The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/ksm.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Memory merging support.
    3  *
    4  * This code enables dynamic sharing of identical pages found in different
    5  * memory areas, even if they are not shared by fork()
    6  *
    7  * Copyright (C) 2008-2009 Red Hat, Inc.
    8  * Authors:
    9  *      Izik Eidus
   10  *      Andrea Arcangeli
   11  *      Chris Wright
   12  *      Hugh Dickins
   13  *
   14  * This work is licensed under the terms of the GNU GPL, version 2.
   15  */
   16 
   17 #include <linux/errno.h>
   18 #include <linux/mm.h>
   19 #include <linux/fs.h>
   20 #include <linux/mman.h>
   21 #include <linux/sched.h>
   22 #include <linux/rwsem.h>
   23 #include <linux/pagemap.h>
   24 #include <linux/rmap.h>
   25 #include <linux/spinlock.h>
   26 #include <linux/jhash.h>
   27 #include <linux/delay.h>
   28 #include <linux/kthread.h>
   29 #include <linux/wait.h>
   30 #include <linux/slab.h>
   31 #include <linux/rbtree.h>
   32 #include <linux/memory.h>
   33 #include <linux/mmu_notifier.h>
   34 #include <linux/swap.h>
   35 #include <linux/ksm.h>
   36 #include <linux/hash.h>
   37 #include <linux/freezer.h>
   38 #include <linux/oom.h>
   39 
   40 #include <asm/tlbflush.h>
   41 #include "internal.h"
   42 
   43 /*
   44  * A few notes about the KSM scanning process,
   45  * to make it easier to understand the data structures below:
   46  *
   47  * In order to reduce excessive scanning, KSM sorts the memory pages by their
   48  * contents into a data structure that holds pointers to the pages' locations.
   49  *
   50  * Since the contents of the pages may change at any moment, KSM cannot just
   51  * insert the pages into a normal sorted tree and expect it to find anything.
   52  * Therefore KSM uses two data structures - the stable and the unstable tree.
   53  *
   54  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
   55  * by their contents.  Because each such page is write-protected, searching on
   56  * this tree is fully assured to be working (except when pages are unmapped),
   57  * and therefore this tree is called the stable tree.
   58  *
   59  * In addition to the stable tree, KSM uses a second data structure called the
   60  * unstable tree: this tree holds pointers to pages which have been found to
   61  * be "unchanged for a period of time".  The unstable tree sorts these pages
   62  * by their contents, but since they are not write-protected, KSM cannot rely
   63  * upon the unstable tree to work correctly - the unstable tree is liable to
   64  * be corrupted as its contents are modified, and so it is called unstable.
   65  *
   66  * KSM solves this problem by several techniques:
   67  *
   68  * 1) The unstable tree is flushed every time KSM completes scanning all
   69  *    memory areas, and then the tree is rebuilt again from the beginning.
   70  * 2) KSM will only insert into the unstable tree, pages whose hash value
   71  *    has not changed since the previous scan of all memory areas.
   72  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
   73  *    colors of the nodes and not on their contents, assuring that even when
   74  *    the tree gets "corrupted" it won't get out of balance, so scanning time
   75  *    remains the same (also, searching and inserting nodes in an rbtree uses
   76  *    the same algorithm, so we have no overhead when we flush and rebuild).
   77  * 4) KSM never flushes the stable tree, which means that even if it were to
   78  *    take 10 attempts to find a page in the unstable tree, once it is found,
   79  *    it is secured in the stable tree.  (When we scan a new page, we first
   80  *    compare it against the stable tree, and then against the unstable tree.)
   81  */
   82 
   83 /**
   84  * struct mm_slot - ksm information per mm that is being scanned
   85  * @link: link to the mm_slots hash list
   86  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
   87  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
   88  * @mm: the mm that this information is valid for
   89  */
   90 struct mm_slot {
   91         struct hlist_node link;
   92         struct list_head mm_list;
   93         struct rmap_item *rmap_list;
   94         struct mm_struct *mm;
   95 };
   96 
   97 /**
   98  * struct ksm_scan - cursor for scanning
   99  * @mm_slot: the current mm_slot we are scanning
  100  * @address: the next address inside that to be scanned
  101  * @rmap_list: link to the next rmap to be scanned in the rmap_list
  102  * @seqnr: count of completed full scans (needed when removing unstable node)
  103  *
  104  * There is only the one ksm_scan instance of this cursor structure.
  105  */
  106 struct ksm_scan {
  107         struct mm_slot *mm_slot;
  108         unsigned long address;
  109         struct rmap_item **rmap_list;
  110         unsigned long seqnr;
  111 };
  112 
  113 /**
  114  * struct stable_node - node of the stable rbtree
  115  * @node: rb node of this ksm page in the stable tree
  116  * @hlist: hlist head of rmap_items using this ksm page
  117  * @kpfn: page frame number of this ksm page
  118  */
  119 struct stable_node {
  120         struct rb_node node;
  121         struct hlist_head hlist;
  122         unsigned long kpfn;
  123 };
  124 
  125 /**
  126  * struct rmap_item - reverse mapping item for virtual addresses
  127  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
  128  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
  129  * @mm: the memory structure this rmap_item is pointing into
  130  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
  131  * @oldchecksum: previous checksum of the page at that virtual address
  132  * @node: rb node of this rmap_item in the unstable tree
  133  * @head: pointer to stable_node heading this list in the stable tree
  134  * @hlist: link into hlist of rmap_items hanging off that stable_node
  135  */
  136 struct rmap_item {
  137         struct rmap_item *rmap_list;
  138         struct anon_vma *anon_vma;      /* when stable */
  139         struct mm_struct *mm;
  140         unsigned long address;          /* + low bits used for flags below */
  141         unsigned int oldchecksum;       /* when unstable */
  142         union {
  143                 struct rb_node node;    /* when node of unstable tree */
  144                 struct {                /* when listed from stable tree */
  145                         struct stable_node *head;
  146                         struct hlist_node hlist;
  147                 };
  148         };
  149 };
  150 
  151 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
  152 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
  153 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
  154 
  155 /* The stable and unstable tree heads */
  156 static struct rb_root root_stable_tree = RB_ROOT;
  157 static struct rb_root root_unstable_tree = RB_ROOT;
  158 
  159 #define MM_SLOTS_HASH_SHIFT 10
  160 #define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT)
  161 static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS];
  162 
  163 static struct mm_slot ksm_mm_head = {
  164         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
  165 };
  166 static struct ksm_scan ksm_scan = {
  167         .mm_slot = &ksm_mm_head,
  168 };
  169 
  170 static struct kmem_cache *rmap_item_cache;
  171 static struct kmem_cache *stable_node_cache;
  172 static struct kmem_cache *mm_slot_cache;
  173 
  174 /* The number of nodes in the stable tree */
  175 static unsigned long ksm_pages_shared;
  176 
  177 /* The number of page slots additionally sharing those nodes */
  178 static unsigned long ksm_pages_sharing;
  179 
  180 /* The number of nodes in the unstable tree */
  181 static unsigned long ksm_pages_unshared;
  182 
  183 /* The number of rmap_items in use: to calculate pages_volatile */
  184 static unsigned long ksm_rmap_items;
  185 
  186 /* Number of pages ksmd should scan in one batch */
  187 static unsigned int ksm_thread_pages_to_scan = 100;
  188 
  189 /* Milliseconds ksmd should sleep between batches */
  190 static unsigned int ksm_thread_sleep_millisecs = 20;
  191 
  192 #define KSM_RUN_STOP    0
  193 #define KSM_RUN_MERGE   1
  194 #define KSM_RUN_UNMERGE 2
  195 static unsigned int ksm_run = KSM_RUN_STOP;
  196 
  197 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
  198 static DEFINE_MUTEX(ksm_thread_mutex);
  199 static DEFINE_SPINLOCK(ksm_mmlist_lock);
  200 
  201 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
  202                 sizeof(struct __struct), __alignof__(struct __struct),\
  203                 (__flags), NULL)
  204 
  205 static int __init ksm_slab_init(void)
  206 {
  207         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
  208         if (!rmap_item_cache)
  209                 goto out;
  210 
  211         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
  212         if (!stable_node_cache)
  213                 goto out_free1;
  214 
  215         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
  216         if (!mm_slot_cache)
  217                 goto out_free2;
  218 
  219         return 0;
  220 
  221 out_free2:
  222         kmem_cache_destroy(stable_node_cache);
  223 out_free1:
  224         kmem_cache_destroy(rmap_item_cache);
  225 out:
  226         return -ENOMEM;
  227 }
  228 
  229 static void __init ksm_slab_free(void)
  230 {
  231         kmem_cache_destroy(mm_slot_cache);
  232         kmem_cache_destroy(stable_node_cache);
  233         kmem_cache_destroy(rmap_item_cache);
  234         mm_slot_cache = NULL;
  235 }
  236 
  237 static inline struct rmap_item *alloc_rmap_item(void)
  238 {
  239         struct rmap_item *rmap_item;
  240 
  241         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
  242         if (rmap_item)
  243                 ksm_rmap_items++;
  244         return rmap_item;
  245 }
  246 
  247 static inline void free_rmap_item(struct rmap_item *rmap_item)
  248 {
  249         ksm_rmap_items--;
  250         rmap_item->mm = NULL;   /* debug safety */
  251         kmem_cache_free(rmap_item_cache, rmap_item);
  252 }
  253 
  254 static inline struct stable_node *alloc_stable_node(void)
  255 {
  256         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
  257 }
  258 
  259 static inline void free_stable_node(struct stable_node *stable_node)
  260 {
  261         kmem_cache_free(stable_node_cache, stable_node);
  262 }
  263 
  264 static inline struct mm_slot *alloc_mm_slot(void)
  265 {
  266         if (!mm_slot_cache)     /* initialization failed */
  267                 return NULL;
  268         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  269 }
  270 
  271 static inline void free_mm_slot(struct mm_slot *mm_slot)
  272 {
  273         kmem_cache_free(mm_slot_cache, mm_slot);
  274 }
  275 
  276 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  277 {
  278         struct mm_slot *mm_slot;
  279         struct hlist_head *bucket;
  280         struct hlist_node *node;
  281 
  282         bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
  283         hlist_for_each_entry(mm_slot, node, bucket, link) {
  284                 if (mm == mm_slot->mm)
  285                         return mm_slot;
  286         }
  287         return NULL;
  288 }
  289 
  290 static void insert_to_mm_slots_hash(struct mm_struct *mm,
  291                                     struct mm_slot *mm_slot)
  292 {
  293         struct hlist_head *bucket;
  294 
  295         bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
  296         mm_slot->mm = mm;
  297         hlist_add_head(&mm_slot->link, bucket);
  298 }
  299 
  300 static inline int in_stable_tree(struct rmap_item *rmap_item)
  301 {
  302         return rmap_item->address & STABLE_FLAG;
  303 }
  304 
  305 /*
  306  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
  307  * page tables after it has passed through ksm_exit() - which, if necessary,
  308  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
  309  * a special flag: they can just back out as soon as mm_users goes to zero.
  310  * ksm_test_exit() is used throughout to make this test for exit: in some
  311  * places for correctness, in some places just to avoid unnecessary work.
  312  */
  313 static inline bool ksm_test_exit(struct mm_struct *mm)
  314 {
  315         return atomic_read(&mm->mm_users) == 0;
  316 }
  317 
  318 /*
  319  * We use break_ksm to break COW on a ksm page: it's a stripped down
  320  *
  321  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
  322  *              put_page(page);
  323  *
  324  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
  325  * in case the application has unmapped and remapped mm,addr meanwhile.
  326  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
  327  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
  328  */
  329 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
  330 {
  331         struct page *page;
  332         int ret = 0;
  333 
  334         do {
  335                 cond_resched();
  336                 page = follow_page(vma, addr, FOLL_GET);
  337                 if (IS_ERR_OR_NULL(page))
  338                         break;
  339                 if (PageKsm(page))
  340                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
  341                                                         FAULT_FLAG_WRITE);
  342                 else
  343                         ret = VM_FAULT_WRITE;
  344                 put_page(page);
  345         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
  346         /*
  347          * We must loop because handle_mm_fault() may back out if there's
  348          * any difficulty e.g. if pte accessed bit gets updated concurrently.
  349          *
  350          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
  351          * COW has been broken, even if the vma does not permit VM_WRITE;
  352          * but note that a concurrent fault might break PageKsm for us.
  353          *
  354          * VM_FAULT_SIGBUS could occur if we race with truncation of the
  355          * backing file, which also invalidates anonymous pages: that's
  356          * okay, that truncation will have unmapped the PageKsm for us.
  357          *
  358          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
  359          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
  360          * current task has TIF_MEMDIE set, and will be OOM killed on return
  361          * to user; and ksmd, having no mm, would never be chosen for that.
  362          *
  363          * But if the mm is in a limited mem_cgroup, then the fault may fail
  364          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
  365          * even ksmd can fail in this way - though it's usually breaking ksm
  366          * just to undo a merge it made a moment before, so unlikely to oom.
  367          *
  368          * That's a pity: we might therefore have more kernel pages allocated
  369          * than we're counting as nodes in the stable tree; but ksm_do_scan
  370          * will retry to break_cow on each pass, so should recover the page
  371          * in due course.  The important thing is to not let VM_MERGEABLE
  372          * be cleared while any such pages might remain in the area.
  373          */
  374         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
  375 }
  376 
  377 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
  378                 unsigned long addr)
  379 {
  380         struct vm_area_struct *vma;
  381         if (ksm_test_exit(mm))
  382                 return NULL;
  383         vma = find_vma(mm, addr);
  384         if (!vma || vma->vm_start > addr)
  385                 return NULL;
  386         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
  387                 return NULL;
  388         return vma;
  389 }
  390 
  391 static void break_cow(struct rmap_item *rmap_item)
  392 {
  393         struct mm_struct *mm = rmap_item->mm;
  394         unsigned long addr = rmap_item->address;
  395         struct vm_area_struct *vma;
  396 
  397         /*
  398          * It is not an accident that whenever we want to break COW
  399          * to undo, we also need to drop a reference to the anon_vma.
  400          */
  401         put_anon_vma(rmap_item->anon_vma);
  402 
  403         down_read(&mm->mmap_sem);
  404         vma = find_mergeable_vma(mm, addr);
  405         if (vma)
  406                 break_ksm(vma, addr);
  407         up_read(&mm->mmap_sem);
  408 }
  409 
  410 static struct page *page_trans_compound_anon(struct page *page)
  411 {
  412         if (PageTransCompound(page)) {
  413                 struct page *head = compound_trans_head(page);
  414                 /*
  415                  * head may actually be splitted and freed from under
  416                  * us but it's ok here.
  417                  */
  418                 if (PageAnon(head))
  419                         return head;
  420         }
  421         return NULL;
  422 }
  423 
  424 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
  425 {
  426         struct mm_struct *mm = rmap_item->mm;
  427         unsigned long addr = rmap_item->address;
  428         struct vm_area_struct *vma;
  429         struct page *page;
  430 
  431         down_read(&mm->mmap_sem);
  432         vma = find_mergeable_vma(mm, addr);
  433         if (!vma)
  434                 goto out;
  435 
  436         page = follow_page(vma, addr, FOLL_GET);
  437         if (IS_ERR_OR_NULL(page))
  438                 goto out;
  439         if (PageAnon(page) || page_trans_compound_anon(page)) {
  440                 flush_anon_page(vma, page, addr);
  441                 flush_dcache_page(page);
  442         } else {
  443                 put_page(page);
  444 out:            page = NULL;
  445         }
  446         up_read(&mm->mmap_sem);
  447         return page;
  448 }
  449 
  450 static void remove_node_from_stable_tree(struct stable_node *stable_node)
  451 {
  452         struct rmap_item *rmap_item;
  453         struct hlist_node *hlist;
  454 
  455         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
  456                 if (rmap_item->hlist.next)
  457                         ksm_pages_sharing--;
  458                 else
  459                         ksm_pages_shared--;
  460                 put_anon_vma(rmap_item->anon_vma);
  461                 rmap_item->address &= PAGE_MASK;
  462                 cond_resched();
  463         }
  464 
  465         rb_erase(&stable_node->node, &root_stable_tree);
  466         free_stable_node(stable_node);
  467 }
  468 
  469 /*
  470  * get_ksm_page: checks if the page indicated by the stable node
  471  * is still its ksm page, despite having held no reference to it.
  472  * In which case we can trust the content of the page, and it
  473  * returns the gotten page; but if the page has now been zapped,
  474  * remove the stale node from the stable tree and return NULL.
  475  *
  476  * You would expect the stable_node to hold a reference to the ksm page.
  477  * But if it increments the page's count, swapping out has to wait for
  478  * ksmd to come around again before it can free the page, which may take
  479  * seconds or even minutes: much too unresponsive.  So instead we use a
  480  * "keyhole reference": access to the ksm page from the stable node peeps
  481  * out through its keyhole to see if that page still holds the right key,
  482  * pointing back to this stable node.  This relies on freeing a PageAnon
  483  * page to reset its page->mapping to NULL, and relies on no other use of
  484  * a page to put something that might look like our key in page->mapping.
  485  *
  486  * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
  487  * but this is different - made simpler by ksm_thread_mutex being held, but
  488  * interesting for assuming that no other use of the struct page could ever
  489  * put our expected_mapping into page->mapping (or a field of the union which
  490  * coincides with page->mapping).  The RCU calls are not for KSM at all, but
  491  * to keep the page_count protocol described with page_cache_get_speculative.
  492  *
  493  * Note: it is possible that get_ksm_page() will return NULL one moment,
  494  * then page the next, if the page is in between page_freeze_refs() and
  495  * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
  496  * is on its way to being freed; but it is an anomaly to bear in mind.
  497  */
  498 static struct page *get_ksm_page(struct stable_node *stable_node)
  499 {
  500         struct page *page;
  501         void *expected_mapping;
  502 
  503         page = pfn_to_page(stable_node->kpfn);
  504         expected_mapping = (void *)stable_node +
  505                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
  506         rcu_read_lock();
  507         if (page->mapping != expected_mapping)
  508                 goto stale;
  509         if (!get_page_unless_zero(page))
  510                 goto stale;
  511         if (page->mapping != expected_mapping) {
  512                 put_page(page);
  513                 goto stale;
  514         }
  515         rcu_read_unlock();
  516         return page;
  517 stale:
  518         rcu_read_unlock();
  519         remove_node_from_stable_tree(stable_node);
  520         return NULL;
  521 }
  522 
  523 /*
  524  * Removing rmap_item from stable or unstable tree.
  525  * This function will clean the information from the stable/unstable tree.
  526  */
  527 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
  528 {
  529         if (rmap_item->address & STABLE_FLAG) {
  530                 struct stable_node *stable_node;
  531                 struct page *page;
  532 
  533                 stable_node = rmap_item->head;
  534                 page = get_ksm_page(stable_node);
  535                 if (!page)
  536                         goto out;
  537 
  538                 lock_page(page);
  539                 hlist_del(&rmap_item->hlist);
  540                 unlock_page(page);
  541                 put_page(page);
  542 
  543                 if (stable_node->hlist.first)
  544                         ksm_pages_sharing--;
  545                 else
  546                         ksm_pages_shared--;
  547 
  548                 put_anon_vma(rmap_item->anon_vma);
  549                 rmap_item->address &= PAGE_MASK;
  550 
  551         } else if (rmap_item->address & UNSTABLE_FLAG) {
  552                 unsigned char age;
  553                 /*
  554                  * Usually ksmd can and must skip the rb_erase, because
  555                  * root_unstable_tree was already reset to RB_ROOT.
  556                  * But be careful when an mm is exiting: do the rb_erase
  557                  * if this rmap_item was inserted by this scan, rather
  558                  * than left over from before.
  559                  */
  560                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
  561                 BUG_ON(age > 1);
  562                 if (!age)
  563                         rb_erase(&rmap_item->node, &root_unstable_tree);
  564 
  565                 ksm_pages_unshared--;
  566                 rmap_item->address &= PAGE_MASK;
  567         }
  568 out:
  569         cond_resched();         /* we're called from many long loops */
  570 }
  571 
  572 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
  573                                        struct rmap_item **rmap_list)
  574 {
  575         while (*rmap_list) {
  576                 struct rmap_item *rmap_item = *rmap_list;
  577                 *rmap_list = rmap_item->rmap_list;
  578                 remove_rmap_item_from_tree(rmap_item);
  579                 free_rmap_item(rmap_item);
  580         }
  581 }
  582 
  583 /*
  584  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
  585  * than check every pte of a given vma, the locking doesn't quite work for
  586  * that - an rmap_item is assigned to the stable tree after inserting ksm
  587  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
  588  * rmap_items from parent to child at fork time (so as not to waste time
  589  * if exit comes before the next scan reaches it).
  590  *
  591  * Similarly, although we'd like to remove rmap_items (so updating counts
  592  * and freeing memory) when unmerging an area, it's easier to leave that
  593  * to the next pass of ksmd - consider, for example, how ksmd might be
  594  * in cmp_and_merge_page on one of the rmap_items we would be removing.
  595  */
  596 static int unmerge_ksm_pages(struct vm_area_struct *vma,
  597                              unsigned long start, unsigned long end)
  598 {
  599         unsigned long addr;
  600         int err = 0;
  601 
  602         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
  603                 if (ksm_test_exit(vma->vm_mm))
  604                         break;
  605                 if (signal_pending(current))
  606                         err = -ERESTARTSYS;
  607                 else
  608                         err = break_ksm(vma, addr);
  609         }
  610         return err;
  611 }
  612 
  613 #ifdef CONFIG_SYSFS
  614 /*
  615  * Only called through the sysfs control interface:
  616  */
  617 static int unmerge_and_remove_all_rmap_items(void)
  618 {
  619         struct mm_slot *mm_slot;
  620         struct mm_struct *mm;
  621         struct vm_area_struct *vma;
  622         int err = 0;
  623 
  624         spin_lock(&ksm_mmlist_lock);
  625         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
  626                                                 struct mm_slot, mm_list);
  627         spin_unlock(&ksm_mmlist_lock);
  628 
  629         for (mm_slot = ksm_scan.mm_slot;
  630                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
  631                 mm = mm_slot->mm;
  632                 down_read(&mm->mmap_sem);
  633                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
  634                         if (ksm_test_exit(mm))
  635                                 break;
  636                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
  637                                 continue;
  638                         err = unmerge_ksm_pages(vma,
  639                                                 vma->vm_start, vma->vm_end);
  640                         if (err)
  641                                 goto error;
  642                 }
  643 
  644                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
  645 
  646                 spin_lock(&ksm_mmlist_lock);
  647                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
  648                                                 struct mm_slot, mm_list);
  649                 if (ksm_test_exit(mm)) {
  650                         hlist_del(&mm_slot->link);
  651                         list_del(&mm_slot->mm_list);
  652                         spin_unlock(&ksm_mmlist_lock);
  653 
  654                         free_mm_slot(mm_slot);
  655                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
  656                         up_read(&mm->mmap_sem);
  657                         mmdrop(mm);
  658                 } else {
  659                         spin_unlock(&ksm_mmlist_lock);
  660                         up_read(&mm->mmap_sem);
  661                 }
  662         }
  663 
  664         ksm_scan.seqnr = 0;
  665         return 0;
  666 
  667 error:
  668         up_read(&mm->mmap_sem);
  669         spin_lock(&ksm_mmlist_lock);
  670         ksm_scan.mm_slot = &ksm_mm_head;
  671         spin_unlock(&ksm_mmlist_lock);
  672         return err;
  673 }
  674 #endif /* CONFIG_SYSFS */
  675 
  676 static u32 calc_checksum(struct page *page)
  677 {
  678         u32 checksum;
  679         void *addr = kmap_atomic(page);
  680         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
  681         kunmap_atomic(addr);
  682         return checksum;
  683 }
  684 
  685 static int memcmp_pages(struct page *page1, struct page *page2)
  686 {
  687         char *addr1, *addr2;
  688         int ret;
  689 
  690         addr1 = kmap_atomic(page1);
  691         addr2 = kmap_atomic(page2);
  692         ret = memcmp(addr1, addr2, PAGE_SIZE);
  693         kunmap_atomic(addr2);
  694         kunmap_atomic(addr1);
  695         return ret;
  696 }
  697 
  698 static inline int pages_identical(struct page *page1, struct page *page2)
  699 {
  700         return !memcmp_pages(page1, page2);
  701 }
  702 
  703 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
  704                               pte_t *orig_pte)
  705 {
  706         struct mm_struct *mm = vma->vm_mm;
  707         unsigned long addr;
  708         pte_t *ptep;
  709         spinlock_t *ptl;
  710         int swapped;
  711         int err = -EFAULT;
  712         unsigned long mmun_start;       /* For mmu_notifiers */
  713         unsigned long mmun_end;         /* For mmu_notifiers */
  714 
  715         addr = page_address_in_vma(page, vma);
  716         if (addr == -EFAULT)
  717                 goto out;
  718 
  719         BUG_ON(PageTransCompound(page));
  720 
  721         mmun_start = addr;
  722         mmun_end   = addr + PAGE_SIZE;
  723         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  724 
  725         ptep = page_check_address(page, mm, addr, &ptl, 0);
  726         if (!ptep)
  727                 goto out_mn;
  728 
  729         if (pte_write(*ptep) || pte_dirty(*ptep)) {
  730                 pte_t entry;
  731 
  732                 swapped = PageSwapCache(page);
  733                 flush_cache_page(vma, addr, page_to_pfn(page));
  734                 /*
  735                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
  736                  * take any lock, therefore the check that we are going to make
  737                  * with the pagecount against the mapcount is racey and
  738                  * O_DIRECT can happen right after the check.
  739                  * So we clear the pte and flush the tlb before the check
  740                  * this assure us that no O_DIRECT can happen after the check
  741                  * or in the middle of the check.
  742                  */
  743                 entry = ptep_clear_flush(vma, addr, ptep);
  744                 /*
  745                  * Check that no O_DIRECT or similar I/O is in progress on the
  746                  * page
  747                  */
  748                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
  749                         set_pte_at(mm, addr, ptep, entry);
  750                         goto out_unlock;
  751                 }
  752                 if (pte_dirty(entry))
  753                         set_page_dirty(page);
  754                 entry = pte_mkclean(pte_wrprotect(entry));
  755                 set_pte_at_notify(mm, addr, ptep, entry);
  756         }
  757         *orig_pte = *ptep;
  758         err = 0;
  759 
  760 out_unlock:
  761         pte_unmap_unlock(ptep, ptl);
  762 out_mn:
  763         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  764 out:
  765         return err;
  766 }
  767 
  768 /**
  769  * replace_page - replace page in vma by new ksm page
  770  * @vma:      vma that holds the pte pointing to page
  771  * @page:     the page we are replacing by kpage
  772  * @kpage:    the ksm page we replace page by
  773  * @orig_pte: the original value of the pte
  774  *
  775  * Returns 0 on success, -EFAULT on failure.
  776  */
  777 static int replace_page(struct vm_area_struct *vma, struct page *page,
  778                         struct page *kpage, pte_t orig_pte)
  779 {
  780         struct mm_struct *mm = vma->vm_mm;
  781         pmd_t *pmd;
  782         pte_t *ptep;
  783         spinlock_t *ptl;
  784         unsigned long addr;
  785         int err = -EFAULT;
  786         unsigned long mmun_start;       /* For mmu_notifiers */
  787         unsigned long mmun_end;         /* For mmu_notifiers */
  788 
  789         addr = page_address_in_vma(page, vma);
  790         if (addr == -EFAULT)
  791                 goto out;
  792 
  793         pmd = mm_find_pmd(mm, addr);
  794         if (!pmd)
  795                 goto out;
  796         BUG_ON(pmd_trans_huge(*pmd));
  797 
  798         mmun_start = addr;
  799         mmun_end   = addr + PAGE_SIZE;
  800         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  801 
  802         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
  803         if (!pte_same(*ptep, orig_pte)) {
  804                 pte_unmap_unlock(ptep, ptl);
  805                 goto out_mn;
  806         }
  807 
  808         get_page(kpage);
  809         page_add_anon_rmap(kpage, vma, addr);
  810 
  811         flush_cache_page(vma, addr, pte_pfn(*ptep));
  812         ptep_clear_flush(vma, addr, ptep);
  813         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
  814 
  815         page_remove_rmap(page);
  816         if (!page_mapped(page))
  817                 try_to_free_swap(page);
  818         put_page(page);
  819 
  820         pte_unmap_unlock(ptep, ptl);
  821         err = 0;
  822 out_mn:
  823         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  824 out:
  825         return err;
  826 }
  827 
  828 static int page_trans_compound_anon_split(struct page *page)
  829 {
  830         int ret = 0;
  831         struct page *transhuge_head = page_trans_compound_anon(page);
  832         if (transhuge_head) {
  833                 /* Get the reference on the head to split it. */
  834                 if (get_page_unless_zero(transhuge_head)) {
  835                         /*
  836                          * Recheck we got the reference while the head
  837                          * was still anonymous.
  838                          */
  839                         if (PageAnon(transhuge_head))
  840                                 ret = split_huge_page(transhuge_head);
  841                         else
  842                                 /*
  843                                  * Retry later if split_huge_page run
  844                                  * from under us.
  845                                  */
  846                                 ret = 1;
  847                         put_page(transhuge_head);
  848                 } else
  849                         /* Retry later if split_huge_page run from under us. */
  850                         ret = 1;
  851         }
  852         return ret;
  853 }
  854 
  855 /*
  856  * try_to_merge_one_page - take two pages and merge them into one
  857  * @vma: the vma that holds the pte pointing to page
  858  * @page: the PageAnon page that we want to replace with kpage
  859  * @kpage: the PageKsm page that we want to map instead of page,
  860  *         or NULL the first time when we want to use page as kpage.
  861  *
  862  * This function returns 0 if the pages were merged, -EFAULT otherwise.
  863  */
  864 static int try_to_merge_one_page(struct vm_area_struct *vma,
  865                                  struct page *page, struct page *kpage)
  866 {
  867         pte_t orig_pte = __pte(0);
  868         int err = -EFAULT;
  869 
  870         if (page == kpage)                      /* ksm page forked */
  871                 return 0;
  872 
  873         if (!(vma->vm_flags & VM_MERGEABLE))
  874                 goto out;
  875         if (PageTransCompound(page) && page_trans_compound_anon_split(page))
  876                 goto out;
  877         BUG_ON(PageTransCompound(page));
  878         if (!PageAnon(page))
  879                 goto out;
  880 
  881         /*
  882          * We need the page lock to read a stable PageSwapCache in
  883          * write_protect_page().  We use trylock_page() instead of
  884          * lock_page() because we don't want to wait here - we
  885          * prefer to continue scanning and merging different pages,
  886          * then come back to this page when it is unlocked.
  887          */
  888         if (!trylock_page(page))
  889                 goto out;
  890         /*
  891          * If this anonymous page is mapped only here, its pte may need
  892          * to be write-protected.  If it's mapped elsewhere, all of its
  893          * ptes are necessarily already write-protected.  But in either
  894          * case, we need to lock and check page_count is not raised.
  895          */
  896         if (write_protect_page(vma, page, &orig_pte) == 0) {
  897                 if (!kpage) {
  898                         /*
  899                          * While we hold page lock, upgrade page from
  900                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
  901                          * stable_tree_insert() will update stable_node.
  902                          */
  903                         set_page_stable_node(page, NULL);
  904                         mark_page_accessed(page);
  905                         err = 0;
  906                 } else if (pages_identical(page, kpage))
  907                         err = replace_page(vma, page, kpage, orig_pte);
  908         }
  909 
  910         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
  911                 munlock_vma_page(page);
  912                 if (!PageMlocked(kpage)) {
  913                         unlock_page(page);
  914                         lock_page(kpage);
  915                         mlock_vma_page(kpage);
  916                         page = kpage;           /* for final unlock */
  917                 }
  918         }
  919 
  920         unlock_page(page);
  921 out:
  922         return err;
  923 }
  924 
  925 /*
  926  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
  927  * but no new kernel page is allocated: kpage must already be a ksm page.
  928  *
  929  * This function returns 0 if the pages were merged, -EFAULT otherwise.
  930  */
  931 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
  932                                       struct page *page, struct page *kpage)
  933 {
  934         struct mm_struct *mm = rmap_item->mm;
  935         struct vm_area_struct *vma;
  936         int err = -EFAULT;
  937 
  938         down_read(&mm->mmap_sem);
  939         if (ksm_test_exit(mm))
  940                 goto out;
  941         vma = find_vma(mm, rmap_item->address);
  942         if (!vma || vma->vm_start > rmap_item->address)
  943                 goto out;
  944 
  945         err = try_to_merge_one_page(vma, page, kpage);
  946         if (err)
  947                 goto out;
  948 
  949         /* Must get reference to anon_vma while still holding mmap_sem */
  950         rmap_item->anon_vma = vma->anon_vma;
  951         get_anon_vma(vma->anon_vma);
  952 out:
  953         up_read(&mm->mmap_sem);
  954         return err;
  955 }
  956 
  957 /*
  958  * try_to_merge_two_pages - take two identical pages and prepare them
  959  * to be merged into one page.
  960  *
  961  * This function returns the kpage if we successfully merged two identical
  962  * pages into one ksm page, NULL otherwise.
  963  *
  964  * Note that this function upgrades page to ksm page: if one of the pages
  965  * is already a ksm page, try_to_merge_with_ksm_page should be used.
  966  */
  967 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
  968                                            struct page *page,
  969                                            struct rmap_item *tree_rmap_item,
  970                                            struct page *tree_page)
  971 {
  972         int err;
  973 
  974         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
  975         if (!err) {
  976                 err = try_to_merge_with_ksm_page(tree_rmap_item,
  977                                                         tree_page, page);
  978                 /*
  979                  * If that fails, we have a ksm page with only one pte
  980                  * pointing to it: so break it.
  981                  */
  982                 if (err)
  983                         break_cow(rmap_item);
  984         }
  985         return err ? NULL : page;
  986 }
  987 
  988 /*
  989  * stable_tree_search - search for page inside the stable tree
  990  *
  991  * This function checks if there is a page inside the stable tree
  992  * with identical content to the page that we are scanning right now.
  993  *
  994  * This function returns the stable tree node of identical content if found,
  995  * NULL otherwise.
  996  */
  997 static struct page *stable_tree_search(struct page *page)
  998 {
  999         struct rb_node *node = root_stable_tree.rb_node;
 1000         struct stable_node *stable_node;
 1001 
 1002         stable_node = page_stable_node(page);
 1003         if (stable_node) {                      /* ksm page forked */
 1004                 get_page(page);
 1005                 return page;
 1006         }
 1007 
 1008         while (node) {
 1009                 struct page *tree_page;
 1010                 int ret;
 1011 
 1012                 cond_resched();
 1013                 stable_node = rb_entry(node, struct stable_node, node);
 1014                 tree_page = get_ksm_page(stable_node);
 1015                 if (!tree_page)
 1016                         return NULL;
 1017 
 1018                 ret = memcmp_pages(page, tree_page);
 1019 
 1020                 if (ret < 0) {
 1021                         put_page(tree_page);
 1022                         node = node->rb_left;
 1023                 } else if (ret > 0) {
 1024                         put_page(tree_page);
 1025                         node = node->rb_right;
 1026                 } else
 1027                         return tree_page;
 1028         }
 1029 
 1030         return NULL;
 1031 }
 1032 
 1033 /*
 1034  * stable_tree_insert - insert rmap_item pointing to new ksm page
 1035  * into the stable tree.
 1036  *
 1037  * This function returns the stable tree node just allocated on success,
 1038  * NULL otherwise.
 1039  */
 1040 static struct stable_node *stable_tree_insert(struct page *kpage)
 1041 {
 1042         struct rb_node **new = &root_stable_tree.rb_node;
 1043         struct rb_node *parent = NULL;
 1044         struct stable_node *stable_node;
 1045 
 1046         while (*new) {
 1047                 struct page *tree_page;
 1048                 int ret;
 1049 
 1050                 cond_resched();
 1051                 stable_node = rb_entry(*new, struct stable_node, node);
 1052                 tree_page = get_ksm_page(stable_node);
 1053                 if (!tree_page)
 1054                         return NULL;
 1055 
 1056                 ret = memcmp_pages(kpage, tree_page);
 1057                 put_page(tree_page);
 1058 
 1059                 parent = *new;
 1060                 if (ret < 0)
 1061                         new = &parent->rb_left;
 1062                 else if (ret > 0)
 1063                         new = &parent->rb_right;
 1064                 else {
 1065                         /*
 1066                          * It is not a bug that stable_tree_search() didn't
 1067                          * find this node: because at that time our page was
 1068                          * not yet write-protected, so may have changed since.
 1069                          */
 1070                         return NULL;
 1071                 }
 1072         }
 1073 
 1074         stable_node = alloc_stable_node();
 1075         if (!stable_node)
 1076                 return NULL;
 1077 
 1078         rb_link_node(&stable_node->node, parent, new);
 1079         rb_insert_color(&stable_node->node, &root_stable_tree);
 1080 
 1081         INIT_HLIST_HEAD(&stable_node->hlist);
 1082 
 1083         stable_node->kpfn = page_to_pfn(kpage);
 1084         set_page_stable_node(kpage, stable_node);
 1085 
 1086         return stable_node;
 1087 }
 1088 
 1089 /*
 1090  * unstable_tree_search_insert - search for identical page,
 1091  * else insert rmap_item into the unstable tree.
 1092  *
 1093  * This function searches for a page in the unstable tree identical to the
 1094  * page currently being scanned; and if no identical page is found in the
 1095  * tree, we insert rmap_item as a new object into the unstable tree.
 1096  *
 1097  * This function returns pointer to rmap_item found to be identical
 1098  * to the currently scanned page, NULL otherwise.
 1099  *
 1100  * This function does both searching and inserting, because they share
 1101  * the same walking algorithm in an rbtree.
 1102  */
 1103 static
 1104 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
 1105                                               struct page *page,
 1106                                               struct page **tree_pagep)
 1107 
 1108 {
 1109         struct rb_node **new = &root_unstable_tree.rb_node;
 1110         struct rb_node *parent = NULL;
 1111 
 1112         while (*new) {
 1113                 struct rmap_item *tree_rmap_item;
 1114                 struct page *tree_page;
 1115                 int ret;
 1116 
 1117                 cond_resched();
 1118                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
 1119                 tree_page = get_mergeable_page(tree_rmap_item);
 1120                 if (IS_ERR_OR_NULL(tree_page))
 1121                         return NULL;
 1122 
 1123                 /*
 1124                  * Don't substitute a ksm page for a forked page.
 1125                  */
 1126                 if (page == tree_page) {
 1127                         put_page(tree_page);
 1128                         return NULL;
 1129                 }
 1130 
 1131                 ret = memcmp_pages(page, tree_page);
 1132 
 1133                 parent = *new;
 1134                 if (ret < 0) {
 1135                         put_page(tree_page);
 1136                         new = &parent->rb_left;
 1137                 } else if (ret > 0) {
 1138                         put_page(tree_page);
 1139                         new = &parent->rb_right;
 1140                 } else {
 1141                         *tree_pagep = tree_page;
 1142                         return tree_rmap_item;
 1143                 }
 1144         }
 1145 
 1146         rmap_item->address |= UNSTABLE_FLAG;
 1147         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
 1148         rb_link_node(&rmap_item->node, parent, new);
 1149         rb_insert_color(&rmap_item->node, &root_unstable_tree);
 1150 
 1151         ksm_pages_unshared++;
 1152         return NULL;
 1153 }
 1154 
 1155 /*
 1156  * stable_tree_append - add another rmap_item to the linked list of
 1157  * rmap_items hanging off a given node of the stable tree, all sharing
 1158  * the same ksm page.
 1159  */
 1160 static void stable_tree_append(struct rmap_item *rmap_item,
 1161                                struct stable_node *stable_node)
 1162 {
 1163         rmap_item->head = stable_node;
 1164         rmap_item->address |= STABLE_FLAG;
 1165         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
 1166 
 1167         if (rmap_item->hlist.next)
 1168                 ksm_pages_sharing++;
 1169         else
 1170                 ksm_pages_shared++;
 1171 }
 1172 
 1173 /*
 1174  * cmp_and_merge_page - first see if page can be merged into the stable tree;
 1175  * if not, compare checksum to previous and if it's the same, see if page can
 1176  * be inserted into the unstable tree, or merged with a page already there and
 1177  * both transferred to the stable tree.
 1178  *
 1179  * @page: the page that we are searching identical page to.
 1180  * @rmap_item: the reverse mapping into the virtual address of this page
 1181  */
 1182 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
 1183 {
 1184         struct rmap_item *tree_rmap_item;
 1185         struct page *tree_page = NULL;
 1186         struct stable_node *stable_node;
 1187         struct page *kpage;
 1188         unsigned int checksum;
 1189         int err;
 1190 
 1191         remove_rmap_item_from_tree(rmap_item);
 1192 
 1193         /* We first start with searching the page inside the stable tree */
 1194         kpage = stable_tree_search(page);
 1195         if (kpage) {
 1196                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
 1197                 if (!err) {
 1198                         /*
 1199                          * The page was successfully merged:
 1200                          * add its rmap_item to the stable tree.
 1201                          */
 1202                         lock_page(kpage);
 1203                         stable_tree_append(rmap_item, page_stable_node(kpage));
 1204                         unlock_page(kpage);
 1205                 }
 1206                 put_page(kpage);
 1207                 return;
 1208         }
 1209 
 1210         /*
 1211          * If the hash value of the page has changed from the last time
 1212          * we calculated it, this page is changing frequently: therefore we
 1213          * don't want to insert it in the unstable tree, and we don't want
 1214          * to waste our time searching for something identical to it there.
 1215          */
 1216         checksum = calc_checksum(page);
 1217         if (rmap_item->oldchecksum != checksum) {
 1218                 rmap_item->oldchecksum = checksum;
 1219                 return;
 1220         }
 1221 
 1222         tree_rmap_item =
 1223                 unstable_tree_search_insert(rmap_item, page, &tree_page);
 1224         if (tree_rmap_item) {
 1225                 kpage = try_to_merge_two_pages(rmap_item, page,
 1226                                                 tree_rmap_item, tree_page);
 1227                 put_page(tree_page);
 1228                 /*
 1229                  * As soon as we merge this page, we want to remove the
 1230                  * rmap_item of the page we have merged with from the unstable
 1231                  * tree, and insert it instead as new node in the stable tree.
 1232                  */
 1233                 if (kpage) {
 1234                         remove_rmap_item_from_tree(tree_rmap_item);
 1235 
 1236                         lock_page(kpage);
 1237                         stable_node = stable_tree_insert(kpage);
 1238                         if (stable_node) {
 1239                                 stable_tree_append(tree_rmap_item, stable_node);
 1240                                 stable_tree_append(rmap_item, stable_node);
 1241                         }
 1242                         unlock_page(kpage);
 1243 
 1244                         /*
 1245                          * If we fail to insert the page into the stable tree,
 1246                          * we will have 2 virtual addresses that are pointing
 1247                          * to a ksm page left outside the stable tree,
 1248                          * in which case we need to break_cow on both.
 1249                          */
 1250                         if (!stable_node) {
 1251                                 break_cow(tree_rmap_item);
 1252                                 break_cow(rmap_item);
 1253                         }
 1254                 }
 1255         }
 1256 }
 1257 
 1258 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
 1259                                             struct rmap_item **rmap_list,
 1260                                             unsigned long addr)
 1261 {
 1262         struct rmap_item *rmap_item;
 1263 
 1264         while (*rmap_list) {
 1265                 rmap_item = *rmap_list;
 1266                 if ((rmap_item->address & PAGE_MASK) == addr)
 1267                         return rmap_item;
 1268                 if (rmap_item->address > addr)
 1269                         break;
 1270                 *rmap_list = rmap_item->rmap_list;
 1271                 remove_rmap_item_from_tree(rmap_item);
 1272                 free_rmap_item(rmap_item);
 1273         }
 1274 
 1275         rmap_item = alloc_rmap_item();
 1276         if (rmap_item) {
 1277                 /* It has already been zeroed */
 1278                 rmap_item->mm = mm_slot->mm;
 1279                 rmap_item->address = addr;
 1280                 rmap_item->rmap_list = *rmap_list;
 1281                 *rmap_list = rmap_item;
 1282         }
 1283         return rmap_item;
 1284 }
 1285 
 1286 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
 1287 {
 1288         struct mm_struct *mm;
 1289         struct mm_slot *slot;
 1290         struct vm_area_struct *vma;
 1291         struct rmap_item *rmap_item;
 1292 
 1293         if (list_empty(&ksm_mm_head.mm_list))
 1294                 return NULL;
 1295 
 1296         slot = ksm_scan.mm_slot;
 1297         if (slot == &ksm_mm_head) {
 1298                 /*
 1299                  * A number of pages can hang around indefinitely on per-cpu
 1300                  * pagevecs, raised page count preventing write_protect_page
 1301                  * from merging them.  Though it doesn't really matter much,
 1302                  * it is puzzling to see some stuck in pages_volatile until
 1303                  * other activity jostles them out, and they also prevented
 1304                  * LTP's KSM test from succeeding deterministically; so drain
 1305                  * them here (here rather than on entry to ksm_do_scan(),
 1306                  * so we don't IPI too often when pages_to_scan is set low).
 1307                  */
 1308                 lru_add_drain_all();
 1309 
 1310                 root_unstable_tree = RB_ROOT;
 1311 
 1312                 spin_lock(&ksm_mmlist_lock);
 1313                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
 1314                 ksm_scan.mm_slot = slot;
 1315                 spin_unlock(&ksm_mmlist_lock);
 1316                 /*
 1317                  * Although we tested list_empty() above, a racing __ksm_exit
 1318                  * of the last mm on the list may have removed it since then.
 1319                  */
 1320                 if (slot == &ksm_mm_head)
 1321                         return NULL;
 1322 next_mm:
 1323                 ksm_scan.address = 0;
 1324                 ksm_scan.rmap_list = &slot->rmap_list;
 1325         }
 1326 
 1327         mm = slot->mm;
 1328         down_read(&mm->mmap_sem);
 1329         if (ksm_test_exit(mm))
 1330                 vma = NULL;
 1331         else
 1332                 vma = find_vma(mm, ksm_scan.address);
 1333 
 1334         for (; vma; vma = vma->vm_next) {
 1335                 if (!(vma->vm_flags & VM_MERGEABLE))
 1336                         continue;
 1337                 if (ksm_scan.address < vma->vm_start)
 1338                         ksm_scan.address = vma->vm_start;
 1339                 if (!vma->anon_vma)
 1340                         ksm_scan.address = vma->vm_end;
 1341 
 1342                 while (ksm_scan.address < vma->vm_end) {
 1343                         if (ksm_test_exit(mm))
 1344                                 break;
 1345                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
 1346                         if (IS_ERR_OR_NULL(*page)) {
 1347                                 ksm_scan.address += PAGE_SIZE;
 1348                                 cond_resched();
 1349                                 continue;
 1350                         }
 1351                         if (PageAnon(*page) ||
 1352                             page_trans_compound_anon(*page)) {
 1353                                 flush_anon_page(vma, *page, ksm_scan.address);
 1354                                 flush_dcache_page(*page);
 1355                                 rmap_item = get_next_rmap_item(slot,
 1356                                         ksm_scan.rmap_list, ksm_scan.address);
 1357                                 if (rmap_item) {
 1358                                         ksm_scan.rmap_list =
 1359                                                         &rmap_item->rmap_list;
 1360                                         ksm_scan.address += PAGE_SIZE;
 1361                                 } else
 1362                                         put_page(*page);
 1363                                 up_read(&mm->mmap_sem);
 1364                                 return rmap_item;
 1365                         }
 1366                         put_page(*page);
 1367                         ksm_scan.address += PAGE_SIZE;
 1368                         cond_resched();
 1369                 }
 1370         }
 1371 
 1372         if (ksm_test_exit(mm)) {
 1373                 ksm_scan.address = 0;
 1374                 ksm_scan.rmap_list = &slot->rmap_list;
 1375         }
 1376         /*
 1377          * Nuke all the rmap_items that are above this current rmap:
 1378          * because there were no VM_MERGEABLE vmas with such addresses.
 1379          */
 1380         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
 1381 
 1382         spin_lock(&ksm_mmlist_lock);
 1383         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
 1384                                                 struct mm_slot, mm_list);
 1385         if (ksm_scan.address == 0) {
 1386                 /*
 1387                  * We've completed a full scan of all vmas, holding mmap_sem
 1388                  * throughout, and found no VM_MERGEABLE: so do the same as
 1389                  * __ksm_exit does to remove this mm from all our lists now.
 1390                  * This applies either when cleaning up after __ksm_exit
 1391                  * (but beware: we can reach here even before __ksm_exit),
 1392                  * or when all VM_MERGEABLE areas have been unmapped (and
 1393                  * mmap_sem then protects against race with MADV_MERGEABLE).
 1394                  */
 1395                 hlist_del(&slot->link);
 1396                 list_del(&slot->mm_list);
 1397                 spin_unlock(&ksm_mmlist_lock);
 1398 
 1399                 free_mm_slot(slot);
 1400                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
 1401                 up_read(&mm->mmap_sem);
 1402                 mmdrop(mm);
 1403         } else {
 1404                 spin_unlock(&ksm_mmlist_lock);
 1405                 up_read(&mm->mmap_sem);
 1406         }
 1407 
 1408         /* Repeat until we've completed scanning the whole list */
 1409         slot = ksm_scan.mm_slot;
 1410         if (slot != &ksm_mm_head)
 1411                 goto next_mm;
 1412 
 1413         ksm_scan.seqnr++;
 1414         return NULL;
 1415 }
 1416 
 1417 /**
 1418  * ksm_do_scan  - the ksm scanner main worker function.
 1419  * @scan_npages - number of pages we want to scan before we return.
 1420  */
 1421 static void ksm_do_scan(unsigned int scan_npages)
 1422 {
 1423         struct rmap_item *rmap_item;
 1424         struct page *uninitialized_var(page);
 1425 
 1426         while (scan_npages-- && likely(!freezing(current))) {
 1427                 cond_resched();
 1428                 rmap_item = scan_get_next_rmap_item(&page);
 1429                 if (!rmap_item)
 1430                         return;
 1431                 if (!PageKsm(page) || !in_stable_tree(rmap_item))
 1432                         cmp_and_merge_page(page, rmap_item);
 1433                 put_page(page);
 1434         }
 1435 }
 1436 
 1437 static int ksmd_should_run(void)
 1438 {
 1439         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
 1440 }
 1441 
 1442 static int ksm_scan_thread(void *nothing)
 1443 {
 1444         set_freezable();
 1445         set_user_nice(current, 5);
 1446 
 1447         while (!kthread_should_stop()) {
 1448                 mutex_lock(&ksm_thread_mutex);
 1449                 if (ksmd_should_run())
 1450                         ksm_do_scan(ksm_thread_pages_to_scan);
 1451                 mutex_unlock(&ksm_thread_mutex);
 1452 
 1453                 try_to_freeze();
 1454 
 1455                 if (ksmd_should_run()) {
 1456                         schedule_timeout_interruptible(
 1457                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
 1458                 } else {
 1459                         wait_event_freezable(ksm_thread_wait,
 1460                                 ksmd_should_run() || kthread_should_stop());
 1461                 }
 1462         }
 1463         return 0;
 1464 }
 1465 
 1466 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
 1467                 unsigned long end, int advice, unsigned long *vm_flags)
 1468 {
 1469         struct mm_struct *mm = vma->vm_mm;
 1470         int err;
 1471 
 1472         switch (advice) {
 1473         case MADV_MERGEABLE:
 1474                 /*
 1475                  * Be somewhat over-protective for now!
 1476                  */
 1477                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
 1478                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
 1479                                  VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
 1480                         return 0;               /* just ignore the advice */
 1481 
 1482 #ifdef VM_SAO
 1483                 if (*vm_flags & VM_SAO)
 1484                         return 0;
 1485 #endif
 1486 
 1487                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
 1488                         err = __ksm_enter(mm);
 1489                         if (err)
 1490                                 return err;
 1491                 }
 1492 
 1493                 *vm_flags |= VM_MERGEABLE;
 1494                 break;
 1495 
 1496         case MADV_UNMERGEABLE:
 1497                 if (!(*vm_flags & VM_MERGEABLE))
 1498                         return 0;               /* just ignore the advice */
 1499 
 1500                 if (vma->anon_vma) {
 1501                         err = unmerge_ksm_pages(vma, start, end);
 1502                         if (err)
 1503                                 return err;
 1504                 }
 1505 
 1506                 *vm_flags &= ~VM_MERGEABLE;
 1507                 break;
 1508         }
 1509 
 1510         return 0;
 1511 }
 1512 
 1513 int __ksm_enter(struct mm_struct *mm)
 1514 {
 1515         struct mm_slot *mm_slot;
 1516         int needs_wakeup;
 1517 
 1518         mm_slot = alloc_mm_slot();
 1519         if (!mm_slot)
 1520                 return -ENOMEM;
 1521 
 1522         /* Check ksm_run too?  Would need tighter locking */
 1523         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
 1524 
 1525         spin_lock(&ksm_mmlist_lock);
 1526         insert_to_mm_slots_hash(mm, mm_slot);
 1527         /*
 1528          * Insert just behind the scanning cursor, to let the area settle
 1529          * down a little; when fork is followed by immediate exec, we don't
 1530          * want ksmd to waste time setting up and tearing down an rmap_list.
 1531          */
 1532         list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
 1533         spin_unlock(&ksm_mmlist_lock);
 1534 
 1535         set_bit(MMF_VM_MERGEABLE, &mm->flags);
 1536         atomic_inc(&mm->mm_count);
 1537 
 1538         if (needs_wakeup)
 1539                 wake_up_interruptible(&ksm_thread_wait);
 1540 
 1541         return 0;
 1542 }
 1543 
 1544 void __ksm_exit(struct mm_struct *mm)
 1545 {
 1546         struct mm_slot *mm_slot;
 1547         int easy_to_free = 0;
 1548 
 1549         /*
 1550          * This process is exiting: if it's straightforward (as is the
 1551          * case when ksmd was never running), free mm_slot immediately.
 1552          * But if it's at the cursor or has rmap_items linked to it, use
 1553          * mmap_sem to synchronize with any break_cows before pagetables
 1554          * are freed, and leave the mm_slot on the list for ksmd to free.
 1555          * Beware: ksm may already have noticed it exiting and freed the slot.
 1556          */
 1557 
 1558         spin_lock(&ksm_mmlist_lock);
 1559         mm_slot = get_mm_slot(mm);
 1560         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
 1561                 if (!mm_slot->rmap_list) {
 1562                         hlist_del(&mm_slot->link);
 1563                         list_del(&mm_slot->mm_list);
 1564                         easy_to_free = 1;
 1565                 } else {
 1566                         list_move(&mm_slot->mm_list,
 1567                                   &ksm_scan.mm_slot->mm_list);
 1568                 }
 1569         }
 1570         spin_unlock(&ksm_mmlist_lock);
 1571 
 1572         if (easy_to_free) {
 1573                 free_mm_slot(mm_slot);
 1574                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
 1575                 mmdrop(mm);
 1576         } else if (mm_slot) {
 1577                 down_write(&mm->mmap_sem);
 1578                 up_write(&mm->mmap_sem);
 1579         }
 1580 }
 1581 
 1582 struct page *ksm_does_need_to_copy(struct page *page,
 1583                         struct vm_area_struct *vma, unsigned long address)
 1584 {
 1585         struct page *new_page;
 1586 
 1587         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 1588         if (new_page) {
 1589                 copy_user_highpage(new_page, page, address, vma);
 1590 
 1591                 SetPageDirty(new_page);
 1592                 __SetPageUptodate(new_page);
 1593                 SetPageSwapBacked(new_page);
 1594                 __set_page_locked(new_page);
 1595 
 1596                 if (!mlocked_vma_newpage(vma, new_page))
 1597                         lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
 1598                 else
 1599                         add_page_to_unevictable_list(new_page);
 1600         }
 1601 
 1602         return new_page;
 1603 }
 1604 
 1605 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
 1606                         unsigned long *vm_flags)
 1607 {
 1608         struct stable_node *stable_node;
 1609         struct rmap_item *rmap_item;
 1610         struct hlist_node *hlist;
 1611         unsigned int mapcount = page_mapcount(page);
 1612         int referenced = 0;
 1613         int search_new_forks = 0;
 1614 
 1615         VM_BUG_ON(!PageKsm(page));
 1616         VM_BUG_ON(!PageLocked(page));
 1617 
 1618         stable_node = page_stable_node(page);
 1619         if (!stable_node)
 1620                 return 0;
 1621 again:
 1622         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
 1623                 struct anon_vma *anon_vma = rmap_item->anon_vma;
 1624                 struct anon_vma_chain *vmac;
 1625                 struct vm_area_struct *vma;
 1626 
 1627                 anon_vma_lock_read(anon_vma);
 1628                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
 1629                                                0, ULONG_MAX) {
 1630                         vma = vmac->vma;
 1631                         if (rmap_item->address < vma->vm_start ||
 1632                             rmap_item->address >= vma->vm_end)
 1633                                 continue;
 1634                         /*
 1635                          * Initially we examine only the vma which covers this
 1636                          * rmap_item; but later, if there is still work to do,
 1637                          * we examine covering vmas in other mms: in case they
 1638                          * were forked from the original since ksmd passed.
 1639                          */
 1640                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
 1641                                 continue;
 1642 
 1643                         if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
 1644                                 continue;
 1645 
 1646                         referenced += page_referenced_one(page, vma,
 1647                                 rmap_item->address, &mapcount, vm_flags);
 1648                         if (!search_new_forks || !mapcount)
 1649                                 break;
 1650                 }
 1651                 anon_vma_unlock_read(anon_vma);
 1652                 if (!mapcount)
 1653                         goto out;
 1654         }
 1655         if (!search_new_forks++)
 1656                 goto again;
 1657 out:
 1658         return referenced;
 1659 }
 1660 
 1661 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
 1662 {
 1663         struct stable_node *stable_node;
 1664         struct hlist_node *hlist;
 1665         struct rmap_item *rmap_item;
 1666         int ret = SWAP_AGAIN;
 1667         int search_new_forks = 0;
 1668 
 1669         VM_BUG_ON(!PageKsm(page));
 1670         VM_BUG_ON(!PageLocked(page));
 1671 
 1672         stable_node = page_stable_node(page);
 1673         if (!stable_node)
 1674                 return SWAP_FAIL;
 1675 again:
 1676         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
 1677                 struct anon_vma *anon_vma = rmap_item->anon_vma;
 1678                 struct anon_vma_chain *vmac;
 1679                 struct vm_area_struct *vma;
 1680 
 1681                 anon_vma_lock_read(anon_vma);
 1682                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
 1683                                                0, ULONG_MAX) {
 1684                         vma = vmac->vma;
 1685                         if (rmap_item->address < vma->vm_start ||
 1686                             rmap_item->address >= vma->vm_end)
 1687                                 continue;
 1688                         /*
 1689                          * Initially we examine only the vma which covers this
 1690                          * rmap_item; but later, if there is still work to do,
 1691                          * we examine covering vmas in other mms: in case they
 1692                          * were forked from the original since ksmd passed.
 1693                          */
 1694                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
 1695                                 continue;
 1696 
 1697                         ret = try_to_unmap_one(page, vma,
 1698                                         rmap_item->address, flags);
 1699                         if (ret != SWAP_AGAIN || !page_mapped(page)) {
 1700                                 anon_vma_unlock_read(anon_vma);
 1701                                 goto out;
 1702                         }
 1703                 }
 1704                 anon_vma_unlock_read(anon_vma);
 1705         }
 1706         if (!search_new_forks++)
 1707                 goto again;
 1708 out:
 1709         return ret;
 1710 }
 1711 
 1712 #ifdef CONFIG_MIGRATION
 1713 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
 1714                   struct vm_area_struct *, unsigned long, void *), void *arg)
 1715 {
 1716         struct stable_node *stable_node;
 1717         struct hlist_node *hlist;
 1718         struct rmap_item *rmap_item;
 1719         int ret = SWAP_AGAIN;
 1720         int search_new_forks = 0;
 1721 
 1722         VM_BUG_ON(!PageKsm(page));
 1723         VM_BUG_ON(!PageLocked(page));
 1724 
 1725         stable_node = page_stable_node(page);
 1726         if (!stable_node)
 1727                 return ret;
 1728 again:
 1729         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
 1730                 struct anon_vma *anon_vma = rmap_item->anon_vma;
 1731                 struct anon_vma_chain *vmac;
 1732                 struct vm_area_struct *vma;
 1733 
 1734                 anon_vma_lock_read(anon_vma);
 1735                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
 1736                                                0, ULONG_MAX) {
 1737                         vma = vmac->vma;
 1738                         if (rmap_item->address < vma->vm_start ||
 1739                             rmap_item->address >= vma->vm_end)
 1740                                 continue;
 1741                         /*
 1742                          * Initially we examine only the vma which covers this
 1743                          * rmap_item; but later, if there is still work to do,
 1744                          * we examine covering vmas in other mms: in case they
 1745                          * were forked from the original since ksmd passed.
 1746                          */
 1747                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
 1748                                 continue;
 1749 
 1750                         ret = rmap_one(page, vma, rmap_item->address, arg);
 1751                         if (ret != SWAP_AGAIN) {
 1752                                 anon_vma_unlock_read(anon_vma);
 1753                                 goto out;
 1754                         }
 1755                 }
 1756                 anon_vma_unlock_read(anon_vma);
 1757         }
 1758         if (!search_new_forks++)
 1759                 goto again;
 1760 out:
 1761         return ret;
 1762 }
 1763 
 1764 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
 1765 {
 1766         struct stable_node *stable_node;
 1767 
 1768         VM_BUG_ON(!PageLocked(oldpage));
 1769         VM_BUG_ON(!PageLocked(newpage));
 1770         VM_BUG_ON(newpage->mapping != oldpage->mapping);
 1771 
 1772         stable_node = page_stable_node(newpage);
 1773         if (stable_node) {
 1774                 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
 1775                 stable_node->kpfn = page_to_pfn(newpage);
 1776         }
 1777 }
 1778 #endif /* CONFIG_MIGRATION */
 1779 
 1780 #ifdef CONFIG_MEMORY_HOTREMOVE
 1781 static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
 1782                                                  unsigned long end_pfn)
 1783 {
 1784         struct rb_node *node;
 1785 
 1786         for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
 1787                 struct stable_node *stable_node;
 1788 
 1789                 stable_node = rb_entry(node, struct stable_node, node);
 1790                 if (stable_node->kpfn >= start_pfn &&
 1791                     stable_node->kpfn < end_pfn)
 1792                         return stable_node;
 1793         }
 1794         return NULL;
 1795 }
 1796 
 1797 static int ksm_memory_callback(struct notifier_block *self,
 1798                                unsigned long action, void *arg)
 1799 {
 1800         struct memory_notify *mn = arg;
 1801         struct stable_node *stable_node;
 1802 
 1803         switch (action) {
 1804         case MEM_GOING_OFFLINE:
 1805                 /*
 1806                  * Keep it very simple for now: just lock out ksmd and
 1807                  * MADV_UNMERGEABLE while any memory is going offline.
 1808                  * mutex_lock_nested() is necessary because lockdep was alarmed
 1809                  * that here we take ksm_thread_mutex inside notifier chain
 1810                  * mutex, and later take notifier chain mutex inside
 1811                  * ksm_thread_mutex to unlock it.   But that's safe because both
 1812                  * are inside mem_hotplug_mutex.
 1813                  */
 1814                 mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
 1815                 break;
 1816 
 1817         case MEM_OFFLINE:
 1818                 /*
 1819                  * Most of the work is done by page migration; but there might
 1820                  * be a few stable_nodes left over, still pointing to struct
 1821                  * pages which have been offlined: prune those from the tree.
 1822                  */
 1823                 while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
 1824                                         mn->start_pfn + mn->nr_pages)) != NULL)
 1825                         remove_node_from_stable_tree(stable_node);
 1826                 /* fallthrough */
 1827 
 1828         case MEM_CANCEL_OFFLINE:
 1829                 mutex_unlock(&ksm_thread_mutex);
 1830                 break;
 1831         }
 1832         return NOTIFY_OK;
 1833 }
 1834 #endif /* CONFIG_MEMORY_HOTREMOVE */
 1835 
 1836 #ifdef CONFIG_SYSFS
 1837 /*
 1838  * This all compiles without CONFIG_SYSFS, but is a waste of space.
 1839  */
 1840 
 1841 #define KSM_ATTR_RO(_name) \
 1842         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
 1843 #define KSM_ATTR(_name) \
 1844         static struct kobj_attribute _name##_attr = \
 1845                 __ATTR(_name, 0644, _name##_show, _name##_store)
 1846 
 1847 static ssize_t sleep_millisecs_show(struct kobject *kobj,
 1848                                     struct kobj_attribute *attr, char *buf)
 1849 {
 1850         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
 1851 }
 1852 
 1853 static ssize_t sleep_millisecs_store(struct kobject *kobj,
 1854                                      struct kobj_attribute *attr,
 1855                                      const char *buf, size_t count)
 1856 {
 1857         unsigned long msecs;
 1858         int err;
 1859 
 1860         err = strict_strtoul(buf, 10, &msecs);
 1861         if (err || msecs > UINT_MAX)
 1862                 return -EINVAL;
 1863 
 1864         ksm_thread_sleep_millisecs = msecs;
 1865 
 1866         return count;
 1867 }
 1868 KSM_ATTR(sleep_millisecs);
 1869 
 1870 static ssize_t pages_to_scan_show(struct kobject *kobj,
 1871                                   struct kobj_attribute *attr, char *buf)
 1872 {
 1873         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
 1874 }
 1875 
 1876 static ssize_t pages_to_scan_store(struct kobject *kobj,
 1877                                    struct kobj_attribute *attr,
 1878                                    const char *buf, size_t count)
 1879 {
 1880         int err;
 1881         unsigned long nr_pages;
 1882 
 1883         err = strict_strtoul(buf, 10, &nr_pages);
 1884         if (err || nr_pages > UINT_MAX)
 1885                 return -EINVAL;
 1886 
 1887         ksm_thread_pages_to_scan = nr_pages;
 1888 
 1889         return count;
 1890 }
 1891 KSM_ATTR(pages_to_scan);
 1892 
 1893 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
 1894                         char *buf)
 1895 {
 1896         return sprintf(buf, "%u\n", ksm_run);
 1897 }
 1898 
 1899 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
 1900                          const char *buf, size_t count)
 1901 {
 1902         int err;
 1903         unsigned long flags;
 1904 
 1905         err = strict_strtoul(buf, 10, &flags);
 1906         if (err || flags > UINT_MAX)
 1907                 return -EINVAL;
 1908         if (flags > KSM_RUN_UNMERGE)
 1909                 return -EINVAL;
 1910 
 1911         /*
 1912          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
 1913          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
 1914          * breaking COW to free the pages_shared (but leaves mm_slots
 1915          * on the list for when ksmd may be set running again).
 1916          */
 1917 
 1918         mutex_lock(&ksm_thread_mutex);
 1919         if (ksm_run != flags) {
 1920                 ksm_run = flags;
 1921                 if (flags & KSM_RUN_UNMERGE) {
 1922                         set_current_oom_origin();
 1923                         err = unmerge_and_remove_all_rmap_items();
 1924                         clear_current_oom_origin();
 1925                         if (err) {
 1926                                 ksm_run = KSM_RUN_STOP;
 1927                                 count = err;
 1928                         }
 1929                 }
 1930         }
 1931         mutex_unlock(&ksm_thread_mutex);
 1932 
 1933         if (flags & KSM_RUN_MERGE)
 1934                 wake_up_interruptible(&ksm_thread_wait);
 1935 
 1936         return count;
 1937 }
 1938 KSM_ATTR(run);
 1939 
 1940 static ssize_t pages_shared_show(struct kobject *kobj,
 1941                                  struct kobj_attribute *attr, char *buf)
 1942 {
 1943         return sprintf(buf, "%lu\n", ksm_pages_shared);
 1944 }
 1945 KSM_ATTR_RO(pages_shared);
 1946 
 1947 static ssize_t pages_sharing_show(struct kobject *kobj,
 1948                                   struct kobj_attribute *attr, char *buf)
 1949 {
 1950         return sprintf(buf, "%lu\n", ksm_pages_sharing);
 1951 }
 1952 KSM_ATTR_RO(pages_sharing);
 1953 
 1954 static ssize_t pages_unshared_show(struct kobject *kobj,
 1955                                    struct kobj_attribute *attr, char *buf)
 1956 {
 1957         return sprintf(buf, "%lu\n", ksm_pages_unshared);
 1958 }
 1959 KSM_ATTR_RO(pages_unshared);
 1960 
 1961 static ssize_t pages_volatile_show(struct kobject *kobj,
 1962                                    struct kobj_attribute *attr, char *buf)
 1963 {
 1964         long ksm_pages_volatile;
 1965 
 1966         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
 1967                                 - ksm_pages_sharing - ksm_pages_unshared;
 1968         /*
 1969          * It was not worth any locking to calculate that statistic,
 1970          * but it might therefore sometimes be negative: conceal that.
 1971          */
 1972         if (ksm_pages_volatile < 0)
 1973                 ksm_pages_volatile = 0;
 1974         return sprintf(buf, "%ld\n", ksm_pages_volatile);
 1975 }
 1976 KSM_ATTR_RO(pages_volatile);
 1977 
 1978 static ssize_t full_scans_show(struct kobject *kobj,
 1979                                struct kobj_attribute *attr, char *buf)
 1980 {
 1981         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
 1982 }
 1983 KSM_ATTR_RO(full_scans);
 1984 
 1985 static struct attribute *ksm_attrs[] = {
 1986         &sleep_millisecs_attr.attr,
 1987         &pages_to_scan_attr.attr,
 1988         &run_attr.attr,
 1989         &pages_shared_attr.attr,
 1990         &pages_sharing_attr.attr,
 1991         &pages_unshared_attr.attr,
 1992         &pages_volatile_attr.attr,
 1993         &full_scans_attr.attr,
 1994         NULL,
 1995 };
 1996 
 1997 static struct attribute_group ksm_attr_group = {
 1998         .attrs = ksm_attrs,
 1999         .name = "ksm",
 2000 };
 2001 #endif /* CONFIG_SYSFS */
 2002 
 2003 static int __init ksm_init(void)
 2004 {
 2005         struct task_struct *ksm_thread;
 2006         int err;
 2007 
 2008         err = ksm_slab_init();
 2009         if (err)
 2010                 goto out;
 2011 
 2012         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
 2013         if (IS_ERR(ksm_thread)) {
 2014                 printk(KERN_ERR "ksm: creating kthread failed\n");
 2015                 err = PTR_ERR(ksm_thread);
 2016                 goto out_free;
 2017         }
 2018 
 2019 #ifdef CONFIG_SYSFS
 2020         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
 2021         if (err) {
 2022                 printk(KERN_ERR "ksm: register sysfs failed\n");
 2023                 kthread_stop(ksm_thread);
 2024                 goto out_free;
 2025         }
 2026 #else
 2027         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
 2028 
 2029 #endif /* CONFIG_SYSFS */
 2030 
 2031 #ifdef CONFIG_MEMORY_HOTREMOVE
 2032         /*
 2033          * Choose a high priority since the callback takes ksm_thread_mutex:
 2034          * later callbacks could only be taking locks which nest within that.
 2035          */
 2036         hotplug_memory_notifier(ksm_memory_callback, 100);
 2037 #endif
 2038         return 0;
 2039 
 2040 out_free:
 2041         ksm_slab_free();
 2042 out:
 2043         return err;
 2044 }
 2045 module_init(ksm_init)

Cache object: a3d071b154f0ade2f66c70f06b4f24e0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.