
 1853         pv_entry_t pv;
 1854         vm_page_t mpte, om;
 1855         pt_entry_t rw = 0;
 1856 
 1857         if (pmap == NULL)
 1858                 return;
 1859 
 1860         va &= ~PAGE_MASK;
 1861         KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
 1862         KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0,
 1863             ("pmap_enter: page %p is not busy", m));
 1864 
 1865         mpte = NULL;
 1866 
 1867         vm_page_lock_queues();
 1868         PMAP_LOCK(pmap);
 1869 
 1870         /*
 1871          * In the case that a page table page is not resident, we are
 1872          * creating it here.
 1873          */
 1874         if (va < VM_MAXUSER_ADDRESS) {
 1875                 mpte = pmap_allocpte(pmap, va, M_WAITOK);
 1876         }
 1877         pte = pmap_pte(pmap, va);
 1878 
 1879         /*
 1880          * Page Directory table entry not valid, we need a new PT page
 1881          */
 1882         if (pte == NULL) {
 1883                 panic("pmap_enter: invalid page directory, pdir=%p, va=%p",
 1884                     (void *)pmap->pm_segtab, (void *)va);
 1885         }
 1886         pa = VM_PAGE_TO_PHYS(m);
 1887         om = NULL;
 1888         origpte = *pte;
 1889         opa = TLBLO_PTE_TO_PA(origpte);
 1890 
 1891         /*
 1892          * Mapping has not changed, must be protection or wiring change.
 1893          */
 1894         if (pte_test(&origpte, PTE_V) && opa == pa) {
 1895                 /*
 1896                  * Wiring change, just update stats. We don't worry about
 1897                  * wiring PT pages as they remain resident as long as there
 1898                  * are valid mappings in them. Hence, if a user page is
 1899                  * wired, the PT page will be also.
 1900                  */
 1901                 if (wired && !pte_test(&origpte, PTE_W))
 1902                         pmap->pm_stats.wired_count++;
 1903                 else if (!wired && pte_test(&origpte, PTE_W))
 1904                         pmap->pm_stats.wired_count--;
 1905 
 1906                 KASSERT(!pte_test(&origpte, PTE_D | PTE_RO),
 1907                     ("%s: modified page not writable: va: %p, pte: %#jx",
 1908                     __func__, (void *)va, (uintmax_t)origpte));
 1909 
 1910                 /*
 1911                  * Remove extra pte reference
 1912                  */
 1913                 if (mpte)
 1914                         mpte->wire_count--;
 1915 
 1916                 if (page_is_managed(opa)) {
 1917                         om = m;
 1918                 }
 1919                 goto validate;
 1920         }
 1921 
 1922         pv = NULL;
 1923 
 1924         /*
 1925          * Mapping has changed, invalidate old range and fall through to
 1926          * handle validating new mapping.
 1927          */
 1928         if (opa) {
 1929                 if (pte_test(&origpte, PTE_W))
 1930                         pmap->pm_stats.wired_count--;
 1931 
 1932                 if (page_is_managed(opa)) {
 1933                         om = PHYS_TO_VM_PAGE(opa);
 1934                         pv = pmap_pvh_remove(&om->md, pmap, va);
 1935                 }
 1936                 if (mpte != NULL) {
 1937                         mpte->wire_count--;
 1938                         KASSERT(mpte->wire_count > 0,
 1939                             ("pmap_enter: missing reference to page table page,"
 1940                             " va: %p", (void *)va));
 1941                 }
 1942         } else
 1943                 pmap->pm_stats.resident_count++;
 1944 
 1945         /*
 1946          * Enter on the PV list if part of our managed memory. Note that we
 1947          * raise IPL while manipulating pv_table since pmap_enter can be
 1948          * called at interrupt time.
 1949          */
 1950         if ((m->oflags & VPO_UNMANAGED) == 0) {
 1951                 KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
 1952                     ("pmap_enter: managed mapping within the clean submap"));
 1953                 if (pv == NULL)
 1954                         pv = get_pv_entry(pmap);
 1955                 pv->pv_va = va;
 1956                 pv->pv_pmap = pmap;
 1957                 pv->pv_ptem = mpte;
 1958                 TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
 1959                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 1960                 m->md.pv_list_count++;
 1961         } else if (pv != NULL)
 1962                 free_pv_entry(pv);
 1963 
 1964         /*
 1965          * Increment counters
 1966          */
 1967         if (wired)
 1968                 pmap->pm_stats.wired_count++;
 1969 
 1970 validate:
 1971         if ((access & VM_PROT_WRITE) != 0)
 1972                 m->md.pv_flags |= PV_TABLE_MOD | PV_TABLE_REF;
 1973         rw = init_pte_prot(va, m, prot);
 1974 
 1975 #ifdef PMAP_DEBUG
 1976         printf("pmap_enter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
 1977 #endif
 1978         /*
 1979          * Now validate mapping with desired protection/wiring.
 1980          */
 1981         newpte = TLBLO_PA_TO_PFN(pa) | rw | PTE_V;
 1982 
 1983         if (is_cacheable_mem(pa))
 1984                 newpte |= PTE_C_CACHE;
 1985         else
 1986                 newpte |= PTE_C_UNCACHED;
 1987 
 1988         if (wired)
 1989                 newpte |= PTE_W;
 1990 
 1991         if (is_kernel_pmap(pmap))
 1992                  newpte |= PTE_G;
 1993 
 1994         /*
 1995          * if the mapping or permission bits are different, we need to
 1996          * update the pte.
 1997          */
 1998         if (origpte != newpte) {
 1999                 if (pte_test(&origpte, PTE_V)) {
 2000                         *pte = newpte;
 2001                         if (page_is_managed(opa) && (opa != pa)) {
 2002                                 if (om->md.pv_flags & PV_TABLE_REF)
 2003                                         vm_page_aflag_set(om, PGA_REFERENCED);
 2004                                 om->md.pv_flags &=
 2005                                     ~(PV_TABLE_REF | PV_TABLE_MOD);
 2006                         }
 2007                         if (pte_test(&origpte, PTE_D)) {
 2008                                 KASSERT(!pte_test(&origpte, PTE_RO),
 2009                                     ("pmap_enter: modified page not writable:"
 2010                                     " va: %p, pte: %#jx", (void *)va, (uintmax_t)origpte));
 2011                                 if (page_is_managed(opa))
 2012                                         vm_page_dirty(om);
 2013                         }
 2014                         if (page_is_managed(opa) &&
 2015                             TAILQ_EMPTY(&om->md.pv_list))
 2016                                 vm_page_aflag_clear(om, PGA_WRITEABLE);
 2017                 } else {
 2018                         *pte = newpte;
 2019                 }
 2020         }
 2021         pmap_update_page(pmap, va, newpte);
 2022 
 2023         /*
 2024          * Sync I & D caches for executable pages.  Do this only if the
 2025          * target pmap belongs to the current process.  Otherwise, an
 2026          * unresolvable TLB miss may occur.
 2027          */
 2028         if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
 2029             (prot & VM_PROT_EXECUTE)) {
 2030                 mips_icache_sync_range(va, PAGE_SIZE);
 2031                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2032         }
 2033         vm_page_unlock_queues();
 2034         PMAP_UNLOCK(pmap);
 2035 }
 2036 
 2037 /*
 2038  * this code makes some *MAJOR* assumptions:
 2039  * 1. Current pmap & pmap exists.
 2040  * 2. Not wired.
 2041  * 3. Read access.
 2042  * 4. No page table pages.
 2043  * but is *MUCH* faster than pmap_enter...
 2044  */
 2045 
 2046 void
 2047 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 2048 {
 2049 
 2050         vm_page_lock_queues();
 2051         PMAP_LOCK(pmap);
 2052         (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
 2053         vm_page_unlock_queues();
 2054         PMAP_UNLOCK(pmap);
 2055 }
 2056 
 2057 static vm_page_t
 2058 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
 2059     vm_prot_t prot, vm_page_t mpte)
 2060 {
 2061         pt_entry_t *pte;
 2062         vm_paddr_t pa;
 2063 
 2064         KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
 2065             (m->oflags & VPO_UNMANAGED) != 0,
 2066             ("pmap_enter_quick_locked: managed mapping within the clean submap"));
 2067         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2068         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2069 
 2070         /*
 2071          * In the case that a page table page is not resident, we are
 2072          * creating it here.
 2073          */
 2074         if (va < VM_MAXUSER_ADDRESS) {
 2075                 pd_entry_t *pde;
 2076                 unsigned ptepindex;
 2077 
 2078                 /*
 2079                  * Calculate pagetable page index
 2080                  */
 2081                 ptepindex = pmap_pde_pindex(va);
 2082                 if (mpte && (mpte->pindex == ptepindex)) {
 2083                         mpte->wire_count++;
 2084                 } else {
 2085                         /*
 2086                          * Get the page directory entry
 2087                          */
 2088                         pde = pmap_pde(pmap, va);
 2089 
 2090                         /*
 2091                          * If the page table page is mapped, we just
 2092                          * increment the hold count, and activate it.
 2093                          */
 2094                         if (pde && *pde != 0) {
 2095                                 if (pmap->pm_ptphint &&
 2096                                     (pmap->pm_ptphint->pindex == ptepindex)) {
 2097                                         mpte = pmap->pm_ptphint;
 2098                                 } else {
 2099                                         mpte = PHYS_TO_VM_PAGE(
 2100                                                 MIPS_DIRECT_TO_PHYS(*pde));
 2101                                         pmap->pm_ptphint = mpte;
 2102                                 }
 2103                                 mpte->wire_count++;
 2104                         } else {
 2105                                 mpte = _pmap_allocpte(pmap, ptepindex,
 2106                                     M_NOWAIT);
 2107                                 if (mpte == NULL)
 2108                                         return (mpte);
 2109                         }
 2110                 }
 2111         } else {
 2112                 mpte = NULL;
 2113         }
 2114 
 2115         pte = pmap_pte(pmap, va);
 2116         if (pte_test(pte, PTE_V)) {
 2117                 if (mpte != NULL) {
 2118                         mpte->wire_count--;
 2119                         mpte = NULL;
 2120                 }
 2121                 return (mpte);
 2122         }
 2123 
 2124         /*
 2125          * Enter on the PV list if part of our managed memory.
 2126          */
 2127         if ((m->oflags & VPO_UNMANAGED) == 0 &&
 2128             !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
 2129                 if (mpte != NULL) {
 2130                         pmap_unwire_ptp(pmap, va, mpte);
 2131                         mpte = NULL;
 2132                 }
 2133                 return (mpte);
 2134         }
 2135 
 2136         /*
 2137          * Increment counters
 2138          */
 2139         pmap->pm_stats.resident_count++;
 2140 
 2141         pa = VM_PAGE_TO_PHYS(m);
 2142 
 2143         /*
 2144          * Now validate mapping with RO protection
 2145          */
 2146         *pte = TLBLO_PA_TO_PFN(pa) | PTE_V;
 2147 
 2148         if (is_cacheable_mem(pa))
 2149                 *pte |= PTE_C_CACHE;
 2150         else
 2151                 *pte |= PTE_C_UNCACHED;
 2152 
 2153         if (is_kernel_pmap(pmap))
 2154                 *pte |= PTE_G;
 2155         else {
 2156                 *pte |= PTE_RO;
 2157                 /*
 2158                  * Sync I & D caches.  Do this only if the target pmap
 2159                  * belongs to the current process.  Otherwise, an
 2160                  * unresolvable TLB miss may occur. */
 2161                 if (pmap == &curproc->p_vmspace->vm_pmap) {
 2162                         va &= ~PAGE_MASK;
 2163                         mips_icache_sync_range(va, PAGE_SIZE);
 2164                         mips_dcache_wbinv_range(va, PAGE_SIZE);
 2165                 }
 2166         }
 2167         return (mpte);
 2168 }
 2169 
 2170 /*
 2171  * Make a temporary mapping for a physical address.  This is only intended
 2172  * to be used for panic dumps.
 2173  *
 2174  * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
 2175  */
 2176 void *
 2177 pmap_kenter_temporary(vm_paddr_t pa, int i)
 2178 {
 2179         vm_offset_t va;
 2180 
 2181         if (i != 0)
 2182                 printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
 2183                     __func__);
 2184 
 2185         if (MIPS_DIRECT_MAPPABLE(pa)) {
 2186                 va = MIPS_PHYS_TO_DIRECT(pa);
 2187         } else {
 2188 #ifndef __mips_n64    /* XXX : to be converted to new style */
 2189                 int cpu;
 2190                 register_t intr;
 2191                 struct local_sysmaps *sysm;
 2192                 pt_entry_t *pte, npte;
 2193 
 2194                 /* If this is used other than for dumps, we may need to leave
 2195                  * interrupts disasbled on return. If crash dumps don't work when
 2196                  * we get to this point, we might want to consider this (leaving things
 2197                  * disabled as a starting point ;-)
 2198                  */
 2199                 intr = intr_disable();
 2200                 cpu = PCPU_GET(cpuid);
 2201                 sysm = &sysmap_lmem[cpu];
 2202                 /* Since this is for the debugger, no locks or any other fun */
 2203                 npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
 2204                 pte = pmap_pte(kernel_pmap, sysm->base);
 2205                 *pte = npte;
 2206                 sysm->valid1 = 1;
 2207                 pmap_update_page(kernel_pmap, sysm->base, npte);
 2208                 va = sysm->base;
 2209                 intr_restore(intr);
 2210 #endif
 2211         }
 2212         return ((void *)va);
 2213 }
 2214 
 2215 void
 2216 pmap_kenter_temporary_free(vm_paddr_t pa)
 2217 {
 2218 #ifndef __mips_n64    /* XXX : to be converted to new style */
 2219         int cpu;
 2220         register_t intr;
 2221         struct local_sysmaps *sysm;
 2222 #endif
 2223 
 2224         if (MIPS_DIRECT_MAPPABLE(pa)) {
 2225                 /* nothing to do for this case */
 2226                 return;
 2227         }
 2228 #ifndef __mips_n64    /* XXX : to be converted to new style */
 2229         cpu = PCPU_GET(cpuid);
 2230         sysm = &sysmap_lmem[cpu];
 2231         if (sysm->valid1) {
 2232                 pt_entry_t *pte;
 2233 
 2234                 intr = intr_disable();
 2235                 pte = pmap_pte(kernel_pmap, sysm->base);
 2236                 *pte = PTE_G;
 2237                 pmap_invalidate_page(kernel_pmap, sysm->base);
 2238                 intr_restore(intr);
 2239                 sysm->valid1 = 0;
 2240         }
 2241 #endif
 2242 }
 2243 
 2244 /*
 2245  * Moved the code to Machine Independent
 2246  *       vm_map_pmap_enter()
 2247  */
 2248 
 2249 /*
 2250  * Maps a sequence of resident pages belonging to the same object.
 2251  * The sequence begins with the given page m_start.  This page is
 2252  * mapped at the given virtual address start.  Each subsequent page is
 2253  * mapped at a virtual address that is offset from start by the same
 2254  * amount as the page is offset from m_start within the object.  The
 2255  * last page in the sequence is the page with the largest offset from
 2256  * m_start that can be mapped at a virtual address less than the given
 2257  * virtual address end.  Not every virtual page between start and end
 2258  * is mapped; only those for which a resident page exists with the
 2259  * corresponding offset from m_start are mapped.
 2260  */
 2261 void
 2262 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
 2263     vm_page_t m_start, vm_prot_t prot)
 2264 {
 2265         vm_page_t m, mpte;
 2266         vm_pindex_t diff, psize;
 2267 
 2268         VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
 2269         psize = atop(end - start);
 2270         mpte = NULL;
 2271         m = m_start;
 2272         vm_page_lock_queues();
 2273         PMAP_LOCK(pmap);
 2274         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 2275                 mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
 2276                     prot, mpte);
 2277                 m = TAILQ_NEXT(m, listq);
 2278         }
 2279         vm_page_unlock_queues();
 2280         PMAP_UNLOCK(pmap);
 2281 }
 2282 
 2283 /*
 2284  * pmap_object_init_pt preloads the ptes for a given object
 2285  * into the specified pmap.  This eliminates the blast of soft
 2286  * faults on process startup and immediately after an mmap.
 2287  */
 2288 void
 2289 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
 2290     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
 2291 {
 2292         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2293         KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
 2294             ("pmap_object_init_pt: non-device object"));
 2295 }
 2296 
 2297 /*
 2298  *      Routine:        pmap_change_wiring
 2299  *      Function:       Change the wiring attribute for a map/virtual-address
 2300  *                      pair.
 2301  *      In/out conditions:
 2302  *                      The mapping must already exist in the pmap.
 2303  */
 2304 void
 2305 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
 2306 {
 2307         pt_entry_t *pte;
 2308 
 2309         if (pmap == NULL)
 2310                 return;
 2311 
 2312         PMAP_LOCK(pmap);
 2313         pte = pmap_pte(pmap, va);
 2314 
 2315         if (wired && !pte_test(pte, PTE_W))
 2316                 pmap->pm_stats.wired_count++;
 2317         else if (!wired && pte_test(pte, PTE_W))
 2318                 pmap->pm_stats.wired_count--;
 2319 
 2320         /*
 2321          * Wiring is not a hardware characteristic so there is no need to
 2322          * invalidate TLB.
 2323          */
 2324         if (wired)
 2325                 pte_set(pte, PTE_W);
 2326         else
 2327                 pte_clear(pte, PTE_W);
 2328         PMAP_UNLOCK(pmap);
 2329 }
 2330 
 2331 /*
 2332  *      Copy the range specified by src_addr/len
 2333  *      from the source map to the range dst_addr/len
 2334  *      in the destination map.
 2335  *
 2336  *      This routine is only advisory and need not do anything.
 2337  */
 2338 
 2339 void
 2340 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
 2341     vm_size_t len, vm_offset_t src_addr)
 2342 {
 2343 }
 2344 
 2345 /*
 2346  *      pmap_zero_page zeros the specified hardware page by mapping
 2347  *      the page into KVM and using bzero to clear its contents.
 2348  *
 2349  *      Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
 2350  */
 2351 void
 2352 pmap_zero_page(vm_page_t m)
 2353 {
 2354         vm_offset_t va;
 2355         vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
 2356 
 2357         if (MIPS_DIRECT_MAPPABLE(phys)) {
 2358                 va = MIPS_PHYS_TO_DIRECT(phys);
 2359                 bzero((caddr_t)va, PAGE_SIZE);
 2360                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2361         } else {
 2362                 va = pmap_lmem_map1(phys);
 2363                 bzero((caddr_t)va, PAGE_SIZE);
 2364                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2365                 pmap_lmem_unmap();
 2366         }
 2367 }
 2368 
 2369 /*
 2370  *      pmap_zero_page_area zeros the specified hardware page by mapping
 2371  *      the page into KVM and using bzero to clear its contents.
 2372  *
 2373  *      off and size may not cover an area beyond a single hardware page.
 2374  */
 2375 void
 2376 pmap_zero_page_area(vm_page_t m, int off, int size)
 2377 {
 2378         vm_offset_t va;
 2379         vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
 2380 
 2381         if (MIPS_DIRECT_MAPPABLE(phys)) {
 2382                 va = MIPS_PHYS_TO_DIRECT(phys);
 2383                 bzero((char *)(caddr_t)va + off, size);
 2384                 mips_dcache_wbinv_range(va + off, size);
 2385         } else {
 2386                 va = pmap_lmem_map1(phys);
 2387                 bzero((char *)va + off, size);
 2388                 mips_dcache_wbinv_range(va + off, size);
 2389                 pmap_lmem_unmap();
 2390         }
 2391 }
 2392 
 2393 void
 2394 pmap_zero_page_idle(vm_page_t m)
 2395 {
 2396         vm_offset_t va;
 2397         vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
 2398 
 2399         if (MIPS_DIRECT_MAPPABLE(phys)) {
 2400                 va = MIPS_PHYS_TO_DIRECT(phys);
 2401                 bzero((caddr_t)va, PAGE_SIZE);
 2402                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2403         } else {
 2404                 va = pmap_lmem_map1(phys);
 2405                 bzero((caddr_t)va, PAGE_SIZE);
 2406                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2407                 pmap_lmem_unmap();
 2408         }
 2409 }
 2410 
 2411 /*
 2412  *      pmap_copy_page copies the specified (machine independent)
 2413  *      page by mapping the page into virtual memory and using
 2414  *      bcopy to copy the page, one machine dependent page at a
 2415  *      time.
 2416  *
 2417  *      Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
 2418  */
 2419 void
 2420 pmap_copy_page(vm_page_t src, vm_page_t dst)
 2421 {
 2422         vm_offset_t va_src, va_dst;
 2423         vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src);
 2424         vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst);
 2425 
 2426         if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) {
 2427                 /* easy case, all can be accessed via KSEG0 */
 2428                 /*
 2429                  * Flush all caches for VA that are mapped to this page
 2430                  * to make sure that data in SDRAM is up to date
 2431                  */
 2432                 pmap_flush_pvcache(src);
 2433                 mips_dcache_wbinv_range_index(
 2434                     MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE);
 2435                 va_src = MIPS_PHYS_TO_DIRECT(phys_src);
 2436                 va_dst = MIPS_PHYS_TO_DIRECT(phys_dst);
 2437                 bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
 2438                 mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
 2439         } else {
 2440                 va_src = pmap_lmem_map2(phys_src, phys_dst);
 2441                 va_dst = va_src + PAGE_SIZE;
 2442                 bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
 2443                 mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
 2444                 pmap_lmem_unmap();
 2445         }
 2446 }
 2447 
 2448 int unmapped_buf_allowed;
 2449 
 2450 void
 2451 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
 2452     vm_offset_t b_offset, int xfersize)
 2453 {
 2454         char *a_cp, *b_cp;
 2455         vm_page_t a_m, b_m;
 2456         vm_offset_t a_pg_offset, b_pg_offset;
 2457         vm_paddr_t a_phys, b_phys;
 2458         int cnt;
 2459 
 2460         while (xfersize > 0) {
 2461                 a_pg_offset = a_offset & PAGE_MASK;
 2462                 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
 2463                 a_m = ma[a_offset >> PAGE_SHIFT];
 2464                 a_phys = VM_PAGE_TO_PHYS(a_m);
 2465                 b_pg_offset = b_offset & PAGE_MASK;
 2466                 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
 2467                 b_m = mb[b_offset >> PAGE_SHIFT];
 2468                 b_phys = VM_PAGE_TO_PHYS(b_m);
 2469                 if (MIPS_DIRECT_MAPPABLE(a_phys) &&
 2470                     MIPS_DIRECT_MAPPABLE(b_phys)) {
 2471                         pmap_flush_pvcache(a_m);
 2472                         mips_dcache_wbinv_range_index(
 2473                             MIPS_PHYS_TO_DIRECT(b_phys), PAGE_SIZE);
 2474                         a_cp = (char *)MIPS_PHYS_TO_DIRECT(a_phys) +
 2475                             a_pg_offset;
 2476                         b_cp = (char *)MIPS_PHYS_TO_DIRECT(b_phys) +
 2477                             b_pg_offset;
 2478                         bcopy(a_cp, b_cp, cnt);
 2479                         mips_dcache_wbinv_range((vm_offset_t)b_cp, cnt);
 2480                 } else {
 2481                         a_cp = (char *)pmap_lmem_map2(a_phys, b_phys);
 2482                         b_cp = (char *)a_cp + PAGE_SIZE;
 2483                         a_cp += a_pg_offset;
 2484                         b_cp += b_pg_offset;
 2485                         bcopy(a_cp, b_cp, cnt);
 2486                         mips_dcache_wbinv_range((vm_offset_t)b_cp, cnt);
 2487                         pmap_lmem_unmap();
 2488                 }
 2489                 a_offset += cnt;
 2490                 b_offset += cnt;
 2491                 xfersize -= cnt;
 2492         }
 2493 }
 2494 
 2495 /*
 2496  * Returns true if the pmap's pv is one of the first
 2497  * 16 pvs linked to from this page.  This count may
 2498  * be changed upwards or downwards in the future; it
 2499  * is only necessary that true be returned for a small
 2500  * subset of pmaps for proper page aging.
 2501  */
 2502 boolean_t
 2503 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 2504 {
 2505         pv_entry_t pv;
 2506         int loops = 0;
 2507         boolean_t rv;
 2508 
 2509         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2510             ("pmap_page_exists_quick: page %p is not managed", m));
 2511         rv = FALSE;
 2512         vm_page_lock_queues();
 2513         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2514                 if (pv->pv_pmap == pmap) {
 2515                         rv = TRUE;
 2516                         break;
 2517                 }
 2518                 loops++;
 2519                 if (loops >= 16)
 2520                         break;
 2521         }
 2522         vm_page_unlock_queues();
 2523         return (rv);
 2524 }
 2525 
 2526 /*
 2527  * Remove all pages from specified address space
 2528  * this aids process exit speeds.  Also, this code
 2529  * is special cased for current process only, but
 2530  * can have the more generic (and slightly slower)
 2531  * mode enabled.  This is much faster than pmap_remove
 2532  * in the case of running down an entire address space.
 2533  */
 2534 void
 2535 pmap_remove_pages(pmap_t pmap)
 2536 {
 2537         pt_entry_t *pte, tpte;
 2538         pv_entry_t pv, npv;
 2539         vm_page_t m;
 2540 
 2541         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
 2542                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 2543                 return;
 2544         }
 2545         vm_page_lock_queues();
 2546         PMAP_LOCK(pmap);
 2547         for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv != NULL; pv = npv) {
 2548 
 2549                 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
 2550                 if (!pte_test(pte, PTE_V))
 2551                         panic("pmap_remove_pages: page on pm_pvlist has no pte");
 2552                 tpte = *pte;
 2553 
 2554 /*
 2555  * We cannot remove wired pages from a process' mapping at this time
 2556  */
 2557                 if (pte_test(&tpte, PTE_W)) {
 2558                         npv = TAILQ_NEXT(pv, pv_plist);
 2559                         continue;
 2560                 }
 2561                 *pte = is_kernel_pmap(pmap) ? PTE_G : 0;
 2562 
 2563                 m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
 2564                 KASSERT(m != NULL,
 2565                     ("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
 2566 
 2567                 pv->pv_pmap->pm_stats.resident_count--;
 2568 
 2569                 /*
 2570                  * Update the vm_page_t clean and reference bits.
 2571                  */
 2572                 if (pte_test(&tpte, PTE_D)) {
 2573                         vm_page_dirty(m);
 2574                 }
 2575                 npv = TAILQ_NEXT(pv, pv_plist);
 2576                 TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
 2577 
 2578                 m->md.pv_list_count--;
 2579                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2580                 if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
 2581                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 2582                 }
 2583                 pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
 2584                 free_pv_entry(pv);
 2585         }
 2586         pmap_invalidate_all(pmap);
 2587         PMAP_UNLOCK(pmap);
 2588         vm_page_unlock_queues();
 2589 }
 2590 
 2591 /*
 2592  * pmap_testbit tests bits in pte's
 2593  * note that the testbit/changebit routines are inline,
 2594  * and a lot of things compile-time evaluate.
 2595  */
 2596 static boolean_t
 2597 pmap_testbit(vm_page_t m, int bit)
 2598 {
 2599         pv_entry_t pv;
 2600         pt_entry_t *pte;
 2601         boolean_t rv = FALSE;
 2602 
 2603         if (m->oflags & VPO_UNMANAGED)
 2604                 return (rv);
 2605 
 2606         if (TAILQ_FIRST(&m->md.pv_list) == NULL)
 2607                 return (rv);
 2608 
 2609         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2610         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2611                 PMAP_LOCK(pv->pv_pmap);
 2612                 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
 2613                 rv = pte_test(pte, bit);
 2614                 PMAP_UNLOCK(pv->pv_pmap);
 2615                 if (rv)
 2616                         break;
 2617         }
 2618         return (rv);
 2619 }
 2620 
 2621 /*
 2622  * this routine is used to clear dirty bits in ptes
 2623  */
 2624 static __inline void
 2625 pmap_changebit(vm_page_t m, int bit, boolean_t setem)
 2626 {
 2627         pv_entry_t pv;
 2628         pt_entry_t *pte;
 2629 
 2630         if (m->oflags & VPO_UNMANAGED)
 2631                 return;
 2632 
 2633         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2634         /*
 2635          * Loop over all current mappings setting/clearing as appropos If
 2636          * setting RO do we need to clear the VAC?
 2637          */
 2638         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2639                 PMAP_LOCK(pv->pv_pmap);
 2640                 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
 2641                 if (setem) {
 2642                         *pte |= bit;
 2643                         pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
 2644                 } else {
 2645                         pt_entry_t pbits = *pte;
 2646 
 2647                         if (pbits & bit) {
 2648                                 if (bit == PTE_D) {
 2649                                         if (pbits & PTE_D)
 2650                                                 vm_page_dirty(m);
 2651                                         *pte = (pbits & ~PTE_D) | PTE_RO;
 2652                                 } else {
 2653                                         *pte = pbits & ~bit;
 2654                                 }
 2655                                 pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
 2656                         }
 2657                 }
 2658                 PMAP_UNLOCK(pv->pv_pmap);
 2659         }
 2660         if (!setem && bit == PTE_D)
 2661                 vm_page_aflag_clear(m, PGA_WRITEABLE);
 2662 }
 2663 
 2664 /*
 2665  *      pmap_page_wired_mappings:
 2666  *
 2667  *      Return the number of managed mappings to the given physical page
 2668  *      that are wired.
 2669  */
 2670 int
 2671 pmap_page_wired_mappings(vm_page_t m)
 2672 {
 2673         pv_entry_t pv;
 2674         pmap_t pmap;
 2675         pt_entry_t *pte;
 2676         int count;
 2677 
 2678         count = 0;
 2679         if ((m->oflags & VPO_UNMANAGED) != 0)
 2680                 return (count);
 2681         vm_page_lock_queues();
 2682         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2683                 pmap = pv->pv_pmap;
 2684                 PMAP_LOCK(pmap);
 2685                 pte = pmap_pte(pmap, pv->pv_va);
 2686                 if (pte_test(pte, PTE_W))
 2687                         count++;
 2688                 PMAP_UNLOCK(pmap);
 2689         }
 2690         vm_page_unlock_queues();
 2691         return (count);
 2692 }
 2693 
 2694 /*
 2695  * Clear the write and modified bits in each of the given page's mappings.
 2696  */
 2697 void
 2698 pmap_remove_write(vm_page_t m)
 2699 {
 2700         pv_entry_t pv, npv;
 2701         vm_offset_t va;
 2702         pt_entry_t *pte;
 2703 
 2704         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2705             ("pmap_remove_write: page %p is not managed", m));
 2706 
 2707         /*
 2708          * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
 2709          * another thread while the object is locked.  Thus, if PGA_WRITEABLE
 2710          * is clear, no page table entries need updating.
 2711          */
 2712         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2713         if ((m->oflags & VPO_BUSY) == 0 &&
 2714             (m->aflags & PGA_WRITEABLE) == 0)
 2715                 return;
 2716 
 2717         /*
 2718          * Loop over all current mappings setting/clearing as appropos.
 2719          */
 2720         vm_page_lock_queues();
 2721         for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = npv) {
 2722                 npv = TAILQ_NEXT(pv, pv_plist);
 2723                 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
 2724                 if (pte == NULL || !pte_test(pte, PTE_V))
 2725                         panic("page on pm_pvlist has no pte");
 2726 
 2727                 va = pv->pv_va;
 2728                 pmap_protect(pv->pv_pmap, va, va + PAGE_SIZE,
 2729                     VM_PROT_READ | VM_PROT_EXECUTE);
 2730         }
 2731         vm_page_aflag_clear(m, PGA_WRITEABLE);
 2732         vm_page_unlock_queues();
 2733 }
 2734 
 2735 /*
 2736  *      pmap_ts_referenced:
 2737  *
 2738  *      Return the count of reference bits for a page, clearing all of them.
 2739  */
 2740 int
 2741 pmap_ts_referenced(vm_page_t m)
 2742 {
 2743 
 2744         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2745             ("pmap_ts_referenced: page %p is not managed", m));
 2746         if (m->md.pv_flags & PV_TABLE_REF) {
 2747                 vm_page_lock_queues();
 2748                 m->md.pv_flags &= ~PV_TABLE_REF;
 2749                 vm_page_unlock_queues();
 2750                 return (1);
 2751         }
 2752         return (0);
 2753 }
 2754 
 2755 /*
 2756  *      pmap_is_modified:
 2757  *
 2758  *      Return whether or not the specified physical page was modified
 2759  *      in any physical maps.
 2760  */
 2761 boolean_t
 2762 pmap_is_modified(vm_page_t m)
 2763 {
 2764         boolean_t rv;
 2765 
 2766         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2767             ("pmap_is_modified: page %p is not managed", m));
 2768 
 2769         /*
 2770          * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
 2771          * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
 2772          * is clear, no PTEs can have PTE_D set.
 2773          */
 2774         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2775         if ((m->oflags & VPO_BUSY) == 0 &&
 2776             (m->aflags & PGA_WRITEABLE) == 0)
 2777                 return (FALSE);
 2778         vm_page_lock_queues();
 2779         if (m->md.pv_flags & PV_TABLE_MOD)
 2780                 rv = TRUE;
 2781         else
 2782                 rv = pmap_testbit(m, PTE_D);
 2783         vm_page_unlock_queues();
 2784         return (rv);
 2785 }
 2786 
 2787 /* N/C */
 2788 
 2789 /*
 2790  *      pmap_is_prefaultable:
 2791  *
 2792  *      Return whether or not the specified virtual address is elgible
 2793  *      for prefault.
 2794  */
 2795 boolean_t
 2796 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 2797 {
 2798         pd_entry_t *pde;
 2799         pt_entry_t *pte;
 2800         boolean_t rv;
 2801 
 2802         rv = FALSE;
 2803         PMAP_LOCK(pmap);
 2804         pde = pmap_pde(pmap, addr);
 2805         if (pde != NULL && *pde != 0) {
 2806                 pte = pmap_pde_to_pte(pde, addr);
 2807                 rv = (*pte == 0);
 2808         }
 2809         PMAP_UNLOCK(pmap);
 2810         return (rv);
 2811 }
 2812 
 2813 /*
 2814  *      Clear the modify bits on the specified physical page.
 2815  */
 2816 void
 2817 pmap_clear_modify(vm_page_t m)
 2818 {
 2819 
 2820         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2821             ("pmap_clear_modify: page %p is not managed", m));
 2822         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2823         KASSERT((m->oflags & VPO_BUSY) == 0,
 2824             ("pmap_clear_modify: page %p is busy", m));
 2825 
 2826         /*
 2827          * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_D set.
 2828          * If the object containing the page is locked and the page is not
 2829          * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
 2830          */
 2831         if ((m->aflags & PGA_WRITEABLE) == 0)
 2832                 return;
 2833         vm_page_lock_queues();
 2834         if (m->md.pv_flags & PV_TABLE_MOD) {
 2835                 pmap_changebit(m, PTE_D, FALSE);
 2836                 m->md.pv_flags &= ~PV_TABLE_MOD;
 2837         }
 2838         vm_page_unlock_queues();
 2839 }
 2840 
 2841 /*
 2842  *      pmap_is_referenced:
 2843  *
 2844  *      Return whether or not the specified physical page was referenced
 2845  *      in any physical maps.
 2846  */
 2847 boolean_t
 2848 pmap_is_referenced(vm_page_t m)
 2849 {
 2850 
 2851         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2852             ("pmap_is_referenced: page %p is not managed", m));
 2853         return ((m->md.pv_flags & PV_TABLE_REF) != 0);
 2854 }
 2855 
 2856 /*
 2857  *      pmap_clear_reference:
 2858  *
 2859  *      Clear the reference bit on the specified physical page.
 2860  */
 2861 void
 2862 pmap_clear_reference(vm_page_t m)
 2863 {
 2864 
 2865         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2866             ("pmap_clear_reference: page %p is not managed", m));
 2867         vm_page_lock_queues();
 2868         if (m->md.pv_flags & PV_TABLE_REF) {
 2869                 m->md.pv_flags &= ~PV_TABLE_REF;
 2870         }
 2871         vm_page_unlock_queues();
 2872 }
 2873 
 2874 /*
 2875  * Miscellaneous support routines follow
 2876  */
 2877 
 2878 /*
 2879  * Map a set of physical memory pages into the kernel virtual
 2880  * address space. Return a pointer to where it is mapped. This
 2881  * routine is intended to be used for mapping device memory,
 2882  * NOT real memory.
 2883  */
 2884 
 2885 /*
 2886  * Map a set of physical memory pages into the kernel virtual
 2887  * address space. Return a pointer to where it is mapped. This
 2888  * routine is intended to be used for mapping device memory,
 2889  * NOT real memory.
 2890  *
 2891  * Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
 2892  */
 2893 void *
 2894 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
 2895 {
 2896         vm_offset_t va, tmpva, offset;
 2897 
 2898         /* 
 2899          * KSEG1 maps only first 512M of phys address space. For 
 2900          * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
 2901          */
 2902         if (MIPS_DIRECT_MAPPABLE(pa + size - 1))
 2903                 return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
 2904         else {
 2905                 offset = pa & PAGE_MASK;
 2906                 size = roundup(size + offset, PAGE_SIZE);
 2907         
 2908                 va = kmem_alloc_nofault(kernel_map, size);
 2909                 if (!va)
 2910                         panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 2911                 pa = trunc_page(pa);
 2912                 for (tmpva = va; size > 0;) {
 2913                         pmap_kenter_attr(tmpva, pa, PTE_C_UNCACHED);
 2914                         size -= PAGE_SIZE;
 2915                         tmpva += PAGE_SIZE;
 2916                         pa += PAGE_SIZE;
 2917                 }
 2918         }
 2919 
 2920         return ((void *)(va + offset));
 2921 }
 2922 
 2923 void
 2924 pmap_unmapdev(vm_offset_t va, vm_size_t size)
 2925 {
 2926 #ifndef __mips_n64
 2927         vm_offset_t base, offset;
 2928 
 2929         /* If the address is within KSEG1 then there is nothing to do */
 2930         if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
 2931                 return;
 2932 
 2933         base = trunc_page(va);
 2934         offset = va & PAGE_MASK;
 2935         size = roundup(size + offset, PAGE_SIZE);
 2936         kmem_free(kernel_map, base, size);
 2937 #endif
 2938 }
 2939 
 2940 /*
 2941  * perform the pmap work for mincore
 2942  */
 2943 int
 2944 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
 2945 {
 2946         pt_entry_t *ptep, pte;
 2947         vm_paddr_t pa;
 2948         vm_page_t m;
 2949         int val;
 2950         boolean_t managed;
 2951 
 2952         PMAP_LOCK(pmap);
 2953 retry:
 2954         ptep = pmap_pte(pmap, addr);
 2955         pte = (ptep != NULL) ? *ptep : 0;
 2956         if (!pte_test(&pte, PTE_V)) {
 2957                 val = 0;
 2958                 goto out;
 2959         }
 2960         val = MINCORE_INCORE;
 2961         if (pte_test(&pte, PTE_D))
 2962                 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
 2963         pa = TLBLO_PTE_TO_PA(pte);
 2964         managed = page_is_managed(pa);
 2965         if (managed) {
 2966                 /*
 2967                  * This may falsely report the given address as
 2968                  * MINCORE_REFERENCED.  Unfortunately, due to the lack of
 2969                  * per-PTE reference information, it is impossible to
 2970                  * determine if the address is MINCORE_REFERENCED.  
 2971                  */
 2972                 m = PHYS_TO_VM_PAGE(pa);
 2973                 if ((m->aflags & PGA_REFERENCED) != 0)
 2974                         val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
 2975         }
 2976         if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
 2977             (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
 2978                 /* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
 2979                 if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
 2980                         goto retry;
 2981         } else
 2982 out:
 2983                 PA_UNLOCK_COND(*locked_pa);
 2984         PMAP_UNLOCK(pmap);
 2985         return (val);
 2986 }
 2987 
 2988 void
 2989 pmap_activate(struct thread *td)
 2990 {
 2991         pmap_t pmap, oldpmap;
 2992         struct proc *p = td->td_proc;
 2993         u_int cpuid;
 2994 
 2995         critical_enter();
 2996 
 2997         pmap = vmspace_pmap(p->p_vmspace);
 2998         oldpmap = PCPU_GET(curpmap);
 2999         cpuid = PCPU_GET(cpuid);
 3000 
 3001         if (oldpmap)
 3002                 CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
 3003         CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
 3004         pmap_asid_alloc(pmap);
 3005         if (td == curthread) {
 3006                 PCPU_SET(segbase, pmap->pm_segtab);
 3007                 mips_wr_entryhi(pmap->pm_asid[cpuid].asid);
 3008         }
 3009 
 3010         PCPU_SET(curpmap, pmap);
 3011         critical_exit();
 3012 }
 3013 
 3014 void
 3015 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
 3016 {
 3017 }
 3018 
 3019 /*
 3020  *      Increase the starting virtual address of the given mapping if a
 3021  *      different alignment might result in more superpage mappings.
 3022  */
 3023 void
 3024 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
 3025     vm_offset_t *addr, vm_size_t size)
 3026 {
 3027         vm_offset_t superpage_offset;
 3028 
 3029         if (size < NBSEG)
 3030                 return;
 3031         if (object != NULL && (object->flags & OBJ_COLORED) != 0)
 3032                 offset += ptoa(object->pg_color);
 3033         superpage_offset = offset & SEGMASK;
 3034         if (size - ((NBSEG - superpage_offset) & SEGMASK) < NBSEG ||
 3035             (*addr & SEGMASK) == superpage_offset)
 3036                 return;
 3037         if ((*addr & SEGMASK) < superpage_offset)
 3038                 *addr = (*addr & ~SEGMASK) + superpage_offset;
 3039         else
 3040                 *addr = ((*addr + SEGMASK) & ~SEGMASK) + superpage_offset;
 3041 }
 3042 
 3043 /*
 3044  *      Increase the starting virtual address of the given mapping so
 3045  *      that it is aligned to not be the second page in a TLB entry.
 3046  *      This routine assumes that the length is appropriately-sized so
 3047  *      that the allocation does not share a TLB entry at all if required.
 3048  */
 3049 void
 3050 pmap_align_tlb(vm_offset_t *addr)
 3051 {
 3052         if ((*addr & PAGE_SIZE) == 0)
 3053                 return;
 3054         *addr += PAGE_SIZE;
 3055         return;
 3056 }
 3057 
 3058 #ifdef DDB
 3059 DB_SHOW_COMMAND(ptable, ddb_pid_dump)
 3060 {
 3061         pmap_t pmap;
 3062         struct thread *td = NULL;
 3063         struct proc *p;
 3064         int i, j, k;
 3065         vm_paddr_t pa;
 3066         vm_offset_t va;
 3067 
 3068         if (have_addr) {
 3069                 td = db_lookup_thread(addr, TRUE);
 3070                 if (td == NULL) {
 3071                         db_printf("Invalid pid or tid");
 3072                         return;
 3073                 }
 3074                 p = td->td_proc;
 3075                 if (p->p_vmspace == NULL) {
 3076                         db_printf("No vmspace for process");
 3077                         return;
 3078                 }
 3079                         pmap = vmspace_pmap(p->p_vmspace);
 3080         } else
 3081                 pmap = kernel_pmap;
 3082 
 3083         db_printf("pmap:%p segtab:%p asid:%x generation:%x\n",
 3084             pmap, pmap->pm_segtab, pmap->pm_asid[0].asid,
 3085             pmap->pm_asid[0].gen);
 3086         for (i = 0; i < NPDEPG; i++) {
 3087                 pd_entry_t *pdpe;
 3088                 pt_entry_t *pde;
 3089                 pt_entry_t pte;
 3090 
 3091                 pdpe = (pd_entry_t *)pmap->pm_segtab[i];
 3092                 if (pdpe == NULL)
 3093                         continue;
 3094                 db_printf("[%4d] %p\n", i, pdpe);
 3095 #ifdef __mips_n64
 3096                 for (j = 0; j < NPDEPG; j++) {
 3097                         pde = (pt_entry_t *)pdpe[j];
 3098                         if (pde == NULL)
 3099                                 continue;
 3100                         db_printf("\t[%4d] %p\n", j, pde);
 3101 #else
 3102                 {
 3103                         j = 0;
 3104                         pde =  (pt_entry_t *)pdpe;
 3105 #endif
 3106                         for (k = 0; k < NPTEPG; k++) {
 3107                                 pte = pde[k];
 3108                                 if (pte == 0 || !pte_test(&pte, PTE_V))
 3109                                         continue;
 3110                                 pa = TLBLO_PTE_TO_PA(pte);
 3111                                 va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT);
 3112                                 db_printf("\t\t[%04d] va: %p pte: %8jx pa:%jx\n",
 3113                                        k, (void *)va, (uintmax_t)pte, (uintmax_t)pa);
 3114                         }
 3115                 }
 3116         }
 3117 }
 3118 #endif
 3119 
 3120 #if defined(DEBUG)
 3121 
 3122 static void pads(pmap_t pm);
 3123 void pmap_pvdump(vm_offset_t pa);
 3124 
 3125 /* print address space of pmap*/
 3126 static void
 3127 pads(pmap_t pm)
 3128 {
 3129         unsigned va, i, j;
 3130         pt_entry_t *ptep;
 3131 
 3132         if (pm == kernel_pmap)
 3133                 return;
 3134         for (i = 0; i < NPTEPG; i++)
 3135                 if (pm->pm_segtab[i])
 3136                         for (j = 0; j < NPTEPG; j++) {
 3137                                 va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
 3138                                 if (pm == kernel_pmap && va < KERNBASE)
 3139                                         continue;
 3140                                 if (pm != kernel_pmap &&
 3141                                     va >= VM_MAXUSER_ADDRESS)
 3142                                         continue;
 3143                                 ptep = pmap_pte(pm, va);
 3144                                 if (pte_test(ptep, PTE_V))
 3145                                         printf("%x:%x ", va, *(int *)ptep);
 3146                         }
 3147 
 3148 }
 3149 
 3150 void
 3151 pmap_pvdump(vm_offset_t pa)
 3152 {
 3153         register pv_entry_t pv;
 3154         vm_page_t m;
 3155 
 3156         printf("pa %x", pa);
 3157         m = PHYS_TO_VM_PAGE(pa);
 3158         for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
 3159             pv = TAILQ_NEXT(pv, pv_list)) {
 3160                 printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
 3161                 pads(pv->pv_pmap);
 3162         }
 3163         printf(" ");
 3164 }
 3165 
 3166 /* N/C */
 3167 #endif
 3168 
 3169 
 3170 /*
 3171  * Allocate TLB address space tag (called ASID or TLBPID) and return it.
 3172  * It takes almost as much or more time to search the TLB for a
 3173  * specific ASID and flush those entries as it does to flush the entire TLB.
 3174  * Therefore, when we allocate a new ASID, we just take the next number. When
 3175  * we run out of numbers, we flush the TLB, increment the generation count
 3176  * and start over. ASID zero is reserved for kernel use.
 3177  */
 3178 static void
 3179 pmap_asid_alloc(pmap)
 3180         pmap_t pmap;
 3181 {
 3182         if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
 3183             pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
 3184         else {
 3185                 if (PCPU_GET(next_asid) == pmap_max_asid) {
 3186                         tlb_invalidate_all_user(NULL);
 3187                         PCPU_SET(asid_generation,
 3188                             (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
 3189                         if (PCPU_GET(asid_generation) == 0) {
 3190                                 PCPU_SET(asid_generation, 1);
 3191                         }
 3192                         PCPU_SET(next_asid, 1); /* 0 means invalid */
 3193                 }
 3194                 pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
 3195                 pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
 3196                 PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
 3197         }
 3198 }
 3199 
 3200 int
 3201 page_is_managed(vm_paddr_t pa)
 3202 {
 3203         vm_offset_t pgnum = atop(pa);
 3204 
 3205         if (pgnum >= first_page) {
 3206                 vm_page_t m;
 3207 
 3208                 m = PHYS_TO_VM_PAGE(pa);
 3209                 if (m == NULL)
 3210                         return (0);
 3211                 if ((m->oflags & VPO_UNMANAGED) == 0)
 3212                         return (1);
 3213         }
 3214         return (0);
 3215 }
 3216 
 3217 static pt_entry_t
 3218 init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot)
 3219 {
 3220         pt_entry_t rw;
 3221 
 3222         if (!(prot & VM_PROT_WRITE))
 3223                 rw =  PTE_V | PTE_RO | PTE_C_CACHE;
 3224         else if ((m->oflags & VPO_UNMANAGED) == 0) {
 3225                 if ((m->md.pv_flags & PV_TABLE_MOD) != 0)
 3226                         rw =  PTE_V | PTE_D | PTE_C_CACHE;
 3227                 else
 3228                         rw = PTE_V | PTE_C_CACHE;
 3229                 vm_page_aflag_set(m, PGA_WRITEABLE);
 3230         } else
 3231                 /* Needn't emulate a modified bit for unmanaged pages. */
 3232                 rw =  PTE_V | PTE_D | PTE_C_CACHE;
 3233         return (rw);
 3234 }
 3235 
 3236 /*
 3237  * pmap_emulate_modified : do dirty bit emulation
 3238  *
 3239  * On SMP, update just the local TLB, other CPUs will update their
 3240  * TLBs from PTE lazily, if they get the exception.
 3241  * Returns 0 in case of sucess, 1 if the page is read only and we
 3242  * need to fault.
 3243  */
 3244 int
 3245 pmap_emulate_modified(pmap_t pmap, vm_offset_t va)
 3246 {
 3247         vm_page_t m;
 3248         pt_entry_t *pte;
 3249         vm_paddr_t pa;
 3250 
 3251         PMAP_LOCK(pmap);
 3252         pte = pmap_pte(pmap, va);
 3253         if (pte == NULL)
 3254                 panic("pmap_emulate_modified: can't find PTE");
 3255 #ifdef SMP
 3256         /* It is possible that some other CPU changed m-bit */
 3257         if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) {
 3258                 pmap_update_page_local(pmap, va, *pte);
 3259                 PMAP_UNLOCK(pmap);
 3260                 return (0);
 3261         }
 3262 #else
 3263         if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D))
 3264                 panic("pmap_emulate_modified: invalid pte");
 3265 #endif
 3266         if (pte_test(pte, PTE_RO)) {
 3267                 /* write to read only page in the kernel */
 3268                 PMAP_UNLOCK(pmap);
 3269                 return (1);
 3270         }
 3271         pte_set(pte, PTE_D);
 3272         pmap_update_page_local(pmap, va, *pte);
 3273         pa = TLBLO_PTE_TO_PA(*pte);
 3274         if (!page_is_managed(pa))
 3275                 panic("pmap_emulate_modified: unmanaged page");
 3276         m = PHYS_TO_VM_PAGE(pa);
 3277         m->md.pv_flags |= (PV_TABLE_REF | PV_TABLE_MOD);
 3278         PMAP_UNLOCK(pmap);
 3279         return (0);
 3280 }
 3281 
 3282 /*
 3283  *      Routine:        pmap_kextract
 3284  *      Function:
 3285  *              Extract the physical page address associated
 3286  *              virtual address.
 3287  */
 3288  /* PMAP_INLINE */ vm_offset_t
 3289 pmap_kextract(vm_offset_t va)
 3290 {
 3291         int mapped;
 3292 
 3293         /*
 3294          * First, the direct-mapped regions.
 3295          */
 3296 #if defined(__mips_n64)
 3297         if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
 3298                 return (MIPS_XKPHYS_TO_PHYS(va));
 3299 #endif
 3300         if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
 3301                 return (MIPS_KSEG0_TO_PHYS(va));
 3302 
 3303         if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
 3304                 return (MIPS_KSEG1_TO_PHYS(va));
 3305 
 3306         /*
 3307          * User virtual addresses.
 3308          */
 3309         if (va < VM_MAXUSER_ADDRESS) {
 3310                 pt_entry_t *ptep;
 3311 
 3312                 if (curproc && curproc->p_vmspace) {
 3313                         ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
 3314                         if (ptep) {
 3315                                 return (TLBLO_PTE_TO_PA(*ptep) |
 3316                                     (va & PAGE_MASK));
 3317                         }
 3318                         return (0);
 3319                 }
 3320         }
 3321 
 3322         /*
 3323          * Should be kernel virtual here, otherwise fail
 3324          */
 3325         mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
 3326 #if defined(__mips_n64)
 3327         mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
 3328 #endif 
 3329         /*
 3330          * Kernel virtual.
 3331          */
 3332 
 3333         if (mapped) {
 3334                 pt_entry_t *ptep;
 3335 
 3336                 /* Is the kernel pmap initialized? */
 3337                 if (!CPU_EMPTY(&kernel_pmap->pm_active)) {
 3338                         /* It's inside the virtual address range */
 3339                         ptep = pmap_pte(kernel_pmap, va);
 3340                         if (ptep) {
 3341                                 return (TLBLO_PTE_TO_PA(*ptep) |
 3342                                     (va & PAGE_MASK));
 3343                         }
 3344                 }
 3345                 return (0);
 3346         }
 3347 
 3348         panic("%s for unknown address space %p.", __func__, (void *)va);
 3349 }
 3350 
 3351 
 3352 void 
 3353 pmap_flush_pvcache(vm_page_t m)
 3354 {
 3355         pv_entry_t pv;
 3356 
 3357         if (m != NULL) {
 3358                 for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
 3359                     pv = TAILQ_NEXT(pv, pv_list)) {
 3360                         mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
 3361                 }
 3362         }
 3363 }

Cache object: c3605e4eb58a8bfca66a2ab75200453a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.