The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/kmemleak.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * mm/kmemleak.c
    3  *
    4  * Copyright (C) 2008 ARM Limited
    5  * Written by Catalin Marinas <catalin.marinas@arm.com>
    6  *
    7  * This program is free software; you can redistribute it and/or modify
    8  * it under the terms of the GNU General Public License version 2 as
    9  * published by the Free Software Foundation.
   10  *
   11  * This program is distributed in the hope that it will be useful,
   12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
   13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   14  * GNU General Public License for more details.
   15  *
   16  * You should have received a copy of the GNU General Public License
   17  * along with this program; if not, write to the Free Software
   18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
   19  *
   20  *
   21  * For more information on the algorithm and kmemleak usage, please see
   22  * Documentation/kmemleak.txt.
   23  *
   24  * Notes on locking
   25  * ----------------
   26  *
   27  * The following locks and mutexes are used by kmemleak:
   28  *
   29  * - kmemleak_lock (rwlock): protects the object_list modifications and
   30  *   accesses to the object_tree_root. The object_list is the main list
   31  *   holding the metadata (struct kmemleak_object) for the allocated memory
   32  *   blocks. The object_tree_root is a red black tree used to look-up
   33  *   metadata based on a pointer to the corresponding memory block.  The
   34  *   kmemleak_object structures are added to the object_list and
   35  *   object_tree_root in the create_object() function called from the
   36  *   kmemleak_alloc() callback and removed in delete_object() called from the
   37  *   kmemleak_free() callback
   38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
   39  *   the metadata (e.g. count) are protected by this lock. Note that some
   40  *   members of this structure may be protected by other means (atomic or
   41  *   kmemleak_lock). This lock is also held when scanning the corresponding
   42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
   43  *   callback. This is less heavyweight than holding a global lock like
   44  *   kmemleak_lock during scanning
   45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
   46  *   unreferenced objects at a time. The gray_list contains the objects which
   47  *   are already referenced or marked as false positives and need to be
   48  *   scanned. This list is only modified during a scanning episode when the
   49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
   50  *   Note that the kmemleak_object.use_count is incremented when an object is
   51  *   added to the gray_list and therefore cannot be freed. This mutex also
   52  *   prevents multiple users of the "kmemleak" debugfs file together with
   53  *   modifications to the memory scanning parameters including the scan_thread
   54  *   pointer
   55  *
   56  * The kmemleak_object structures have a use_count incremented or decremented
   57  * using the get_object()/put_object() functions. When the use_count becomes
   58  * 0, this count can no longer be incremented and put_object() schedules the
   59  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
   60  * function must be protected by rcu_read_lock() to avoid accessing a freed
   61  * structure.
   62  */
   63 
   64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   65 
   66 #include <linux/init.h>
   67 #include <linux/kernel.h>
   68 #include <linux/list.h>
   69 #include <linux/sched.h>
   70 #include <linux/jiffies.h>
   71 #include <linux/delay.h>
   72 #include <linux/export.h>
   73 #include <linux/kthread.h>
   74 #include <linux/rbtree.h>
   75 #include <linux/fs.h>
   76 #include <linux/debugfs.h>
   77 #include <linux/seq_file.h>
   78 #include <linux/cpumask.h>
   79 #include <linux/spinlock.h>
   80 #include <linux/mutex.h>
   81 #include <linux/rcupdate.h>
   82 #include <linux/stacktrace.h>
   83 #include <linux/cache.h>
   84 #include <linux/percpu.h>
   85 #include <linux/hardirq.h>
   86 #include <linux/mmzone.h>
   87 #include <linux/slab.h>
   88 #include <linux/thread_info.h>
   89 #include <linux/err.h>
   90 #include <linux/uaccess.h>
   91 #include <linux/string.h>
   92 #include <linux/nodemask.h>
   93 #include <linux/mm.h>
   94 #include <linux/workqueue.h>
   95 #include <linux/crc32.h>
   96 
   97 #include <asm/sections.h>
   98 #include <asm/processor.h>
   99 #include <linux/atomic.h>
  100 
  101 #include <linux/kmemcheck.h>
  102 #include <linux/kmemleak.h>
  103 #include <linux/memory_hotplug.h>
  104 
  105 /*
  106  * Kmemleak configuration and common defines.
  107  */
  108 #define MAX_TRACE               16      /* stack trace length */
  109 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
  110 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
  111 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
  112 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
  113 
  114 #define BYTES_PER_POINTER       sizeof(void *)
  115 
  116 /* GFP bitmask for kmemleak internal allocations */
  117 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
  118                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
  119                                  __GFP_NOWARN)
  120 
  121 /* scanning area inside a memory block */
  122 struct kmemleak_scan_area {
  123         struct hlist_node node;
  124         unsigned long start;
  125         size_t size;
  126 };
  127 
  128 #define KMEMLEAK_GREY   0
  129 #define KMEMLEAK_BLACK  -1
  130 
  131 /*
  132  * Structure holding the metadata for each allocated memory block.
  133  * Modifications to such objects should be made while holding the
  134  * object->lock. Insertions or deletions from object_list, gray_list or
  135  * rb_node are already protected by the corresponding locks or mutex (see
  136  * the notes on locking above). These objects are reference-counted
  137  * (use_count) and freed using the RCU mechanism.
  138  */
  139 struct kmemleak_object {
  140         spinlock_t lock;
  141         unsigned long flags;            /* object status flags */
  142         struct list_head object_list;
  143         struct list_head gray_list;
  144         struct rb_node rb_node;
  145         struct rcu_head rcu;            /* object_list lockless traversal */
  146         /* object usage count; object freed when use_count == 0 */
  147         atomic_t use_count;
  148         unsigned long pointer;
  149         size_t size;
  150         /* minimum number of a pointers found before it is considered leak */
  151         int min_count;
  152         /* the total number of pointers found pointing to this object */
  153         int count;
  154         /* checksum for detecting modified objects */
  155         u32 checksum;
  156         /* memory ranges to be scanned inside an object (empty for all) */
  157         struct hlist_head area_list;
  158         unsigned long trace[MAX_TRACE];
  159         unsigned int trace_len;
  160         unsigned long jiffies;          /* creation timestamp */
  161         pid_t pid;                      /* pid of the current task */
  162         char comm[TASK_COMM_LEN];       /* executable name */
  163 };
  164 
  165 /* flag representing the memory block allocation status */
  166 #define OBJECT_ALLOCATED        (1 << 0)
  167 /* flag set after the first reporting of an unreference object */
  168 #define OBJECT_REPORTED         (1 << 1)
  169 /* flag set to not scan the object */
  170 #define OBJECT_NO_SCAN          (1 << 2)
  171 
  172 /* number of bytes to print per line; must be 16 or 32 */
  173 #define HEX_ROW_SIZE            16
  174 /* number of bytes to print at a time (1, 2, 4, 8) */
  175 #define HEX_GROUP_SIZE          1
  176 /* include ASCII after the hex output */
  177 #define HEX_ASCII               1
  178 /* max number of lines to be printed */
  179 #define HEX_MAX_LINES           2
  180 
  181 /* the list of all allocated objects */
  182 static LIST_HEAD(object_list);
  183 /* the list of gray-colored objects (see color_gray comment below) */
  184 static LIST_HEAD(gray_list);
  185 /* search tree for object boundaries */
  186 static struct rb_root object_tree_root = RB_ROOT;
  187 /* rw_lock protecting the access to object_list and object_tree_root */
  188 static DEFINE_RWLOCK(kmemleak_lock);
  189 
  190 /* allocation caches for kmemleak internal data */
  191 static struct kmem_cache *object_cache;
  192 static struct kmem_cache *scan_area_cache;
  193 
  194 /* set if tracing memory operations is enabled */
  195 static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
  196 /* set in the late_initcall if there were no errors */
  197 static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
  198 /* enables or disables early logging of the memory operations */
  199 static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
  200 /* set if a kmemleak warning was issued */
  201 static atomic_t kmemleak_warning = ATOMIC_INIT(0);
  202 /* set if a fatal kmemleak error has occurred */
  203 static atomic_t kmemleak_error = ATOMIC_INIT(0);
  204 
  205 /* minimum and maximum address that may be valid pointers */
  206 static unsigned long min_addr = ULONG_MAX;
  207 static unsigned long max_addr;
  208 
  209 static struct task_struct *scan_thread;
  210 /* used to avoid reporting of recently allocated objects */
  211 static unsigned long jiffies_min_age;
  212 static unsigned long jiffies_last_scan;
  213 /* delay between automatic memory scannings */
  214 static signed long jiffies_scan_wait;
  215 /* enables or disables the task stacks scanning */
  216 static int kmemleak_stack_scan = 1;
  217 /* protects the memory scanning, parameters and debug/kmemleak file access */
  218 static DEFINE_MUTEX(scan_mutex);
  219 /* setting kmemleak=on, will set this var, skipping the disable */
  220 static int kmemleak_skip_disable;
  221 
  222 
  223 /*
  224  * Early object allocation/freeing logging. Kmemleak is initialized after the
  225  * kernel allocator. However, both the kernel allocator and kmemleak may
  226  * allocate memory blocks which need to be tracked. Kmemleak defines an
  227  * arbitrary buffer to hold the allocation/freeing information before it is
  228  * fully initialized.
  229  */
  230 
  231 /* kmemleak operation type for early logging */
  232 enum {
  233         KMEMLEAK_ALLOC,
  234         KMEMLEAK_ALLOC_PERCPU,
  235         KMEMLEAK_FREE,
  236         KMEMLEAK_FREE_PART,
  237         KMEMLEAK_FREE_PERCPU,
  238         KMEMLEAK_NOT_LEAK,
  239         KMEMLEAK_IGNORE,
  240         KMEMLEAK_SCAN_AREA,
  241         KMEMLEAK_NO_SCAN
  242 };
  243 
  244 /*
  245  * Structure holding the information passed to kmemleak callbacks during the
  246  * early logging.
  247  */
  248 struct early_log {
  249         int op_type;                    /* kmemleak operation type */
  250         const void *ptr;                /* allocated/freed memory block */
  251         size_t size;                    /* memory block size */
  252         int min_count;                  /* minimum reference count */
  253         unsigned long trace[MAX_TRACE]; /* stack trace */
  254         unsigned int trace_len;         /* stack trace length */
  255 };
  256 
  257 /* early logging buffer and current position */
  258 static struct early_log
  259         early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
  260 static int crt_early_log __initdata;
  261 
  262 static void kmemleak_disable(void);
  263 
  264 /*
  265  * Print a warning and dump the stack trace.
  266  */
  267 #define kmemleak_warn(x...)     do {            \
  268         pr_warning(x);                          \
  269         dump_stack();                           \
  270         atomic_set(&kmemleak_warning, 1);       \
  271 } while (0)
  272 
  273 /*
  274  * Macro invoked when a serious kmemleak condition occurred and cannot be
  275  * recovered from. Kmemleak will be disabled and further allocation/freeing
  276  * tracing no longer available.
  277  */
  278 #define kmemleak_stop(x...)     do {    \
  279         kmemleak_warn(x);               \
  280         kmemleak_disable();             \
  281 } while (0)
  282 
  283 /*
  284  * Printing of the objects hex dump to the seq file. The number of lines to be
  285  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
  286  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
  287  * with the object->lock held.
  288  */
  289 static void hex_dump_object(struct seq_file *seq,
  290                             struct kmemleak_object *object)
  291 {
  292         const u8 *ptr = (const u8 *)object->pointer;
  293         int i, len, remaining;
  294         unsigned char linebuf[HEX_ROW_SIZE * 5];
  295 
  296         /* limit the number of lines to HEX_MAX_LINES */
  297         remaining = len =
  298                 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
  299 
  300         seq_printf(seq, "  hex dump (first %d bytes):\n", len);
  301         for (i = 0; i < len; i += HEX_ROW_SIZE) {
  302                 int linelen = min(remaining, HEX_ROW_SIZE);
  303 
  304                 remaining -= HEX_ROW_SIZE;
  305                 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
  306                                    HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
  307                                    HEX_ASCII);
  308                 seq_printf(seq, "    %s\n", linebuf);
  309         }
  310 }
  311 
  312 /*
  313  * Object colors, encoded with count and min_count:
  314  * - white - orphan object, not enough references to it (count < min_count)
  315  * - gray  - not orphan, not marked as false positive (min_count == 0) or
  316  *              sufficient references to it (count >= min_count)
  317  * - black - ignore, it doesn't contain references (e.g. text section)
  318  *              (min_count == -1). No function defined for this color.
  319  * Newly created objects don't have any color assigned (object->count == -1)
  320  * before the next memory scan when they become white.
  321  */
  322 static bool color_white(const struct kmemleak_object *object)
  323 {
  324         return object->count != KMEMLEAK_BLACK &&
  325                 object->count < object->min_count;
  326 }
  327 
  328 static bool color_gray(const struct kmemleak_object *object)
  329 {
  330         return object->min_count != KMEMLEAK_BLACK &&
  331                 object->count >= object->min_count;
  332 }
  333 
  334 /*
  335  * Objects are considered unreferenced only if their color is white, they have
  336  * not be deleted and have a minimum age to avoid false positives caused by
  337  * pointers temporarily stored in CPU registers.
  338  */
  339 static bool unreferenced_object(struct kmemleak_object *object)
  340 {
  341         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
  342                 time_before_eq(object->jiffies + jiffies_min_age,
  343                                jiffies_last_scan);
  344 }
  345 
  346 /*
  347  * Printing of the unreferenced objects information to the seq file. The
  348  * print_unreferenced function must be called with the object->lock held.
  349  */
  350 static void print_unreferenced(struct seq_file *seq,
  351                                struct kmemleak_object *object)
  352 {
  353         int i;
  354         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
  355 
  356         seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
  357                    object->pointer, object->size);
  358         seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
  359                    object->comm, object->pid, object->jiffies,
  360                    msecs_age / 1000, msecs_age % 1000);
  361         hex_dump_object(seq, object);
  362         seq_printf(seq, "  backtrace:\n");
  363 
  364         for (i = 0; i < object->trace_len; i++) {
  365                 void *ptr = (void *)object->trace[i];
  366                 seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
  367         }
  368 }
  369 
  370 /*
  371  * Print the kmemleak_object information. This function is used mainly for
  372  * debugging special cases when kmemleak operations. It must be called with
  373  * the object->lock held.
  374  */
  375 static void dump_object_info(struct kmemleak_object *object)
  376 {
  377         struct stack_trace trace;
  378 
  379         trace.nr_entries = object->trace_len;
  380         trace.entries = object->trace;
  381 
  382         pr_notice("Object 0x%08lx (size %zu):\n",
  383                   object->pointer, object->size);
  384         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
  385                   object->comm, object->pid, object->jiffies);
  386         pr_notice("  min_count = %d\n", object->min_count);
  387         pr_notice("  count = %d\n", object->count);
  388         pr_notice("  flags = 0x%lx\n", object->flags);
  389         pr_notice("  checksum = %d\n", object->checksum);
  390         pr_notice("  backtrace:\n");
  391         print_stack_trace(&trace, 4);
  392 }
  393 
  394 /*
  395  * Look-up a memory block metadata (kmemleak_object) in the object search
  396  * tree based on a pointer value. If alias is 0, only values pointing to the
  397  * beginning of the memory block are allowed. The kmemleak_lock must be held
  398  * when calling this function.
  399  */
  400 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
  401 {
  402         struct rb_node *rb = object_tree_root.rb_node;
  403 
  404         while (rb) {
  405                 struct kmemleak_object *object =
  406                         rb_entry(rb, struct kmemleak_object, rb_node);
  407                 if (ptr < object->pointer)
  408                         rb = object->rb_node.rb_left;
  409                 else if (object->pointer + object->size <= ptr)
  410                         rb = object->rb_node.rb_right;
  411                 else if (object->pointer == ptr || alias)
  412                         return object;
  413                 else {
  414                         kmemleak_warn("Found object by alias at 0x%08lx\n",
  415                                       ptr);
  416                         dump_object_info(object);
  417                         break;
  418                 }
  419         }
  420         return NULL;
  421 }
  422 
  423 /*
  424  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
  425  * that once an object's use_count reached 0, the RCU freeing was already
  426  * registered and the object should no longer be used. This function must be
  427  * called under the protection of rcu_read_lock().
  428  */
  429 static int get_object(struct kmemleak_object *object)
  430 {
  431         return atomic_inc_not_zero(&object->use_count);
  432 }
  433 
  434 /*
  435  * RCU callback to free a kmemleak_object.
  436  */
  437 static void free_object_rcu(struct rcu_head *rcu)
  438 {
  439         struct hlist_node *elem, *tmp;
  440         struct kmemleak_scan_area *area;
  441         struct kmemleak_object *object =
  442                 container_of(rcu, struct kmemleak_object, rcu);
  443 
  444         /*
  445          * Once use_count is 0 (guaranteed by put_object), there is no other
  446          * code accessing this object, hence no need for locking.
  447          */
  448         hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
  449                 hlist_del(elem);
  450                 kmem_cache_free(scan_area_cache, area);
  451         }
  452         kmem_cache_free(object_cache, object);
  453 }
  454 
  455 /*
  456  * Decrement the object use_count. Once the count is 0, free the object using
  457  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
  458  * delete_object() path, the delayed RCU freeing ensures that there is no
  459  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
  460  * is also possible.
  461  */
  462 static void put_object(struct kmemleak_object *object)
  463 {
  464         if (!atomic_dec_and_test(&object->use_count))
  465                 return;
  466 
  467         /* should only get here after delete_object was called */
  468         WARN_ON(object->flags & OBJECT_ALLOCATED);
  469 
  470         call_rcu(&object->rcu, free_object_rcu);
  471 }
  472 
  473 /*
  474  * Look up an object in the object search tree and increase its use_count.
  475  */
  476 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
  477 {
  478         unsigned long flags;
  479         struct kmemleak_object *object = NULL;
  480 
  481         rcu_read_lock();
  482         read_lock_irqsave(&kmemleak_lock, flags);
  483         if (ptr >= min_addr && ptr < max_addr)
  484                 object = lookup_object(ptr, alias);
  485         read_unlock_irqrestore(&kmemleak_lock, flags);
  486 
  487         /* check whether the object is still available */
  488         if (object && !get_object(object))
  489                 object = NULL;
  490         rcu_read_unlock();
  491 
  492         return object;
  493 }
  494 
  495 /*
  496  * Save stack trace to the given array of MAX_TRACE size.
  497  */
  498 static int __save_stack_trace(unsigned long *trace)
  499 {
  500         struct stack_trace stack_trace;
  501 
  502         stack_trace.max_entries = MAX_TRACE;
  503         stack_trace.nr_entries = 0;
  504         stack_trace.entries = trace;
  505         stack_trace.skip = 2;
  506         save_stack_trace(&stack_trace);
  507 
  508         return stack_trace.nr_entries;
  509 }
  510 
  511 /*
  512  * Create the metadata (struct kmemleak_object) corresponding to an allocated
  513  * memory block and add it to the object_list and object_tree_root.
  514  */
  515 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
  516                                              int min_count, gfp_t gfp)
  517 {
  518         unsigned long flags;
  519         struct kmemleak_object *object, *parent;
  520         struct rb_node **link, *rb_parent;
  521 
  522         object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
  523         if (!object) {
  524                 pr_warning("Cannot allocate a kmemleak_object structure\n");
  525                 kmemleak_disable();
  526                 return NULL;
  527         }
  528 
  529         INIT_LIST_HEAD(&object->object_list);
  530         INIT_LIST_HEAD(&object->gray_list);
  531         INIT_HLIST_HEAD(&object->area_list);
  532         spin_lock_init(&object->lock);
  533         atomic_set(&object->use_count, 1);
  534         object->flags = OBJECT_ALLOCATED;
  535         object->pointer = ptr;
  536         object->size = size;
  537         object->min_count = min_count;
  538         object->count = 0;                      /* white color initially */
  539         object->jiffies = jiffies;
  540         object->checksum = 0;
  541 
  542         /* task information */
  543         if (in_irq()) {
  544                 object->pid = 0;
  545                 strncpy(object->comm, "hardirq", sizeof(object->comm));
  546         } else if (in_softirq()) {
  547                 object->pid = 0;
  548                 strncpy(object->comm, "softirq", sizeof(object->comm));
  549         } else {
  550                 object->pid = current->pid;
  551                 /*
  552                  * There is a small chance of a race with set_task_comm(),
  553                  * however using get_task_comm() here may cause locking
  554                  * dependency issues with current->alloc_lock. In the worst
  555                  * case, the command line is not correct.
  556                  */
  557                 strncpy(object->comm, current->comm, sizeof(object->comm));
  558         }
  559 
  560         /* kernel backtrace */
  561         object->trace_len = __save_stack_trace(object->trace);
  562 
  563         write_lock_irqsave(&kmemleak_lock, flags);
  564 
  565         min_addr = min(min_addr, ptr);
  566         max_addr = max(max_addr, ptr + size);
  567         link = &object_tree_root.rb_node;
  568         rb_parent = NULL;
  569         while (*link) {
  570                 rb_parent = *link;
  571                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
  572                 if (ptr + size <= parent->pointer)
  573                         link = &parent->rb_node.rb_left;
  574                 else if (parent->pointer + parent->size <= ptr)
  575                         link = &parent->rb_node.rb_right;
  576                 else {
  577                         kmemleak_stop("Cannot insert 0x%lx into the object "
  578                                       "search tree (overlaps existing)\n",
  579                                       ptr);
  580                         kmem_cache_free(object_cache, object);
  581                         object = parent;
  582                         spin_lock(&object->lock);
  583                         dump_object_info(object);
  584                         spin_unlock(&object->lock);
  585                         goto out;
  586                 }
  587         }
  588         rb_link_node(&object->rb_node, rb_parent, link);
  589         rb_insert_color(&object->rb_node, &object_tree_root);
  590 
  591         list_add_tail_rcu(&object->object_list, &object_list);
  592 out:
  593         write_unlock_irqrestore(&kmemleak_lock, flags);
  594         return object;
  595 }
  596 
  597 /*
  598  * Remove the metadata (struct kmemleak_object) for a memory block from the
  599  * object_list and object_tree_root and decrement its use_count.
  600  */
  601 static void __delete_object(struct kmemleak_object *object)
  602 {
  603         unsigned long flags;
  604 
  605         write_lock_irqsave(&kmemleak_lock, flags);
  606         rb_erase(&object->rb_node, &object_tree_root);
  607         list_del_rcu(&object->object_list);
  608         write_unlock_irqrestore(&kmemleak_lock, flags);
  609 
  610         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
  611         WARN_ON(atomic_read(&object->use_count) < 2);
  612 
  613         /*
  614          * Locking here also ensures that the corresponding memory block
  615          * cannot be freed when it is being scanned.
  616          */
  617         spin_lock_irqsave(&object->lock, flags);
  618         object->flags &= ~OBJECT_ALLOCATED;
  619         spin_unlock_irqrestore(&object->lock, flags);
  620         put_object(object);
  621 }
  622 
  623 /*
  624  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
  625  * delete it.
  626  */
  627 static void delete_object_full(unsigned long ptr)
  628 {
  629         struct kmemleak_object *object;
  630 
  631         object = find_and_get_object(ptr, 0);
  632         if (!object) {
  633 #ifdef DEBUG
  634                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
  635                               ptr);
  636 #endif
  637                 return;
  638         }
  639         __delete_object(object);
  640         put_object(object);
  641 }
  642 
  643 /*
  644  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
  645  * delete it. If the memory block is partially freed, the function may create
  646  * additional metadata for the remaining parts of the block.
  647  */
  648 static void delete_object_part(unsigned long ptr, size_t size)
  649 {
  650         struct kmemleak_object *object;
  651         unsigned long start, end;
  652 
  653         object = find_and_get_object(ptr, 1);
  654         if (!object) {
  655 #ifdef DEBUG
  656                 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
  657                               "(size %zu)\n", ptr, size);
  658 #endif
  659                 return;
  660         }
  661         __delete_object(object);
  662 
  663         /*
  664          * Create one or two objects that may result from the memory block
  665          * split. Note that partial freeing is only done by free_bootmem() and
  666          * this happens before kmemleak_init() is called. The path below is
  667          * only executed during early log recording in kmemleak_init(), so
  668          * GFP_KERNEL is enough.
  669          */
  670         start = object->pointer;
  671         end = object->pointer + object->size;
  672         if (ptr > start)
  673                 create_object(start, ptr - start, object->min_count,
  674                               GFP_KERNEL);
  675         if (ptr + size < end)
  676                 create_object(ptr + size, end - ptr - size, object->min_count,
  677                               GFP_KERNEL);
  678 
  679         put_object(object);
  680 }
  681 
  682 static void __paint_it(struct kmemleak_object *object, int color)
  683 {
  684         object->min_count = color;
  685         if (color == KMEMLEAK_BLACK)
  686                 object->flags |= OBJECT_NO_SCAN;
  687 }
  688 
  689 static void paint_it(struct kmemleak_object *object, int color)
  690 {
  691         unsigned long flags;
  692 
  693         spin_lock_irqsave(&object->lock, flags);
  694         __paint_it(object, color);
  695         spin_unlock_irqrestore(&object->lock, flags);
  696 }
  697 
  698 static void paint_ptr(unsigned long ptr, int color)
  699 {
  700         struct kmemleak_object *object;
  701 
  702         object = find_and_get_object(ptr, 0);
  703         if (!object) {
  704                 kmemleak_warn("Trying to color unknown object "
  705                               "at 0x%08lx as %s\n", ptr,
  706                               (color == KMEMLEAK_GREY) ? "Grey" :
  707                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
  708                 return;
  709         }
  710         paint_it(object, color);
  711         put_object(object);
  712 }
  713 
  714 /*
  715  * Mark an object permanently as gray-colored so that it can no longer be
  716  * reported as a leak. This is used in general to mark a false positive.
  717  */
  718 static void make_gray_object(unsigned long ptr)
  719 {
  720         paint_ptr(ptr, KMEMLEAK_GREY);
  721 }
  722 
  723 /*
  724  * Mark the object as black-colored so that it is ignored from scans and
  725  * reporting.
  726  */
  727 static void make_black_object(unsigned long ptr)
  728 {
  729         paint_ptr(ptr, KMEMLEAK_BLACK);
  730 }
  731 
  732 /*
  733  * Add a scanning area to the object. If at least one such area is added,
  734  * kmemleak will only scan these ranges rather than the whole memory block.
  735  */
  736 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
  737 {
  738         unsigned long flags;
  739         struct kmemleak_object *object;
  740         struct kmemleak_scan_area *area;
  741 
  742         object = find_and_get_object(ptr, 1);
  743         if (!object) {
  744                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
  745                               ptr);
  746                 return;
  747         }
  748 
  749         area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
  750         if (!area) {
  751                 pr_warning("Cannot allocate a scan area\n");
  752                 goto out;
  753         }
  754 
  755         spin_lock_irqsave(&object->lock, flags);
  756         if (ptr + size > object->pointer + object->size) {
  757                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
  758                 dump_object_info(object);
  759                 kmem_cache_free(scan_area_cache, area);
  760                 goto out_unlock;
  761         }
  762 
  763         INIT_HLIST_NODE(&area->node);
  764         area->start = ptr;
  765         area->size = size;
  766 
  767         hlist_add_head(&area->node, &object->area_list);
  768 out_unlock:
  769         spin_unlock_irqrestore(&object->lock, flags);
  770 out:
  771         put_object(object);
  772 }
  773 
  774 /*
  775  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
  776  * pointer. Such object will not be scanned by kmemleak but references to it
  777  * are searched.
  778  */
  779 static void object_no_scan(unsigned long ptr)
  780 {
  781         unsigned long flags;
  782         struct kmemleak_object *object;
  783 
  784         object = find_and_get_object(ptr, 0);
  785         if (!object) {
  786                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
  787                 return;
  788         }
  789 
  790         spin_lock_irqsave(&object->lock, flags);
  791         object->flags |= OBJECT_NO_SCAN;
  792         spin_unlock_irqrestore(&object->lock, flags);
  793         put_object(object);
  794 }
  795 
  796 /*
  797  * Log an early kmemleak_* call to the early_log buffer. These calls will be
  798  * processed later once kmemleak is fully initialized.
  799  */
  800 static void __init log_early(int op_type, const void *ptr, size_t size,
  801                              int min_count)
  802 {
  803         unsigned long flags;
  804         struct early_log *log;
  805 
  806         if (atomic_read(&kmemleak_error)) {
  807                 /* kmemleak stopped recording, just count the requests */
  808                 crt_early_log++;
  809                 return;
  810         }
  811 
  812         if (crt_early_log >= ARRAY_SIZE(early_log)) {
  813                 kmemleak_disable();
  814                 return;
  815         }
  816 
  817         /*
  818          * There is no need for locking since the kernel is still in UP mode
  819          * at this stage. Disabling the IRQs is enough.
  820          */
  821         local_irq_save(flags);
  822         log = &early_log[crt_early_log];
  823         log->op_type = op_type;
  824         log->ptr = ptr;
  825         log->size = size;
  826         log->min_count = min_count;
  827         log->trace_len = __save_stack_trace(log->trace);
  828         crt_early_log++;
  829         local_irq_restore(flags);
  830 }
  831 
  832 /*
  833  * Log an early allocated block and populate the stack trace.
  834  */
  835 static void early_alloc(struct early_log *log)
  836 {
  837         struct kmemleak_object *object;
  838         unsigned long flags;
  839         int i;
  840 
  841         if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
  842                 return;
  843 
  844         /*
  845          * RCU locking needed to ensure object is not freed via put_object().
  846          */
  847         rcu_read_lock();
  848         object = create_object((unsigned long)log->ptr, log->size,
  849                                log->min_count, GFP_ATOMIC);
  850         if (!object)
  851                 goto out;
  852         spin_lock_irqsave(&object->lock, flags);
  853         for (i = 0; i < log->trace_len; i++)
  854                 object->trace[i] = log->trace[i];
  855         object->trace_len = log->trace_len;
  856         spin_unlock_irqrestore(&object->lock, flags);
  857 out:
  858         rcu_read_unlock();
  859 }
  860 
  861 /*
  862  * Log an early allocated block and populate the stack trace.
  863  */
  864 static void early_alloc_percpu(struct early_log *log)
  865 {
  866         unsigned int cpu;
  867         const void __percpu *ptr = log->ptr;
  868 
  869         for_each_possible_cpu(cpu) {
  870                 log->ptr = per_cpu_ptr(ptr, cpu);
  871                 early_alloc(log);
  872         }
  873 }
  874 
  875 /**
  876  * kmemleak_alloc - register a newly allocated object
  877  * @ptr:        pointer to beginning of the object
  878  * @size:       size of the object
  879  * @min_count:  minimum number of references to this object. If during memory
  880  *              scanning a number of references less than @min_count is found,
  881  *              the object is reported as a memory leak. If @min_count is 0,
  882  *              the object is never reported as a leak. If @min_count is -1,
  883  *              the object is ignored (not scanned and not reported as a leak)
  884  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
  885  *
  886  * This function is called from the kernel allocators when a new object
  887  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
  888  */
  889 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
  890                           gfp_t gfp)
  891 {
  892         pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
  893 
  894         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  895                 create_object((unsigned long)ptr, size, min_count, gfp);
  896         else if (atomic_read(&kmemleak_early_log))
  897                 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
  898 }
  899 EXPORT_SYMBOL_GPL(kmemleak_alloc);
  900 
  901 /**
  902  * kmemleak_alloc_percpu - register a newly allocated __percpu object
  903  * @ptr:        __percpu pointer to beginning of the object
  904  * @size:       size of the object
  905  *
  906  * This function is called from the kernel percpu allocator when a new object
  907  * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
  908  * allocation.
  909  */
  910 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
  911 {
  912         unsigned int cpu;
  913 
  914         pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
  915 
  916         /*
  917          * Percpu allocations are only scanned and not reported as leaks
  918          * (min_count is set to 0).
  919          */
  920         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  921                 for_each_possible_cpu(cpu)
  922                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
  923                                       size, 0, GFP_KERNEL);
  924         else if (atomic_read(&kmemleak_early_log))
  925                 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
  926 }
  927 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
  928 
  929 /**
  930  * kmemleak_free - unregister a previously registered object
  931  * @ptr:        pointer to beginning of the object
  932  *
  933  * This function is called from the kernel allocators when an object (memory
  934  * block) is freed (kmem_cache_free, kfree, vfree etc.).
  935  */
  936 void __ref kmemleak_free(const void *ptr)
  937 {
  938         pr_debug("%s(0x%p)\n", __func__, ptr);
  939 
  940         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  941                 delete_object_full((unsigned long)ptr);
  942         else if (atomic_read(&kmemleak_early_log))
  943                 log_early(KMEMLEAK_FREE, ptr, 0, 0);
  944 }
  945 EXPORT_SYMBOL_GPL(kmemleak_free);
  946 
  947 /**
  948  * kmemleak_free_part - partially unregister a previously registered object
  949  * @ptr:        pointer to the beginning or inside the object. This also
  950  *              represents the start of the range to be freed
  951  * @size:       size to be unregistered
  952  *
  953  * This function is called when only a part of a memory block is freed
  954  * (usually from the bootmem allocator).
  955  */
  956 void __ref kmemleak_free_part(const void *ptr, size_t size)
  957 {
  958         pr_debug("%s(0x%p)\n", __func__, ptr);
  959 
  960         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  961                 delete_object_part((unsigned long)ptr, size);
  962         else if (atomic_read(&kmemleak_early_log))
  963                 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
  964 }
  965 EXPORT_SYMBOL_GPL(kmemleak_free_part);
  966 
  967 /**
  968  * kmemleak_free_percpu - unregister a previously registered __percpu object
  969  * @ptr:        __percpu pointer to beginning of the object
  970  *
  971  * This function is called from the kernel percpu allocator when an object
  972  * (memory block) is freed (free_percpu).
  973  */
  974 void __ref kmemleak_free_percpu(const void __percpu *ptr)
  975 {
  976         unsigned int cpu;
  977 
  978         pr_debug("%s(0x%p)\n", __func__, ptr);
  979 
  980         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  981                 for_each_possible_cpu(cpu)
  982                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
  983                                                                       cpu));
  984         else if (atomic_read(&kmemleak_early_log))
  985                 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
  986 }
  987 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
  988 
  989 /**
  990  * kmemleak_not_leak - mark an allocated object as false positive
  991  * @ptr:        pointer to beginning of the object
  992  *
  993  * Calling this function on an object will cause the memory block to no longer
  994  * be reported as leak and always be scanned.
  995  */
  996 void __ref kmemleak_not_leak(const void *ptr)
  997 {
  998         pr_debug("%s(0x%p)\n", __func__, ptr);
  999 
 1000         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 1001                 make_gray_object((unsigned long)ptr);
 1002         else if (atomic_read(&kmemleak_early_log))
 1003                 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
 1004 }
 1005 EXPORT_SYMBOL(kmemleak_not_leak);
 1006 
 1007 /**
 1008  * kmemleak_ignore - ignore an allocated object
 1009  * @ptr:        pointer to beginning of the object
 1010  *
 1011  * Calling this function on an object will cause the memory block to be
 1012  * ignored (not scanned and not reported as a leak). This is usually done when
 1013  * it is known that the corresponding block is not a leak and does not contain
 1014  * any references to other allocated memory blocks.
 1015  */
 1016 void __ref kmemleak_ignore(const void *ptr)
 1017 {
 1018         pr_debug("%s(0x%p)\n", __func__, ptr);
 1019 
 1020         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 1021                 make_black_object((unsigned long)ptr);
 1022         else if (atomic_read(&kmemleak_early_log))
 1023                 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
 1024 }
 1025 EXPORT_SYMBOL(kmemleak_ignore);
 1026 
 1027 /**
 1028  * kmemleak_scan_area - limit the range to be scanned in an allocated object
 1029  * @ptr:        pointer to beginning or inside the object. This also
 1030  *              represents the start of the scan area
 1031  * @size:       size of the scan area
 1032  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
 1033  *
 1034  * This function is used when it is known that only certain parts of an object
 1035  * contain references to other objects. Kmemleak will only scan these areas
 1036  * reducing the number false negatives.
 1037  */
 1038 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
 1039 {
 1040         pr_debug("%s(0x%p)\n", __func__, ptr);
 1041 
 1042         if (atomic_read(&kmemleak_enabled) && ptr && size && !IS_ERR(ptr))
 1043                 add_scan_area((unsigned long)ptr, size, gfp);
 1044         else if (atomic_read(&kmemleak_early_log))
 1045                 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
 1046 }
 1047 EXPORT_SYMBOL(kmemleak_scan_area);
 1048 
 1049 /**
 1050  * kmemleak_no_scan - do not scan an allocated object
 1051  * @ptr:        pointer to beginning of the object
 1052  *
 1053  * This function notifies kmemleak not to scan the given memory block. Useful
 1054  * in situations where it is known that the given object does not contain any
 1055  * references to other objects. Kmemleak will not scan such objects reducing
 1056  * the number of false negatives.
 1057  */
 1058 void __ref kmemleak_no_scan(const void *ptr)
 1059 {
 1060         pr_debug("%s(0x%p)\n", __func__, ptr);
 1061 
 1062         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 1063                 object_no_scan((unsigned long)ptr);
 1064         else if (atomic_read(&kmemleak_early_log))
 1065                 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
 1066 }
 1067 EXPORT_SYMBOL(kmemleak_no_scan);
 1068 
 1069 /*
 1070  * Update an object's checksum and return true if it was modified.
 1071  */
 1072 static bool update_checksum(struct kmemleak_object *object)
 1073 {
 1074         u32 old_csum = object->checksum;
 1075 
 1076         if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
 1077                 return false;
 1078 
 1079         object->checksum = crc32(0, (void *)object->pointer, object->size);
 1080         return object->checksum != old_csum;
 1081 }
 1082 
 1083 /*
 1084  * Memory scanning is a long process and it needs to be interruptable. This
 1085  * function checks whether such interrupt condition occurred.
 1086  */
 1087 static int scan_should_stop(void)
 1088 {
 1089         if (!atomic_read(&kmemleak_enabled))
 1090                 return 1;
 1091 
 1092         /*
 1093          * This function may be called from either process or kthread context,
 1094          * hence the need to check for both stop conditions.
 1095          */
 1096         if (current->mm)
 1097                 return signal_pending(current);
 1098         else
 1099                 return kthread_should_stop();
 1100 
 1101         return 0;
 1102 }
 1103 
 1104 /*
 1105  * Scan a memory block (exclusive range) for valid pointers and add those
 1106  * found to the gray list.
 1107  */
 1108 static void scan_block(void *_start, void *_end,
 1109                        struct kmemleak_object *scanned, int allow_resched)
 1110 {
 1111         unsigned long *ptr;
 1112         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
 1113         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
 1114 
 1115         for (ptr = start; ptr < end; ptr++) {
 1116                 struct kmemleak_object *object;
 1117                 unsigned long flags;
 1118                 unsigned long pointer;
 1119 
 1120                 if (allow_resched)
 1121                         cond_resched();
 1122                 if (scan_should_stop())
 1123                         break;
 1124 
 1125                 /* don't scan uninitialized memory */
 1126                 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
 1127                                                   BYTES_PER_POINTER))
 1128                         continue;
 1129 
 1130                 pointer = *ptr;
 1131 
 1132                 object = find_and_get_object(pointer, 1);
 1133                 if (!object)
 1134                         continue;
 1135                 if (object == scanned) {
 1136                         /* self referenced, ignore */
 1137                         put_object(object);
 1138                         continue;
 1139                 }
 1140 
 1141                 /*
 1142                  * Avoid the lockdep recursive warning on object->lock being
 1143                  * previously acquired in scan_object(). These locks are
 1144                  * enclosed by scan_mutex.
 1145                  */
 1146                 spin_lock_irqsave_nested(&object->lock, flags,
 1147                                          SINGLE_DEPTH_NESTING);
 1148                 if (!color_white(object)) {
 1149                         /* non-orphan, ignored or new */
 1150                         spin_unlock_irqrestore(&object->lock, flags);
 1151                         put_object(object);
 1152                         continue;
 1153                 }
 1154 
 1155                 /*
 1156                  * Increase the object's reference count (number of pointers
 1157                  * to the memory block). If this count reaches the required
 1158                  * minimum, the object's color will become gray and it will be
 1159                  * added to the gray_list.
 1160                  */
 1161                 object->count++;
 1162                 if (color_gray(object)) {
 1163                         list_add_tail(&object->gray_list, &gray_list);
 1164                         spin_unlock_irqrestore(&object->lock, flags);
 1165                         continue;
 1166                 }
 1167 
 1168                 spin_unlock_irqrestore(&object->lock, flags);
 1169                 put_object(object);
 1170         }
 1171 }
 1172 
 1173 /*
 1174  * Scan a memory block corresponding to a kmemleak_object. A condition is
 1175  * that object->use_count >= 1.
 1176  */
 1177 static void scan_object(struct kmemleak_object *object)
 1178 {
 1179         struct kmemleak_scan_area *area;
 1180         struct hlist_node *elem;
 1181         unsigned long flags;
 1182 
 1183         /*
 1184          * Once the object->lock is acquired, the corresponding memory block
 1185          * cannot be freed (the same lock is acquired in delete_object).
 1186          */
 1187         spin_lock_irqsave(&object->lock, flags);
 1188         if (object->flags & OBJECT_NO_SCAN)
 1189                 goto out;
 1190         if (!(object->flags & OBJECT_ALLOCATED))
 1191                 /* already freed object */
 1192                 goto out;
 1193         if (hlist_empty(&object->area_list)) {
 1194                 void *start = (void *)object->pointer;
 1195                 void *end = (void *)(object->pointer + object->size);
 1196 
 1197                 while (start < end && (object->flags & OBJECT_ALLOCATED) &&
 1198                        !(object->flags & OBJECT_NO_SCAN)) {
 1199                         scan_block(start, min(start + MAX_SCAN_SIZE, end),
 1200                                    object, 0);
 1201                         start += MAX_SCAN_SIZE;
 1202 
 1203                         spin_unlock_irqrestore(&object->lock, flags);
 1204                         cond_resched();
 1205                         spin_lock_irqsave(&object->lock, flags);
 1206                 }
 1207         } else
 1208                 hlist_for_each_entry(area, elem, &object->area_list, node)
 1209                         scan_block((void *)area->start,
 1210                                    (void *)(area->start + area->size),
 1211                                    object, 0);
 1212 out:
 1213         spin_unlock_irqrestore(&object->lock, flags);
 1214 }
 1215 
 1216 /*
 1217  * Scan the objects already referenced (gray objects). More objects will be
 1218  * referenced and, if there are no memory leaks, all the objects are scanned.
 1219  */
 1220 static void scan_gray_list(void)
 1221 {
 1222         struct kmemleak_object *object, *tmp;
 1223 
 1224         /*
 1225          * The list traversal is safe for both tail additions and removals
 1226          * from inside the loop. The kmemleak objects cannot be freed from
 1227          * outside the loop because their use_count was incremented.
 1228          */
 1229         object = list_entry(gray_list.next, typeof(*object), gray_list);
 1230         while (&object->gray_list != &gray_list) {
 1231                 cond_resched();
 1232 
 1233                 /* may add new objects to the list */
 1234                 if (!scan_should_stop())
 1235                         scan_object(object);
 1236 
 1237                 tmp = list_entry(object->gray_list.next, typeof(*object),
 1238                                  gray_list);
 1239 
 1240                 /* remove the object from the list and release it */
 1241                 list_del(&object->gray_list);
 1242                 put_object(object);
 1243 
 1244                 object = tmp;
 1245         }
 1246         WARN_ON(!list_empty(&gray_list));
 1247 }
 1248 
 1249 /*
 1250  * Scan data sections and all the referenced memory blocks allocated via the
 1251  * kernel's standard allocators. This function must be called with the
 1252  * scan_mutex held.
 1253  */
 1254 static void kmemleak_scan(void)
 1255 {
 1256         unsigned long flags;
 1257         struct kmemleak_object *object;
 1258         int i;
 1259         int new_leaks = 0;
 1260 
 1261         jiffies_last_scan = jiffies;
 1262 
 1263         /* prepare the kmemleak_object's */
 1264         rcu_read_lock();
 1265         list_for_each_entry_rcu(object, &object_list, object_list) {
 1266                 spin_lock_irqsave(&object->lock, flags);
 1267 #ifdef DEBUG
 1268                 /*
 1269                  * With a few exceptions there should be a maximum of
 1270                  * 1 reference to any object at this point.
 1271                  */
 1272                 if (atomic_read(&object->use_count) > 1) {
 1273                         pr_debug("object->use_count = %d\n",
 1274                                  atomic_read(&object->use_count));
 1275                         dump_object_info(object);
 1276                 }
 1277 #endif
 1278                 /* reset the reference count (whiten the object) */
 1279                 object->count = 0;
 1280                 if (color_gray(object) && get_object(object))
 1281                         list_add_tail(&object->gray_list, &gray_list);
 1282 
 1283                 spin_unlock_irqrestore(&object->lock, flags);
 1284         }
 1285         rcu_read_unlock();
 1286 
 1287         /* data/bss scanning */
 1288         scan_block(_sdata, _edata, NULL, 1);
 1289         scan_block(__bss_start, __bss_stop, NULL, 1);
 1290 
 1291 #ifdef CONFIG_SMP
 1292         /* per-cpu sections scanning */
 1293         for_each_possible_cpu(i)
 1294                 scan_block(__per_cpu_start + per_cpu_offset(i),
 1295                            __per_cpu_end + per_cpu_offset(i), NULL, 1);
 1296 #endif
 1297 
 1298         /*
 1299          * Struct page scanning for each node.
 1300          */
 1301         lock_memory_hotplug();
 1302         for_each_online_node(i) {
 1303                 pg_data_t *pgdat = NODE_DATA(i);
 1304                 unsigned long start_pfn = pgdat->node_start_pfn;
 1305                 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
 1306                 unsigned long pfn;
 1307 
 1308                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
 1309                         struct page *page;
 1310 
 1311                         if (!pfn_valid(pfn))
 1312                                 continue;
 1313                         page = pfn_to_page(pfn);
 1314                         /* only scan if page is in use */
 1315                         if (page_count(page) == 0)
 1316                                 continue;
 1317                         scan_block(page, page + 1, NULL, 1);
 1318                 }
 1319         }
 1320         unlock_memory_hotplug();
 1321 
 1322         /*
 1323          * Scanning the task stacks (may introduce false negatives).
 1324          */
 1325         if (kmemleak_stack_scan) {
 1326                 struct task_struct *p, *g;
 1327 
 1328                 read_lock(&tasklist_lock);
 1329                 do_each_thread(g, p) {
 1330                         scan_block(task_stack_page(p), task_stack_page(p) +
 1331                                    THREAD_SIZE, NULL, 0);
 1332                 } while_each_thread(g, p);
 1333                 read_unlock(&tasklist_lock);
 1334         }
 1335 
 1336         /*
 1337          * Scan the objects already referenced from the sections scanned
 1338          * above.
 1339          */
 1340         scan_gray_list();
 1341 
 1342         /*
 1343          * Check for new or unreferenced objects modified since the previous
 1344          * scan and color them gray until the next scan.
 1345          */
 1346         rcu_read_lock();
 1347         list_for_each_entry_rcu(object, &object_list, object_list) {
 1348                 spin_lock_irqsave(&object->lock, flags);
 1349                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
 1350                     && update_checksum(object) && get_object(object)) {
 1351                         /* color it gray temporarily */
 1352                         object->count = object->min_count;
 1353                         list_add_tail(&object->gray_list, &gray_list);
 1354                 }
 1355                 spin_unlock_irqrestore(&object->lock, flags);
 1356         }
 1357         rcu_read_unlock();
 1358 
 1359         /*
 1360          * Re-scan the gray list for modified unreferenced objects.
 1361          */
 1362         scan_gray_list();
 1363 
 1364         /*
 1365          * If scanning was stopped do not report any new unreferenced objects.
 1366          */
 1367         if (scan_should_stop())
 1368                 return;
 1369 
 1370         /*
 1371          * Scanning result reporting.
 1372          */
 1373         rcu_read_lock();
 1374         list_for_each_entry_rcu(object, &object_list, object_list) {
 1375                 spin_lock_irqsave(&object->lock, flags);
 1376                 if (unreferenced_object(object) &&
 1377                     !(object->flags & OBJECT_REPORTED)) {
 1378                         object->flags |= OBJECT_REPORTED;
 1379                         new_leaks++;
 1380                 }
 1381                 spin_unlock_irqrestore(&object->lock, flags);
 1382         }
 1383         rcu_read_unlock();
 1384 
 1385         if (new_leaks)
 1386                 pr_info("%d new suspected memory leaks (see "
 1387                         "/sys/kernel/debug/kmemleak)\n", new_leaks);
 1388 
 1389 }
 1390 
 1391 /*
 1392  * Thread function performing automatic memory scanning. Unreferenced objects
 1393  * at the end of a memory scan are reported but only the first time.
 1394  */
 1395 static int kmemleak_scan_thread(void *arg)
 1396 {
 1397         static int first_run = 1;
 1398 
 1399         pr_info("Automatic memory scanning thread started\n");
 1400         set_user_nice(current, 10);
 1401 
 1402         /*
 1403          * Wait before the first scan to allow the system to fully initialize.
 1404          */
 1405         if (first_run) {
 1406                 first_run = 0;
 1407                 ssleep(SECS_FIRST_SCAN);
 1408         }
 1409 
 1410         while (!kthread_should_stop()) {
 1411                 signed long timeout = jiffies_scan_wait;
 1412 
 1413                 mutex_lock(&scan_mutex);
 1414                 kmemleak_scan();
 1415                 mutex_unlock(&scan_mutex);
 1416 
 1417                 /* wait before the next scan */
 1418                 while (timeout && !kthread_should_stop())
 1419                         timeout = schedule_timeout_interruptible(timeout);
 1420         }
 1421 
 1422         pr_info("Automatic memory scanning thread ended\n");
 1423 
 1424         return 0;
 1425 }
 1426 
 1427 /*
 1428  * Start the automatic memory scanning thread. This function must be called
 1429  * with the scan_mutex held.
 1430  */
 1431 static void start_scan_thread(void)
 1432 {
 1433         if (scan_thread)
 1434                 return;
 1435         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
 1436         if (IS_ERR(scan_thread)) {
 1437                 pr_warning("Failed to create the scan thread\n");
 1438                 scan_thread = NULL;
 1439         }
 1440 }
 1441 
 1442 /*
 1443  * Stop the automatic memory scanning thread. This function must be called
 1444  * with the scan_mutex held.
 1445  */
 1446 static void stop_scan_thread(void)
 1447 {
 1448         if (scan_thread) {
 1449                 kthread_stop(scan_thread);
 1450                 scan_thread = NULL;
 1451         }
 1452 }
 1453 
 1454 /*
 1455  * Iterate over the object_list and return the first valid object at or after
 1456  * the required position with its use_count incremented. The function triggers
 1457  * a memory scanning when the pos argument points to the first position.
 1458  */
 1459 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
 1460 {
 1461         struct kmemleak_object *object;
 1462         loff_t n = *pos;
 1463         int err;
 1464 
 1465         err = mutex_lock_interruptible(&scan_mutex);
 1466         if (err < 0)
 1467                 return ERR_PTR(err);
 1468 
 1469         rcu_read_lock();
 1470         list_for_each_entry_rcu(object, &object_list, object_list) {
 1471                 if (n-- > 0)
 1472                         continue;
 1473                 if (get_object(object))
 1474                         goto out;
 1475         }
 1476         object = NULL;
 1477 out:
 1478         return object;
 1479 }
 1480 
 1481 /*
 1482  * Return the next object in the object_list. The function decrements the
 1483  * use_count of the previous object and increases that of the next one.
 1484  */
 1485 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 1486 {
 1487         struct kmemleak_object *prev_obj = v;
 1488         struct kmemleak_object *next_obj = NULL;
 1489         struct kmemleak_object *obj = prev_obj;
 1490 
 1491         ++(*pos);
 1492 
 1493         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
 1494                 if (get_object(obj)) {
 1495                         next_obj = obj;
 1496                         break;
 1497                 }
 1498         }
 1499 
 1500         put_object(prev_obj);
 1501         return next_obj;
 1502 }
 1503 
 1504 /*
 1505  * Decrement the use_count of the last object required, if any.
 1506  */
 1507 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
 1508 {
 1509         if (!IS_ERR(v)) {
 1510                 /*
 1511                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
 1512                  * waiting was interrupted, so only release it if !IS_ERR.
 1513                  */
 1514                 rcu_read_unlock();
 1515                 mutex_unlock(&scan_mutex);
 1516                 if (v)
 1517                         put_object(v);
 1518         }
 1519 }
 1520 
 1521 /*
 1522  * Print the information for an unreferenced object to the seq file.
 1523  */
 1524 static int kmemleak_seq_show(struct seq_file *seq, void *v)
 1525 {
 1526         struct kmemleak_object *object = v;
 1527         unsigned long flags;
 1528 
 1529         spin_lock_irqsave(&object->lock, flags);
 1530         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
 1531                 print_unreferenced(seq, object);
 1532         spin_unlock_irqrestore(&object->lock, flags);
 1533         return 0;
 1534 }
 1535 
 1536 static const struct seq_operations kmemleak_seq_ops = {
 1537         .start = kmemleak_seq_start,
 1538         .next  = kmemleak_seq_next,
 1539         .stop  = kmemleak_seq_stop,
 1540         .show  = kmemleak_seq_show,
 1541 };
 1542 
 1543 static int kmemleak_open(struct inode *inode, struct file *file)
 1544 {
 1545         return seq_open(file, &kmemleak_seq_ops);
 1546 }
 1547 
 1548 static int kmemleak_release(struct inode *inode, struct file *file)
 1549 {
 1550         return seq_release(inode, file);
 1551 }
 1552 
 1553 static int dump_str_object_info(const char *str)
 1554 {
 1555         unsigned long flags;
 1556         struct kmemleak_object *object;
 1557         unsigned long addr;
 1558 
 1559         if (kstrtoul(str, 0, &addr))
 1560                 return -EINVAL;
 1561         object = find_and_get_object(addr, 0);
 1562         if (!object) {
 1563                 pr_info("Unknown object at 0x%08lx\n", addr);
 1564                 return -EINVAL;
 1565         }
 1566 
 1567         spin_lock_irqsave(&object->lock, flags);
 1568         dump_object_info(object);
 1569         spin_unlock_irqrestore(&object->lock, flags);
 1570 
 1571         put_object(object);
 1572         return 0;
 1573 }
 1574 
 1575 /*
 1576  * We use grey instead of black to ensure we can do future scans on the same
 1577  * objects. If we did not do future scans these black objects could
 1578  * potentially contain references to newly allocated objects in the future and
 1579  * we'd end up with false positives.
 1580  */
 1581 static void kmemleak_clear(void)
 1582 {
 1583         struct kmemleak_object *object;
 1584         unsigned long flags;
 1585 
 1586         rcu_read_lock();
 1587         list_for_each_entry_rcu(object, &object_list, object_list) {
 1588                 spin_lock_irqsave(&object->lock, flags);
 1589                 if ((object->flags & OBJECT_REPORTED) &&
 1590                     unreferenced_object(object))
 1591                         __paint_it(object, KMEMLEAK_GREY);
 1592                 spin_unlock_irqrestore(&object->lock, flags);
 1593         }
 1594         rcu_read_unlock();
 1595 }
 1596 
 1597 /*
 1598  * File write operation to configure kmemleak at run-time. The following
 1599  * commands can be written to the /sys/kernel/debug/kmemleak file:
 1600  *   off        - disable kmemleak (irreversible)
 1601  *   stack=on   - enable the task stacks scanning
 1602  *   stack=off  - disable the tasks stacks scanning
 1603  *   scan=on    - start the automatic memory scanning thread
 1604  *   scan=off   - stop the automatic memory scanning thread
 1605  *   scan=...   - set the automatic memory scanning period in seconds (0 to
 1606  *                disable it)
 1607  *   scan       - trigger a memory scan
 1608  *   clear      - mark all current reported unreferenced kmemleak objects as
 1609  *                grey to ignore printing them
 1610  *   dump=...   - dump information about the object found at the given address
 1611  */
 1612 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
 1613                               size_t size, loff_t *ppos)
 1614 {
 1615         char buf[64];
 1616         int buf_size;
 1617         int ret;
 1618 
 1619         if (!atomic_read(&kmemleak_enabled))
 1620                 return -EBUSY;
 1621 
 1622         buf_size = min(size, (sizeof(buf) - 1));
 1623         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
 1624                 return -EFAULT;
 1625         buf[buf_size] = 0;
 1626 
 1627         ret = mutex_lock_interruptible(&scan_mutex);
 1628         if (ret < 0)
 1629                 return ret;
 1630 
 1631         if (strncmp(buf, "off", 3) == 0)
 1632                 kmemleak_disable();
 1633         else if (strncmp(buf, "stack=on", 8) == 0)
 1634                 kmemleak_stack_scan = 1;
 1635         else if (strncmp(buf, "stack=off", 9) == 0)
 1636                 kmemleak_stack_scan = 0;
 1637         else if (strncmp(buf, "scan=on", 7) == 0)
 1638                 start_scan_thread();
 1639         else if (strncmp(buf, "scan=off", 8) == 0)
 1640                 stop_scan_thread();
 1641         else if (strncmp(buf, "scan=", 5) == 0) {
 1642                 unsigned long secs;
 1643 
 1644                 ret = strict_strtoul(buf + 5, 0, &secs);
 1645                 if (ret < 0)
 1646                         goto out;
 1647                 stop_scan_thread();
 1648                 if (secs) {
 1649                         jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
 1650                         start_scan_thread();
 1651                 }
 1652         } else if (strncmp(buf, "scan", 4) == 0)
 1653                 kmemleak_scan();
 1654         else if (strncmp(buf, "clear", 5) == 0)
 1655                 kmemleak_clear();
 1656         else if (strncmp(buf, "dump=", 5) == 0)
 1657                 ret = dump_str_object_info(buf + 5);
 1658         else
 1659                 ret = -EINVAL;
 1660 
 1661 out:
 1662         mutex_unlock(&scan_mutex);
 1663         if (ret < 0)
 1664                 return ret;
 1665 
 1666         /* ignore the rest of the buffer, only one command at a time */
 1667         *ppos += size;
 1668         return size;
 1669 }
 1670 
 1671 static const struct file_operations kmemleak_fops = {
 1672         .owner          = THIS_MODULE,
 1673         .open           = kmemleak_open,
 1674         .read           = seq_read,
 1675         .write          = kmemleak_write,
 1676         .llseek         = seq_lseek,
 1677         .release        = kmemleak_release,
 1678 };
 1679 
 1680 /*
 1681  * Stop the memory scanning thread and free the kmemleak internal objects if
 1682  * no previous scan thread (otherwise, kmemleak may still have some useful
 1683  * information on memory leaks).
 1684  */
 1685 static void kmemleak_do_cleanup(struct work_struct *work)
 1686 {
 1687         struct kmemleak_object *object;
 1688         bool cleanup = scan_thread == NULL;
 1689 
 1690         mutex_lock(&scan_mutex);
 1691         stop_scan_thread();
 1692 
 1693         if (cleanup) {
 1694                 rcu_read_lock();
 1695                 list_for_each_entry_rcu(object, &object_list, object_list)
 1696                         delete_object_full(object->pointer);
 1697                 rcu_read_unlock();
 1698         }
 1699         mutex_unlock(&scan_mutex);
 1700 }
 1701 
 1702 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
 1703 
 1704 /*
 1705  * Disable kmemleak. No memory allocation/freeing will be traced once this
 1706  * function is called. Disabling kmemleak is an irreversible operation.
 1707  */
 1708 static void kmemleak_disable(void)
 1709 {
 1710         /* atomically check whether it was already invoked */
 1711         if (atomic_cmpxchg(&kmemleak_error, 0, 1))
 1712                 return;
 1713 
 1714         /* stop any memory operation tracing */
 1715         atomic_set(&kmemleak_enabled, 0);
 1716 
 1717         /* check whether it is too early for a kernel thread */
 1718         if (atomic_read(&kmemleak_initialized))
 1719                 schedule_work(&cleanup_work);
 1720 
 1721         pr_info("Kernel memory leak detector disabled\n");
 1722 }
 1723 
 1724 /*
 1725  * Allow boot-time kmemleak disabling (enabled by default).
 1726  */
 1727 static int kmemleak_boot_config(char *str)
 1728 {
 1729         if (!str)
 1730                 return -EINVAL;
 1731         if (strcmp(str, "off") == 0)
 1732                 kmemleak_disable();
 1733         else if (strcmp(str, "on") == 0)
 1734                 kmemleak_skip_disable = 1;
 1735         else
 1736                 return -EINVAL;
 1737         return 0;
 1738 }
 1739 early_param("kmemleak", kmemleak_boot_config);
 1740 
 1741 static void __init print_log_trace(struct early_log *log)
 1742 {
 1743         struct stack_trace trace;
 1744 
 1745         trace.nr_entries = log->trace_len;
 1746         trace.entries = log->trace;
 1747 
 1748         pr_notice("Early log backtrace:\n");
 1749         print_stack_trace(&trace, 2);
 1750 }
 1751 
 1752 /*
 1753  * Kmemleak initialization.
 1754  */
 1755 void __init kmemleak_init(void)
 1756 {
 1757         int i;
 1758         unsigned long flags;
 1759 
 1760 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
 1761         if (!kmemleak_skip_disable) {
 1762                 atomic_set(&kmemleak_early_log, 0);
 1763                 kmemleak_disable();
 1764                 return;
 1765         }
 1766 #endif
 1767 
 1768         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
 1769         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
 1770 
 1771         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
 1772         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
 1773 
 1774         if (crt_early_log >= ARRAY_SIZE(early_log))
 1775                 pr_warning("Early log buffer exceeded (%d), please increase "
 1776                            "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
 1777 
 1778         /* the kernel is still in UP mode, so disabling the IRQs is enough */
 1779         local_irq_save(flags);
 1780         atomic_set(&kmemleak_early_log, 0);
 1781         if (atomic_read(&kmemleak_error)) {
 1782                 local_irq_restore(flags);
 1783                 return;
 1784         } else
 1785                 atomic_set(&kmemleak_enabled, 1);
 1786         local_irq_restore(flags);
 1787 
 1788         /*
 1789          * This is the point where tracking allocations is safe. Automatic
 1790          * scanning is started during the late initcall. Add the early logged
 1791          * callbacks to the kmemleak infrastructure.
 1792          */
 1793         for (i = 0; i < crt_early_log; i++) {
 1794                 struct early_log *log = &early_log[i];
 1795 
 1796                 switch (log->op_type) {
 1797                 case KMEMLEAK_ALLOC:
 1798                         early_alloc(log);
 1799                         break;
 1800                 case KMEMLEAK_ALLOC_PERCPU:
 1801                         early_alloc_percpu(log);
 1802                         break;
 1803                 case KMEMLEAK_FREE:
 1804                         kmemleak_free(log->ptr);
 1805                         break;
 1806                 case KMEMLEAK_FREE_PART:
 1807                         kmemleak_free_part(log->ptr, log->size);
 1808                         break;
 1809                 case KMEMLEAK_FREE_PERCPU:
 1810                         kmemleak_free_percpu(log->ptr);
 1811                         break;
 1812                 case KMEMLEAK_NOT_LEAK:
 1813                         kmemleak_not_leak(log->ptr);
 1814                         break;
 1815                 case KMEMLEAK_IGNORE:
 1816                         kmemleak_ignore(log->ptr);
 1817                         break;
 1818                 case KMEMLEAK_SCAN_AREA:
 1819                         kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
 1820                         break;
 1821                 case KMEMLEAK_NO_SCAN:
 1822                         kmemleak_no_scan(log->ptr);
 1823                         break;
 1824                 default:
 1825                         kmemleak_warn("Unknown early log operation: %d\n",
 1826                                       log->op_type);
 1827                 }
 1828 
 1829                 if (atomic_read(&kmemleak_warning)) {
 1830                         print_log_trace(log);
 1831                         atomic_set(&kmemleak_warning, 0);
 1832                 }
 1833         }
 1834 }
 1835 
 1836 /*
 1837  * Late initialization function.
 1838  */
 1839 static int __init kmemleak_late_init(void)
 1840 {
 1841         struct dentry *dentry;
 1842 
 1843         atomic_set(&kmemleak_initialized, 1);
 1844 
 1845         if (atomic_read(&kmemleak_error)) {
 1846                 /*
 1847                  * Some error occurred and kmemleak was disabled. There is a
 1848                  * small chance that kmemleak_disable() was called immediately
 1849                  * after setting kmemleak_initialized and we may end up with
 1850                  * two clean-up threads but serialized by scan_mutex.
 1851                  */
 1852                 schedule_work(&cleanup_work);
 1853                 return -ENOMEM;
 1854         }
 1855 
 1856         dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
 1857                                      &kmemleak_fops);
 1858         if (!dentry)
 1859                 pr_warning("Failed to create the debugfs kmemleak file\n");
 1860         mutex_lock(&scan_mutex);
 1861         start_scan_thread();
 1862         mutex_unlock(&scan_mutex);
 1863 
 1864         pr_info("Kernel memory leak detector initialized\n");
 1865 
 1866         return 0;
 1867 }
 1868 late_initcall(kmemleak_late_init);

Cache object: 47a16c31f4ed9dbb5844978dbed11222


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.