The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/filemap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  *      linux/mm/filemap.c
    3  *
    4  * Copyright (C) 1994-1999  Linus Torvalds
    5  */
    6 
    7 /*
    8  * This file handles the generic file mmap semantics used by
    9  * most "normal" filesystems (but you don't /have/ to use this:
   10  * the NFS filesystem used to do this differently, for example)
   11  */
   12 #include <linux/export.h>
   13 #include <linux/compiler.h>
   14 #include <linux/fs.h>
   15 #include <linux/uaccess.h>
   16 #include <linux/aio.h>
   17 #include <linux/capability.h>
   18 #include <linux/kernel_stat.h>
   19 #include <linux/gfp.h>
   20 #include <linux/mm.h>
   21 #include <linux/swap.h>
   22 #include <linux/mman.h>
   23 #include <linux/pagemap.h>
   24 #include <linux/file.h>
   25 #include <linux/uio.h>
   26 #include <linux/hash.h>
   27 #include <linux/writeback.h>
   28 #include <linux/backing-dev.h>
   29 #include <linux/pagevec.h>
   30 #include <linux/blkdev.h>
   31 #include <linux/security.h>
   32 #include <linux/cpuset.h>
   33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
   34 #include <linux/memcontrol.h>
   35 #include <linux/cleancache.h>
   36 #include "internal.h"
   37 
   38 /*
   39  * FIXME: remove all knowledge of the buffer layer from the core VM
   40  */
   41 #include <linux/buffer_head.h> /* for try_to_free_buffers */
   42 
   43 #include <asm/mman.h>
   44 
   45 /*
   46  * Shared mappings implemented 30.11.1994. It's not fully working yet,
   47  * though.
   48  *
   49  * Shared mappings now work. 15.8.1995  Bruno.
   50  *
   51  * finished 'unifying' the page and buffer cache and SMP-threaded the
   52  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
   53  *
   54  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
   55  */
   56 
   57 /*
   58  * Lock ordering:
   59  *
   60  *  ->i_mmap_mutex              (truncate_pagecache)
   61  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
   62  *      ->swap_lock             (exclusive_swap_page, others)
   63  *        ->mapping->tree_lock
   64  *
   65  *  ->i_mutex
   66  *    ->i_mmap_mutex            (truncate->unmap_mapping_range)
   67  *
   68  *  ->mmap_sem
   69  *    ->i_mmap_mutex
   70  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
   71  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
   72  *
   73  *  ->mmap_sem
   74  *    ->lock_page               (access_process_vm)
   75  *
   76  *  ->i_mutex                   (generic_file_buffered_write)
   77  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
   78  *
   79  *  bdi->wb.list_lock
   80  *    sb_lock                   (fs/fs-writeback.c)
   81  *    ->mapping->tree_lock      (__sync_single_inode)
   82  *
   83  *  ->i_mmap_mutex
   84  *    ->anon_vma.lock           (vma_adjust)
   85  *
   86  *  ->anon_vma.lock
   87  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
   88  *
   89  *  ->page_table_lock or pte_lock
   90  *    ->swap_lock               (try_to_unmap_one)
   91  *    ->private_lock            (try_to_unmap_one)
   92  *    ->tree_lock               (try_to_unmap_one)
   93  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
   94  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
   95  *    ->private_lock            (page_remove_rmap->set_page_dirty)
   96  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
   97  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
   98  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
   99  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
  100  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
  101  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
  102  *
  103  * ->i_mmap_mutex
  104  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
  105  */
  106 
  107 /*
  108  * Delete a page from the page cache and free it. Caller has to make
  109  * sure the page is locked and that nobody else uses it - or that usage
  110  * is safe.  The caller must hold the mapping's tree_lock.
  111  */
  112 void __delete_from_page_cache(struct page *page)
  113 {
  114         struct address_space *mapping = page->mapping;
  115 
  116         /*
  117          * if we're uptodate, flush out into the cleancache, otherwise
  118          * invalidate any existing cleancache entries.  We can't leave
  119          * stale data around in the cleancache once our page is gone
  120          */
  121         if (PageUptodate(page) && PageMappedToDisk(page))
  122                 cleancache_put_page(page);
  123         else
  124                 cleancache_invalidate_page(mapping, page);
  125 
  126         radix_tree_delete(&mapping->page_tree, page->index);
  127         page->mapping = NULL;
  128         /* Leave page->index set: truncation lookup relies upon it */
  129         mapping->nrpages--;
  130         __dec_zone_page_state(page, NR_FILE_PAGES);
  131         if (PageSwapBacked(page))
  132                 __dec_zone_page_state(page, NR_SHMEM);
  133         BUG_ON(page_mapped(page));
  134 
  135         /*
  136          * Some filesystems seem to re-dirty the page even after
  137          * the VM has canceled the dirty bit (eg ext3 journaling).
  138          *
  139          * Fix it up by doing a final dirty accounting check after
  140          * having removed the page entirely.
  141          */
  142         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
  143                 dec_zone_page_state(page, NR_FILE_DIRTY);
  144                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  145         }
  146 }
  147 
  148 /**
  149  * delete_from_page_cache - delete page from page cache
  150  * @page: the page which the kernel is trying to remove from page cache
  151  *
  152  * This must be called only on pages that have been verified to be in the page
  153  * cache and locked.  It will never put the page into the free list, the caller
  154  * has a reference on the page.
  155  */
  156 void delete_from_page_cache(struct page *page)
  157 {
  158         struct address_space *mapping = page->mapping;
  159         void (*freepage)(struct page *);
  160 
  161         BUG_ON(!PageLocked(page));
  162 
  163         freepage = mapping->a_ops->freepage;
  164         spin_lock_irq(&mapping->tree_lock);
  165         __delete_from_page_cache(page);
  166         spin_unlock_irq(&mapping->tree_lock);
  167         mem_cgroup_uncharge_cache_page(page);
  168 
  169         if (freepage)
  170                 freepage(page);
  171         page_cache_release(page);
  172 }
  173 EXPORT_SYMBOL(delete_from_page_cache);
  174 
  175 static int sleep_on_page(void *word)
  176 {
  177         io_schedule();
  178         return 0;
  179 }
  180 
  181 static int sleep_on_page_killable(void *word)
  182 {
  183         sleep_on_page(word);
  184         return fatal_signal_pending(current) ? -EINTR : 0;
  185 }
  186 
  187 /**
  188  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
  189  * @mapping:    address space structure to write
  190  * @start:      offset in bytes where the range starts
  191  * @end:        offset in bytes where the range ends (inclusive)
  192  * @sync_mode:  enable synchronous operation
  193  *
  194  * Start writeback against all of a mapping's dirty pages that lie
  195  * within the byte offsets <start, end> inclusive.
  196  *
  197  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
  198  * opposed to a regular memory cleansing writeback.  The difference between
  199  * these two operations is that if a dirty page/buffer is encountered, it must
  200  * be waited upon, and not just skipped over.
  201  */
  202 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
  203                                 loff_t end, int sync_mode)
  204 {
  205         int ret;
  206         struct writeback_control wbc = {
  207                 .sync_mode = sync_mode,
  208                 .nr_to_write = LONG_MAX,
  209                 .range_start = start,
  210                 .range_end = end,
  211         };
  212 
  213         if (!mapping_cap_writeback_dirty(mapping))
  214                 return 0;
  215 
  216         ret = do_writepages(mapping, &wbc);
  217         return ret;
  218 }
  219 
  220 static inline int __filemap_fdatawrite(struct address_space *mapping,
  221         int sync_mode)
  222 {
  223         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
  224 }
  225 
  226 int filemap_fdatawrite(struct address_space *mapping)
  227 {
  228         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
  229 }
  230 EXPORT_SYMBOL(filemap_fdatawrite);
  231 
  232 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
  233                                 loff_t end)
  234 {
  235         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
  236 }
  237 EXPORT_SYMBOL(filemap_fdatawrite_range);
  238 
  239 /**
  240  * filemap_flush - mostly a non-blocking flush
  241  * @mapping:    target address_space
  242  *
  243  * This is a mostly non-blocking flush.  Not suitable for data-integrity
  244  * purposes - I/O may not be started against all dirty pages.
  245  */
  246 int filemap_flush(struct address_space *mapping)
  247 {
  248         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
  249 }
  250 EXPORT_SYMBOL(filemap_flush);
  251 
  252 /**
  253  * filemap_fdatawait_range - wait for writeback to complete
  254  * @mapping:            address space structure to wait for
  255  * @start_byte:         offset in bytes where the range starts
  256  * @end_byte:           offset in bytes where the range ends (inclusive)
  257  *
  258  * Walk the list of under-writeback pages of the given address space
  259  * in the given range and wait for all of them.
  260  */
  261 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
  262                             loff_t end_byte)
  263 {
  264         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
  265         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
  266         struct pagevec pvec;
  267         int nr_pages;
  268         int ret = 0;
  269 
  270         if (end_byte < start_byte)
  271                 return 0;
  272 
  273         pagevec_init(&pvec, 0);
  274         while ((index <= end) &&
  275                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  276                         PAGECACHE_TAG_WRITEBACK,
  277                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
  278                 unsigned i;
  279 
  280                 for (i = 0; i < nr_pages; i++) {
  281                         struct page *page = pvec.pages[i];
  282 
  283                         /* until radix tree lookup accepts end_index */
  284                         if (page->index > end)
  285                                 continue;
  286 
  287                         wait_on_page_writeback(page);
  288                         if (TestClearPageError(page))
  289                                 ret = -EIO;
  290                 }
  291                 pagevec_release(&pvec);
  292                 cond_resched();
  293         }
  294 
  295         /* Check for outstanding write errors */
  296         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
  297                 ret = -ENOSPC;
  298         if (test_and_clear_bit(AS_EIO, &mapping->flags))
  299                 ret = -EIO;
  300 
  301         return ret;
  302 }
  303 EXPORT_SYMBOL(filemap_fdatawait_range);
  304 
  305 /**
  306  * filemap_fdatawait - wait for all under-writeback pages to complete
  307  * @mapping: address space structure to wait for
  308  *
  309  * Walk the list of under-writeback pages of the given address space
  310  * and wait for all of them.
  311  */
  312 int filemap_fdatawait(struct address_space *mapping)
  313 {
  314         loff_t i_size = i_size_read(mapping->host);
  315 
  316         if (i_size == 0)
  317                 return 0;
  318 
  319         return filemap_fdatawait_range(mapping, 0, i_size - 1);
  320 }
  321 EXPORT_SYMBOL(filemap_fdatawait);
  322 
  323 int filemap_write_and_wait(struct address_space *mapping)
  324 {
  325         int err = 0;
  326 
  327         if (mapping->nrpages) {
  328                 err = filemap_fdatawrite(mapping);
  329                 /*
  330                  * Even if the above returned error, the pages may be
  331                  * written partially (e.g. -ENOSPC), so we wait for it.
  332                  * But the -EIO is special case, it may indicate the worst
  333                  * thing (e.g. bug) happened, so we avoid waiting for it.
  334                  */
  335                 if (err != -EIO) {
  336                         int err2 = filemap_fdatawait(mapping);
  337                         if (!err)
  338                                 err = err2;
  339                 }
  340         }
  341         return err;
  342 }
  343 EXPORT_SYMBOL(filemap_write_and_wait);
  344 
  345 /**
  346  * filemap_write_and_wait_range - write out & wait on a file range
  347  * @mapping:    the address_space for the pages
  348  * @lstart:     offset in bytes where the range starts
  349  * @lend:       offset in bytes where the range ends (inclusive)
  350  *
  351  * Write out and wait upon file offsets lstart->lend, inclusive.
  352  *
  353  * Note that `lend' is inclusive (describes the last byte to be written) so
  354  * that this function can be used to write to the very end-of-file (end = -1).
  355  */
  356 int filemap_write_and_wait_range(struct address_space *mapping,
  357                                  loff_t lstart, loff_t lend)
  358 {
  359         int err = 0;
  360 
  361         if (mapping->nrpages) {
  362                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
  363                                                  WB_SYNC_ALL);
  364                 /* See comment of filemap_write_and_wait() */
  365                 if (err != -EIO) {
  366                         int err2 = filemap_fdatawait_range(mapping,
  367                                                 lstart, lend);
  368                         if (!err)
  369                                 err = err2;
  370                 }
  371         }
  372         return err;
  373 }
  374 EXPORT_SYMBOL(filemap_write_and_wait_range);
  375 
  376 /**
  377  * replace_page_cache_page - replace a pagecache page with a new one
  378  * @old:        page to be replaced
  379  * @new:        page to replace with
  380  * @gfp_mask:   allocation mode
  381  *
  382  * This function replaces a page in the pagecache with a new one.  On
  383  * success it acquires the pagecache reference for the new page and
  384  * drops it for the old page.  Both the old and new pages must be
  385  * locked.  This function does not add the new page to the LRU, the
  386  * caller must do that.
  387  *
  388  * The remove + add is atomic.  The only way this function can fail is
  389  * memory allocation failure.
  390  */
  391 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
  392 {
  393         int error;
  394 
  395         VM_BUG_ON(!PageLocked(old));
  396         VM_BUG_ON(!PageLocked(new));
  397         VM_BUG_ON(new->mapping);
  398 
  399         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
  400         if (!error) {
  401                 struct address_space *mapping = old->mapping;
  402                 void (*freepage)(struct page *);
  403 
  404                 pgoff_t offset = old->index;
  405                 freepage = mapping->a_ops->freepage;
  406 
  407                 page_cache_get(new);
  408                 new->mapping = mapping;
  409                 new->index = offset;
  410 
  411                 spin_lock_irq(&mapping->tree_lock);
  412                 __delete_from_page_cache(old);
  413                 error = radix_tree_insert(&mapping->page_tree, offset, new);
  414                 BUG_ON(error);
  415                 mapping->nrpages++;
  416                 __inc_zone_page_state(new, NR_FILE_PAGES);
  417                 if (PageSwapBacked(new))
  418                         __inc_zone_page_state(new, NR_SHMEM);
  419                 spin_unlock_irq(&mapping->tree_lock);
  420                 /* mem_cgroup codes must not be called under tree_lock */
  421                 mem_cgroup_replace_page_cache(old, new);
  422                 radix_tree_preload_end();
  423                 if (freepage)
  424                         freepage(old);
  425                 page_cache_release(old);
  426         }
  427 
  428         return error;
  429 }
  430 EXPORT_SYMBOL_GPL(replace_page_cache_page);
  431 
  432 /**
  433  * add_to_page_cache_locked - add a locked page to the pagecache
  434  * @page:       page to add
  435  * @mapping:    the page's address_space
  436  * @offset:     page index
  437  * @gfp_mask:   page allocation mode
  438  *
  439  * This function is used to add a page to the pagecache. It must be locked.
  440  * This function does not add the page to the LRU.  The caller must do that.
  441  */
  442 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
  443                 pgoff_t offset, gfp_t gfp_mask)
  444 {
  445         int error;
  446 
  447         VM_BUG_ON(!PageLocked(page));
  448         VM_BUG_ON(PageSwapBacked(page));
  449 
  450         error = mem_cgroup_cache_charge(page, current->mm,
  451                                         gfp_mask & GFP_RECLAIM_MASK);
  452         if (error)
  453                 goto out;
  454 
  455         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
  456         if (error == 0) {
  457                 page_cache_get(page);
  458                 page->mapping = mapping;
  459                 page->index = offset;
  460 
  461                 spin_lock_irq(&mapping->tree_lock);
  462                 error = radix_tree_insert(&mapping->page_tree, offset, page);
  463                 if (likely(!error)) {
  464                         mapping->nrpages++;
  465                         __inc_zone_page_state(page, NR_FILE_PAGES);
  466                         spin_unlock_irq(&mapping->tree_lock);
  467                 } else {
  468                         page->mapping = NULL;
  469                         /* Leave page->index set: truncation relies upon it */
  470                         spin_unlock_irq(&mapping->tree_lock);
  471                         mem_cgroup_uncharge_cache_page(page);
  472                         page_cache_release(page);
  473                 }
  474                 radix_tree_preload_end();
  475         } else
  476                 mem_cgroup_uncharge_cache_page(page);
  477 out:
  478         return error;
  479 }
  480 EXPORT_SYMBOL(add_to_page_cache_locked);
  481 
  482 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
  483                                 pgoff_t offset, gfp_t gfp_mask)
  484 {
  485         int ret;
  486 
  487         ret = add_to_page_cache(page, mapping, offset, gfp_mask);
  488         if (ret == 0)
  489                 lru_cache_add_file(page);
  490         return ret;
  491 }
  492 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
  493 
  494 #ifdef CONFIG_NUMA
  495 struct page *__page_cache_alloc(gfp_t gfp)
  496 {
  497         int n;
  498         struct page *page;
  499 
  500         if (cpuset_do_page_mem_spread()) {
  501                 unsigned int cpuset_mems_cookie;
  502                 do {
  503                         cpuset_mems_cookie = get_mems_allowed();
  504                         n = cpuset_mem_spread_node();
  505                         page = alloc_pages_exact_node(n, gfp, 0);
  506                 } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
  507 
  508                 return page;
  509         }
  510         return alloc_pages(gfp, 0);
  511 }
  512 EXPORT_SYMBOL(__page_cache_alloc);
  513 #endif
  514 
  515 /*
  516  * In order to wait for pages to become available there must be
  517  * waitqueues associated with pages. By using a hash table of
  518  * waitqueues where the bucket discipline is to maintain all
  519  * waiters on the same queue and wake all when any of the pages
  520  * become available, and for the woken contexts to check to be
  521  * sure the appropriate page became available, this saves space
  522  * at a cost of "thundering herd" phenomena during rare hash
  523  * collisions.
  524  */
  525 static wait_queue_head_t *page_waitqueue(struct page *page)
  526 {
  527         const struct zone *zone = page_zone(page);
  528 
  529         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
  530 }
  531 
  532 static inline void wake_up_page(struct page *page, int bit)
  533 {
  534         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
  535 }
  536 
  537 void wait_on_page_bit(struct page *page, int bit_nr)
  538 {
  539         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
  540 
  541         if (test_bit(bit_nr, &page->flags))
  542                 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
  543                                                         TASK_UNINTERRUPTIBLE);
  544 }
  545 EXPORT_SYMBOL(wait_on_page_bit);
  546 
  547 int wait_on_page_bit_killable(struct page *page, int bit_nr)
  548 {
  549         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
  550 
  551         if (!test_bit(bit_nr, &page->flags))
  552                 return 0;
  553 
  554         return __wait_on_bit(page_waitqueue(page), &wait,
  555                              sleep_on_page_killable, TASK_KILLABLE);
  556 }
  557 
  558 /**
  559  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
  560  * @page: Page defining the wait queue of interest
  561  * @waiter: Waiter to add to the queue
  562  *
  563  * Add an arbitrary @waiter to the wait queue for the nominated @page.
  564  */
  565 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
  566 {
  567         wait_queue_head_t *q = page_waitqueue(page);
  568         unsigned long flags;
  569 
  570         spin_lock_irqsave(&q->lock, flags);
  571         __add_wait_queue(q, waiter);
  572         spin_unlock_irqrestore(&q->lock, flags);
  573 }
  574 EXPORT_SYMBOL_GPL(add_page_wait_queue);
  575 
  576 /**
  577  * unlock_page - unlock a locked page
  578  * @page: the page
  579  *
  580  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
  581  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
  582  * mechananism between PageLocked pages and PageWriteback pages is shared.
  583  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
  584  *
  585  * The mb is necessary to enforce ordering between the clear_bit and the read
  586  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
  587  */
  588 void unlock_page(struct page *page)
  589 {
  590         VM_BUG_ON(!PageLocked(page));
  591         clear_bit_unlock(PG_locked, &page->flags);
  592         smp_mb__after_clear_bit();
  593         wake_up_page(page, PG_locked);
  594 }
  595 EXPORT_SYMBOL(unlock_page);
  596 
  597 /**
  598  * end_page_writeback - end writeback against a page
  599  * @page: the page
  600  */
  601 void end_page_writeback(struct page *page)
  602 {
  603         if (TestClearPageReclaim(page))
  604                 rotate_reclaimable_page(page);
  605 
  606         if (!test_clear_page_writeback(page))
  607                 BUG();
  608 
  609         smp_mb__after_clear_bit();
  610         wake_up_page(page, PG_writeback);
  611 }
  612 EXPORT_SYMBOL(end_page_writeback);
  613 
  614 /**
  615  * __lock_page - get a lock on the page, assuming we need to sleep to get it
  616  * @page: the page to lock
  617  */
  618 void __lock_page(struct page *page)
  619 {
  620         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
  621 
  622         __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
  623                                                         TASK_UNINTERRUPTIBLE);
  624 }
  625 EXPORT_SYMBOL(__lock_page);
  626 
  627 int __lock_page_killable(struct page *page)
  628 {
  629         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
  630 
  631         return __wait_on_bit_lock(page_waitqueue(page), &wait,
  632                                         sleep_on_page_killable, TASK_KILLABLE);
  633 }
  634 EXPORT_SYMBOL_GPL(__lock_page_killable);
  635 
  636 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
  637                          unsigned int flags)
  638 {
  639         if (flags & FAULT_FLAG_ALLOW_RETRY) {
  640                 /*
  641                  * CAUTION! In this case, mmap_sem is not released
  642                  * even though return 0.
  643                  */
  644                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
  645                         return 0;
  646 
  647                 up_read(&mm->mmap_sem);
  648                 if (flags & FAULT_FLAG_KILLABLE)
  649                         wait_on_page_locked_killable(page);
  650                 else
  651                         wait_on_page_locked(page);
  652                 return 0;
  653         } else {
  654                 if (flags & FAULT_FLAG_KILLABLE) {
  655                         int ret;
  656 
  657                         ret = __lock_page_killable(page);
  658                         if (ret) {
  659                                 up_read(&mm->mmap_sem);
  660                                 return 0;
  661                         }
  662                 } else
  663                         __lock_page(page);
  664                 return 1;
  665         }
  666 }
  667 
  668 /**
  669  * find_get_page - find and get a page reference
  670  * @mapping: the address_space to search
  671  * @offset: the page index
  672  *
  673  * Is there a pagecache struct page at the given (mapping, offset) tuple?
  674  * If yes, increment its refcount and return it; if no, return NULL.
  675  */
  676 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
  677 {
  678         void **pagep;
  679         struct page *page;
  680 
  681         rcu_read_lock();
  682 repeat:
  683         page = NULL;
  684         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
  685         if (pagep) {
  686                 page = radix_tree_deref_slot(pagep);
  687                 if (unlikely(!page))
  688                         goto out;
  689                 if (radix_tree_exception(page)) {
  690                         if (radix_tree_deref_retry(page))
  691                                 goto repeat;
  692                         /*
  693                          * Otherwise, shmem/tmpfs must be storing a swap entry
  694                          * here as an exceptional entry: so return it without
  695                          * attempting to raise page count.
  696                          */
  697                         goto out;
  698                 }
  699                 if (!page_cache_get_speculative(page))
  700                         goto repeat;
  701 
  702                 /*
  703                  * Has the page moved?
  704                  * This is part of the lockless pagecache protocol. See
  705                  * include/linux/pagemap.h for details.
  706                  */
  707                 if (unlikely(page != *pagep)) {
  708                         page_cache_release(page);
  709                         goto repeat;
  710                 }
  711         }
  712 out:
  713         rcu_read_unlock();
  714 
  715         return page;
  716 }
  717 EXPORT_SYMBOL(find_get_page);
  718 
  719 /**
  720  * find_lock_page - locate, pin and lock a pagecache page
  721  * @mapping: the address_space to search
  722  * @offset: the page index
  723  *
  724  * Locates the desired pagecache page, locks it, increments its reference
  725  * count and returns its address.
  726  *
  727  * Returns zero if the page was not present. find_lock_page() may sleep.
  728  */
  729 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
  730 {
  731         struct page *page;
  732 
  733 repeat:
  734         page = find_get_page(mapping, offset);
  735         if (page && !radix_tree_exception(page)) {
  736                 lock_page(page);
  737                 /* Has the page been truncated? */
  738                 if (unlikely(page->mapping != mapping)) {
  739                         unlock_page(page);
  740                         page_cache_release(page);
  741                         goto repeat;
  742                 }
  743                 VM_BUG_ON(page->index != offset);
  744         }
  745         return page;
  746 }
  747 EXPORT_SYMBOL(find_lock_page);
  748 
  749 /**
  750  * find_or_create_page - locate or add a pagecache page
  751  * @mapping: the page's address_space
  752  * @index: the page's index into the mapping
  753  * @gfp_mask: page allocation mode
  754  *
  755  * Locates a page in the pagecache.  If the page is not present, a new page
  756  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
  757  * LRU list.  The returned page is locked and has its reference count
  758  * incremented.
  759  *
  760  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
  761  * allocation!
  762  *
  763  * find_or_create_page() returns the desired page's address, or zero on
  764  * memory exhaustion.
  765  */
  766 struct page *find_or_create_page(struct address_space *mapping,
  767                 pgoff_t index, gfp_t gfp_mask)
  768 {
  769         struct page *page;
  770         int err;
  771 repeat:
  772         page = find_lock_page(mapping, index);
  773         if (!page) {
  774                 page = __page_cache_alloc(gfp_mask);
  775                 if (!page)
  776                         return NULL;
  777                 /*
  778                  * We want a regular kernel memory (not highmem or DMA etc)
  779                  * allocation for the radix tree nodes, but we need to honour
  780                  * the context-specific requirements the caller has asked for.
  781                  * GFP_RECLAIM_MASK collects those requirements.
  782                  */
  783                 err = add_to_page_cache_lru(page, mapping, index,
  784                         (gfp_mask & GFP_RECLAIM_MASK));
  785                 if (unlikely(err)) {
  786                         page_cache_release(page);
  787                         page = NULL;
  788                         if (err == -EEXIST)
  789                                 goto repeat;
  790                 }
  791         }
  792         return page;
  793 }
  794 EXPORT_SYMBOL(find_or_create_page);
  795 
  796 /**
  797  * find_get_pages - gang pagecache lookup
  798  * @mapping:    The address_space to search
  799  * @start:      The starting page index
  800  * @nr_pages:   The maximum number of pages
  801  * @pages:      Where the resulting pages are placed
  802  *
  803  * find_get_pages() will search for and return a group of up to
  804  * @nr_pages pages in the mapping.  The pages are placed at @pages.
  805  * find_get_pages() takes a reference against the returned pages.
  806  *
  807  * The search returns a group of mapping-contiguous pages with ascending
  808  * indexes.  There may be holes in the indices due to not-present pages.
  809  *
  810  * find_get_pages() returns the number of pages which were found.
  811  */
  812 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
  813                             unsigned int nr_pages, struct page **pages)
  814 {
  815         struct radix_tree_iter iter;
  816         void **slot;
  817         unsigned ret = 0;
  818 
  819         if (unlikely(!nr_pages))
  820                 return 0;
  821 
  822         rcu_read_lock();
  823 restart:
  824         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
  825                 struct page *page;
  826 repeat:
  827                 page = radix_tree_deref_slot(slot);
  828                 if (unlikely(!page))
  829                         continue;
  830 
  831                 if (radix_tree_exception(page)) {
  832                         if (radix_tree_deref_retry(page)) {
  833                                 /*
  834                                  * Transient condition which can only trigger
  835                                  * when entry at index 0 moves out of or back
  836                                  * to root: none yet gotten, safe to restart.
  837                                  */
  838                                 WARN_ON(iter.index);
  839                                 goto restart;
  840                         }
  841                         /*
  842                          * Otherwise, shmem/tmpfs must be storing a swap entry
  843                          * here as an exceptional entry: so skip over it -
  844                          * we only reach this from invalidate_mapping_pages().
  845                          */
  846                         continue;
  847                 }
  848 
  849                 if (!page_cache_get_speculative(page))
  850                         goto repeat;
  851 
  852                 /* Has the page moved? */
  853                 if (unlikely(page != *slot)) {
  854                         page_cache_release(page);
  855                         goto repeat;
  856                 }
  857 
  858                 pages[ret] = page;
  859                 if (++ret == nr_pages)
  860                         break;
  861         }
  862 
  863         rcu_read_unlock();
  864         return ret;
  865 }
  866 
  867 /**
  868  * find_get_pages_contig - gang contiguous pagecache lookup
  869  * @mapping:    The address_space to search
  870  * @index:      The starting page index
  871  * @nr_pages:   The maximum number of pages
  872  * @pages:      Where the resulting pages are placed
  873  *
  874  * find_get_pages_contig() works exactly like find_get_pages(), except
  875  * that the returned number of pages are guaranteed to be contiguous.
  876  *
  877  * find_get_pages_contig() returns the number of pages which were found.
  878  */
  879 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
  880                                unsigned int nr_pages, struct page **pages)
  881 {
  882         struct radix_tree_iter iter;
  883         void **slot;
  884         unsigned int ret = 0;
  885 
  886         if (unlikely(!nr_pages))
  887                 return 0;
  888 
  889         rcu_read_lock();
  890 restart:
  891         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
  892                 struct page *page;
  893 repeat:
  894                 page = radix_tree_deref_slot(slot);
  895                 /* The hole, there no reason to continue */
  896                 if (unlikely(!page))
  897                         break;
  898 
  899                 if (radix_tree_exception(page)) {
  900                         if (radix_tree_deref_retry(page)) {
  901                                 /*
  902                                  * Transient condition which can only trigger
  903                                  * when entry at index 0 moves out of or back
  904                                  * to root: none yet gotten, safe to restart.
  905                                  */
  906                                 goto restart;
  907                         }
  908                         /*
  909                          * Otherwise, shmem/tmpfs must be storing a swap entry
  910                          * here as an exceptional entry: so stop looking for
  911                          * contiguous pages.
  912                          */
  913                         break;
  914                 }
  915 
  916                 if (!page_cache_get_speculative(page))
  917                         goto repeat;
  918 
  919                 /* Has the page moved? */
  920                 if (unlikely(page != *slot)) {
  921                         page_cache_release(page);
  922                         goto repeat;
  923                 }
  924 
  925                 /*
  926                  * must check mapping and index after taking the ref.
  927                  * otherwise we can get both false positives and false
  928                  * negatives, which is just confusing to the caller.
  929                  */
  930                 if (page->mapping == NULL || page->index != iter.index) {
  931                         page_cache_release(page);
  932                         break;
  933                 }
  934 
  935                 pages[ret] = page;
  936                 if (++ret == nr_pages)
  937                         break;
  938         }
  939         rcu_read_unlock();
  940         return ret;
  941 }
  942 EXPORT_SYMBOL(find_get_pages_contig);
  943 
  944 /**
  945  * find_get_pages_tag - find and return pages that match @tag
  946  * @mapping:    the address_space to search
  947  * @index:      the starting page index
  948  * @tag:        the tag index
  949  * @nr_pages:   the maximum number of pages
  950  * @pages:      where the resulting pages are placed
  951  *
  952  * Like find_get_pages, except we only return pages which are tagged with
  953  * @tag.   We update @index to index the next page for the traversal.
  954  */
  955 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
  956                         int tag, unsigned int nr_pages, struct page **pages)
  957 {
  958         struct radix_tree_iter iter;
  959         void **slot;
  960         unsigned ret = 0;
  961 
  962         if (unlikely(!nr_pages))
  963                 return 0;
  964 
  965         rcu_read_lock();
  966 restart:
  967         radix_tree_for_each_tagged(slot, &mapping->page_tree,
  968                                    &iter, *index, tag) {
  969                 struct page *page;
  970 repeat:
  971                 page = radix_tree_deref_slot(slot);
  972                 if (unlikely(!page))
  973                         continue;
  974 
  975                 if (radix_tree_exception(page)) {
  976                         if (radix_tree_deref_retry(page)) {
  977                                 /*
  978                                  * Transient condition which can only trigger
  979                                  * when entry at index 0 moves out of or back
  980                                  * to root: none yet gotten, safe to restart.
  981                                  */
  982                                 goto restart;
  983                         }
  984                         /*
  985                          * This function is never used on a shmem/tmpfs
  986                          * mapping, so a swap entry won't be found here.
  987                          */
  988                         BUG();
  989                 }
  990 
  991                 if (!page_cache_get_speculative(page))
  992                         goto repeat;
  993 
  994                 /* Has the page moved? */
  995                 if (unlikely(page != *slot)) {
  996                         page_cache_release(page);
  997                         goto repeat;
  998                 }
  999 
 1000                 pages[ret] = page;
 1001                 if (++ret == nr_pages)
 1002                         break;
 1003         }
 1004 
 1005         rcu_read_unlock();
 1006 
 1007         if (ret)
 1008                 *index = pages[ret - 1]->index + 1;
 1009 
 1010         return ret;
 1011 }
 1012 EXPORT_SYMBOL(find_get_pages_tag);
 1013 
 1014 /**
 1015  * grab_cache_page_nowait - returns locked page at given index in given cache
 1016  * @mapping: target address_space
 1017  * @index: the page index
 1018  *
 1019  * Same as grab_cache_page(), but do not wait if the page is unavailable.
 1020  * This is intended for speculative data generators, where the data can
 1021  * be regenerated if the page couldn't be grabbed.  This routine should
 1022  * be safe to call while holding the lock for another page.
 1023  *
 1024  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
 1025  * and deadlock against the caller's locked page.
 1026  */
 1027 struct page *
 1028 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
 1029 {
 1030         struct page *page = find_get_page(mapping, index);
 1031 
 1032         if (page) {
 1033                 if (trylock_page(page))
 1034                         return page;
 1035                 page_cache_release(page);
 1036                 return NULL;
 1037         }
 1038         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
 1039         if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
 1040                 page_cache_release(page);
 1041                 page = NULL;
 1042         }
 1043         return page;
 1044 }
 1045 EXPORT_SYMBOL(grab_cache_page_nowait);
 1046 
 1047 /*
 1048  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 1049  * a _large_ part of the i/o request. Imagine the worst scenario:
 1050  *
 1051  *      ---R__________________________________________B__________
 1052  *         ^ reading here                             ^ bad block(assume 4k)
 1053  *
 1054  * read(R) => miss => readahead(R...B) => media error => frustrating retries
 1055  * => failing the whole request => read(R) => read(R+1) =>
 1056  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 1057  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 1058  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 1059  *
 1060  * It is going insane. Fix it by quickly scaling down the readahead size.
 1061  */
 1062 static void shrink_readahead_size_eio(struct file *filp,
 1063                                         struct file_ra_state *ra)
 1064 {
 1065         ra->ra_pages /= 4;
 1066 }
 1067 
 1068 /**
 1069  * do_generic_file_read - generic file read routine
 1070  * @filp:       the file to read
 1071  * @ppos:       current file position
 1072  * @desc:       read_descriptor
 1073  * @actor:      read method
 1074  *
 1075  * This is a generic file read routine, and uses the
 1076  * mapping->a_ops->readpage() function for the actual low-level stuff.
 1077  *
 1078  * This is really ugly. But the goto's actually try to clarify some
 1079  * of the logic when it comes to error handling etc.
 1080  */
 1081 static void do_generic_file_read(struct file *filp, loff_t *ppos,
 1082                 read_descriptor_t *desc, read_actor_t actor)
 1083 {
 1084         struct address_space *mapping = filp->f_mapping;
 1085         struct inode *inode = mapping->host;
 1086         struct file_ra_state *ra = &filp->f_ra;
 1087         pgoff_t index;
 1088         pgoff_t last_index;
 1089         pgoff_t prev_index;
 1090         unsigned long offset;      /* offset into pagecache page */
 1091         unsigned int prev_offset;
 1092         int error;
 1093 
 1094         index = *ppos >> PAGE_CACHE_SHIFT;
 1095         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
 1096         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
 1097         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
 1098         offset = *ppos & ~PAGE_CACHE_MASK;
 1099 
 1100         for (;;) {
 1101                 struct page *page;
 1102                 pgoff_t end_index;
 1103                 loff_t isize;
 1104                 unsigned long nr, ret;
 1105 
 1106                 cond_resched();
 1107 find_page:
 1108                 page = find_get_page(mapping, index);
 1109                 if (!page) {
 1110                         page_cache_sync_readahead(mapping,
 1111                                         ra, filp,
 1112                                         index, last_index - index);
 1113                         page = find_get_page(mapping, index);
 1114                         if (unlikely(page == NULL))
 1115                                 goto no_cached_page;
 1116                 }
 1117                 if (PageReadahead(page)) {
 1118                         page_cache_async_readahead(mapping,
 1119                                         ra, filp, page,
 1120                                         index, last_index - index);
 1121                 }
 1122                 if (!PageUptodate(page)) {
 1123                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
 1124                                         !mapping->a_ops->is_partially_uptodate)
 1125                                 goto page_not_up_to_date;
 1126                         if (!trylock_page(page))
 1127                                 goto page_not_up_to_date;
 1128                         /* Did it get truncated before we got the lock? */
 1129                         if (!page->mapping)
 1130                                 goto page_not_up_to_date_locked;
 1131                         if (!mapping->a_ops->is_partially_uptodate(page,
 1132                                                                 desc, offset))
 1133                                 goto page_not_up_to_date_locked;
 1134                         unlock_page(page);
 1135                 }
 1136 page_ok:
 1137                 /*
 1138                  * i_size must be checked after we know the page is Uptodate.
 1139                  *
 1140                  * Checking i_size after the check allows us to calculate
 1141                  * the correct value for "nr", which means the zero-filled
 1142                  * part of the page is not copied back to userspace (unless
 1143                  * another truncate extends the file - this is desired though).
 1144                  */
 1145 
 1146                 isize = i_size_read(inode);
 1147                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
 1148                 if (unlikely(!isize || index > end_index)) {
 1149                         page_cache_release(page);
 1150                         goto out;
 1151                 }
 1152 
 1153                 /* nr is the maximum number of bytes to copy from this page */
 1154                 nr = PAGE_CACHE_SIZE;
 1155                 if (index == end_index) {
 1156                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
 1157                         if (nr <= offset) {
 1158                                 page_cache_release(page);
 1159                                 goto out;
 1160                         }
 1161                 }
 1162                 nr = nr - offset;
 1163 
 1164                 /* If users can be writing to this page using arbitrary
 1165                  * virtual addresses, take care about potential aliasing
 1166                  * before reading the page on the kernel side.
 1167                  */
 1168                 if (mapping_writably_mapped(mapping))
 1169                         flush_dcache_page(page);
 1170 
 1171                 /*
 1172                  * When a sequential read accesses a page several times,
 1173                  * only mark it as accessed the first time.
 1174                  */
 1175                 if (prev_index != index || offset != prev_offset)
 1176                         mark_page_accessed(page);
 1177                 prev_index = index;
 1178 
 1179                 /*
 1180                  * Ok, we have the page, and it's up-to-date, so
 1181                  * now we can copy it to user space...
 1182                  *
 1183                  * The actor routine returns how many bytes were actually used..
 1184                  * NOTE! This may not be the same as how much of a user buffer
 1185                  * we filled up (we may be padding etc), so we can only update
 1186                  * "pos" here (the actor routine has to update the user buffer
 1187                  * pointers and the remaining count).
 1188                  */
 1189                 ret = actor(desc, page, offset, nr);
 1190                 offset += ret;
 1191                 index += offset >> PAGE_CACHE_SHIFT;
 1192                 offset &= ~PAGE_CACHE_MASK;
 1193                 prev_offset = offset;
 1194 
 1195                 page_cache_release(page);
 1196                 if (ret == nr && desc->count)
 1197                         continue;
 1198                 goto out;
 1199 
 1200 page_not_up_to_date:
 1201                 /* Get exclusive access to the page ... */
 1202                 error = lock_page_killable(page);
 1203                 if (unlikely(error))
 1204                         goto readpage_error;
 1205 
 1206 page_not_up_to_date_locked:
 1207                 /* Did it get truncated before we got the lock? */
 1208                 if (!page->mapping) {
 1209                         unlock_page(page);
 1210                         page_cache_release(page);
 1211                         continue;
 1212                 }
 1213 
 1214                 /* Did somebody else fill it already? */
 1215                 if (PageUptodate(page)) {
 1216                         unlock_page(page);
 1217                         goto page_ok;
 1218                 }
 1219 
 1220 readpage:
 1221                 /*
 1222                  * A previous I/O error may have been due to temporary
 1223                  * failures, eg. multipath errors.
 1224                  * PG_error will be set again if readpage fails.
 1225                  */
 1226                 ClearPageError(page);
 1227                 /* Start the actual read. The read will unlock the page. */
 1228                 error = mapping->a_ops->readpage(filp, page);
 1229 
 1230                 if (unlikely(error)) {
 1231                         if (error == AOP_TRUNCATED_PAGE) {
 1232                                 page_cache_release(page);
 1233                                 goto find_page;
 1234                         }
 1235                         goto readpage_error;
 1236                 }
 1237 
 1238                 if (!PageUptodate(page)) {
 1239                         error = lock_page_killable(page);
 1240                         if (unlikely(error))
 1241                                 goto readpage_error;
 1242                         if (!PageUptodate(page)) {
 1243                                 if (page->mapping == NULL) {
 1244                                         /*
 1245                                          * invalidate_mapping_pages got it
 1246                                          */
 1247                                         unlock_page(page);
 1248                                         page_cache_release(page);
 1249                                         goto find_page;
 1250                                 }
 1251                                 unlock_page(page);
 1252                                 shrink_readahead_size_eio(filp, ra);
 1253                                 error = -EIO;
 1254                                 goto readpage_error;
 1255                         }
 1256                         unlock_page(page);
 1257                 }
 1258 
 1259                 goto page_ok;
 1260 
 1261 readpage_error:
 1262                 /* UHHUH! A synchronous read error occurred. Report it */
 1263                 desc->error = error;
 1264                 page_cache_release(page);
 1265                 goto out;
 1266 
 1267 no_cached_page:
 1268                 /*
 1269                  * Ok, it wasn't cached, so we need to create a new
 1270                  * page..
 1271                  */
 1272                 page = page_cache_alloc_cold(mapping);
 1273                 if (!page) {
 1274                         desc->error = -ENOMEM;
 1275                         goto out;
 1276                 }
 1277                 error = add_to_page_cache_lru(page, mapping,
 1278                                                 index, GFP_KERNEL);
 1279                 if (error) {
 1280                         page_cache_release(page);
 1281                         if (error == -EEXIST)
 1282                                 goto find_page;
 1283                         desc->error = error;
 1284                         goto out;
 1285                 }
 1286                 goto readpage;
 1287         }
 1288 
 1289 out:
 1290         ra->prev_pos = prev_index;
 1291         ra->prev_pos <<= PAGE_CACHE_SHIFT;
 1292         ra->prev_pos |= prev_offset;
 1293 
 1294         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
 1295         file_accessed(filp);
 1296 }
 1297 
 1298 int file_read_actor(read_descriptor_t *desc, struct page *page,
 1299                         unsigned long offset, unsigned long size)
 1300 {
 1301         char *kaddr;
 1302         unsigned long left, count = desc->count;
 1303 
 1304         if (size > count)
 1305                 size = count;
 1306 
 1307         /*
 1308          * Faults on the destination of a read are common, so do it before
 1309          * taking the kmap.
 1310          */
 1311         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
 1312                 kaddr = kmap_atomic(page);
 1313                 left = __copy_to_user_inatomic(desc->arg.buf,
 1314                                                 kaddr + offset, size);
 1315                 kunmap_atomic(kaddr);
 1316                 if (left == 0)
 1317                         goto success;
 1318         }
 1319 
 1320         /* Do it the slow way */
 1321         kaddr = kmap(page);
 1322         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
 1323         kunmap(page);
 1324 
 1325         if (left) {
 1326                 size -= left;
 1327                 desc->error = -EFAULT;
 1328         }
 1329 success:
 1330         desc->count = count - size;
 1331         desc->written += size;
 1332         desc->arg.buf += size;
 1333         return size;
 1334 }
 1335 
 1336 /*
 1337  * Performs necessary checks before doing a write
 1338  * @iov:        io vector request
 1339  * @nr_segs:    number of segments in the iovec
 1340  * @count:      number of bytes to write
 1341  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
 1342  *
 1343  * Adjust number of segments and amount of bytes to write (nr_segs should be
 1344  * properly initialized first). Returns appropriate error code that caller
 1345  * should return or zero in case that write should be allowed.
 1346  */
 1347 int generic_segment_checks(const struct iovec *iov,
 1348                         unsigned long *nr_segs, size_t *count, int access_flags)
 1349 {
 1350         unsigned long   seg;
 1351         size_t cnt = 0;
 1352         for (seg = 0; seg < *nr_segs; seg++) {
 1353                 const struct iovec *iv = &iov[seg];
 1354 
 1355                 /*
 1356                  * If any segment has a negative length, or the cumulative
 1357                  * length ever wraps negative then return -EINVAL.
 1358                  */
 1359                 cnt += iv->iov_len;
 1360                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
 1361                         return -EINVAL;
 1362                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
 1363                         continue;
 1364                 if (seg == 0)
 1365                         return -EFAULT;
 1366                 *nr_segs = seg;
 1367                 cnt -= iv->iov_len;     /* This segment is no good */
 1368                 break;
 1369         }
 1370         *count = cnt;
 1371         return 0;
 1372 }
 1373 EXPORT_SYMBOL(generic_segment_checks);
 1374 
 1375 /**
 1376  * generic_file_aio_read - generic filesystem read routine
 1377  * @iocb:       kernel I/O control block
 1378  * @iov:        io vector request
 1379  * @nr_segs:    number of segments in the iovec
 1380  * @pos:        current file position
 1381  *
 1382  * This is the "read()" routine for all filesystems
 1383  * that can use the page cache directly.
 1384  */
 1385 ssize_t
 1386 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
 1387                 unsigned long nr_segs, loff_t pos)
 1388 {
 1389         struct file *filp = iocb->ki_filp;
 1390         ssize_t retval;
 1391         unsigned long seg = 0;
 1392         size_t count;
 1393         loff_t *ppos = &iocb->ki_pos;
 1394 
 1395         count = 0;
 1396         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
 1397         if (retval)
 1398                 return retval;
 1399 
 1400         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
 1401         if (filp->f_flags & O_DIRECT) {
 1402                 loff_t size;
 1403                 struct address_space *mapping;
 1404                 struct inode *inode;
 1405 
 1406                 mapping = filp->f_mapping;
 1407                 inode = mapping->host;
 1408                 if (!count)
 1409                         goto out; /* skip atime */
 1410                 size = i_size_read(inode);
 1411                 if (pos < size) {
 1412                         retval = filemap_write_and_wait_range(mapping, pos,
 1413                                         pos + iov_length(iov, nr_segs) - 1);
 1414                         if (!retval) {
 1415                                 retval = mapping->a_ops->direct_IO(READ, iocb,
 1416                                                         iov, pos, nr_segs);
 1417                         }
 1418                         if (retval > 0) {
 1419                                 *ppos = pos + retval;
 1420                                 count -= retval;
 1421                         }
 1422 
 1423                         /*
 1424                          * Btrfs can have a short DIO read if we encounter
 1425                          * compressed extents, so if there was an error, or if
 1426                          * we've already read everything we wanted to, or if
 1427                          * there was a short read because we hit EOF, go ahead
 1428                          * and return.  Otherwise fallthrough to buffered io for
 1429                          * the rest of the read.
 1430                          */
 1431                         if (retval < 0 || !count || *ppos >= size) {
 1432                                 file_accessed(filp);
 1433                                 goto out;
 1434                         }
 1435                 }
 1436         }
 1437 
 1438         count = retval;
 1439         for (seg = 0; seg < nr_segs; seg++) {
 1440                 read_descriptor_t desc;
 1441                 loff_t offset = 0;
 1442 
 1443                 /*
 1444                  * If we did a short DIO read we need to skip the section of the
 1445                  * iov that we've already read data into.
 1446                  */
 1447                 if (count) {
 1448                         if (count > iov[seg].iov_len) {
 1449                                 count -= iov[seg].iov_len;
 1450                                 continue;
 1451                         }
 1452                         offset = count;
 1453                         count = 0;
 1454                 }
 1455 
 1456                 desc.written = 0;
 1457                 desc.arg.buf = iov[seg].iov_base + offset;
 1458                 desc.count = iov[seg].iov_len - offset;
 1459                 if (desc.count == 0)
 1460                         continue;
 1461                 desc.error = 0;
 1462                 do_generic_file_read(filp, ppos, &desc, file_read_actor);
 1463                 retval += desc.written;
 1464                 if (desc.error) {
 1465                         retval = retval ?: desc.error;
 1466                         break;
 1467                 }
 1468                 if (desc.count > 0)
 1469                         break;
 1470         }
 1471 out:
 1472         return retval;
 1473 }
 1474 EXPORT_SYMBOL(generic_file_aio_read);
 1475 
 1476 #ifdef CONFIG_MMU
 1477 /**
 1478  * page_cache_read - adds requested page to the page cache if not already there
 1479  * @file:       file to read
 1480  * @offset:     page index
 1481  *
 1482  * This adds the requested page to the page cache if it isn't already there,
 1483  * and schedules an I/O to read in its contents from disk.
 1484  */
 1485 static int page_cache_read(struct file *file, pgoff_t offset)
 1486 {
 1487         struct address_space *mapping = file->f_mapping;
 1488         struct page *page; 
 1489         int ret;
 1490 
 1491         do {
 1492                 page = page_cache_alloc_cold(mapping);
 1493                 if (!page)
 1494                         return -ENOMEM;
 1495 
 1496                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
 1497                 if (ret == 0)
 1498                         ret = mapping->a_ops->readpage(file, page);
 1499                 else if (ret == -EEXIST)
 1500                         ret = 0; /* losing race to add is OK */
 1501 
 1502                 page_cache_release(page);
 1503 
 1504         } while (ret == AOP_TRUNCATED_PAGE);
 1505                 
 1506         return ret;
 1507 }
 1508 
 1509 #define MMAP_LOTSAMISS  (100)
 1510 
 1511 /*
 1512  * Synchronous readahead happens when we don't even find
 1513  * a page in the page cache at all.
 1514  */
 1515 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
 1516                                    struct file_ra_state *ra,
 1517                                    struct file *file,
 1518                                    pgoff_t offset)
 1519 {
 1520         unsigned long ra_pages;
 1521         struct address_space *mapping = file->f_mapping;
 1522 
 1523         /* If we don't want any read-ahead, don't bother */
 1524         if (VM_RandomReadHint(vma))
 1525                 return;
 1526         if (!ra->ra_pages)
 1527                 return;
 1528 
 1529         if (VM_SequentialReadHint(vma)) {
 1530                 page_cache_sync_readahead(mapping, ra, file, offset,
 1531                                           ra->ra_pages);
 1532                 return;
 1533         }
 1534 
 1535         /* Avoid banging the cache line if not needed */
 1536         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
 1537                 ra->mmap_miss++;
 1538 
 1539         /*
 1540          * Do we miss much more than hit in this file? If so,
 1541          * stop bothering with read-ahead. It will only hurt.
 1542          */
 1543         if (ra->mmap_miss > MMAP_LOTSAMISS)
 1544                 return;
 1545 
 1546         /*
 1547          * mmap read-around
 1548          */
 1549         ra_pages = max_sane_readahead(ra->ra_pages);
 1550         ra->start = max_t(long, 0, offset - ra_pages / 2);
 1551         ra->size = ra_pages;
 1552         ra->async_size = ra_pages / 4;
 1553         ra_submit(ra, mapping, file);
 1554 }
 1555 
 1556 /*
 1557  * Asynchronous readahead happens when we find the page and PG_readahead,
 1558  * so we want to possibly extend the readahead further..
 1559  */
 1560 static void do_async_mmap_readahead(struct vm_area_struct *vma,
 1561                                     struct file_ra_state *ra,
 1562                                     struct file *file,
 1563                                     struct page *page,
 1564                                     pgoff_t offset)
 1565 {
 1566         struct address_space *mapping = file->f_mapping;
 1567 
 1568         /* If we don't want any read-ahead, don't bother */
 1569         if (VM_RandomReadHint(vma))
 1570                 return;
 1571         if (ra->mmap_miss > 0)
 1572                 ra->mmap_miss--;
 1573         if (PageReadahead(page))
 1574                 page_cache_async_readahead(mapping, ra, file,
 1575                                            page, offset, ra->ra_pages);
 1576 }
 1577 
 1578 /**
 1579  * filemap_fault - read in file data for page fault handling
 1580  * @vma:        vma in which the fault was taken
 1581  * @vmf:        struct vm_fault containing details of the fault
 1582  *
 1583  * filemap_fault() is invoked via the vma operations vector for a
 1584  * mapped memory region to read in file data during a page fault.
 1585  *
 1586  * The goto's are kind of ugly, but this streamlines the normal case of having
 1587  * it in the page cache, and handles the special cases reasonably without
 1588  * having a lot of duplicated code.
 1589  */
 1590 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 1591 {
 1592         int error;
 1593         struct file *file = vma->vm_file;
 1594         struct address_space *mapping = file->f_mapping;
 1595         struct file_ra_state *ra = &file->f_ra;
 1596         struct inode *inode = mapping->host;
 1597         pgoff_t offset = vmf->pgoff;
 1598         struct page *page;
 1599         pgoff_t size;
 1600         int ret = 0;
 1601 
 1602         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 1603         if (offset >= size)
 1604                 return VM_FAULT_SIGBUS;
 1605 
 1606         /*
 1607          * Do we have something in the page cache already?
 1608          */
 1609         page = find_get_page(mapping, offset);
 1610         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
 1611                 /*
 1612                  * We found the page, so try async readahead before
 1613                  * waiting for the lock.
 1614                  */
 1615                 do_async_mmap_readahead(vma, ra, file, page, offset);
 1616         } else if (!page) {
 1617                 /* No page in the page cache at all */
 1618                 do_sync_mmap_readahead(vma, ra, file, offset);
 1619                 count_vm_event(PGMAJFAULT);
 1620                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
 1621                 ret = VM_FAULT_MAJOR;
 1622 retry_find:
 1623                 page = find_get_page(mapping, offset);
 1624                 if (!page)
 1625                         goto no_cached_page;
 1626         }
 1627 
 1628         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
 1629                 page_cache_release(page);
 1630                 return ret | VM_FAULT_RETRY;
 1631         }
 1632 
 1633         /* Did it get truncated? */
 1634         if (unlikely(page->mapping != mapping)) {
 1635                 unlock_page(page);
 1636                 put_page(page);
 1637                 goto retry_find;
 1638         }
 1639         VM_BUG_ON(page->index != offset);
 1640 
 1641         /*
 1642          * We have a locked page in the page cache, now we need to check
 1643          * that it's up-to-date. If not, it is going to be due to an error.
 1644          */
 1645         if (unlikely(!PageUptodate(page)))
 1646                 goto page_not_uptodate;
 1647 
 1648         /*
 1649          * Found the page and have a reference on it.
 1650          * We must recheck i_size under page lock.
 1651          */
 1652         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 1653         if (unlikely(offset >= size)) {
 1654                 unlock_page(page);
 1655                 page_cache_release(page);
 1656                 return VM_FAULT_SIGBUS;
 1657         }
 1658 
 1659         vmf->page = page;
 1660         return ret | VM_FAULT_LOCKED;
 1661 
 1662 no_cached_page:
 1663         /*
 1664          * We're only likely to ever get here if MADV_RANDOM is in
 1665          * effect.
 1666          */
 1667         error = page_cache_read(file, offset);
 1668 
 1669         /*
 1670          * The page we want has now been added to the page cache.
 1671          * In the unlikely event that someone removed it in the
 1672          * meantime, we'll just come back here and read it again.
 1673          */
 1674         if (error >= 0)
 1675                 goto retry_find;
 1676 
 1677         /*
 1678          * An error return from page_cache_read can result if the
 1679          * system is low on memory, or a problem occurs while trying
 1680          * to schedule I/O.
 1681          */
 1682         if (error == -ENOMEM)
 1683                 return VM_FAULT_OOM;
 1684         return VM_FAULT_SIGBUS;
 1685 
 1686 page_not_uptodate:
 1687         /*
 1688          * Umm, take care of errors if the page isn't up-to-date.
 1689          * Try to re-read it _once_. We do this synchronously,
 1690          * because there really aren't any performance issues here
 1691          * and we need to check for errors.
 1692          */
 1693         ClearPageError(page);
 1694         error = mapping->a_ops->readpage(file, page);
 1695         if (!error) {
 1696                 wait_on_page_locked(page);
 1697                 if (!PageUptodate(page))
 1698                         error = -EIO;
 1699         }
 1700         page_cache_release(page);
 1701 
 1702         if (!error || error == AOP_TRUNCATED_PAGE)
 1703                 goto retry_find;
 1704 
 1705         /* Things didn't work out. Return zero to tell the mm layer so. */
 1706         shrink_readahead_size_eio(file, ra);
 1707         return VM_FAULT_SIGBUS;
 1708 }
 1709 EXPORT_SYMBOL(filemap_fault);
 1710 
 1711 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
 1712 {
 1713         struct page *page = vmf->page;
 1714         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
 1715         int ret = VM_FAULT_LOCKED;
 1716 
 1717         sb_start_pagefault(inode->i_sb);
 1718         file_update_time(vma->vm_file);
 1719         lock_page(page);
 1720         if (page->mapping != inode->i_mapping) {
 1721                 unlock_page(page);
 1722                 ret = VM_FAULT_NOPAGE;
 1723                 goto out;
 1724         }
 1725         /*
 1726          * We mark the page dirty already here so that when freeze is in
 1727          * progress, we are guaranteed that writeback during freezing will
 1728          * see the dirty page and writeprotect it again.
 1729          */
 1730         set_page_dirty(page);
 1731 out:
 1732         sb_end_pagefault(inode->i_sb);
 1733         return ret;
 1734 }
 1735 EXPORT_SYMBOL(filemap_page_mkwrite);
 1736 
 1737 const struct vm_operations_struct generic_file_vm_ops = {
 1738         .fault          = filemap_fault,
 1739         .page_mkwrite   = filemap_page_mkwrite,
 1740         .remap_pages    = generic_file_remap_pages,
 1741 };
 1742 
 1743 /* This is used for a general mmap of a disk file */
 1744 
 1745 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
 1746 {
 1747         struct address_space *mapping = file->f_mapping;
 1748 
 1749         if (!mapping->a_ops->readpage)
 1750                 return -ENOEXEC;
 1751         file_accessed(file);
 1752         vma->vm_ops = &generic_file_vm_ops;
 1753         return 0;
 1754 }
 1755 
 1756 /*
 1757  * This is for filesystems which do not implement ->writepage.
 1758  */
 1759 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
 1760 {
 1761         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
 1762                 return -EINVAL;
 1763         return generic_file_mmap(file, vma);
 1764 }
 1765 #else
 1766 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
 1767 {
 1768         return -ENOSYS;
 1769 }
 1770 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
 1771 {
 1772         return -ENOSYS;
 1773 }
 1774 #endif /* CONFIG_MMU */
 1775 
 1776 EXPORT_SYMBOL(generic_file_mmap);
 1777 EXPORT_SYMBOL(generic_file_readonly_mmap);
 1778 
 1779 static struct page *__read_cache_page(struct address_space *mapping,
 1780                                 pgoff_t index,
 1781                                 int (*filler)(void *, struct page *),
 1782                                 void *data,
 1783                                 gfp_t gfp)
 1784 {
 1785         struct page *page;
 1786         int err;
 1787 repeat:
 1788         page = find_get_page(mapping, index);
 1789         if (!page) {
 1790                 page = __page_cache_alloc(gfp | __GFP_COLD);
 1791                 if (!page)
 1792                         return ERR_PTR(-ENOMEM);
 1793                 err = add_to_page_cache_lru(page, mapping, index, gfp);
 1794                 if (unlikely(err)) {
 1795                         page_cache_release(page);
 1796                         if (err == -EEXIST)
 1797                                 goto repeat;
 1798                         /* Presumably ENOMEM for radix tree node */
 1799                         return ERR_PTR(err);
 1800                 }
 1801                 err = filler(data, page);
 1802                 if (err < 0) {
 1803                         page_cache_release(page);
 1804                         page = ERR_PTR(err);
 1805                 }
 1806         }
 1807         return page;
 1808 }
 1809 
 1810 static struct page *do_read_cache_page(struct address_space *mapping,
 1811                                 pgoff_t index,
 1812                                 int (*filler)(void *, struct page *),
 1813                                 void *data,
 1814                                 gfp_t gfp)
 1815 
 1816 {
 1817         struct page *page;
 1818         int err;
 1819 
 1820 retry:
 1821         page = __read_cache_page(mapping, index, filler, data, gfp);
 1822         if (IS_ERR(page))
 1823                 return page;
 1824         if (PageUptodate(page))
 1825                 goto out;
 1826 
 1827         lock_page(page);
 1828         if (!page->mapping) {
 1829                 unlock_page(page);
 1830                 page_cache_release(page);
 1831                 goto retry;
 1832         }
 1833         if (PageUptodate(page)) {
 1834                 unlock_page(page);
 1835                 goto out;
 1836         }
 1837         err = filler(data, page);
 1838         if (err < 0) {
 1839                 page_cache_release(page);
 1840                 return ERR_PTR(err);
 1841         }
 1842 out:
 1843         mark_page_accessed(page);
 1844         return page;
 1845 }
 1846 
 1847 /**
 1848  * read_cache_page_async - read into page cache, fill it if needed
 1849  * @mapping:    the page's address_space
 1850  * @index:      the page index
 1851  * @filler:     function to perform the read
 1852  * @data:       first arg to filler(data, page) function, often left as NULL
 1853  *
 1854  * Same as read_cache_page, but don't wait for page to become unlocked
 1855  * after submitting it to the filler.
 1856  *
 1857  * Read into the page cache. If a page already exists, and PageUptodate() is
 1858  * not set, try to fill the page but don't wait for it to become unlocked.
 1859  *
 1860  * If the page does not get brought uptodate, return -EIO.
 1861  */
 1862 struct page *read_cache_page_async(struct address_space *mapping,
 1863                                 pgoff_t index,
 1864                                 int (*filler)(void *, struct page *),
 1865                                 void *data)
 1866 {
 1867         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
 1868 }
 1869 EXPORT_SYMBOL(read_cache_page_async);
 1870 
 1871 static struct page *wait_on_page_read(struct page *page)
 1872 {
 1873         if (!IS_ERR(page)) {
 1874                 wait_on_page_locked(page);
 1875                 if (!PageUptodate(page)) {
 1876                         page_cache_release(page);
 1877                         page = ERR_PTR(-EIO);
 1878                 }
 1879         }
 1880         return page;
 1881 }
 1882 
 1883 /**
 1884  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
 1885  * @mapping:    the page's address_space
 1886  * @index:      the page index
 1887  * @gfp:        the page allocator flags to use if allocating
 1888  *
 1889  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
 1890  * any new page allocations done using the specified allocation flags.
 1891  *
 1892  * If the page does not get brought uptodate, return -EIO.
 1893  */
 1894 struct page *read_cache_page_gfp(struct address_space *mapping,
 1895                                 pgoff_t index,
 1896                                 gfp_t gfp)
 1897 {
 1898         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
 1899 
 1900         return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
 1901 }
 1902 EXPORT_SYMBOL(read_cache_page_gfp);
 1903 
 1904 /**
 1905  * read_cache_page - read into page cache, fill it if needed
 1906  * @mapping:    the page's address_space
 1907  * @index:      the page index
 1908  * @filler:     function to perform the read
 1909  * @data:       first arg to filler(data, page) function, often left as NULL
 1910  *
 1911  * Read into the page cache. If a page already exists, and PageUptodate() is
 1912  * not set, try to fill the page then wait for it to become unlocked.
 1913  *
 1914  * If the page does not get brought uptodate, return -EIO.
 1915  */
 1916 struct page *read_cache_page(struct address_space *mapping,
 1917                                 pgoff_t index,
 1918                                 int (*filler)(void *, struct page *),
 1919                                 void *data)
 1920 {
 1921         return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
 1922 }
 1923 EXPORT_SYMBOL(read_cache_page);
 1924 
 1925 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
 1926                         const struct iovec *iov, size_t base, size_t bytes)
 1927 {
 1928         size_t copied = 0, left = 0;
 1929 
 1930         while (bytes) {
 1931                 char __user *buf = iov->iov_base + base;
 1932                 int copy = min(bytes, iov->iov_len - base);
 1933 
 1934                 base = 0;
 1935                 left = __copy_from_user_inatomic(vaddr, buf, copy);
 1936                 copied += copy;
 1937                 bytes -= copy;
 1938                 vaddr += copy;
 1939                 iov++;
 1940 
 1941                 if (unlikely(left))
 1942                         break;
 1943         }
 1944         return copied - left;
 1945 }
 1946 
 1947 /*
 1948  * Copy as much as we can into the page and return the number of bytes which
 1949  * were successfully copied.  If a fault is encountered then return the number of
 1950  * bytes which were copied.
 1951  */
 1952 size_t iov_iter_copy_from_user_atomic(struct page *page,
 1953                 struct iov_iter *i, unsigned long offset, size_t bytes)
 1954 {
 1955         char *kaddr;
 1956         size_t copied;
 1957 
 1958         BUG_ON(!in_atomic());
 1959         kaddr = kmap_atomic(page);
 1960         if (likely(i->nr_segs == 1)) {
 1961                 int left;
 1962                 char __user *buf = i->iov->iov_base + i->iov_offset;
 1963                 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
 1964                 copied = bytes - left;
 1965         } else {
 1966                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
 1967                                                 i->iov, i->iov_offset, bytes);
 1968         }
 1969         kunmap_atomic(kaddr);
 1970 
 1971         return copied;
 1972 }
 1973 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
 1974 
 1975 /*
 1976  * This has the same sideeffects and return value as
 1977  * iov_iter_copy_from_user_atomic().
 1978  * The difference is that it attempts to resolve faults.
 1979  * Page must not be locked.
 1980  */
 1981 size_t iov_iter_copy_from_user(struct page *page,
 1982                 struct iov_iter *i, unsigned long offset, size_t bytes)
 1983 {
 1984         char *kaddr;
 1985         size_t copied;
 1986 
 1987         kaddr = kmap(page);
 1988         if (likely(i->nr_segs == 1)) {
 1989                 int left;
 1990                 char __user *buf = i->iov->iov_base + i->iov_offset;
 1991                 left = __copy_from_user(kaddr + offset, buf, bytes);
 1992                 copied = bytes - left;
 1993         } else {
 1994                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
 1995                                                 i->iov, i->iov_offset, bytes);
 1996         }
 1997         kunmap(page);
 1998         return copied;
 1999 }
 2000 EXPORT_SYMBOL(iov_iter_copy_from_user);
 2001 
 2002 void iov_iter_advance(struct iov_iter *i, size_t bytes)
 2003 {
 2004         BUG_ON(i->count < bytes);
 2005 
 2006         if (likely(i->nr_segs == 1)) {
 2007                 i->iov_offset += bytes;
 2008                 i->count -= bytes;
 2009         } else {
 2010                 const struct iovec *iov = i->iov;
 2011                 size_t base = i->iov_offset;
 2012                 unsigned long nr_segs = i->nr_segs;
 2013 
 2014                 /*
 2015                  * The !iov->iov_len check ensures we skip over unlikely
 2016                  * zero-length segments (without overruning the iovec).
 2017                  */
 2018                 while (bytes || unlikely(i->count && !iov->iov_len)) {
 2019                         int copy;
 2020 
 2021                         copy = min(bytes, iov->iov_len - base);
 2022                         BUG_ON(!i->count || i->count < copy);
 2023                         i->count -= copy;
 2024                         bytes -= copy;
 2025                         base += copy;
 2026                         if (iov->iov_len == base) {
 2027                                 iov++;
 2028                                 nr_segs--;
 2029                                 base = 0;
 2030                         }
 2031                 }
 2032                 i->iov = iov;
 2033                 i->iov_offset = base;
 2034                 i->nr_segs = nr_segs;
 2035         }
 2036 }
 2037 EXPORT_SYMBOL(iov_iter_advance);
 2038 
 2039 /*
 2040  * Fault in the first iovec of the given iov_iter, to a maximum length
 2041  * of bytes. Returns 0 on success, or non-zero if the memory could not be
 2042  * accessed (ie. because it is an invalid address).
 2043  *
 2044  * writev-intensive code may want this to prefault several iovecs -- that
 2045  * would be possible (callers must not rely on the fact that _only_ the
 2046  * first iovec will be faulted with the current implementation).
 2047  */
 2048 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
 2049 {
 2050         char __user *buf = i->iov->iov_base + i->iov_offset;
 2051         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
 2052         return fault_in_pages_readable(buf, bytes);
 2053 }
 2054 EXPORT_SYMBOL(iov_iter_fault_in_readable);
 2055 
 2056 /*
 2057  * Return the count of just the current iov_iter segment.
 2058  */
 2059 size_t iov_iter_single_seg_count(struct iov_iter *i)
 2060 {
 2061         const struct iovec *iov = i->iov;
 2062         if (i->nr_segs == 1)
 2063                 return i->count;
 2064         else
 2065                 return min(i->count, iov->iov_len - i->iov_offset);
 2066 }
 2067 EXPORT_SYMBOL(iov_iter_single_seg_count);
 2068 
 2069 /*
 2070  * Performs necessary checks before doing a write
 2071  *
 2072  * Can adjust writing position or amount of bytes to write.
 2073  * Returns appropriate error code that caller should return or
 2074  * zero in case that write should be allowed.
 2075  */
 2076 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
 2077 {
 2078         struct inode *inode = file->f_mapping->host;
 2079         unsigned long limit = rlimit(RLIMIT_FSIZE);
 2080 
 2081         if (unlikely(*pos < 0))
 2082                 return -EINVAL;
 2083 
 2084         if (!isblk) {
 2085                 /* FIXME: this is for backwards compatibility with 2.4 */
 2086                 if (file->f_flags & O_APPEND)
 2087                         *pos = i_size_read(inode);
 2088 
 2089                 if (limit != RLIM_INFINITY) {
 2090                         if (*pos >= limit) {
 2091                                 send_sig(SIGXFSZ, current, 0);
 2092                                 return -EFBIG;
 2093                         }
 2094                         if (*count > limit - (typeof(limit))*pos) {
 2095                                 *count = limit - (typeof(limit))*pos;
 2096                         }
 2097                 }
 2098         }
 2099 
 2100         /*
 2101          * LFS rule
 2102          */
 2103         if (unlikely(*pos + *count > MAX_NON_LFS &&
 2104                                 !(file->f_flags & O_LARGEFILE))) {
 2105                 if (*pos >= MAX_NON_LFS) {
 2106                         return -EFBIG;
 2107                 }
 2108                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
 2109                         *count = MAX_NON_LFS - (unsigned long)*pos;
 2110                 }
 2111         }
 2112 
 2113         /*
 2114          * Are we about to exceed the fs block limit ?
 2115          *
 2116          * If we have written data it becomes a short write.  If we have
 2117          * exceeded without writing data we send a signal and return EFBIG.
 2118          * Linus frestrict idea will clean these up nicely..
 2119          */
 2120         if (likely(!isblk)) {
 2121                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
 2122                         if (*count || *pos > inode->i_sb->s_maxbytes) {
 2123                                 return -EFBIG;
 2124                         }
 2125                         /* zero-length writes at ->s_maxbytes are OK */
 2126                 }
 2127 
 2128                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
 2129                         *count = inode->i_sb->s_maxbytes - *pos;
 2130         } else {
 2131 #ifdef CONFIG_BLOCK
 2132                 loff_t isize;
 2133                 if (bdev_read_only(I_BDEV(inode)))
 2134                         return -EPERM;
 2135                 isize = i_size_read(inode);
 2136                 if (*pos >= isize) {
 2137                         if (*count || *pos > isize)
 2138                                 return -ENOSPC;
 2139                 }
 2140 
 2141                 if (*pos + *count > isize)
 2142                         *count = isize - *pos;
 2143 #else
 2144                 return -EPERM;
 2145 #endif
 2146         }
 2147         return 0;
 2148 }
 2149 EXPORT_SYMBOL(generic_write_checks);
 2150 
 2151 int pagecache_write_begin(struct file *file, struct address_space *mapping,
 2152                                 loff_t pos, unsigned len, unsigned flags,
 2153                                 struct page **pagep, void **fsdata)
 2154 {
 2155         const struct address_space_operations *aops = mapping->a_ops;
 2156 
 2157         return aops->write_begin(file, mapping, pos, len, flags,
 2158                                                         pagep, fsdata);
 2159 }
 2160 EXPORT_SYMBOL(pagecache_write_begin);
 2161 
 2162 int pagecache_write_end(struct file *file, struct address_space *mapping,
 2163                                 loff_t pos, unsigned len, unsigned copied,
 2164                                 struct page *page, void *fsdata)
 2165 {
 2166         const struct address_space_operations *aops = mapping->a_ops;
 2167 
 2168         mark_page_accessed(page);
 2169         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
 2170 }
 2171 EXPORT_SYMBOL(pagecache_write_end);
 2172 
 2173 ssize_t
 2174 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
 2175                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
 2176                 size_t count, size_t ocount)
 2177 {
 2178         struct file     *file = iocb->ki_filp;
 2179         struct address_space *mapping = file->f_mapping;
 2180         struct inode    *inode = mapping->host;
 2181         ssize_t         written;
 2182         size_t          write_len;
 2183         pgoff_t         end;
 2184 
 2185         if (count != ocount)
 2186                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
 2187 
 2188         write_len = iov_length(iov, *nr_segs);
 2189         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
 2190 
 2191         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
 2192         if (written)
 2193                 goto out;
 2194 
 2195         /*
 2196          * After a write we want buffered reads to be sure to go to disk to get
 2197          * the new data.  We invalidate clean cached page from the region we're
 2198          * about to write.  We do this *before* the write so that we can return
 2199          * without clobbering -EIOCBQUEUED from ->direct_IO().
 2200          */
 2201         if (mapping->nrpages) {
 2202                 written = invalidate_inode_pages2_range(mapping,
 2203                                         pos >> PAGE_CACHE_SHIFT, end);
 2204                 /*
 2205                  * If a page can not be invalidated, return 0 to fall back
 2206                  * to buffered write.
 2207                  */
 2208                 if (written) {
 2209                         if (written == -EBUSY)
 2210                                 return 0;
 2211                         goto out;
 2212                 }
 2213         }
 2214 
 2215         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
 2216 
 2217         /*
 2218          * Finally, try again to invalidate clean pages which might have been
 2219          * cached by non-direct readahead, or faulted in by get_user_pages()
 2220          * if the source of the write was an mmap'ed region of the file
 2221          * we're writing.  Either one is a pretty crazy thing to do,
 2222          * so we don't support it 100%.  If this invalidation
 2223          * fails, tough, the write still worked...
 2224          */
 2225         if (mapping->nrpages) {
 2226                 invalidate_inode_pages2_range(mapping,
 2227                                               pos >> PAGE_CACHE_SHIFT, end);
 2228         }
 2229 
 2230         if (written > 0) {
 2231                 pos += written;
 2232                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
 2233                         i_size_write(inode, pos);
 2234                         mark_inode_dirty(inode);
 2235                 }
 2236                 *ppos = pos;
 2237         }
 2238 out:
 2239         return written;
 2240 }
 2241 EXPORT_SYMBOL(generic_file_direct_write);
 2242 
 2243 /*
 2244  * Find or create a page at the given pagecache position. Return the locked
 2245  * page. This function is specifically for buffered writes.
 2246  */
 2247 struct page *grab_cache_page_write_begin(struct address_space *mapping,
 2248                                         pgoff_t index, unsigned flags)
 2249 {
 2250         int status;
 2251         gfp_t gfp_mask;
 2252         struct page *page;
 2253         gfp_t gfp_notmask = 0;
 2254 
 2255         gfp_mask = mapping_gfp_mask(mapping);
 2256         if (mapping_cap_account_dirty(mapping))
 2257                 gfp_mask |= __GFP_WRITE;
 2258         if (flags & AOP_FLAG_NOFS)
 2259                 gfp_notmask = __GFP_FS;
 2260 repeat:
 2261         page = find_lock_page(mapping, index);
 2262         if (page)
 2263                 goto found;
 2264 
 2265         page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
 2266         if (!page)
 2267                 return NULL;
 2268         status = add_to_page_cache_lru(page, mapping, index,
 2269                                                 GFP_KERNEL & ~gfp_notmask);
 2270         if (unlikely(status)) {
 2271                 page_cache_release(page);
 2272                 if (status == -EEXIST)
 2273                         goto repeat;
 2274                 return NULL;
 2275         }
 2276 found:
 2277         wait_on_page_writeback(page);
 2278         return page;
 2279 }
 2280 EXPORT_SYMBOL(grab_cache_page_write_begin);
 2281 
 2282 static ssize_t generic_perform_write(struct file *file,
 2283                                 struct iov_iter *i, loff_t pos)
 2284 {
 2285         struct address_space *mapping = file->f_mapping;
 2286         const struct address_space_operations *a_ops = mapping->a_ops;
 2287         long status = 0;
 2288         ssize_t written = 0;
 2289         unsigned int flags = 0;
 2290 
 2291         /*
 2292          * Copies from kernel address space cannot fail (NFSD is a big user).
 2293          */
 2294         if (segment_eq(get_fs(), KERNEL_DS))
 2295                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
 2296 
 2297         do {
 2298                 struct page *page;
 2299                 unsigned long offset;   /* Offset into pagecache page */
 2300                 unsigned long bytes;    /* Bytes to write to page */
 2301                 size_t copied;          /* Bytes copied from user */
 2302                 void *fsdata;
 2303 
 2304                 offset = (pos & (PAGE_CACHE_SIZE - 1));
 2305                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
 2306                                                 iov_iter_count(i));
 2307 
 2308 again:
 2309                 /*
 2310                  * Bring in the user page that we will copy from _first_.
 2311                  * Otherwise there's a nasty deadlock on copying from the
 2312                  * same page as we're writing to, without it being marked
 2313                  * up-to-date.
 2314                  *
 2315                  * Not only is this an optimisation, but it is also required
 2316                  * to check that the address is actually valid, when atomic
 2317                  * usercopies are used, below.
 2318                  */
 2319                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
 2320                         status = -EFAULT;
 2321                         break;
 2322                 }
 2323 
 2324                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
 2325                                                 &page, &fsdata);
 2326                 if (unlikely(status))
 2327                         break;
 2328 
 2329                 if (mapping_writably_mapped(mapping))
 2330                         flush_dcache_page(page);
 2331 
 2332                 pagefault_disable();
 2333                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
 2334                 pagefault_enable();
 2335                 flush_dcache_page(page);
 2336 
 2337                 mark_page_accessed(page);
 2338                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
 2339                                                 page, fsdata);
 2340                 if (unlikely(status < 0))
 2341                         break;
 2342                 copied = status;
 2343 
 2344                 cond_resched();
 2345 
 2346                 iov_iter_advance(i, copied);
 2347                 if (unlikely(copied == 0)) {
 2348                         /*
 2349                          * If we were unable to copy any data at all, we must
 2350                          * fall back to a single segment length write.
 2351                          *
 2352                          * If we didn't fallback here, we could livelock
 2353                          * because not all segments in the iov can be copied at
 2354                          * once without a pagefault.
 2355                          */
 2356                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
 2357                                                 iov_iter_single_seg_count(i));
 2358                         goto again;
 2359                 }
 2360                 pos += copied;
 2361                 written += copied;
 2362 
 2363                 balance_dirty_pages_ratelimited(mapping);
 2364                 if (fatal_signal_pending(current)) {
 2365                         status = -EINTR;
 2366                         break;
 2367                 }
 2368         } while (iov_iter_count(i));
 2369 
 2370         return written ? written : status;
 2371 }
 2372 
 2373 ssize_t
 2374 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
 2375                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
 2376                 size_t count, ssize_t written)
 2377 {
 2378         struct file *file = iocb->ki_filp;
 2379         ssize_t status;
 2380         struct iov_iter i;
 2381 
 2382         iov_iter_init(&i, iov, nr_segs, count, written);
 2383         status = generic_perform_write(file, &i, pos);
 2384 
 2385         if (likely(status >= 0)) {
 2386                 written += status;
 2387                 *ppos = pos + status;
 2388         }
 2389         
 2390         return written ? written : status;
 2391 }
 2392 EXPORT_SYMBOL(generic_file_buffered_write);
 2393 
 2394 /**
 2395  * __generic_file_aio_write - write data to a file
 2396  * @iocb:       IO state structure (file, offset, etc.)
 2397  * @iov:        vector with data to write
 2398  * @nr_segs:    number of segments in the vector
 2399  * @ppos:       position where to write
 2400  *
 2401  * This function does all the work needed for actually writing data to a
 2402  * file. It does all basic checks, removes SUID from the file, updates
 2403  * modification times and calls proper subroutines depending on whether we
 2404  * do direct IO or a standard buffered write.
 2405  *
 2406  * It expects i_mutex to be grabbed unless we work on a block device or similar
 2407  * object which does not need locking at all.
 2408  *
 2409  * This function does *not* take care of syncing data in case of O_SYNC write.
 2410  * A caller has to handle it. This is mainly due to the fact that we want to
 2411  * avoid syncing under i_mutex.
 2412  */
 2413 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
 2414                                  unsigned long nr_segs, loff_t *ppos)
 2415 {
 2416         struct file *file = iocb->ki_filp;
 2417         struct address_space * mapping = file->f_mapping;
 2418         size_t ocount;          /* original count */
 2419         size_t count;           /* after file limit checks */
 2420         struct inode    *inode = mapping->host;
 2421         loff_t          pos;
 2422         ssize_t         written;
 2423         ssize_t         err;
 2424 
 2425         ocount = 0;
 2426         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
 2427         if (err)
 2428                 return err;
 2429 
 2430         count = ocount;
 2431         pos = *ppos;
 2432 
 2433         /* We can write back this queue in page reclaim */
 2434         current->backing_dev_info = mapping->backing_dev_info;
 2435         written = 0;
 2436 
 2437         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
 2438         if (err)
 2439                 goto out;
 2440 
 2441         if (count == 0)
 2442                 goto out;
 2443 
 2444         err = file_remove_suid(file);
 2445         if (err)
 2446                 goto out;
 2447 
 2448         err = file_update_time(file);
 2449         if (err)
 2450                 goto out;
 2451 
 2452         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
 2453         if (unlikely(file->f_flags & O_DIRECT)) {
 2454                 loff_t endbyte;
 2455                 ssize_t written_buffered;
 2456 
 2457                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
 2458                                                         ppos, count, ocount);
 2459                 if (written < 0 || written == count)
 2460                         goto out;
 2461                 /*
 2462                  * direct-io write to a hole: fall through to buffered I/O
 2463                  * for completing the rest of the request.
 2464                  */
 2465                 pos += written;
 2466                 count -= written;
 2467                 written_buffered = generic_file_buffered_write(iocb, iov,
 2468                                                 nr_segs, pos, ppos, count,
 2469                                                 written);
 2470                 /*
 2471                  * If generic_file_buffered_write() retuned a synchronous error
 2472                  * then we want to return the number of bytes which were
 2473                  * direct-written, or the error code if that was zero.  Note
 2474                  * that this differs from normal direct-io semantics, which
 2475                  * will return -EFOO even if some bytes were written.
 2476                  */
 2477                 if (written_buffered < 0) {
 2478                         err = written_buffered;
 2479                         goto out;
 2480                 }
 2481 
 2482                 /*
 2483                  * We need to ensure that the page cache pages are written to
 2484                  * disk and invalidated to preserve the expected O_DIRECT
 2485                  * semantics.
 2486                  */
 2487                 endbyte = pos + written_buffered - written - 1;
 2488                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
 2489                 if (err == 0) {
 2490                         written = written_buffered;
 2491                         invalidate_mapping_pages(mapping,
 2492                                                  pos >> PAGE_CACHE_SHIFT,
 2493                                                  endbyte >> PAGE_CACHE_SHIFT);
 2494                 } else {
 2495                         /*
 2496                          * We don't know how much we wrote, so just return
 2497                          * the number of bytes which were direct-written
 2498                          */
 2499                 }
 2500         } else {
 2501                 written = generic_file_buffered_write(iocb, iov, nr_segs,
 2502                                 pos, ppos, count, written);
 2503         }
 2504 out:
 2505         current->backing_dev_info = NULL;
 2506         return written ? written : err;
 2507 }
 2508 EXPORT_SYMBOL(__generic_file_aio_write);
 2509 
 2510 /**
 2511  * generic_file_aio_write - write data to a file
 2512  * @iocb:       IO state structure
 2513  * @iov:        vector with data to write
 2514  * @nr_segs:    number of segments in the vector
 2515  * @pos:        position in file where to write
 2516  *
 2517  * This is a wrapper around __generic_file_aio_write() to be used by most
 2518  * filesystems. It takes care of syncing the file in case of O_SYNC file
 2519  * and acquires i_mutex as needed.
 2520  */
 2521 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
 2522                 unsigned long nr_segs, loff_t pos)
 2523 {
 2524         struct file *file = iocb->ki_filp;
 2525         struct inode *inode = file->f_mapping->host;
 2526         ssize_t ret;
 2527 
 2528         BUG_ON(iocb->ki_pos != pos);
 2529 
 2530         sb_start_write(inode->i_sb);
 2531         mutex_lock(&inode->i_mutex);
 2532         ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
 2533         mutex_unlock(&inode->i_mutex);
 2534 
 2535         if (ret > 0 || ret == -EIOCBQUEUED) {
 2536                 ssize_t err;
 2537 
 2538                 err = generic_write_sync(file, pos, ret);
 2539                 if (err < 0 && ret > 0)
 2540                         ret = err;
 2541         }
 2542         sb_end_write(inode->i_sb);
 2543         return ret;
 2544 }
 2545 EXPORT_SYMBOL(generic_file_aio_write);
 2546 
 2547 /**
 2548  * try_to_release_page() - release old fs-specific metadata on a page
 2549  *
 2550  * @page: the page which the kernel is trying to free
 2551  * @gfp_mask: memory allocation flags (and I/O mode)
 2552  *
 2553  * The address_space is to try to release any data against the page
 2554  * (presumably at page->private).  If the release was successful, return `1'.
 2555  * Otherwise return zero.
 2556  *
 2557  * This may also be called if PG_fscache is set on a page, indicating that the
 2558  * page is known to the local caching routines.
 2559  *
 2560  * The @gfp_mask argument specifies whether I/O may be performed to release
 2561  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
 2562  *
 2563  */
 2564 int try_to_release_page(struct page *page, gfp_t gfp_mask)
 2565 {
 2566         struct address_space * const mapping = page->mapping;
 2567 
 2568         BUG_ON(!PageLocked(page));
 2569         if (PageWriteback(page))
 2570                 return 0;
 2571 
 2572         if (mapping && mapping->a_ops->releasepage)
 2573                 return mapping->a_ops->releasepage(page, gfp_mask);
 2574         return try_to_free_buffers(page);
 2575 }
 2576 
 2577 EXPORT_SYMBOL(try_to_release_page);

Cache object: fa4f376204285deba54d8c1c84327cb0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.