The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mips/mips/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  * This code is derived from software contributed to Berkeley by
   10  * the Systems Programming Group of the University of Utah Computer
   11  * Science Department and William Jolitz of UUNET Technologies Inc.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   38  *      from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
   39  *      JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
   40  */
   41 
   42 /*
   43  *      Manages physical address maps.
   44  *
   45  *      In addition to hardware address maps, this
   46  *      module is called upon to provide software-use-only
   47  *      maps which may or may not be stored in the same
   48  *      form as hardware maps.  These pseudo-maps are
   49  *      used to store intermediate results from copy
   50  *      operations to and from address spaces.
   51  *
   52  *      Since the information managed by this module is
   53  *      also stored by the logical address mapping module,
   54  *      this module may throw away valid virtual-to-physical
   55  *      mappings at almost any time.  However, invalidations
   56  *      of virtual-to-physical mappings must be done as
   57  *      requested.
   58  *
   59  *      In order to cope with hardware architectures which
   60  *      make virtual-to-physical map invalidates expensive,
   61  *      this module may delay invalidate or reduced protection
   62  *      operations until such time as they are actually
   63  *      necessary.  This module is given full information as
   64  *      to which processors are currently using which maps,
   65  *      and to when physical maps must be made correct.
   66  */
   67 
   68 #include <sys/cdefs.h>
   69 __FBSDID("$FreeBSD: releng/9.0/sys/mips/mips/pmap.c 225418 2011-09-06 10:30:11Z kib $");
   70 
   71 #include "opt_ddb.h"
   72 
   73 #include <sys/param.h>
   74 #include <sys/systm.h>
   75 #include <sys/proc.h>
   76 #include <sys/msgbuf.h>
   77 #include <sys/vmmeter.h>
   78 #include <sys/mman.h>
   79 #include <sys/smp.h>
   80 #ifdef DDB
   81 #include <ddb/ddb.h>
   82 #endif
   83 
   84 #include <vm/vm.h>
   85 #include <vm/vm_param.h>
   86 #include <vm/vm_phys.h>
   87 #include <sys/lock.h>
   88 #include <sys/mutex.h>
   89 #include <vm/vm_kern.h>
   90 #include <vm/vm_page.h>
   91 #include <vm/vm_map.h>
   92 #include <vm/vm_object.h>
   93 #include <vm/vm_extern.h>
   94 #include <vm/vm_pageout.h>
   95 #include <vm/vm_pager.h>
   96 #include <vm/uma.h>
   97 #include <sys/pcpu.h>
   98 #include <sys/sched.h>
   99 #ifdef SMP
  100 #include <sys/smp.h>
  101 #endif
  102 
  103 #include <machine/cache.h>
  104 #include <machine/md_var.h>
  105 #include <machine/tlb.h>
  106 
  107 #undef PMAP_DEBUG
  108 
  109 #ifndef PMAP_SHPGPERPROC
  110 #define PMAP_SHPGPERPROC 200
  111 #endif
  112 
  113 #if !defined(DIAGNOSTIC)
  114 #define PMAP_INLINE __inline
  115 #else
  116 #define PMAP_INLINE
  117 #endif
  118 
  119 /*
  120  * Get PDEs and PTEs for user/kernel address space
  121  */
  122 #define pmap_seg_index(v)       (((v) >> SEGSHIFT) & (NPDEPG - 1))
  123 #define pmap_pde_index(v)       (((v) >> PDRSHIFT) & (NPDEPG - 1))
  124 #define pmap_pte_index(v)       (((v) >> PAGE_SHIFT) & (NPTEPG - 1))
  125 #define pmap_pde_pindex(v)      ((v) >> PDRSHIFT)
  126 
  127 #ifdef __mips_n64
  128 #define NUPDE                   (NPDEPG * NPDEPG)
  129 #define NUSERPGTBLS             (NUPDE + NPDEPG)
  130 #else
  131 #define NUPDE                   (NPDEPG)
  132 #define NUSERPGTBLS             (NUPDE)
  133 #endif
  134 
  135 #define is_kernel_pmap(x)       ((x) == kernel_pmap)
  136 
  137 struct pmap kernel_pmap_store;
  138 pd_entry_t *kernel_segmap;
  139 
  140 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  141 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  142 
  143 static int nkpt;
  144 unsigned pmap_max_asid;         /* max ASID supported by the system */
  145 
  146 #define PMAP_ASID_RESERVED      0
  147 
  148 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
  149 
  150 static void pmap_asid_alloc(pmap_t pmap);
  151 
  152 /*
  153  * Data for the pv entry allocation mechanism
  154  */
  155 static uma_zone_t pvzone;
  156 static struct vm_object pvzone_obj;
  157 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
  158 
  159 static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
  160 static pv_entry_t get_pv_entry(pmap_t locked_pmap);
  161 static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
  162 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
  163     vm_offset_t va);
  164 static __inline void pmap_changebit(vm_page_t m, int bit, boolean_t setem);
  165 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
  166     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
  167 static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va);
  168 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
  169 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
  170 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
  171     vm_offset_t va, vm_page_t m);
  172 static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte);
  173 static void pmap_invalidate_all(pmap_t pmap);
  174 static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
  175 static int _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m);
  176 
  177 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
  178 static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
  179 static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
  180 static pt_entry_t init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot);
  181 
  182 #ifdef SMP
  183 static void pmap_invalidate_page_action(void *arg);
  184 static void pmap_invalidate_all_action(void *arg);
  185 static void pmap_update_page_action(void *arg);
  186 #endif
  187 
  188 #ifndef __mips_n64
  189 /*
  190  * This structure is for high memory (memory above 512Meg in 32 bit) support.
  191  * The highmem area does not have a KSEG0 mapping, and we need a mechanism to
  192  * do temporary per-CPU mappings for pmap_zero_page, pmap_copy_page etc.
  193  *
  194  * At bootup, we reserve 2 virtual pages per CPU for mapping highmem pages. To 
  195  * access a highmem physical address on a CPU, we map the physical address to
  196  * the reserved virtual address for the CPU in the kernel pagetable.  This is 
  197  * done with interrupts disabled(although a spinlock and sched_pin would be 
  198  * sufficient).
  199  */
  200 struct local_sysmaps {
  201         vm_offset_t     base;
  202         uint32_t        saved_intr;
  203         uint16_t        valid1, valid2;
  204 };
  205 static struct local_sysmaps sysmap_lmem[MAXCPU];
  206 
  207 static __inline void
  208 pmap_alloc_lmem_map(void)
  209 {
  210         int i;
  211 
  212         for (i = 0; i < MAXCPU; i++) {
  213                 sysmap_lmem[i].base = virtual_avail;
  214                 virtual_avail += PAGE_SIZE * 2;
  215                 sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
  216         }
  217 }
  218 
  219 static __inline vm_offset_t
  220 pmap_lmem_map1(vm_paddr_t phys)
  221 {
  222         struct local_sysmaps *sysm;
  223         pt_entry_t *pte, npte;
  224         vm_offset_t va;
  225         uint32_t intr;
  226         int cpu;
  227 
  228         intr = intr_disable();
  229         cpu = PCPU_GET(cpuid);
  230         sysm = &sysmap_lmem[cpu];
  231         sysm->saved_intr = intr;
  232         va = sysm->base;
  233         npte = TLBLO_PA_TO_PFN(phys) |
  234             PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
  235         pte = pmap_pte(kernel_pmap, va);
  236         *pte = npte;
  237         sysm->valid1 = 1;
  238         return (va);
  239 }
  240 
  241 static __inline vm_offset_t
  242 pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
  243 {
  244         struct local_sysmaps *sysm;
  245         pt_entry_t *pte, npte;
  246         vm_offset_t va1, va2;
  247         uint32_t intr;
  248         int cpu;
  249 
  250         intr = intr_disable();
  251         cpu = PCPU_GET(cpuid);
  252         sysm = &sysmap_lmem[cpu];
  253         sysm->saved_intr = intr;
  254         va1 = sysm->base;
  255         va2 = sysm->base + PAGE_SIZE;
  256         npte = TLBLO_PA_TO_PFN(phys1) |
  257             PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
  258         pte = pmap_pte(kernel_pmap, va1);
  259         *pte = npte;
  260         npte =  TLBLO_PA_TO_PFN(phys2) |
  261             PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
  262         pte = pmap_pte(kernel_pmap, va2);
  263         *pte = npte;
  264         sysm->valid1 = 1;
  265         sysm->valid2 = 1;
  266         return (va1);
  267 }
  268 
  269 static __inline void
  270 pmap_lmem_unmap(void)
  271 {
  272         struct local_sysmaps *sysm;
  273         pt_entry_t *pte;
  274         int cpu;
  275 
  276         cpu = PCPU_GET(cpuid);
  277         sysm = &sysmap_lmem[cpu];
  278         pte = pmap_pte(kernel_pmap, sysm->base);
  279         *pte = PTE_G;
  280         tlb_invalidate_address(kernel_pmap, sysm->base);
  281         sysm->valid1 = 0;
  282         if (sysm->valid2) {
  283                 pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);
  284                 *pte = PTE_G;
  285                 tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);
  286                 sysm->valid2 = 0;
  287         }
  288         intr_restore(sysm->saved_intr);
  289 }
  290 #else  /* __mips_n64 */
  291 
  292 static __inline void
  293 pmap_alloc_lmem_map(void)
  294 {
  295 }
  296 
  297 static __inline vm_offset_t
  298 pmap_lmem_map1(vm_paddr_t phys)
  299 {
  300 
  301         return (0);
  302 }
  303 
  304 static __inline vm_offset_t
  305 pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
  306 {
  307 
  308         return (0);
  309 }
  310 
  311 static __inline vm_offset_t 
  312 pmap_lmem_unmap(void)
  313 {
  314 
  315         return (0);
  316 }
  317 #endif /* !__mips_n64 */
  318 
  319 /*
  320  * Page table entry lookup routines.
  321  */
  322 static __inline pd_entry_t *
  323 pmap_segmap(pmap_t pmap, vm_offset_t va)
  324 {
  325 
  326         return (&pmap->pm_segtab[pmap_seg_index(va)]);
  327 }
  328 
  329 #ifdef __mips_n64
  330 static __inline pd_entry_t *
  331 pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
  332 {
  333         pd_entry_t *pde;
  334 
  335         pde = (pd_entry_t *)*pdpe;
  336         return (&pde[pmap_pde_index(va)]);
  337 }
  338 
  339 static __inline pd_entry_t *
  340 pmap_pde(pmap_t pmap, vm_offset_t va)
  341 {
  342         pd_entry_t *pdpe;
  343 
  344         pdpe = pmap_segmap(pmap, va);
  345         if (pdpe == NULL || *pdpe == NULL)
  346                 return (NULL);
  347 
  348         return (pmap_pdpe_to_pde(pdpe, va));
  349 }
  350 #else
  351 static __inline pd_entry_t *
  352 pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
  353 {
  354 
  355         return (pdpe);
  356 }
  357 
  358 static __inline 
  359 pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va)
  360 {
  361 
  362         return (pmap_segmap(pmap, va));
  363 }
  364 #endif
  365 
  366 static __inline pt_entry_t *
  367 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
  368 {
  369         pt_entry_t *pte;
  370 
  371         pte = (pt_entry_t *)*pde;
  372         return (&pte[pmap_pte_index(va)]);
  373 }
  374 
  375 pt_entry_t *
  376 pmap_pte(pmap_t pmap, vm_offset_t va)
  377 {
  378         pd_entry_t *pde;
  379 
  380         pde = pmap_pde(pmap, va);
  381         if (pde == NULL || *pde == NULL)
  382                 return (NULL);
  383 
  384         return (pmap_pde_to_pte(pde, va));
  385 }
  386 
  387 vm_offset_t
  388 pmap_steal_memory(vm_size_t size)
  389 {
  390         vm_paddr_t bank_size, pa;
  391         vm_offset_t va;
  392 
  393         size = round_page(size);
  394         bank_size = phys_avail[1] - phys_avail[0];
  395         while (size > bank_size) {
  396                 int i;
  397 
  398                 for (i = 0; phys_avail[i + 2]; i += 2) {
  399                         phys_avail[i] = phys_avail[i + 2];
  400                         phys_avail[i + 1] = phys_avail[i + 3];
  401                 }
  402                 phys_avail[i] = 0;
  403                 phys_avail[i + 1] = 0;
  404                 if (!phys_avail[0])
  405                         panic("pmap_steal_memory: out of memory");
  406                 bank_size = phys_avail[1] - phys_avail[0];
  407         }
  408 
  409         pa = phys_avail[0];
  410         phys_avail[0] += size;
  411         if (MIPS_DIRECT_MAPPABLE(pa) == 0)
  412                 panic("Out of memory below 512Meg?");
  413         va = MIPS_PHYS_TO_DIRECT(pa);
  414         bzero((caddr_t)va, size);
  415         return (va);
  416 }
  417 
  418 /*
  419  * Bootstrap the system enough to run with virtual memory.  This
  420  * assumes that the phys_avail array has been initialized.
  421  */
  422 static void 
  423 pmap_create_kernel_pagetable(void)
  424 {
  425         int i, j;
  426         vm_offset_t ptaddr;
  427         pt_entry_t *pte;
  428 #ifdef __mips_n64
  429         pd_entry_t *pde;
  430         vm_offset_t pdaddr;
  431         int npt, npde;
  432 #endif
  433 
  434         /*
  435          * Allocate segment table for the kernel
  436          */
  437         kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
  438 
  439         /*
  440          * Allocate second level page tables for the kernel
  441          */
  442 #ifdef __mips_n64
  443         npde = howmany(NKPT, NPDEPG);
  444         pdaddr = pmap_steal_memory(PAGE_SIZE * npde);
  445 #endif
  446         nkpt = NKPT;
  447         ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt);
  448 
  449         /*
  450          * The R[4-7]?00 stores only one copy of the Global bit in the
  451          * translation lookaside buffer for each 2 page entry. Thus invalid
  452          * entrys must have the Global bit set so when Entry LO and Entry HI
  453          * G bits are anded together they will produce a global bit to store
  454          * in the tlb.
  455          */
  456         for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++)
  457                 *pte = PTE_G;
  458 
  459 #ifdef __mips_n64
  460         for (i = 0,  npt = nkpt; npt > 0; i++) {
  461                 kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE);
  462                 pde = (pd_entry_t *)kernel_segmap[i];
  463 
  464                 for (j = 0; j < NPDEPG && npt > 0; j++, npt--)
  465                         pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE);
  466         }
  467 #else
  468         for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++)
  469                 kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE));
  470 #endif
  471 
  472         PMAP_LOCK_INIT(kernel_pmap);
  473         kernel_pmap->pm_segtab = kernel_segmap;
  474         CPU_FILL(&kernel_pmap->pm_active);
  475         TAILQ_INIT(&kernel_pmap->pm_pvlist);
  476         kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
  477         kernel_pmap->pm_asid[0].gen = 0;
  478         kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE;
  479 }
  480 
  481 void
  482 pmap_bootstrap(void)
  483 {
  484         int i;
  485         int need_local_mappings = 0; 
  486 
  487         /* Sort. */
  488 again:
  489         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  490                 /*
  491                  * Keep the memory aligned on page boundary.
  492                  */
  493                 phys_avail[i] = round_page(phys_avail[i]);
  494                 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
  495 
  496                 if (i < 2)
  497                         continue;
  498                 if (phys_avail[i - 2] > phys_avail[i]) {
  499                         vm_paddr_t ptemp[2];
  500 
  501                         ptemp[0] = phys_avail[i + 0];
  502                         ptemp[1] = phys_avail[i + 1];
  503 
  504                         phys_avail[i + 0] = phys_avail[i - 2];
  505                         phys_avail[i + 1] = phys_avail[i - 1];
  506 
  507                         phys_avail[i - 2] = ptemp[0];
  508                         phys_avail[i - 1] = ptemp[1];
  509                         goto again;
  510                 }
  511         }
  512 
  513         /*
  514          * In 32 bit, we may have memory which cannot be mapped directly.
  515          * This memory will need temporary mapping before it can be
  516          * accessed.
  517          */
  518         if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1] - 1))
  519                 need_local_mappings = 1;
  520 
  521         /*
  522          * Copy the phys_avail[] array before we start stealing memory from it.
  523          */
  524         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  525                 physmem_desc[i] = phys_avail[i];
  526                 physmem_desc[i + 1] = phys_avail[i + 1];
  527         }
  528 
  529         Maxmem = atop(phys_avail[i - 1]);
  530 
  531         if (bootverbose) {
  532                 printf("Physical memory chunk(s):\n");
  533                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  534                         vm_paddr_t size;
  535 
  536                         size = phys_avail[i + 1] - phys_avail[i];
  537                         printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
  538                             (uintmax_t) phys_avail[i],
  539                             (uintmax_t) phys_avail[i + 1] - 1,
  540                             (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
  541                 }
  542                 printf("Maxmem is 0x%0jx\n", ptoa((uintmax_t)Maxmem));
  543         }
  544         /*
  545          * Steal the message buffer from the beginning of memory.
  546          */
  547         msgbufp = (struct msgbuf *)pmap_steal_memory(msgbufsize);
  548         msgbufinit(msgbufp, msgbufsize);
  549 
  550         /*
  551          * Steal thread0 kstack.
  552          */
  553         kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
  554 
  555         virtual_avail = VM_MIN_KERNEL_ADDRESS;
  556         virtual_end = VM_MAX_KERNEL_ADDRESS;
  557 
  558 #ifdef SMP
  559         /*
  560          * Steal some virtual address space to map the pcpu area.
  561          */
  562         virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
  563         pcpup = (struct pcpu *)virtual_avail;
  564         virtual_avail += PAGE_SIZE * 2;
  565 
  566         /*
  567          * Initialize the wired TLB entry mapping the pcpu region for
  568          * the BSP at 'pcpup'. Up until this point we were operating
  569          * with the 'pcpup' for the BSP pointing to a virtual address
  570          * in KSEG0 so there was no need for a TLB mapping.
  571          */
  572         mips_pcpu_tlb_init(PCPU_ADDR(0));
  573 
  574         if (bootverbose)
  575                 printf("pcpu is available at virtual address %p.\n", pcpup);
  576 #endif
  577 
  578         if (need_local_mappings)
  579                 pmap_alloc_lmem_map();
  580         pmap_create_kernel_pagetable();
  581         pmap_max_asid = VMNUM_PIDS;
  582         mips_wr_entryhi(0);
  583         mips_wr_pagemask(0);
  584 }
  585 
  586 /*
  587  * Initialize a vm_page's machine-dependent fields.
  588  */
  589 void
  590 pmap_page_init(vm_page_t m)
  591 {
  592 
  593         TAILQ_INIT(&m->md.pv_list);
  594         m->md.pv_list_count = 0;
  595         m->md.pv_flags = 0;
  596 }
  597 
  598 /*
  599  *      Initialize the pmap module.
  600  *      Called by vm_init, to initialize any structures that the pmap
  601  *      system needs to map virtual memory.
  602  *      pmap_init has been enhanced to support in a fairly consistant
  603  *      way, discontiguous physical memory.
  604  */
  605 void
  606 pmap_init(void)
  607 {
  608 
  609         /*
  610          * Initialize the address space (zone) for the pv entries.  Set a
  611          * high water mark so that the system can recover from excessive
  612          * numbers of pv entries.
  613          */
  614         pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
  615             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
  616         pv_entry_max = PMAP_SHPGPERPROC * maxproc + cnt.v_page_count;
  617         pv_entry_high_water = 9 * (pv_entry_max / 10);
  618         uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
  619 }
  620 
  621 /***************************************************
  622  * Low level helper routines.....
  623  ***************************************************/
  624 
  625 static __inline void
  626 pmap_invalidate_all_local(pmap_t pmap)
  627 {
  628         u_int cpuid;
  629 
  630         cpuid = PCPU_GET(cpuid);
  631 
  632         if (pmap == kernel_pmap) {
  633                 tlb_invalidate_all();
  634                 return;
  635         }
  636         if (CPU_ISSET(cpuid, &pmap->pm_active))
  637                 tlb_invalidate_all_user(pmap);
  638         else
  639                 pmap->pm_asid[cpuid].gen = 0;
  640 }
  641 
  642 #ifdef SMP
  643 static void
  644 pmap_invalidate_all(pmap_t pmap)
  645 {
  646 
  647         smp_rendezvous(0, pmap_invalidate_all_action, 0, pmap);
  648 }
  649 
  650 static void
  651 pmap_invalidate_all_action(void *arg)
  652 {
  653 
  654         pmap_invalidate_all_local((pmap_t)arg);
  655 }
  656 #else
  657 static void
  658 pmap_invalidate_all(pmap_t pmap)
  659 {
  660 
  661         pmap_invalidate_all_local(pmap);
  662 }
  663 #endif
  664 
  665 static __inline void
  666 pmap_invalidate_page_local(pmap_t pmap, vm_offset_t va)
  667 {
  668         u_int cpuid;
  669 
  670         cpuid = PCPU_GET(cpuid);
  671 
  672         if (is_kernel_pmap(pmap)) {
  673                 tlb_invalidate_address(pmap, va);
  674                 return;
  675         }
  676         if (pmap->pm_asid[cpuid].gen != PCPU_GET(asid_generation))
  677                 return;
  678         else if (!CPU_ISSET(cpuid, &pmap->pm_active)) {
  679                 pmap->pm_asid[cpuid].gen = 0;
  680                 return;
  681         }
  682         tlb_invalidate_address(pmap, va);
  683 }
  684 
  685 #ifdef SMP
  686 struct pmap_invalidate_page_arg {
  687         pmap_t pmap;
  688         vm_offset_t va;
  689 };
  690 
  691 static void
  692 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  693 {
  694         struct pmap_invalidate_page_arg arg;
  695 
  696         arg.pmap = pmap;
  697         arg.va = va;
  698         smp_rendezvous(0, pmap_invalidate_page_action, 0, &arg);
  699 }
  700 
  701 static void
  702 pmap_invalidate_page_action(void *arg)
  703 {
  704         struct pmap_invalidate_page_arg *p = arg;
  705 
  706         pmap_invalidate_page_local(p->pmap, p->va);
  707 }
  708 #else
  709 static void
  710 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  711 {
  712 
  713         pmap_invalidate_page_local(pmap, va);
  714 }
  715 #endif
  716 
  717 static __inline void
  718 pmap_update_page_local(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
  719 {
  720         u_int cpuid;
  721 
  722         cpuid = PCPU_GET(cpuid);
  723 
  724         if (is_kernel_pmap(pmap)) {
  725                 tlb_update(pmap, va, pte);
  726                 return;
  727         }
  728         if (pmap->pm_asid[cpuid].gen != PCPU_GET(asid_generation))
  729                 return;
  730         else if (!CPU_ISSET(cpuid, &pmap->pm_active)) {
  731                 pmap->pm_asid[cpuid].gen = 0;
  732                 return;
  733         }
  734         tlb_update(pmap, va, pte);
  735 }
  736 
  737 #ifdef SMP
  738 struct pmap_update_page_arg {
  739         pmap_t pmap;
  740         vm_offset_t va;
  741         pt_entry_t pte;
  742 };
  743 
  744 static void
  745 pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
  746 {
  747         struct pmap_update_page_arg arg;
  748 
  749         arg.pmap = pmap;
  750         arg.va = va;
  751         arg.pte = pte;
  752         smp_rendezvous(0, pmap_update_page_action, 0, &arg);
  753 }
  754 
  755 static void
  756 pmap_update_page_action(void *arg)
  757 {
  758         struct pmap_update_page_arg *p = arg;
  759 
  760         pmap_update_page_local(p->pmap, p->va, p->pte);
  761 }
  762 #else
  763 static void
  764 pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
  765 {
  766 
  767         pmap_update_page_local(pmap, va, pte);
  768 }
  769 #endif
  770 
  771 /*
  772  *      Routine:        pmap_extract
  773  *      Function:
  774  *              Extract the physical page address associated
  775  *              with the given map/virtual_address pair.
  776  */
  777 vm_paddr_t
  778 pmap_extract(pmap_t pmap, vm_offset_t va)
  779 {
  780         pt_entry_t *pte;
  781         vm_offset_t retval = 0;
  782 
  783         PMAP_LOCK(pmap);
  784         pte = pmap_pte(pmap, va);
  785         if (pte) {
  786                 retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
  787         }
  788         PMAP_UNLOCK(pmap);
  789         return (retval);
  790 }
  791 
  792 /*
  793  *      Routine:        pmap_extract_and_hold
  794  *      Function:
  795  *              Atomically extract and hold the physical page
  796  *              with the given pmap and virtual address pair
  797  *              if that mapping permits the given protection.
  798  */
  799 vm_page_t
  800 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
  801 {
  802         pt_entry_t pte;
  803         vm_page_t m;
  804         vm_paddr_t pa;
  805 
  806         m = NULL;
  807         pa = 0;
  808         PMAP_LOCK(pmap);
  809 retry:
  810         pte = *pmap_pte(pmap, va);
  811         if (pte != 0 && pte_test(&pte, PTE_V) &&
  812             (pte_test(&pte, PTE_D) || (prot & VM_PROT_WRITE) == 0)) {
  813                 if (vm_page_pa_tryrelock(pmap, TLBLO_PTE_TO_PA(pte), &pa))
  814                         goto retry;
  815 
  816                 m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(pte));
  817                 vm_page_hold(m);
  818         }
  819         PA_UNLOCK_COND(pa);
  820         PMAP_UNLOCK(pmap);
  821         return (m);
  822 }
  823 
  824 /***************************************************
  825  * Low level mapping routines.....
  826  ***************************************************/
  827 
  828 /*
  829  * add a wired page to the kva
  830  */
  831 void
  832 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int attr)
  833 {
  834         pt_entry_t *pte;
  835         pt_entry_t opte, npte;
  836 
  837 #ifdef PMAP_DEBUG
  838         printf("pmap_kenter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
  839 #endif
  840         npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | attr;
  841 
  842         pte = pmap_pte(kernel_pmap, va);
  843         opte = *pte;
  844         *pte = npte;
  845         if (pte_test(&opte, PTE_V) && opte != npte)
  846                 pmap_update_page(kernel_pmap, va, npte);
  847 }
  848 
  849 void
  850 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
  851 {
  852 
  853         KASSERT(is_cacheable_mem(pa),
  854                 ("pmap_kenter: memory at 0x%lx is not cacheable", (u_long)pa));
  855 
  856         pmap_kenter_attr(va, pa, PTE_C_CACHE);
  857 }
  858 
  859 /*
  860  * remove a page from the kernel pagetables
  861  */
  862  /* PMAP_INLINE */ void
  863 pmap_kremove(vm_offset_t va)
  864 {
  865         pt_entry_t *pte;
  866 
  867         /*
  868          * Write back all caches from the page being destroyed
  869          */
  870         mips_dcache_wbinv_range_index(va, PAGE_SIZE);
  871 
  872         pte = pmap_pte(kernel_pmap, va);
  873         *pte = PTE_G;
  874         pmap_invalidate_page(kernel_pmap, va);
  875 }
  876 
  877 /*
  878  *      Used to map a range of physical addresses into kernel
  879  *      virtual address space.
  880  *
  881  *      The value passed in '*virt' is a suggested virtual address for
  882  *      the mapping. Architectures which can support a direct-mapped
  883  *      physical to virtual region can return the appropriate address
  884  *      within that region, leaving '*virt' unchanged. Other
  885  *      architectures should map the pages starting at '*virt' and
  886  *      update '*virt' with the first usable address after the mapped
  887  *      region.
  888  *
  889  *      Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
  890  */
  891 vm_offset_t
  892 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
  893 {
  894         vm_offset_t va, sva;
  895 
  896         if (MIPS_DIRECT_MAPPABLE(end - 1))
  897                 return (MIPS_PHYS_TO_DIRECT(start));
  898 
  899         va = sva = *virt;
  900         while (start < end) {
  901                 pmap_kenter(va, start);
  902                 va += PAGE_SIZE;
  903                 start += PAGE_SIZE;
  904         }
  905         *virt = va;
  906         return (sva);
  907 }
  908 
  909 /*
  910  * Add a list of wired pages to the kva
  911  * this routine is only used for temporary
  912  * kernel mappings that do not need to have
  913  * page modification or references recorded.
  914  * Note that old mappings are simply written
  915  * over.  The page *must* be wired.
  916  */
  917 void
  918 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
  919 {
  920         int i;
  921         vm_offset_t origva = va;
  922 
  923         for (i = 0; i < count; i++) {
  924                 pmap_flush_pvcache(m[i]);
  925                 pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
  926                 va += PAGE_SIZE;
  927         }
  928 
  929         mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
  930 }
  931 
  932 /*
  933  * this routine jerks page mappings from the
  934  * kernel -- it is meant only for temporary mappings.
  935  */
  936 void
  937 pmap_qremove(vm_offset_t va, int count)
  938 {
  939         /*
  940          * No need to wb/inv caches here, 
  941          *   pmap_kremove will do it for us
  942          */
  943 
  944         while (count-- > 0) {
  945                 pmap_kremove(va);
  946                 va += PAGE_SIZE;
  947         }
  948 }
  949 
  950 /***************************************************
  951  * Page table page management routines.....
  952  ***************************************************/
  953 
  954 /*  Revision 1.507
  955  *
  956  * Simplify the reference counting of page table pages.  Specifically, use
  957  * the page table page's wired count rather than its hold count to contain
  958  * the reference count.
  959  */
  960 
  961 /*
  962  * This routine unholds page table pages, and if the hold count
  963  * drops to zero, then it decrements the wire count.
  964  */
  965 static PMAP_INLINE int
  966 pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
  967 {
  968         --m->wire_count;
  969         if (m->wire_count == 0)
  970                 return (_pmap_unwire_pte_hold(pmap, va, m));
  971         else
  972                 return (0);
  973 }
  974 
  975 static int
  976 _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
  977 {
  978         pd_entry_t *pde;
  979 
  980         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
  981         /*
  982          * unmap the page table page
  983          */
  984 #ifdef __mips_n64
  985         if (m->pindex < NUPDE)
  986                 pde = pmap_pde(pmap, va);
  987         else
  988                 pde = pmap_segmap(pmap, va);
  989 #else
  990         pde = pmap_pde(pmap, va);
  991 #endif
  992         *pde = 0;
  993         pmap->pm_stats.resident_count--;
  994 
  995 #ifdef __mips_n64
  996         if (m->pindex < NUPDE) {
  997                 pd_entry_t *pdp;
  998                 vm_page_t pdpg;
  999 
 1000                 /*
 1001                  * Recursively decrement next level pagetable refcount
 1002                  */
 1003                 pdp = (pd_entry_t *)*pmap_segmap(pmap, va);
 1004                 pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp));
 1005                 pmap_unwire_pte_hold(pmap, va, pdpg);
 1006         }
 1007 #endif
 1008         if (pmap->pm_ptphint == m)
 1009                 pmap->pm_ptphint = NULL;
 1010 
 1011         /*
 1012          * If the page is finally unwired, simply free it.
 1013          */
 1014         vm_page_free_zero(m);
 1015         atomic_subtract_int(&cnt.v_wire_count, 1);
 1016         return (1);
 1017 }
 1018 
 1019 /*
 1020  * After removing a page table entry, this routine is used to
 1021  * conditionally free the page, and manage the hold/wire counts.
 1022  */
 1023 static int
 1024 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
 1025 {
 1026         unsigned ptepindex;
 1027         pd_entry_t pteva;
 1028 
 1029         if (va >= VM_MAXUSER_ADDRESS)
 1030                 return (0);
 1031 
 1032         if (mpte == NULL) {
 1033                 ptepindex = pmap_pde_pindex(va);
 1034                 if (pmap->pm_ptphint &&
 1035                     (pmap->pm_ptphint->pindex == ptepindex)) {
 1036                         mpte = pmap->pm_ptphint;
 1037                 } else {
 1038                         pteva = *pmap_pde(pmap, va);
 1039                         mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pteva));
 1040                         pmap->pm_ptphint = mpte;
 1041                 }
 1042         }
 1043         return (pmap_unwire_pte_hold(pmap, va, mpte));
 1044 }
 1045 
 1046 void
 1047 pmap_pinit0(pmap_t pmap)
 1048 {
 1049         int i;
 1050 
 1051         PMAP_LOCK_INIT(pmap);
 1052         pmap->pm_segtab = kernel_segmap;
 1053         CPU_ZERO(&pmap->pm_active);
 1054         pmap->pm_ptphint = NULL;
 1055         for (i = 0; i < MAXCPU; i++) {
 1056                 pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
 1057                 pmap->pm_asid[i].gen = 0;
 1058         }
 1059         PCPU_SET(curpmap, pmap);
 1060         TAILQ_INIT(&pmap->pm_pvlist);
 1061         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1062 }
 1063 
 1064 void
 1065 pmap_grow_direct_page_cache()
 1066 {
 1067 
 1068 #ifdef __mips_n64
 1069         vm_contig_grow_cache(3, 0, MIPS_XKPHYS_LARGEST_PHYS);
 1070 #else
 1071         vm_contig_grow_cache(3, 0, MIPS_KSEG0_LARGEST_PHYS);
 1072 #endif
 1073 }
 1074 
 1075 vm_page_t
 1076 pmap_alloc_direct_page(unsigned int index, int req)
 1077 {
 1078         vm_page_t m;
 1079 
 1080         m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, req);
 1081         if (m == NULL)
 1082                 return (NULL);
 1083 
 1084         if ((m->flags & PG_ZERO) == 0)
 1085                 pmap_zero_page(m);
 1086 
 1087         m->pindex = index;
 1088         atomic_add_int(&cnt.v_wire_count, 1);
 1089         m->wire_count = 1;
 1090         return (m);
 1091 }
 1092 
 1093 /*
 1094  * Initialize a preallocated and zeroed pmap structure,
 1095  * such as one in a vmspace structure.
 1096  */
 1097 int
 1098 pmap_pinit(pmap_t pmap)
 1099 {
 1100         vm_offset_t ptdva;
 1101         vm_page_t ptdpg;
 1102         int i;
 1103 
 1104         PMAP_LOCK_INIT(pmap);
 1105 
 1106         /*
 1107          * allocate the page directory page
 1108          */
 1109         while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, VM_ALLOC_NORMAL)) == NULL)
 1110                pmap_grow_direct_page_cache();
 1111 
 1112         ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
 1113         pmap->pm_segtab = (pd_entry_t *)ptdva;
 1114         CPU_ZERO(&pmap->pm_active);
 1115         pmap->pm_ptphint = NULL;
 1116         for (i = 0; i < MAXCPU; i++) {
 1117                 pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
 1118                 pmap->pm_asid[i].gen = 0;
 1119         }
 1120         TAILQ_INIT(&pmap->pm_pvlist);
 1121         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1122 
 1123         return (1);
 1124 }
 1125 
 1126 /*
 1127  * this routine is called if the page table page is not
 1128  * mapped correctly.
 1129  */
 1130 static vm_page_t
 1131 _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
 1132 {
 1133         vm_offset_t pageva;
 1134         vm_page_t m;
 1135 
 1136         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1137             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1138             ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1139 
 1140         /*
 1141          * Find or fabricate a new pagetable page
 1142          */
 1143         if ((m = pmap_alloc_direct_page(ptepindex, VM_ALLOC_NORMAL)) == NULL) {
 1144                 if (flags & M_WAITOK) {
 1145                         PMAP_UNLOCK(pmap);
 1146                         vm_page_unlock_queues();
 1147                         pmap_grow_direct_page_cache();
 1148                         vm_page_lock_queues();
 1149                         PMAP_LOCK(pmap);
 1150                 }
 1151 
 1152                 /*
 1153                  * Indicate the need to retry.  While waiting, the page
 1154                  * table page may have been allocated.
 1155                  */
 1156                 return (NULL);
 1157         }
 1158 
 1159         /*
 1160          * Map the pagetable page into the process address space, if it
 1161          * isn't already there.
 1162          */
 1163         pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
 1164 
 1165 #ifdef __mips_n64
 1166         if (ptepindex >= NUPDE) {
 1167                 pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva;
 1168         } else {
 1169                 pd_entry_t *pdep, *pde;
 1170                 int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT);
 1171                 int pdeindex = ptepindex & (NPDEPG - 1);
 1172                 vm_page_t pg;
 1173                 
 1174                 pdep = &pmap->pm_segtab[segindex];
 1175                 if (*pdep == NULL) { 
 1176                         /* recurse for allocating page dir */
 1177                         if (_pmap_allocpte(pmap, NUPDE + segindex, 
 1178                             flags) == NULL) {
 1179                                 /* alloc failed, release current */
 1180                                 --m->wire_count;
 1181                                 atomic_subtract_int(&cnt.v_wire_count, 1);
 1182                                 vm_page_free_zero(m);
 1183                                 return (NULL);
 1184                         }
 1185                 } else {
 1186                         pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep));
 1187                         pg->wire_count++;
 1188                 }
 1189                 /* Next level entry */
 1190                 pde = (pd_entry_t *)*pdep;
 1191                 pde[pdeindex] = (pd_entry_t)pageva;
 1192                 pmap->pm_ptphint = m;
 1193         }
 1194 #else
 1195         pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva;
 1196 #endif
 1197         pmap->pm_stats.resident_count++;
 1198 
 1199         /*
 1200          * Set the page table hint
 1201          */
 1202         pmap->pm_ptphint = m;
 1203         return (m);
 1204 }
 1205 
 1206 static vm_page_t
 1207 pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
 1208 {
 1209         unsigned ptepindex;
 1210         pd_entry_t *pde;
 1211         vm_page_t m;
 1212 
 1213         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1214             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1215             ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1216 
 1217         /*
 1218          * Calculate pagetable page index
 1219          */
 1220         ptepindex = pmap_pde_pindex(va);
 1221 retry:
 1222         /*
 1223          * Get the page directory entry
 1224          */
 1225         pde = pmap_pde(pmap, va);
 1226 
 1227         /*
 1228          * If the page table page is mapped, we just increment the hold
 1229          * count, and activate it.
 1230          */
 1231         if (pde != NULL && *pde != NULL) {
 1232                 /*
 1233                  * In order to get the page table page, try the hint first.
 1234                  */
 1235                 if (pmap->pm_ptphint &&
 1236                     (pmap->pm_ptphint->pindex == ptepindex)) {
 1237                         m = pmap->pm_ptphint;
 1238                 } else {
 1239                         m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde));
 1240                         pmap->pm_ptphint = m;
 1241                 }
 1242                 m->wire_count++;
 1243         } else {
 1244                 /*
 1245                  * Here if the pte page isn't mapped, or if it has been
 1246                  * deallocated.
 1247                  */
 1248                 m = _pmap_allocpte(pmap, ptepindex, flags);
 1249                 if (m == NULL && (flags & M_WAITOK))
 1250                         goto retry;
 1251         }
 1252         return (m);
 1253 }
 1254 
 1255 
 1256 /***************************************************
 1257 * Pmap allocation/deallocation routines.
 1258  ***************************************************/
 1259 /*
 1260  *  Revision 1.397
 1261  *  - Merged pmap_release and pmap_release_free_page.  When pmap_release is
 1262  *    called only the page directory page(s) can be left in the pmap pte
 1263  *    object, since all page table pages will have been freed by
 1264  *    pmap_remove_pages and pmap_remove.  In addition, there can only be one
 1265  *    reference to the pmap and the page directory is wired, so the page(s)
 1266  *    can never be busy.  So all there is to do is clear the magic mappings
 1267  *    from the page directory and free the page(s).
 1268  */
 1269 
 1270 
 1271 /*
 1272  * Release any resources held by the given physical map.
 1273  * Called when a pmap initialized by pmap_pinit is being released.
 1274  * Should only be called if the map contains no valid mappings.
 1275  */
 1276 void
 1277 pmap_release(pmap_t pmap)
 1278 {
 1279         vm_offset_t ptdva;
 1280         vm_page_t ptdpg;
 1281 
 1282         KASSERT(pmap->pm_stats.resident_count == 0,
 1283             ("pmap_release: pmap resident count %ld != 0",
 1284             pmap->pm_stats.resident_count));
 1285 
 1286         ptdva = (vm_offset_t)pmap->pm_segtab;
 1287         ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva));
 1288 
 1289         ptdpg->wire_count--;
 1290         atomic_subtract_int(&cnt.v_wire_count, 1);
 1291         vm_page_free_zero(ptdpg);
 1292         PMAP_LOCK_DESTROY(pmap);
 1293 }
 1294 
 1295 /*
 1296  * grow the number of kernel page table entries, if needed
 1297  */
 1298 void
 1299 pmap_growkernel(vm_offset_t addr)
 1300 {
 1301         vm_page_t nkpg;
 1302         pd_entry_t *pde, *pdpe;
 1303         pt_entry_t *pte;
 1304         int i;
 1305 
 1306         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 1307         addr = roundup2(addr, NBSEG);
 1308         if (addr - 1 >= kernel_map->max_offset)
 1309                 addr = kernel_map->max_offset;
 1310         while (kernel_vm_end < addr) {
 1311                 pdpe = pmap_segmap(kernel_pmap, kernel_vm_end);
 1312 #ifdef __mips_n64
 1313                 if (*pdpe == 0) {
 1314                         /* new intermediate page table entry */
 1315                         nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
 1316                         if (nkpg == NULL)
 1317                                 panic("pmap_growkernel: no memory to grow kernel");
 1318                         *pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
 1319                         continue; /* try again */
 1320                 }
 1321 #endif
 1322                 pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
 1323                 if (*pde != 0) {
 1324                         kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 1325                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1326                                 kernel_vm_end = kernel_map->max_offset;
 1327                                 break;
 1328                         }
 1329                         continue;
 1330                 }
 1331 
 1332                 /*
 1333                  * This index is bogus, but out of the way
 1334                  */
 1335                 nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
 1336                 if (!nkpg)
 1337                         panic("pmap_growkernel: no memory to grow kernel");
 1338                 nkpt++;
 1339                 *pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
 1340 
 1341                 /*
 1342                  * The R[4-7]?00 stores only one copy of the Global bit in
 1343                  * the translation lookaside buffer for each 2 page entry.
 1344                  * Thus invalid entrys must have the Global bit set so when
 1345                  * Entry LO and Entry HI G bits are anded together they will
 1346                  * produce a global bit to store in the tlb.
 1347                  */
 1348                 pte = (pt_entry_t *)*pde;
 1349                 for (i = 0; i < NPTEPG; i++)
 1350                         pte[i] = PTE_G;
 1351 
 1352                 kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 1353                 if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1354                         kernel_vm_end = kernel_map->max_offset;
 1355                         break;
 1356                 }
 1357         }
 1358 }
 1359 
 1360 /***************************************************
 1361 * page management routines.
 1362  ***************************************************/
 1363 
 1364 /*
 1365  * free the pv_entry back to the free list
 1366  */
 1367 static PMAP_INLINE void
 1368 free_pv_entry(pv_entry_t pv)
 1369 {
 1370 
 1371         pv_entry_count--;
 1372         uma_zfree(pvzone, pv);
 1373 }
 1374 
 1375 /*
 1376  * get a new pv_entry, allocating a block from the system
 1377  * when needed.
 1378  * the memory allocation is performed bypassing the malloc code
 1379  * because of the possibility of allocations at interrupt time.
 1380  */
 1381 static pv_entry_t
 1382 get_pv_entry(pmap_t locked_pmap)
 1383 {
 1384         static const struct timeval printinterval = { 60, 0 };
 1385         static struct timeval lastprint;
 1386         struct vpgqueues *vpq;
 1387         pt_entry_t *pte, oldpte;
 1388         pmap_t pmap;
 1389         pv_entry_t allocated_pv, next_pv, pv;
 1390         vm_offset_t va;
 1391         vm_page_t m;
 1392 
 1393         PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
 1394         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1395         allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
 1396         if (allocated_pv != NULL) {
 1397                 pv_entry_count++;
 1398                 if (pv_entry_count > pv_entry_high_water)
 1399                         pagedaemon_wakeup();
 1400                 else
 1401                         return (allocated_pv);
 1402         }
 1403         /*
 1404          * Reclaim pv entries: At first, destroy mappings to inactive
 1405          * pages.  After that, if a pv entry is still needed, destroy
 1406          * mappings to active pages.
 1407          */
 1408         if (ratecheck(&lastprint, &printinterval))
 1409                 printf("Approaching the limit on PV entries, "
 1410                     "increase the vm.pmap.shpgperproc tunable.\n");
 1411         vpq = &vm_page_queues[PQ_INACTIVE];
 1412 retry:
 1413         TAILQ_FOREACH(m, &vpq->pl, pageq) {
 1414                 if ((m->flags & PG_MARKER) != 0 || m->hold_count || m->busy)
 1415                         continue;
 1416                 TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
 1417                         va = pv->pv_va;
 1418                         pmap = pv->pv_pmap;
 1419                         /* Avoid deadlock and lock recursion. */
 1420                         if (pmap > locked_pmap)
 1421                                 PMAP_LOCK(pmap);
 1422                         else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
 1423                                 continue;
 1424                         pmap->pm_stats.resident_count--;
 1425                         pte = pmap_pte(pmap, va);
 1426                         KASSERT(pte != NULL, ("pte"));
 1427                         oldpte = *pte;
 1428                         if (is_kernel_pmap(pmap))
 1429                                 *pte = PTE_G;
 1430                         else
 1431                                 *pte = 0;
 1432                         KASSERT(!pte_test(&oldpte, PTE_W),
 1433                             ("wired pte for unwired page"));
 1434                         if (m->md.pv_flags & PV_TABLE_REF)
 1435                                 vm_page_aflag_set(m, PGA_REFERENCED);
 1436                         if (pte_test(&oldpte, PTE_D))
 1437                                 vm_page_dirty(m);
 1438                         pmap_invalidate_page(pmap, va);
 1439                         TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
 1440                         m->md.pv_list_count--;
 1441                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1442                         pmap_unuse_pt(pmap, va, pv->pv_ptem);
 1443                         if (pmap != locked_pmap)
 1444                                 PMAP_UNLOCK(pmap);
 1445                         if (allocated_pv == NULL)
 1446                                 allocated_pv = pv;
 1447                         else
 1448                                 free_pv_entry(pv);
 1449                 }
 1450                 if (TAILQ_EMPTY(&m->md.pv_list)) {
 1451                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 1452                         m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
 1453                 }
 1454         }
 1455         if (allocated_pv == NULL) {
 1456                 if (vpq == &vm_page_queues[PQ_INACTIVE]) {
 1457                         vpq = &vm_page_queues[PQ_ACTIVE];
 1458                         goto retry;
 1459                 }
 1460                 panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
 1461         }
 1462         return (allocated_pv);
 1463 }
 1464 
 1465 /*
 1466  *  Revision 1.370
 1467  *
 1468  *  Move pmap_collect() out of the machine-dependent code, rename it
 1469  *  to reflect its new location, and add page queue and flag locking.
 1470  *
 1471  *  Notes: (1) alpha, i386, and ia64 had identical implementations
 1472  *  of pmap_collect() in terms of machine-independent interfaces;
 1473  *  (2) sparc64 doesn't require it; (3) powerpc had it as a TODO.
 1474  *
 1475  *  MIPS implementation was identical to alpha [Junos 8.2]
 1476  */
 1477 
 1478 /*
 1479  * If it is the first entry on the list, it is actually
 1480  * in the header and we must copy the following entry up
 1481  * to the header.  Otherwise we must search the list for
 1482  * the entry.  In either case we free the now unused entry.
 1483  */
 1484 
 1485 static pv_entry_t
 1486 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 1487 {
 1488         pv_entry_t pv;
 1489 
 1490         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1491         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1492         if (pvh->pv_list_count < pmap->pm_stats.resident_count) {
 1493                 TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
 1494                         if (pmap == pv->pv_pmap && va == pv->pv_va)
 1495                                 break;
 1496                 }
 1497         } else {
 1498                 TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
 1499                         if (va == pv->pv_va)
 1500                                 break;
 1501                 }
 1502         }
 1503         if (pv != NULL) {
 1504                 TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
 1505                 pvh->pv_list_count--;
 1506                 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
 1507         }
 1508         return (pv);
 1509 }
 1510 
 1511 static void
 1512 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 1513 {
 1514         pv_entry_t pv;
 1515 
 1516         pv = pmap_pvh_remove(pvh, pmap, va);
 1517         KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
 1518              (u_long)VM_PAGE_TO_PHYS(member2struct(vm_page, md, pvh)),
 1519              (u_long)va));
 1520         free_pv_entry(pv);
 1521 }
 1522 
 1523 static void
 1524 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
 1525 {
 1526 
 1527         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1528         pmap_pvh_free(&m->md, pmap, va);
 1529         if (TAILQ_EMPTY(&m->md.pv_list))
 1530                 vm_page_aflag_clear(m, PGA_WRITEABLE);
 1531 }
 1532 
 1533 /*
 1534  * Conditionally create a pv entry.
 1535  */
 1536 static boolean_t
 1537 pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
 1538     vm_page_t m)
 1539 {
 1540         pv_entry_t pv;
 1541 
 1542         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1543         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1544         if (pv_entry_count < pv_entry_high_water && 
 1545             (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) {
 1546                 pv_entry_count++;
 1547                 pv->pv_va = va;
 1548                 pv->pv_pmap = pmap;
 1549                 pv->pv_ptem = mpte;
 1550                 TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
 1551                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 1552                 m->md.pv_list_count++;
 1553                 return (TRUE);
 1554         } else
 1555                 return (FALSE);
 1556 }
 1557 
 1558 /*
 1559  * pmap_remove_pte: do the things to unmap a page in a process
 1560  */
 1561 static int
 1562 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
 1563 {
 1564         pt_entry_t oldpte;
 1565         vm_page_t m;
 1566         vm_paddr_t pa;
 1567 
 1568         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1569         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1570 
 1571         oldpte = *ptq;
 1572         if (is_kernel_pmap(pmap))
 1573                 *ptq = PTE_G;
 1574         else
 1575                 *ptq = 0;
 1576 
 1577         if (pte_test(&oldpte, PTE_W))
 1578                 pmap->pm_stats.wired_count -= 1;
 1579 
 1580         pmap->pm_stats.resident_count -= 1;
 1581         pa = TLBLO_PTE_TO_PA(oldpte);
 1582 
 1583         if (page_is_managed(pa)) {
 1584                 m = PHYS_TO_VM_PAGE(pa);
 1585                 if (pte_test(&oldpte, PTE_D)) {
 1586                         KASSERT(!pte_test(&oldpte, PTE_RO),
 1587                             ("%s: modified page not writable: va: %p, pte: %#jx",
 1588                             __func__, (void *)va, (uintmax_t)oldpte));
 1589                         vm_page_dirty(m);
 1590                 }
 1591                 if (m->md.pv_flags & PV_TABLE_REF)
 1592                         vm_page_aflag_set(m, PGA_REFERENCED);
 1593                 m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
 1594 
 1595                 pmap_remove_entry(pmap, m, va);
 1596         }
 1597         return (pmap_unuse_pt(pmap, va, NULL));
 1598 }
 1599 
 1600 /*
 1601  * Remove a single page from a process address space
 1602  */
 1603 static void
 1604 pmap_remove_page(struct pmap *pmap, vm_offset_t va)
 1605 {
 1606         pt_entry_t *ptq;
 1607 
 1608         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1609         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1610         ptq = pmap_pte(pmap, va);
 1611 
 1612         /*
 1613          * if there is no pte for this address, just skip it!!!
 1614          */
 1615         if (!ptq || !pte_test(ptq, PTE_V)) {
 1616                 return;
 1617         }
 1618 
 1619         /*
 1620          * Write back all caches from the page being destroyed
 1621          */
 1622         mips_dcache_wbinv_range_index(va, PAGE_SIZE);
 1623 
 1624         /*
 1625          * get a local va for mappings for this pmap.
 1626          */
 1627         (void)pmap_remove_pte(pmap, ptq, va);
 1628         pmap_invalidate_page(pmap, va);
 1629 
 1630         return;
 1631 }
 1632 
 1633 /*
 1634  *      Remove the given range of addresses from the specified map.
 1635  *
 1636  *      It is assumed that the start and end are properly
 1637  *      rounded to the page size.
 1638  */
 1639 void
 1640 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
 1641 {
 1642         vm_offset_t va_next;
 1643         pd_entry_t *pde, *pdpe;
 1644         pt_entry_t *pte;
 1645 
 1646         if (pmap == NULL)
 1647                 return;
 1648 
 1649         if (pmap->pm_stats.resident_count == 0)
 1650                 return;
 1651 
 1652         vm_page_lock_queues();
 1653         PMAP_LOCK(pmap);
 1654 
 1655         /*
 1656          * special handling of removing one page.  a very common operation
 1657          * and easy to short circuit some code.
 1658          */
 1659         if ((sva + PAGE_SIZE) == eva) {
 1660                 pmap_remove_page(pmap, sva);
 1661                 goto out;
 1662         }
 1663         for (; sva < eva; sva = va_next) {
 1664                 pdpe = pmap_segmap(pmap, sva);
 1665 #ifdef __mips_n64
 1666                 if (*pdpe == 0) {
 1667                         va_next = (sva + NBSEG) & ~SEGMASK;
 1668                         if (va_next < sva)
 1669                                 va_next = eva;
 1670                         continue;
 1671                 }
 1672 #endif
 1673                 va_next = (sva + NBPDR) & ~PDRMASK;
 1674                 if (va_next < sva)
 1675                         va_next = eva;
 1676 
 1677                 pde = pmap_pdpe_to_pde(pdpe, sva);
 1678                 if (*pde == 0)
 1679                         continue;
 1680                 if (va_next > eva)
 1681                         va_next = eva;
 1682                 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; 
 1683                     pte++, sva += PAGE_SIZE) {
 1684                         pmap_remove_page(pmap, sva);
 1685                 }
 1686         }
 1687 out:
 1688         vm_page_unlock_queues();
 1689         PMAP_UNLOCK(pmap);
 1690 }
 1691 
 1692 /*
 1693  *      Routine:        pmap_remove_all
 1694  *      Function:
 1695  *              Removes this physical page from
 1696  *              all physical maps in which it resides.
 1697  *              Reflects back modify bits to the pager.
 1698  *
 1699  *      Notes:
 1700  *              Original versions of this routine were very
 1701  *              inefficient because they iteratively called
 1702  *              pmap_remove (slow...)
 1703  */
 1704 
 1705 void
 1706 pmap_remove_all(vm_page_t m)
 1707 {
 1708         pv_entry_t pv;
 1709         pt_entry_t *pte, tpte;
 1710 
 1711         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1712             ("pmap_remove_all: page %p is not managed", m));
 1713         vm_page_lock_queues();
 1714 
 1715         if (m->md.pv_flags & PV_TABLE_REF)
 1716                 vm_page_aflag_set(m, PGA_REFERENCED);
 1717 
 1718         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 1719                 PMAP_LOCK(pv->pv_pmap);
 1720 
 1721                 /*
 1722                  * If it's last mapping writeback all caches from 
 1723                  * the page being destroyed
 1724                  */
 1725                 if (m->md.pv_list_count == 1) 
 1726                         mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
 1727 
 1728                 pv->pv_pmap->pm_stats.resident_count--;
 1729 
 1730                 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
 1731 
 1732                 tpte = *pte;
 1733                 if (is_kernel_pmap(pv->pv_pmap))
 1734                         *pte = PTE_G;
 1735                 else
 1736                         *pte = 0;
 1737 
 1738                 if (pte_test(&tpte, PTE_W))
 1739                         pv->pv_pmap->pm_stats.wired_count--;
 1740 
 1741                 /*
 1742                  * Update the vm_page_t clean and reference bits.
 1743                  */
 1744                 if (pte_test(&tpte, PTE_D)) {
 1745                         KASSERT(!pte_test(&tpte, PTE_RO),
 1746                             ("%s: modified page not writable: va: %p, pte: %#jx",
 1747                             __func__, (void *)pv->pv_va, (uintmax_t)tpte));
 1748                         vm_page_dirty(m);
 1749                 }
 1750                 pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
 1751 
 1752                 TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
 1753                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1754                 m->md.pv_list_count--;
 1755                 pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
 1756                 PMAP_UNLOCK(pv->pv_pmap);
 1757                 free_pv_entry(pv);
 1758         }
 1759 
 1760         vm_page_aflag_clear(m, PGA_WRITEABLE);
 1761         m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
 1762         vm_page_unlock_queues();
 1763 }
 1764 
 1765 /*
 1766  *      Set the physical protection on the
 1767  *      specified range of this map as requested.
 1768  */
 1769 void
 1770 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 1771 {
 1772         pt_entry_t *pte;
 1773         pd_entry_t *pde, *pdpe;
 1774         vm_offset_t va_next;
 1775 
 1776         if (pmap == NULL)
 1777                 return;
 1778 
 1779         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 1780                 pmap_remove(pmap, sva, eva);
 1781                 return;
 1782         }
 1783         if (prot & VM_PROT_WRITE)
 1784                 return;
 1785 
 1786         vm_page_lock_queues();
 1787         PMAP_LOCK(pmap);
 1788         for (; sva < eva; sva = va_next) {
 1789                 pt_entry_t pbits;
 1790                 vm_page_t m;
 1791                 vm_paddr_t pa;
 1792 
 1793                 pdpe = pmap_segmap(pmap, sva);
 1794 #ifdef __mips_n64
 1795                 if (*pdpe == 0) {
 1796                         va_next = (sva + NBSEG) & ~SEGMASK;
 1797                         if (va_next < sva)
 1798                                 va_next = eva;
 1799                         continue;
 1800                 }
 1801 #endif
 1802                 va_next = (sva + NBPDR) & ~PDRMASK;
 1803                 if (va_next < sva)
 1804                         va_next = eva;
 1805 
 1806                 pde = pmap_pdpe_to_pde(pdpe, sva);
 1807                 if (pde == NULL || *pde == NULL)
 1808                         continue;
 1809                 if (va_next > eva)
 1810                         va_next = eva;
 1811 
 1812                 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 1813                      sva += PAGE_SIZE) {
 1814 
 1815                         /* Skip invalid PTEs */
 1816                         if (!pte_test(pte, PTE_V))
 1817                                 continue;
 1818                         pbits = *pte;
 1819                         pa = TLBLO_PTE_TO_PA(pbits);
 1820                         if (page_is_managed(pa) && pte_test(&pbits, PTE_D)) {
 1821                                 m = PHYS_TO_VM_PAGE(pa);
 1822                                 vm_page_dirty(m);
 1823                                 m->md.pv_flags &= ~PV_TABLE_MOD;
 1824                         }
 1825                         pte_clear(&pbits, PTE_D);
 1826                         pte_set(&pbits, PTE_RO);
 1827                         
 1828                         if (pbits != *pte) {
 1829                                 *pte = pbits;
 1830                                 pmap_update_page(pmap, sva, pbits);
 1831                         }
 1832                 }
 1833         }
 1834         vm_page_unlock_queues();
 1835         PMAP_UNLOCK(pmap);
 1836 }
 1837 
 1838 /*
 1839  *      Insert the given physical page (p) at
 1840  *      the specified virtual address (v) in the
 1841  *      target physical map with the protection requested.
 1842  *
 1843  *      If specified, the page will be wired down, meaning
 1844  *      that the related pte can not be reclaimed.
 1845  *
 1846  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 1847  *      or lose information.  That is, this routine must actually
 1848  *      insert this page into the given map NOW.
 1849  */
 1850 void
 1851 pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
 1852     vm_prot_t prot, boolean_t wired)
 1853 {
 1854         vm_paddr_t pa, opa;
 1855         pt_entry_t *pte;
 1856         pt_entry_t origpte, newpte;
 1857         pv_entry_t pv;
 1858         vm_page_t mpte, om;
 1859         pt_entry_t rw = 0;
 1860 
 1861         if (pmap == NULL)
 1862                 return;
 1863 
 1864         va &= ~PAGE_MASK;
 1865         KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
 1866         KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0,
 1867             ("pmap_enter: page %p is not busy", m));
 1868 
 1869         mpte = NULL;
 1870 
 1871         vm_page_lock_queues();
 1872         PMAP_LOCK(pmap);
 1873 
 1874         /*
 1875          * In the case that a page table page is not resident, we are
 1876          * creating it here.
 1877          */
 1878         if (va < VM_MAXUSER_ADDRESS) {
 1879                 mpte = pmap_allocpte(pmap, va, M_WAITOK);
 1880         }
 1881         pte = pmap_pte(pmap, va);
 1882 
 1883         /*
 1884          * Page Directory table entry not valid, we need a new PT page
 1885          */
 1886         if (pte == NULL) {
 1887                 panic("pmap_enter: invalid page directory, pdir=%p, va=%p",
 1888                     (void *)pmap->pm_segtab, (void *)va);
 1889         }
 1890         pa = VM_PAGE_TO_PHYS(m);
 1891         om = NULL;
 1892         origpte = *pte;
 1893         opa = TLBLO_PTE_TO_PA(origpte);
 1894 
 1895         /*
 1896          * Mapping has not changed, must be protection or wiring change.
 1897          */
 1898         if (pte_test(&origpte, PTE_V) && opa == pa) {
 1899                 /*
 1900                  * Wiring change, just update stats. We don't worry about
 1901                  * wiring PT pages as they remain resident as long as there
 1902                  * are valid mappings in them. Hence, if a user page is
 1903                  * wired, the PT page will be also.
 1904                  */
 1905                 if (wired && !pte_test(&origpte, PTE_W))
 1906                         pmap->pm_stats.wired_count++;
 1907                 else if (!wired && pte_test(&origpte, PTE_W))
 1908                         pmap->pm_stats.wired_count--;
 1909 
 1910                 KASSERT(!pte_test(&origpte, PTE_D | PTE_RO),
 1911                     ("%s: modified page not writable: va: %p, pte: %#jx",
 1912                     __func__, (void *)va, (uintmax_t)origpte));
 1913 
 1914                 /*
 1915                  * Remove extra pte reference
 1916                  */
 1917                 if (mpte)
 1918                         mpte->wire_count--;
 1919 
 1920                 if (page_is_managed(opa)) {
 1921                         om = m;
 1922                 }
 1923                 goto validate;
 1924         }
 1925 
 1926         pv = NULL;
 1927 
 1928         /*
 1929          * Mapping has changed, invalidate old range and fall through to
 1930          * handle validating new mapping.
 1931          */
 1932         if (opa) {
 1933                 if (pte_test(&origpte, PTE_W))
 1934                         pmap->pm_stats.wired_count--;
 1935 
 1936                 if (page_is_managed(opa)) {
 1937                         om = PHYS_TO_VM_PAGE(opa);
 1938                         pv = pmap_pvh_remove(&om->md, pmap, va);
 1939                 }
 1940                 if (mpte != NULL) {
 1941                         mpte->wire_count--;
 1942                         KASSERT(mpte->wire_count > 0,
 1943                             ("pmap_enter: missing reference to page table page,"
 1944                             " va: %p", (void *)va));
 1945                 }
 1946         } else
 1947                 pmap->pm_stats.resident_count++;
 1948 
 1949         /*
 1950          * Enter on the PV list if part of our managed memory. Note that we
 1951          * raise IPL while manipulating pv_table since pmap_enter can be
 1952          * called at interrupt time.
 1953          */
 1954         if ((m->oflags & VPO_UNMANAGED) == 0) {
 1955                 KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
 1956                     ("pmap_enter: managed mapping within the clean submap"));
 1957                 if (pv == NULL)
 1958                         pv = get_pv_entry(pmap);
 1959                 pv->pv_va = va;
 1960                 pv->pv_pmap = pmap;
 1961                 pv->pv_ptem = mpte;
 1962                 TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
 1963                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 1964                 m->md.pv_list_count++;
 1965         } else if (pv != NULL)
 1966                 free_pv_entry(pv);
 1967 
 1968         /*
 1969          * Increment counters
 1970          */
 1971         if (wired)
 1972                 pmap->pm_stats.wired_count++;
 1973 
 1974 validate:
 1975         if ((access & VM_PROT_WRITE) != 0)
 1976                 m->md.pv_flags |= PV_TABLE_MOD | PV_TABLE_REF;
 1977         rw = init_pte_prot(va, m, prot);
 1978 
 1979 #ifdef PMAP_DEBUG
 1980         printf("pmap_enter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
 1981 #endif
 1982         /*
 1983          * Now validate mapping with desired protection/wiring.
 1984          */
 1985         newpte = TLBLO_PA_TO_PFN(pa) | rw | PTE_V;
 1986 
 1987         if (is_cacheable_mem(pa))
 1988                 newpte |= PTE_C_CACHE;
 1989         else
 1990                 newpte |= PTE_C_UNCACHED;
 1991 
 1992         if (wired)
 1993                 newpte |= PTE_W;
 1994 
 1995         if (is_kernel_pmap(pmap))
 1996                  newpte |= PTE_G;
 1997 
 1998         /*
 1999          * if the mapping or permission bits are different, we need to
 2000          * update the pte.
 2001          */
 2002         if (origpte != newpte) {
 2003                 if (pte_test(&origpte, PTE_V)) {
 2004                         *pte = newpte;
 2005                         if (page_is_managed(opa) && (opa != pa)) {
 2006                                 if (om->md.pv_flags & PV_TABLE_REF)
 2007                                         vm_page_aflag_set(om, PGA_REFERENCED);
 2008                                 om->md.pv_flags &=
 2009                                     ~(PV_TABLE_REF | PV_TABLE_MOD);
 2010                         }
 2011                         if (pte_test(&origpte, PTE_D)) {
 2012                                 KASSERT(!pte_test(&origpte, PTE_RO),
 2013                                     ("pmap_enter: modified page not writable:"
 2014                                     " va: %p, pte: %#jx", (void *)va, (uintmax_t)origpte));
 2015                                 if (page_is_managed(opa))
 2016                                         vm_page_dirty(om);
 2017                         }
 2018                         if (page_is_managed(opa) &&
 2019                             TAILQ_EMPTY(&om->md.pv_list))
 2020                                 vm_page_aflag_clear(om, PGA_WRITEABLE);
 2021                 } else {
 2022                         *pte = newpte;
 2023                 }
 2024         }
 2025         pmap_update_page(pmap, va, newpte);
 2026 
 2027         /*
 2028          * Sync I & D caches for executable pages.  Do this only if the
 2029          * target pmap belongs to the current process.  Otherwise, an
 2030          * unresolvable TLB miss may occur.
 2031          */
 2032         if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
 2033             (prot & VM_PROT_EXECUTE)) {
 2034                 mips_icache_sync_range(va, PAGE_SIZE);
 2035                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2036         }
 2037         vm_page_unlock_queues();
 2038         PMAP_UNLOCK(pmap);
 2039 }
 2040 
 2041 /*
 2042  * this code makes some *MAJOR* assumptions:
 2043  * 1. Current pmap & pmap exists.
 2044  * 2. Not wired.
 2045  * 3. Read access.
 2046  * 4. No page table pages.
 2047  * but is *MUCH* faster than pmap_enter...
 2048  */
 2049 
 2050 void
 2051 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 2052 {
 2053 
 2054         vm_page_lock_queues();
 2055         PMAP_LOCK(pmap);
 2056         (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
 2057         vm_page_unlock_queues();
 2058         PMAP_UNLOCK(pmap);
 2059 }
 2060 
 2061 static vm_page_t
 2062 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
 2063     vm_prot_t prot, vm_page_t mpte)
 2064 {
 2065         pt_entry_t *pte;
 2066         vm_paddr_t pa;
 2067 
 2068         KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
 2069             (m->oflags & VPO_UNMANAGED) != 0,
 2070             ("pmap_enter_quick_locked: managed mapping within the clean submap"));
 2071         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2072         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2073 
 2074         /*
 2075          * In the case that a page table page is not resident, we are
 2076          * creating it here.
 2077          */
 2078         if (va < VM_MAXUSER_ADDRESS) {
 2079                 pd_entry_t *pde;
 2080                 unsigned ptepindex;
 2081 
 2082                 /*
 2083                  * Calculate pagetable page index
 2084                  */
 2085                 ptepindex = pmap_pde_pindex(va);
 2086                 if (mpte && (mpte->pindex == ptepindex)) {
 2087                         mpte->wire_count++;
 2088                 } else {
 2089                         /*
 2090                          * Get the page directory entry
 2091                          */
 2092                         pde = pmap_pde(pmap, va);
 2093 
 2094                         /*
 2095                          * If the page table page is mapped, we just
 2096                          * increment the hold count, and activate it.
 2097                          */
 2098                         if (pde && *pde != 0) {
 2099                                 if (pmap->pm_ptphint &&
 2100                                     (pmap->pm_ptphint->pindex == ptepindex)) {
 2101                                         mpte = pmap->pm_ptphint;
 2102                                 } else {
 2103                                         mpte = PHYS_TO_VM_PAGE(
 2104                                                 MIPS_DIRECT_TO_PHYS(*pde));
 2105                                         pmap->pm_ptphint = mpte;
 2106                                 }
 2107                                 mpte->wire_count++;
 2108                         } else {
 2109                                 mpte = _pmap_allocpte(pmap, ptepindex,
 2110                                     M_NOWAIT);
 2111                                 if (mpte == NULL)
 2112                                         return (mpte);
 2113                         }
 2114                 }
 2115         } else {
 2116                 mpte = NULL;
 2117         }
 2118 
 2119         pte = pmap_pte(pmap, va);
 2120         if (pte_test(pte, PTE_V)) {
 2121                 if (mpte != NULL) {
 2122                         mpte->wire_count--;
 2123                         mpte = NULL;
 2124                 }
 2125                 return (mpte);
 2126         }
 2127 
 2128         /*
 2129          * Enter on the PV list if part of our managed memory.
 2130          */
 2131         if ((m->oflags & VPO_UNMANAGED) == 0 &&
 2132             !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
 2133                 if (mpte != NULL) {
 2134                         pmap_unwire_pte_hold(pmap, va, mpte);
 2135                         mpte = NULL;
 2136                 }
 2137                 return (mpte);
 2138         }
 2139 
 2140         /*
 2141          * Increment counters
 2142          */
 2143         pmap->pm_stats.resident_count++;
 2144 
 2145         pa = VM_PAGE_TO_PHYS(m);
 2146 
 2147         /*
 2148          * Now validate mapping with RO protection
 2149          */
 2150         *pte = TLBLO_PA_TO_PFN(pa) | PTE_V;
 2151 
 2152         if (is_cacheable_mem(pa))
 2153                 *pte |= PTE_C_CACHE;
 2154         else
 2155                 *pte |= PTE_C_UNCACHED;
 2156 
 2157         if (is_kernel_pmap(pmap))
 2158                 *pte |= PTE_G;
 2159         else {
 2160                 *pte |= PTE_RO;
 2161                 /*
 2162                  * Sync I & D caches.  Do this only if the target pmap
 2163                  * belongs to the current process.  Otherwise, an
 2164                  * unresolvable TLB miss may occur. */
 2165                 if (pmap == &curproc->p_vmspace->vm_pmap) {
 2166                         va &= ~PAGE_MASK;
 2167                         mips_icache_sync_range(va, PAGE_SIZE);
 2168                         mips_dcache_wbinv_range(va, PAGE_SIZE);
 2169                 }
 2170         }
 2171         return (mpte);
 2172 }
 2173 
 2174 /*
 2175  * Make a temporary mapping for a physical address.  This is only intended
 2176  * to be used for panic dumps.
 2177  *
 2178  * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
 2179  */
 2180 void *
 2181 pmap_kenter_temporary(vm_paddr_t pa, int i)
 2182 {
 2183         vm_offset_t va;
 2184 
 2185         if (i != 0)
 2186                 printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
 2187                     __func__);
 2188 
 2189         if (MIPS_DIRECT_MAPPABLE(pa)) {
 2190                 va = MIPS_PHYS_TO_DIRECT(pa);
 2191         } else {
 2192 #ifndef __mips_n64    /* XXX : to be converted to new style */
 2193                 int cpu;
 2194                 register_t intr;
 2195                 struct local_sysmaps *sysm;
 2196                 pt_entry_t *pte, npte;
 2197 
 2198                 /* If this is used other than for dumps, we may need to leave
 2199                  * interrupts disasbled on return. If crash dumps don't work when
 2200                  * we get to this point, we might want to consider this (leaving things
 2201                  * disabled as a starting point ;-)
 2202                  */
 2203                 intr = intr_disable();
 2204                 cpu = PCPU_GET(cpuid);
 2205                 sysm = &sysmap_lmem[cpu];
 2206                 /* Since this is for the debugger, no locks or any other fun */
 2207                 npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
 2208                 pte = pmap_pte(kernel_pmap, sysm->base);
 2209                 *pte = npte;
 2210                 sysm->valid1 = 1;
 2211                 pmap_update_page(kernel_pmap, sysm->base, npte);
 2212                 va = sysm->base;
 2213                 intr_restore(intr);
 2214 #endif
 2215         }
 2216         return ((void *)va);
 2217 }
 2218 
 2219 void
 2220 pmap_kenter_temporary_free(vm_paddr_t pa)
 2221 {
 2222 #ifndef __mips_n64    /* XXX : to be converted to new style */
 2223         int cpu;
 2224         register_t intr;
 2225         struct local_sysmaps *sysm;
 2226 #endif
 2227 
 2228         if (MIPS_DIRECT_MAPPABLE(pa)) {
 2229                 /* nothing to do for this case */
 2230                 return;
 2231         }
 2232 #ifndef __mips_n64    /* XXX : to be converted to new style */
 2233         cpu = PCPU_GET(cpuid);
 2234         sysm = &sysmap_lmem[cpu];
 2235         if (sysm->valid1) {
 2236                 pt_entry_t *pte;
 2237 
 2238                 intr = intr_disable();
 2239                 pte = pmap_pte(kernel_pmap, sysm->base);
 2240                 *pte = PTE_G;
 2241                 pmap_invalidate_page(kernel_pmap, sysm->base);
 2242                 intr_restore(intr);
 2243                 sysm->valid1 = 0;
 2244         }
 2245 #endif
 2246 }
 2247 
 2248 /*
 2249  * Moved the code to Machine Independent
 2250  *       vm_map_pmap_enter()
 2251  */
 2252 
 2253 /*
 2254  * Maps a sequence of resident pages belonging to the same object.
 2255  * The sequence begins with the given page m_start.  This page is
 2256  * mapped at the given virtual address start.  Each subsequent page is
 2257  * mapped at a virtual address that is offset from start by the same
 2258  * amount as the page is offset from m_start within the object.  The
 2259  * last page in the sequence is the page with the largest offset from
 2260  * m_start that can be mapped at a virtual address less than the given
 2261  * virtual address end.  Not every virtual page between start and end
 2262  * is mapped; only those for which a resident page exists with the
 2263  * corresponding offset from m_start are mapped.
 2264  */
 2265 void
 2266 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
 2267     vm_page_t m_start, vm_prot_t prot)
 2268 {
 2269         vm_page_t m, mpte;
 2270         vm_pindex_t diff, psize;
 2271 
 2272         VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
 2273         psize = atop(end - start);
 2274         mpte = NULL;
 2275         m = m_start;
 2276         vm_page_lock_queues();
 2277         PMAP_LOCK(pmap);
 2278         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 2279                 mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
 2280                     prot, mpte);
 2281                 m = TAILQ_NEXT(m, listq);
 2282         }
 2283         vm_page_unlock_queues();
 2284         PMAP_UNLOCK(pmap);
 2285 }
 2286 
 2287 /*
 2288  * pmap_object_init_pt preloads the ptes for a given object
 2289  * into the specified pmap.  This eliminates the blast of soft
 2290  * faults on process startup and immediately after an mmap.
 2291  */
 2292 void
 2293 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
 2294     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
 2295 {
 2296         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2297         KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
 2298             ("pmap_object_init_pt: non-device object"));
 2299 }
 2300 
 2301 /*
 2302  *      Routine:        pmap_change_wiring
 2303  *      Function:       Change the wiring attribute for a map/virtual-address
 2304  *                      pair.
 2305  *      In/out conditions:
 2306  *                      The mapping must already exist in the pmap.
 2307  */
 2308 void
 2309 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
 2310 {
 2311         pt_entry_t *pte;
 2312 
 2313         if (pmap == NULL)
 2314                 return;
 2315 
 2316         PMAP_LOCK(pmap);
 2317         pte = pmap_pte(pmap, va);
 2318 
 2319         if (wired && !pte_test(pte, PTE_W))
 2320                 pmap->pm_stats.wired_count++;
 2321         else if (!wired && pte_test(pte, PTE_W))
 2322                 pmap->pm_stats.wired_count--;
 2323 
 2324         /*
 2325          * Wiring is not a hardware characteristic so there is no need to
 2326          * invalidate TLB.
 2327          */
 2328         if (wired)
 2329                 pte_set(pte, PTE_W);
 2330         else
 2331                 pte_clear(pte, PTE_W);
 2332         PMAP_UNLOCK(pmap);
 2333 }
 2334 
 2335 /*
 2336  *      Copy the range specified by src_addr/len
 2337  *      from the source map to the range dst_addr/len
 2338  *      in the destination map.
 2339  *
 2340  *      This routine is only advisory and need not do anything.
 2341  */
 2342 
 2343 void
 2344 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
 2345     vm_size_t len, vm_offset_t src_addr)
 2346 {
 2347 }
 2348 
 2349 /*
 2350  *      pmap_zero_page zeros the specified hardware page by mapping
 2351  *      the page into KVM and using bzero to clear its contents.
 2352  *
 2353  *      Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
 2354  */
 2355 void
 2356 pmap_zero_page(vm_page_t m)
 2357 {
 2358         vm_offset_t va;
 2359         vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
 2360 
 2361         if (MIPS_DIRECT_MAPPABLE(phys)) {
 2362                 va = MIPS_PHYS_TO_DIRECT(phys);
 2363                 bzero((caddr_t)va, PAGE_SIZE);
 2364                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2365         } else {
 2366                 va = pmap_lmem_map1(phys);
 2367                 bzero((caddr_t)va, PAGE_SIZE);
 2368                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2369                 pmap_lmem_unmap();
 2370         }
 2371 }
 2372 
 2373 /*
 2374  *      pmap_zero_page_area zeros the specified hardware page by mapping
 2375  *      the page into KVM and using bzero to clear its contents.
 2376  *
 2377  *      off and size may not cover an area beyond a single hardware page.
 2378  */
 2379 void
 2380 pmap_zero_page_area(vm_page_t m, int off, int size)
 2381 {
 2382         vm_offset_t va;
 2383         vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
 2384 
 2385         if (MIPS_DIRECT_MAPPABLE(phys)) {
 2386                 va = MIPS_PHYS_TO_DIRECT(phys);
 2387                 bzero((char *)(caddr_t)va + off, size);
 2388                 mips_dcache_wbinv_range(va + off, size);
 2389         } else {
 2390                 va = pmap_lmem_map1(phys);
 2391                 bzero((char *)va + off, size);
 2392                 mips_dcache_wbinv_range(va + off, size);
 2393                 pmap_lmem_unmap();
 2394         }
 2395 }
 2396 
 2397 void
 2398 pmap_zero_page_idle(vm_page_t m)
 2399 {
 2400         vm_offset_t va;
 2401         vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
 2402 
 2403         if (MIPS_DIRECT_MAPPABLE(phys)) {
 2404                 va = MIPS_PHYS_TO_DIRECT(phys);
 2405                 bzero((caddr_t)va, PAGE_SIZE);
 2406                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2407         } else {
 2408                 va = pmap_lmem_map1(phys);
 2409                 bzero((caddr_t)va, PAGE_SIZE);
 2410                 mips_dcache_wbinv_range(va, PAGE_SIZE);
 2411                 pmap_lmem_unmap();
 2412         }
 2413 }
 2414 
 2415 /*
 2416  *      pmap_copy_page copies the specified (machine independent)
 2417  *      page by mapping the page into virtual memory and using
 2418  *      bcopy to copy the page, one machine dependent page at a
 2419  *      time.
 2420  *
 2421  *      Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
 2422  */
 2423 void
 2424 pmap_copy_page(vm_page_t src, vm_page_t dst)
 2425 {
 2426         vm_offset_t va_src, va_dst;
 2427         vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src);
 2428         vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst);
 2429 
 2430         if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) {
 2431                 /* easy case, all can be accessed via KSEG0 */
 2432                 /*
 2433                  * Flush all caches for VA that are mapped to this page
 2434                  * to make sure that data in SDRAM is up to date
 2435                  */
 2436                 pmap_flush_pvcache(src);
 2437                 mips_dcache_wbinv_range_index(
 2438                     MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE);
 2439                 va_src = MIPS_PHYS_TO_DIRECT(phys_src);
 2440                 va_dst = MIPS_PHYS_TO_DIRECT(phys_dst);
 2441                 bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
 2442                 mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
 2443         } else {
 2444                 va_src = pmap_lmem_map2(phys_src, phys_dst);
 2445                 va_dst = va_src + PAGE_SIZE;
 2446                 bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
 2447                 mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
 2448                 pmap_lmem_unmap();
 2449         }
 2450 }
 2451 
 2452 /*
 2453  * Returns true if the pmap's pv is one of the first
 2454  * 16 pvs linked to from this page.  This count may
 2455  * be changed upwards or downwards in the future; it
 2456  * is only necessary that true be returned for a small
 2457  * subset of pmaps for proper page aging.
 2458  */
 2459 boolean_t
 2460 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 2461 {
 2462         pv_entry_t pv;
 2463         int loops = 0;
 2464         boolean_t rv;
 2465 
 2466         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2467             ("pmap_page_exists_quick: page %p is not managed", m));
 2468         rv = FALSE;
 2469         vm_page_lock_queues();
 2470         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2471                 if (pv->pv_pmap == pmap) {
 2472                         rv = TRUE;
 2473                         break;
 2474                 }
 2475                 loops++;
 2476                 if (loops >= 16)
 2477                         break;
 2478         }
 2479         vm_page_unlock_queues();
 2480         return (rv);
 2481 }
 2482 
 2483 /*
 2484  * Remove all pages from specified address space
 2485  * this aids process exit speeds.  Also, this code
 2486  * is special cased for current process only, but
 2487  * can have the more generic (and slightly slower)
 2488  * mode enabled.  This is much faster than pmap_remove
 2489  * in the case of running down an entire address space.
 2490  */
 2491 void
 2492 pmap_remove_pages(pmap_t pmap)
 2493 {
 2494         pt_entry_t *pte, tpte;
 2495         pv_entry_t pv, npv;
 2496         vm_page_t m;
 2497 
 2498         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
 2499                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 2500                 return;
 2501         }
 2502         vm_page_lock_queues();
 2503         PMAP_LOCK(pmap);
 2504         for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv != NULL; pv = npv) {
 2505 
 2506                 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
 2507                 if (!pte_test(pte, PTE_V))
 2508                         panic("pmap_remove_pages: page on pm_pvlist has no pte");
 2509                 tpte = *pte;
 2510 
 2511 /*
 2512  * We cannot remove wired pages from a process' mapping at this time
 2513  */
 2514                 if (pte_test(&tpte, PTE_W)) {
 2515                         npv = TAILQ_NEXT(pv, pv_plist);
 2516                         continue;
 2517                 }
 2518                 *pte = is_kernel_pmap(pmap) ? PTE_G : 0;
 2519 
 2520                 m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
 2521                 KASSERT(m != NULL,
 2522                     ("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
 2523 
 2524                 pv->pv_pmap->pm_stats.resident_count--;
 2525 
 2526                 /*
 2527                  * Update the vm_page_t clean and reference bits.
 2528                  */
 2529                 if (pte_test(&tpte, PTE_D)) {
 2530                         vm_page_dirty(m);
 2531                 }
 2532                 npv = TAILQ_NEXT(pv, pv_plist);
 2533                 TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
 2534 
 2535                 m->md.pv_list_count--;
 2536                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2537                 if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
 2538                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 2539                 }
 2540                 pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
 2541                 free_pv_entry(pv);
 2542         }
 2543         pmap_invalidate_all(pmap);
 2544         PMAP_UNLOCK(pmap);
 2545         vm_page_unlock_queues();
 2546 }
 2547 
 2548 /*
 2549  * pmap_testbit tests bits in pte's
 2550  * note that the testbit/changebit routines are inline,
 2551  * and a lot of things compile-time evaluate.
 2552  */
 2553 static boolean_t
 2554 pmap_testbit(vm_page_t m, int bit)
 2555 {
 2556         pv_entry_t pv;
 2557         pt_entry_t *pte;
 2558         boolean_t rv = FALSE;
 2559 
 2560         if (m->oflags & VPO_UNMANAGED)
 2561                 return (rv);
 2562 
 2563         if (TAILQ_FIRST(&m->md.pv_list) == NULL)
 2564                 return (rv);
 2565 
 2566         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2567         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2568                 PMAP_LOCK(pv->pv_pmap);
 2569                 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
 2570                 rv = pte_test(pte, bit);
 2571                 PMAP_UNLOCK(pv->pv_pmap);
 2572                 if (rv)
 2573                         break;
 2574         }
 2575         return (rv);
 2576 }
 2577 
 2578 /*
 2579  * this routine is used to clear dirty bits in ptes
 2580  */
 2581 static __inline void
 2582 pmap_changebit(vm_page_t m, int bit, boolean_t setem)
 2583 {
 2584         pv_entry_t pv;
 2585         pt_entry_t *pte;
 2586 
 2587         if (m->oflags & VPO_UNMANAGED)
 2588                 return;
 2589 
 2590         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2591         /*
 2592          * Loop over all current mappings setting/clearing as appropos If
 2593          * setting RO do we need to clear the VAC?
 2594          */
 2595         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2596                 PMAP_LOCK(pv->pv_pmap);
 2597                 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
 2598                 if (setem) {
 2599                         *pte |= bit;
 2600                         pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
 2601                 } else {
 2602                         pt_entry_t pbits = *pte;
 2603 
 2604                         if (pbits & bit) {
 2605                                 if (bit == PTE_D) {
 2606                                         if (pbits & PTE_D)
 2607                                                 vm_page_dirty(m);
 2608                                         *pte = (pbits & ~PTE_D) | PTE_RO;
 2609                                 } else {
 2610                                         *pte = pbits & ~bit;
 2611                                 }
 2612                                 pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
 2613                         }
 2614                 }
 2615                 PMAP_UNLOCK(pv->pv_pmap);
 2616         }
 2617         if (!setem && bit == PTE_D)
 2618                 vm_page_aflag_clear(m, PGA_WRITEABLE);
 2619 }
 2620 
 2621 /*
 2622  *      pmap_page_wired_mappings:
 2623  *
 2624  *      Return the number of managed mappings to the given physical page
 2625  *      that are wired.
 2626  */
 2627 int
 2628 pmap_page_wired_mappings(vm_page_t m)
 2629 {
 2630         pv_entry_t pv;
 2631         pmap_t pmap;
 2632         pt_entry_t *pte;
 2633         int count;
 2634 
 2635         count = 0;
 2636         if ((m->oflags & VPO_UNMANAGED) != 0)
 2637                 return (count);
 2638         vm_page_lock_queues();
 2639         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2640                 pmap = pv->pv_pmap;
 2641                 PMAP_LOCK(pmap);
 2642                 pte = pmap_pte(pmap, pv->pv_va);
 2643                 if (pte_test(pte, PTE_W))
 2644                         count++;
 2645                 PMAP_UNLOCK(pmap);
 2646         }
 2647         vm_page_unlock_queues();
 2648         return (count);
 2649 }
 2650 
 2651 /*
 2652  * Clear the write and modified bits in each of the given page's mappings.
 2653  */
 2654 void
 2655 pmap_remove_write(vm_page_t m)
 2656 {
 2657         pv_entry_t pv, npv;
 2658         vm_offset_t va;
 2659         pt_entry_t *pte;
 2660 
 2661         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2662             ("pmap_remove_write: page %p is not managed", m));
 2663 
 2664         /*
 2665          * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
 2666          * another thread while the object is locked.  Thus, if PGA_WRITEABLE
 2667          * is clear, no page table entries need updating.
 2668          */
 2669         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2670         if ((m->oflags & VPO_BUSY) == 0 &&
 2671             (m->aflags & PGA_WRITEABLE) == 0)
 2672                 return;
 2673 
 2674         /*
 2675          * Loop over all current mappings setting/clearing as appropos.
 2676          */
 2677         vm_page_lock_queues();
 2678         for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = npv) {
 2679                 npv = TAILQ_NEXT(pv, pv_plist);
 2680                 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
 2681                 if (pte == NULL || !pte_test(pte, PTE_V))
 2682                         panic("page on pm_pvlist has no pte");
 2683 
 2684                 va = pv->pv_va;
 2685                 pmap_protect(pv->pv_pmap, va, va + PAGE_SIZE,
 2686                     VM_PROT_READ | VM_PROT_EXECUTE);
 2687         }
 2688         vm_page_aflag_clear(m, PGA_WRITEABLE);
 2689         vm_page_unlock_queues();
 2690 }
 2691 
 2692 /*
 2693  *      pmap_ts_referenced:
 2694  *
 2695  *      Return the count of reference bits for a page, clearing all of them.
 2696  */
 2697 int
 2698 pmap_ts_referenced(vm_page_t m)
 2699 {
 2700 
 2701         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2702             ("pmap_ts_referenced: page %p is not managed", m));
 2703         if (m->md.pv_flags & PV_TABLE_REF) {
 2704                 vm_page_lock_queues();
 2705                 m->md.pv_flags &= ~PV_TABLE_REF;
 2706                 vm_page_unlock_queues();
 2707                 return (1);
 2708         }
 2709         return (0);
 2710 }
 2711 
 2712 /*
 2713  *      pmap_is_modified:
 2714  *
 2715  *      Return whether or not the specified physical page was modified
 2716  *      in any physical maps.
 2717  */
 2718 boolean_t
 2719 pmap_is_modified(vm_page_t m)
 2720 {
 2721         boolean_t rv;
 2722 
 2723         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2724             ("pmap_is_modified: page %p is not managed", m));
 2725 
 2726         /*
 2727          * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
 2728          * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
 2729          * is clear, no PTEs can have PTE_D set.
 2730          */
 2731         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2732         if ((m->oflags & VPO_BUSY) == 0 &&
 2733             (m->aflags & PGA_WRITEABLE) == 0)
 2734                 return (FALSE);
 2735         vm_page_lock_queues();
 2736         if (m->md.pv_flags & PV_TABLE_MOD)
 2737                 rv = TRUE;
 2738         else
 2739                 rv = pmap_testbit(m, PTE_D);
 2740         vm_page_unlock_queues();
 2741         return (rv);
 2742 }
 2743 
 2744 /* N/C */
 2745 
 2746 /*
 2747  *      pmap_is_prefaultable:
 2748  *
 2749  *      Return whether or not the specified virtual address is elgible
 2750  *      for prefault.
 2751  */
 2752 boolean_t
 2753 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 2754 {
 2755         pd_entry_t *pde;
 2756         pt_entry_t *pte;
 2757         boolean_t rv;
 2758 
 2759         rv = FALSE;
 2760         PMAP_LOCK(pmap);
 2761         pde = pmap_pde(pmap, addr);
 2762         if (pde != NULL && *pde != 0) {
 2763                 pte = pmap_pde_to_pte(pde, addr);
 2764                 rv = (*pte == 0);
 2765         }
 2766         PMAP_UNLOCK(pmap);
 2767         return (rv);
 2768 }
 2769 
 2770 /*
 2771  *      Clear the modify bits on the specified physical page.
 2772  */
 2773 void
 2774 pmap_clear_modify(vm_page_t m)
 2775 {
 2776 
 2777         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2778             ("pmap_clear_modify: page %p is not managed", m));
 2779         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2780         KASSERT((m->oflags & VPO_BUSY) == 0,
 2781             ("pmap_clear_modify: page %p is busy", m));
 2782 
 2783         /*
 2784          * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_D set.
 2785          * If the object containing the page is locked and the page is not
 2786          * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
 2787          */
 2788         if ((m->aflags & PGA_WRITEABLE) == 0)
 2789                 return;
 2790         vm_page_lock_queues();
 2791         if (m->md.pv_flags & PV_TABLE_MOD) {
 2792                 pmap_changebit(m, PTE_D, FALSE);
 2793                 m->md.pv_flags &= ~PV_TABLE_MOD;
 2794         }
 2795         vm_page_unlock_queues();
 2796 }
 2797 
 2798 /*
 2799  *      pmap_is_referenced:
 2800  *
 2801  *      Return whether or not the specified physical page was referenced
 2802  *      in any physical maps.
 2803  */
 2804 boolean_t
 2805 pmap_is_referenced(vm_page_t m)
 2806 {
 2807 
 2808         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2809             ("pmap_is_referenced: page %p is not managed", m));
 2810         return ((m->md.pv_flags & PV_TABLE_REF) != 0);
 2811 }
 2812 
 2813 /*
 2814  *      pmap_clear_reference:
 2815  *
 2816  *      Clear the reference bit on the specified physical page.
 2817  */
 2818 void
 2819 pmap_clear_reference(vm_page_t m)
 2820 {
 2821 
 2822         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2823             ("pmap_clear_reference: page %p is not managed", m));
 2824         vm_page_lock_queues();
 2825         if (m->md.pv_flags & PV_TABLE_REF) {
 2826                 m->md.pv_flags &= ~PV_TABLE_REF;
 2827         }
 2828         vm_page_unlock_queues();
 2829 }
 2830 
 2831 /*
 2832  * Miscellaneous support routines follow
 2833  */
 2834 
 2835 /*
 2836  * Map a set of physical memory pages into the kernel virtual
 2837  * address space. Return a pointer to where it is mapped. This
 2838  * routine is intended to be used for mapping device memory,
 2839  * NOT real memory.
 2840  */
 2841 
 2842 /*
 2843  * Map a set of physical memory pages into the kernel virtual
 2844  * address space. Return a pointer to where it is mapped. This
 2845  * routine is intended to be used for mapping device memory,
 2846  * NOT real memory.
 2847  *
 2848  * Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
 2849  */
 2850 void *
 2851 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
 2852 {
 2853         vm_offset_t va, tmpva, offset;
 2854 
 2855         /* 
 2856          * KSEG1 maps only first 512M of phys address space. For 
 2857          * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
 2858          */
 2859         if (MIPS_DIRECT_MAPPABLE(pa + size - 1))
 2860                 return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
 2861         else {
 2862                 offset = pa & PAGE_MASK;
 2863                 size = roundup(size + offset, PAGE_SIZE);
 2864         
 2865                 va = kmem_alloc_nofault(kernel_map, size);
 2866                 if (!va)
 2867                         panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 2868                 pa = trunc_page(pa);
 2869                 for (tmpva = va; size > 0;) {
 2870                         pmap_kenter_attr(tmpva, pa, PTE_C_UNCACHED);
 2871                         size -= PAGE_SIZE;
 2872                         tmpva += PAGE_SIZE;
 2873                         pa += PAGE_SIZE;
 2874                 }
 2875         }
 2876 
 2877         return ((void *)(va + offset));
 2878 }
 2879 
 2880 void
 2881 pmap_unmapdev(vm_offset_t va, vm_size_t size)
 2882 {
 2883 #ifndef __mips_n64
 2884         vm_offset_t base, offset, tmpva;
 2885 
 2886         /* If the address is within KSEG1 then there is nothing to do */
 2887         if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
 2888                 return;
 2889 
 2890         base = trunc_page(va);
 2891         offset = va & PAGE_MASK;
 2892         size = roundup(size + offset, PAGE_SIZE);
 2893         for (tmpva = base; tmpva < base + size; tmpva += PAGE_SIZE)
 2894                 pmap_kremove(tmpva);
 2895         kmem_free(kernel_map, base, size);
 2896 #endif
 2897 }
 2898 
 2899 /*
 2900  * perform the pmap work for mincore
 2901  */
 2902 int
 2903 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
 2904 {
 2905         pt_entry_t *ptep, pte;
 2906         vm_paddr_t pa;
 2907         vm_page_t m;
 2908         int val;
 2909         boolean_t managed;
 2910 
 2911         PMAP_LOCK(pmap);
 2912 retry:
 2913         ptep = pmap_pte(pmap, addr);
 2914         pte = (ptep != NULL) ? *ptep : 0;
 2915         if (!pte_test(&pte, PTE_V)) {
 2916                 val = 0;
 2917                 goto out;
 2918         }
 2919         val = MINCORE_INCORE;
 2920         if (pte_test(&pte, PTE_D))
 2921                 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
 2922         pa = TLBLO_PTE_TO_PA(pte);
 2923         managed = page_is_managed(pa);
 2924         if (managed) {
 2925                 /*
 2926                  * This may falsely report the given address as
 2927                  * MINCORE_REFERENCED.  Unfortunately, due to the lack of
 2928                  * per-PTE reference information, it is impossible to
 2929                  * determine if the address is MINCORE_REFERENCED.  
 2930                  */
 2931                 m = PHYS_TO_VM_PAGE(pa);
 2932                 if ((m->aflags & PGA_REFERENCED) != 0)
 2933                         val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
 2934         }
 2935         if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
 2936             (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
 2937                 /* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
 2938                 if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
 2939                         goto retry;
 2940         } else
 2941 out:
 2942                 PA_UNLOCK_COND(*locked_pa);
 2943         PMAP_UNLOCK(pmap);
 2944         return (val);
 2945 }
 2946 
 2947 void
 2948 pmap_activate(struct thread *td)
 2949 {
 2950         pmap_t pmap, oldpmap;
 2951         struct proc *p = td->td_proc;
 2952         u_int cpuid;
 2953 
 2954         critical_enter();
 2955 
 2956         pmap = vmspace_pmap(p->p_vmspace);
 2957         oldpmap = PCPU_GET(curpmap);
 2958         cpuid = PCPU_GET(cpuid);
 2959 
 2960         if (oldpmap)
 2961                 CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
 2962         CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
 2963         pmap_asid_alloc(pmap);
 2964         if (td == curthread) {
 2965                 PCPU_SET(segbase, pmap->pm_segtab);
 2966                 mips_wr_entryhi(pmap->pm_asid[cpuid].asid);
 2967         }
 2968 
 2969         PCPU_SET(curpmap, pmap);
 2970         critical_exit();
 2971 }
 2972 
 2973 void
 2974 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
 2975 {
 2976 }
 2977 
 2978 /*
 2979  *      Increase the starting virtual address of the given mapping if a
 2980  *      different alignment might result in more superpage mappings.
 2981  */
 2982 void
 2983 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
 2984     vm_offset_t *addr, vm_size_t size)
 2985 {
 2986         vm_offset_t superpage_offset;
 2987 
 2988         if (size < NBSEG)
 2989                 return;
 2990         if (object != NULL && (object->flags & OBJ_COLORED) != 0)
 2991                 offset += ptoa(object->pg_color);
 2992         superpage_offset = offset & SEGMASK;
 2993         if (size - ((NBSEG - superpage_offset) & SEGMASK) < NBSEG ||
 2994             (*addr & SEGMASK) == superpage_offset)
 2995                 return;
 2996         if ((*addr & SEGMASK) < superpage_offset)
 2997                 *addr = (*addr & ~SEGMASK) + superpage_offset;
 2998         else
 2999                 *addr = ((*addr + SEGMASK) & ~SEGMASK) + superpage_offset;
 3000 }
 3001 
 3002 /*
 3003  *      Increase the starting virtual address of the given mapping so
 3004  *      that it is aligned to not be the second page in a TLB entry.
 3005  *      This routine assumes that the length is appropriately-sized so
 3006  *      that the allocation does not share a TLB entry at all if required.
 3007  */
 3008 void
 3009 pmap_align_tlb(vm_offset_t *addr)
 3010 {
 3011         if ((*addr & PAGE_SIZE) == 0)
 3012                 return;
 3013         *addr += PAGE_SIZE;
 3014         return;
 3015 }
 3016 
 3017 #ifdef DDB
 3018 DB_SHOW_COMMAND(ptable, ddb_pid_dump)
 3019 {
 3020         pmap_t pmap;
 3021         struct thread *td = NULL;
 3022         struct proc *p;
 3023         int i, j, k;
 3024         vm_paddr_t pa;
 3025         vm_offset_t va;
 3026 
 3027         if (have_addr) {
 3028                 td = db_lookup_thread(addr, TRUE);
 3029                 if (td == NULL) {
 3030                         db_printf("Invalid pid or tid");
 3031                         return;
 3032                 }
 3033                 p = td->td_proc;
 3034                 if (p->p_vmspace == NULL) {
 3035                         db_printf("No vmspace for process");
 3036                         return;
 3037                 }
 3038                         pmap = vmspace_pmap(p->p_vmspace);
 3039         } else
 3040                 pmap = kernel_pmap;
 3041 
 3042         db_printf("pmap:%p segtab:%p asid:%x generation:%x\n",
 3043             pmap, pmap->pm_segtab, pmap->pm_asid[0].asid,
 3044             pmap->pm_asid[0].gen);
 3045         for (i = 0; i < NPDEPG; i++) {
 3046                 pd_entry_t *pdpe;
 3047                 pt_entry_t *pde;
 3048                 pt_entry_t pte;
 3049 
 3050                 pdpe = (pd_entry_t *)pmap->pm_segtab[i];
 3051                 if (pdpe == NULL)
 3052                         continue;
 3053                 db_printf("[%4d] %p\n", i, pdpe);
 3054 #ifdef __mips_n64
 3055                 for (j = 0; j < NPDEPG; j++) {
 3056                         pde = (pt_entry_t *)pdpe[j];
 3057                         if (pde == NULL)
 3058                                 continue;
 3059                         db_printf("\t[%4d] %p\n", j, pde);
 3060 #else
 3061                 {
 3062                         j = 0;
 3063                         pde =  (pt_entry_t *)pdpe;
 3064 #endif
 3065                         for (k = 0; k < NPTEPG; k++) {
 3066                                 pte = pde[k];
 3067                                 if (pte == 0 || !pte_test(&pte, PTE_V))
 3068                                         continue;
 3069                                 pa = TLBLO_PTE_TO_PA(pte);
 3070                                 va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT);
 3071                                 db_printf("\t\t[%04d] va: %p pte: %8jx pa:%jx\n",
 3072                                        k, (void *)va, (uintmax_t)pte, (uintmax_t)pa);
 3073                         }
 3074                 }
 3075         }
 3076 }
 3077 #endif
 3078 
 3079 #if defined(DEBUG)
 3080 
 3081 static void pads(pmap_t pm);
 3082 void pmap_pvdump(vm_offset_t pa);
 3083 
 3084 /* print address space of pmap*/
 3085 static void
 3086 pads(pmap_t pm)
 3087 {
 3088         unsigned va, i, j;
 3089         pt_entry_t *ptep;
 3090 
 3091         if (pm == kernel_pmap)
 3092                 return;
 3093         for (i = 0; i < NPTEPG; i++)
 3094                 if (pm->pm_segtab[i])
 3095                         for (j = 0; j < NPTEPG; j++) {
 3096                                 va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
 3097                                 if (pm == kernel_pmap && va < KERNBASE)
 3098                                         continue;
 3099                                 if (pm != kernel_pmap &&
 3100                                     va >= VM_MAXUSER_ADDRESS)
 3101                                         continue;
 3102                                 ptep = pmap_pte(pm, va);
 3103                                 if (pte_test(ptep, PTE_V))
 3104                                         printf("%x:%x ", va, *(int *)ptep);
 3105                         }
 3106 
 3107 }
 3108 
 3109 void
 3110 pmap_pvdump(vm_offset_t pa)
 3111 {
 3112         register pv_entry_t pv;
 3113         vm_page_t m;
 3114 
 3115         printf("pa %x", pa);
 3116         m = PHYS_TO_VM_PAGE(pa);
 3117         for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
 3118             pv = TAILQ_NEXT(pv, pv_list)) {
 3119                 printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
 3120                 pads(pv->pv_pmap);
 3121         }
 3122         printf(" ");
 3123 }
 3124 
 3125 /* N/C */
 3126 #endif
 3127 
 3128 
 3129 /*
 3130  * Allocate TLB address space tag (called ASID or TLBPID) and return it.
 3131  * It takes almost as much or more time to search the TLB for a
 3132  * specific ASID and flush those entries as it does to flush the entire TLB.
 3133  * Therefore, when we allocate a new ASID, we just take the next number. When
 3134  * we run out of numbers, we flush the TLB, increment the generation count
 3135  * and start over. ASID zero is reserved for kernel use.
 3136  */
 3137 static void
 3138 pmap_asid_alloc(pmap)
 3139         pmap_t pmap;
 3140 {
 3141         if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
 3142             pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
 3143         else {
 3144                 if (PCPU_GET(next_asid) == pmap_max_asid) {
 3145                         tlb_invalidate_all_user(NULL);
 3146                         PCPU_SET(asid_generation,
 3147                             (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
 3148                         if (PCPU_GET(asid_generation) == 0) {
 3149                                 PCPU_SET(asid_generation, 1);
 3150                         }
 3151                         PCPU_SET(next_asid, 1); /* 0 means invalid */
 3152                 }
 3153                 pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
 3154                 pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
 3155                 PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
 3156         }
 3157 }
 3158 
 3159 int
 3160 page_is_managed(vm_paddr_t pa)
 3161 {
 3162         vm_offset_t pgnum = atop(pa);
 3163 
 3164         if (pgnum >= first_page) {
 3165                 vm_page_t m;
 3166 
 3167                 m = PHYS_TO_VM_PAGE(pa);
 3168                 if (m == NULL)
 3169                         return (0);
 3170                 if ((m->oflags & VPO_UNMANAGED) == 0)
 3171                         return (1);
 3172         }
 3173         return (0);
 3174 }
 3175 
 3176 static pt_entry_t
 3177 init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot)
 3178 {
 3179         pt_entry_t rw;
 3180 
 3181         if (!(prot & VM_PROT_WRITE))
 3182                 rw =  PTE_V | PTE_RO | PTE_C_CACHE;
 3183         else if ((m->oflags & VPO_UNMANAGED) == 0) {
 3184                 if ((m->md.pv_flags & PV_TABLE_MOD) != 0)
 3185                         rw =  PTE_V | PTE_D | PTE_C_CACHE;
 3186                 else
 3187                         rw = PTE_V | PTE_C_CACHE;
 3188                 vm_page_aflag_set(m, PGA_WRITEABLE);
 3189         } else
 3190                 /* Needn't emulate a modified bit for unmanaged pages. */
 3191                 rw =  PTE_V | PTE_D | PTE_C_CACHE;
 3192         return (rw);
 3193 }
 3194 
 3195 /*
 3196  * pmap_emulate_modified : do dirty bit emulation
 3197  *
 3198  * On SMP, update just the local TLB, other CPUs will update their
 3199  * TLBs from PTE lazily, if they get the exception.
 3200  * Returns 0 in case of sucess, 1 if the page is read only and we
 3201  * need to fault.
 3202  */
 3203 int
 3204 pmap_emulate_modified(pmap_t pmap, vm_offset_t va)
 3205 {
 3206         vm_page_t m;
 3207         pt_entry_t *pte;
 3208         vm_paddr_t pa;
 3209 
 3210         PMAP_LOCK(pmap);
 3211         pte = pmap_pte(pmap, va);
 3212         if (pte == NULL)
 3213                 panic("pmap_emulate_modified: can't find PTE");
 3214 #ifdef SMP
 3215         /* It is possible that some other CPU changed m-bit */
 3216         if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) {
 3217                 pmap_update_page_local(pmap, va, *pte);
 3218                 PMAP_UNLOCK(pmap);
 3219                 return (0);
 3220         }
 3221 #else
 3222         if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D))
 3223                 panic("pmap_emulate_modified: invalid pte");
 3224 #endif
 3225         if (pte_test(pte, PTE_RO)) {
 3226                 /* write to read only page in the kernel */
 3227                 PMAP_UNLOCK(pmap);
 3228                 return (1);
 3229         }
 3230         pte_set(pte, PTE_D);
 3231         pmap_update_page_local(pmap, va, *pte);
 3232         pa = TLBLO_PTE_TO_PA(*pte);
 3233         if (!page_is_managed(pa))
 3234                 panic("pmap_emulate_modified: unmanaged page");
 3235         m = PHYS_TO_VM_PAGE(pa);
 3236         m->md.pv_flags |= (PV_TABLE_REF | PV_TABLE_MOD);
 3237         PMAP_UNLOCK(pmap);
 3238         return (0);
 3239 }
 3240 
 3241 /*
 3242  *      Routine:        pmap_kextract
 3243  *      Function:
 3244  *              Extract the physical page address associated
 3245  *              virtual address.
 3246  */
 3247  /* PMAP_INLINE */ vm_offset_t
 3248 pmap_kextract(vm_offset_t va)
 3249 {
 3250         int mapped;
 3251 
 3252         /*
 3253          * First, the direct-mapped regions.
 3254          */
 3255 #if defined(__mips_n64)
 3256         if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
 3257                 return (MIPS_XKPHYS_TO_PHYS(va));
 3258 #endif
 3259         if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
 3260                 return (MIPS_KSEG0_TO_PHYS(va));
 3261 
 3262         if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
 3263                 return (MIPS_KSEG1_TO_PHYS(va));
 3264 
 3265         /*
 3266          * User virtual addresses.
 3267          */
 3268         if (va < VM_MAXUSER_ADDRESS) {
 3269                 pt_entry_t *ptep;
 3270 
 3271                 if (curproc && curproc->p_vmspace) {
 3272                         ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
 3273                         if (ptep) {
 3274                                 return (TLBLO_PTE_TO_PA(*ptep) |
 3275                                     (va & PAGE_MASK));
 3276                         }
 3277                         return (0);
 3278                 }
 3279         }
 3280 
 3281         /*
 3282          * Should be kernel virtual here, otherwise fail
 3283          */
 3284         mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
 3285 #if defined(__mips_n64)
 3286         mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
 3287 #endif 
 3288         /*
 3289          * Kernel virtual.
 3290          */
 3291 
 3292         if (mapped) {
 3293                 pt_entry_t *ptep;
 3294 
 3295                 /* Is the kernel pmap initialized? */
 3296                 if (!CPU_EMPTY(&kernel_pmap->pm_active)) {
 3297                         /* It's inside the virtual address range */
 3298                         ptep = pmap_pte(kernel_pmap, va);
 3299                         if (ptep) {
 3300                                 return (TLBLO_PTE_TO_PA(*ptep) |
 3301                                     (va & PAGE_MASK));
 3302                         }
 3303                 }
 3304                 return (0);
 3305         }
 3306 
 3307         panic("%s for unknown address space %p.", __func__, (void *)va);
 3308 }
 3309 
 3310 
 3311 void 
 3312 pmap_flush_pvcache(vm_page_t m)
 3313 {
 3314         pv_entry_t pv;
 3315 
 3316         if (m != NULL) {
 3317                 for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
 3318                     pv = TAILQ_NEXT(pv, pv_list)) {
 3319                         mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
 3320                 }
 3321         }
 3322 }

Cache object: d54072242bee728cdc2f6ae53f306500


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.