The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/memcontrol.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /* memcontrol.c - Memory Controller
    2  *
    3  * Copyright IBM Corporation, 2007
    4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
    5  *
    6  * Copyright 2007 OpenVZ SWsoft Inc
    7  * Author: Pavel Emelianov <xemul@openvz.org>
    8  *
    9  * Memory thresholds
   10  * Copyright (C) 2009 Nokia Corporation
   11  * Author: Kirill A. Shutemov
   12  *
   13  * Kernel Memory Controller
   14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
   15  * Authors: Glauber Costa and Suleiman Souhlal
   16  *
   17  * This program is free software; you can redistribute it and/or modify
   18  * it under the terms of the GNU General Public License as published by
   19  * the Free Software Foundation; either version 2 of the License, or
   20  * (at your option) any later version.
   21  *
   22  * This program is distributed in the hope that it will be useful,
   23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
   24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   25  * GNU General Public License for more details.
   26  */
   27 
   28 #include <linux/res_counter.h>
   29 #include <linux/memcontrol.h>
   30 #include <linux/cgroup.h>
   31 #include <linux/mm.h>
   32 #include <linux/hugetlb.h>
   33 #include <linux/pagemap.h>
   34 #include <linux/smp.h>
   35 #include <linux/page-flags.h>
   36 #include <linux/backing-dev.h>
   37 #include <linux/bit_spinlock.h>
   38 #include <linux/rcupdate.h>
   39 #include <linux/limits.h>
   40 #include <linux/export.h>
   41 #include <linux/mutex.h>
   42 #include <linux/rbtree.h>
   43 #include <linux/slab.h>
   44 #include <linux/swap.h>
   45 #include <linux/swapops.h>
   46 #include <linux/spinlock.h>
   47 #include <linux/eventfd.h>
   48 #include <linux/sort.h>
   49 #include <linux/fs.h>
   50 #include <linux/seq_file.h>
   51 #include <linux/vmalloc.h>
   52 #include <linux/mm_inline.h>
   53 #include <linux/page_cgroup.h>
   54 #include <linux/cpu.h>
   55 #include <linux/oom.h>
   56 #include "internal.h"
   57 #include <net/sock.h>
   58 #include <net/ip.h>
   59 #include <net/tcp_memcontrol.h>
   60 
   61 #include <asm/uaccess.h>
   62 
   63 #include <trace/events/vmscan.h>
   64 
   65 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
   66 EXPORT_SYMBOL(mem_cgroup_subsys);
   67 
   68 #define MEM_CGROUP_RECLAIM_RETRIES      5
   69 static struct mem_cgroup *root_mem_cgroup __read_mostly;
   70 
   71 #ifdef CONFIG_MEMCG_SWAP
   72 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
   73 int do_swap_account __read_mostly;
   74 
   75 /* for remember boot option*/
   76 #ifdef CONFIG_MEMCG_SWAP_ENABLED
   77 static int really_do_swap_account __initdata = 1;
   78 #else
   79 static int really_do_swap_account __initdata = 0;
   80 #endif
   81 
   82 #else
   83 #define do_swap_account         0
   84 #endif
   85 
   86 
   87 /*
   88  * Statistics for memory cgroup.
   89  */
   90 enum mem_cgroup_stat_index {
   91         /*
   92          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
   93          */
   94         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
   95         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
   96         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
   97         MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
   98         MEM_CGROUP_STAT_NSTATS,
   99 };
  100 
  101 static const char * const mem_cgroup_stat_names[] = {
  102         "cache",
  103         "rss",
  104         "mapped_file",
  105         "swap",
  106 };
  107 
  108 enum mem_cgroup_events_index {
  109         MEM_CGROUP_EVENTS_PGPGIN,       /* # of pages paged in */
  110         MEM_CGROUP_EVENTS_PGPGOUT,      /* # of pages paged out */
  111         MEM_CGROUP_EVENTS_PGFAULT,      /* # of page-faults */
  112         MEM_CGROUP_EVENTS_PGMAJFAULT,   /* # of major page-faults */
  113         MEM_CGROUP_EVENTS_NSTATS,
  114 };
  115 
  116 static const char * const mem_cgroup_events_names[] = {
  117         "pgpgin",
  118         "pgpgout",
  119         "pgfault",
  120         "pgmajfault",
  121 };
  122 
  123 /*
  124  * Per memcg event counter is incremented at every pagein/pageout. With THP,
  125  * it will be incremated by the number of pages. This counter is used for
  126  * for trigger some periodic events. This is straightforward and better
  127  * than using jiffies etc. to handle periodic memcg event.
  128  */
  129 enum mem_cgroup_events_target {
  130         MEM_CGROUP_TARGET_THRESH,
  131         MEM_CGROUP_TARGET_SOFTLIMIT,
  132         MEM_CGROUP_TARGET_NUMAINFO,
  133         MEM_CGROUP_NTARGETS,
  134 };
  135 #define THRESHOLDS_EVENTS_TARGET 128
  136 #define SOFTLIMIT_EVENTS_TARGET 1024
  137 #define NUMAINFO_EVENTS_TARGET  1024
  138 
  139 struct mem_cgroup_stat_cpu {
  140         long count[MEM_CGROUP_STAT_NSTATS];
  141         unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
  142         unsigned long nr_page_events;
  143         unsigned long targets[MEM_CGROUP_NTARGETS];
  144 };
  145 
  146 struct mem_cgroup_reclaim_iter {
  147         /* css_id of the last scanned hierarchy member */
  148         int position;
  149         /* scan generation, increased every round-trip */
  150         unsigned int generation;
  151 };
  152 
  153 /*
  154  * per-zone information in memory controller.
  155  */
  156 struct mem_cgroup_per_zone {
  157         struct lruvec           lruvec;
  158         unsigned long           lru_size[NR_LRU_LISTS];
  159 
  160         struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
  161 
  162         struct rb_node          tree_node;      /* RB tree node */
  163         unsigned long long      usage_in_excess;/* Set to the value by which */
  164                                                 /* the soft limit is exceeded*/
  165         bool                    on_tree;
  166         struct mem_cgroup       *memcg;         /* Back pointer, we cannot */
  167                                                 /* use container_of        */
  168 };
  169 
  170 struct mem_cgroup_per_node {
  171         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
  172 };
  173 
  174 struct mem_cgroup_lru_info {
  175         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
  176 };
  177 
  178 /*
  179  * Cgroups above their limits are maintained in a RB-Tree, independent of
  180  * their hierarchy representation
  181  */
  182 
  183 struct mem_cgroup_tree_per_zone {
  184         struct rb_root rb_root;
  185         spinlock_t lock;
  186 };
  187 
  188 struct mem_cgroup_tree_per_node {
  189         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
  190 };
  191 
  192 struct mem_cgroup_tree {
  193         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
  194 };
  195 
  196 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
  197 
  198 struct mem_cgroup_threshold {
  199         struct eventfd_ctx *eventfd;
  200         u64 threshold;
  201 };
  202 
  203 /* For threshold */
  204 struct mem_cgroup_threshold_ary {
  205         /* An array index points to threshold just below or equal to usage. */
  206         int current_threshold;
  207         /* Size of entries[] */
  208         unsigned int size;
  209         /* Array of thresholds */
  210         struct mem_cgroup_threshold entries[0];
  211 };
  212 
  213 struct mem_cgroup_thresholds {
  214         /* Primary thresholds array */
  215         struct mem_cgroup_threshold_ary *primary;
  216         /*
  217          * Spare threshold array.
  218          * This is needed to make mem_cgroup_unregister_event() "never fail".
  219          * It must be able to store at least primary->size - 1 entries.
  220          */
  221         struct mem_cgroup_threshold_ary *spare;
  222 };
  223 
  224 /* for OOM */
  225 struct mem_cgroup_eventfd_list {
  226         struct list_head list;
  227         struct eventfd_ctx *eventfd;
  228 };
  229 
  230 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
  231 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
  232 
  233 /*
  234  * The memory controller data structure. The memory controller controls both
  235  * page cache and RSS per cgroup. We would eventually like to provide
  236  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
  237  * to help the administrator determine what knobs to tune.
  238  *
  239  * TODO: Add a water mark for the memory controller. Reclaim will begin when
  240  * we hit the water mark. May be even add a low water mark, such that
  241  * no reclaim occurs from a cgroup at it's low water mark, this is
  242  * a feature that will be implemented much later in the future.
  243  */
  244 struct mem_cgroup {
  245         struct cgroup_subsys_state css;
  246         /*
  247          * the counter to account for memory usage
  248          */
  249         struct res_counter res;
  250 
  251         union {
  252                 /*
  253                  * the counter to account for mem+swap usage.
  254                  */
  255                 struct res_counter memsw;
  256 
  257                 /*
  258                  * rcu_freeing is used only when freeing struct mem_cgroup,
  259                  * so put it into a union to avoid wasting more memory.
  260                  * It must be disjoint from the css field.  It could be
  261                  * in a union with the res field, but res plays a much
  262                  * larger part in mem_cgroup life than memsw, and might
  263                  * be of interest, even at time of free, when debugging.
  264                  * So share rcu_head with the less interesting memsw.
  265                  */
  266                 struct rcu_head rcu_freeing;
  267                 /*
  268                  * We also need some space for a worker in deferred freeing.
  269                  * By the time we call it, rcu_freeing is no longer in use.
  270                  */
  271                 struct work_struct work_freeing;
  272         };
  273 
  274         /*
  275          * the counter to account for kernel memory usage.
  276          */
  277         struct res_counter kmem;
  278         /*
  279          * Per cgroup active and inactive list, similar to the
  280          * per zone LRU lists.
  281          */
  282         struct mem_cgroup_lru_info info;
  283         int last_scanned_node;
  284 #if MAX_NUMNODES > 1
  285         nodemask_t      scan_nodes;
  286         atomic_t        numainfo_events;
  287         atomic_t        numainfo_updating;
  288 #endif
  289         /*
  290          * Should the accounting and control be hierarchical, per subtree?
  291          */
  292         bool use_hierarchy;
  293         unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
  294 
  295         bool            oom_lock;
  296         atomic_t        under_oom;
  297 
  298         atomic_t        refcnt;
  299 
  300         int     swappiness;
  301         /* OOM-Killer disable */
  302         int             oom_kill_disable;
  303 
  304         /* set when res.limit == memsw.limit */
  305         bool            memsw_is_minimum;
  306 
  307         /* protect arrays of thresholds */
  308         struct mutex thresholds_lock;
  309 
  310         /* thresholds for memory usage. RCU-protected */
  311         struct mem_cgroup_thresholds thresholds;
  312 
  313         /* thresholds for mem+swap usage. RCU-protected */
  314         struct mem_cgroup_thresholds memsw_thresholds;
  315 
  316         /* For oom notifier event fd */
  317         struct list_head oom_notify;
  318 
  319         /*
  320          * Should we move charges of a task when a task is moved into this
  321          * mem_cgroup ? And what type of charges should we move ?
  322          */
  323         unsigned long   move_charge_at_immigrate;
  324         /*
  325          * set > 0 if pages under this cgroup are moving to other cgroup.
  326          */
  327         atomic_t        moving_account;
  328         /* taken only while moving_account > 0 */
  329         spinlock_t      move_lock;
  330         /*
  331          * percpu counter.
  332          */
  333         struct mem_cgroup_stat_cpu __percpu *stat;
  334         /*
  335          * used when a cpu is offlined or other synchronizations
  336          * See mem_cgroup_read_stat().
  337          */
  338         struct mem_cgroup_stat_cpu nocpu_base;
  339         spinlock_t pcp_counter_lock;
  340 
  341 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
  342         struct tcp_memcontrol tcp_mem;
  343 #endif
  344 #if defined(CONFIG_MEMCG_KMEM)
  345         /* analogous to slab_common's slab_caches list. per-memcg */
  346         struct list_head memcg_slab_caches;
  347         /* Not a spinlock, we can take a lot of time walking the list */
  348         struct mutex slab_caches_mutex;
  349         /* Index in the kmem_cache->memcg_params->memcg_caches array */
  350         int kmemcg_id;
  351 #endif
  352 };
  353 
  354 /* internal only representation about the status of kmem accounting. */
  355 enum {
  356         KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
  357         KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
  358         KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
  359 };
  360 
  361 /* We account when limit is on, but only after call sites are patched */
  362 #define KMEM_ACCOUNTED_MASK \
  363                 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
  364 
  365 #ifdef CONFIG_MEMCG_KMEM
  366 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
  367 {
  368         set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
  369 }
  370 
  371 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
  372 {
  373         return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
  374 }
  375 
  376 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
  377 {
  378         set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
  379 }
  380 
  381 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
  382 {
  383         clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
  384 }
  385 
  386 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
  387 {
  388         if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
  389                 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
  390 }
  391 
  392 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
  393 {
  394         return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
  395                                   &memcg->kmem_account_flags);
  396 }
  397 #endif
  398 
  399 /* Stuffs for move charges at task migration. */
  400 /*
  401  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
  402  * left-shifted bitmap of these types.
  403  */
  404 enum move_type {
  405         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
  406         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
  407         NR_MOVE_TYPE,
  408 };
  409 
  410 /* "mc" and its members are protected by cgroup_mutex */
  411 static struct move_charge_struct {
  412         spinlock_t        lock; /* for from, to */
  413         struct mem_cgroup *from;
  414         struct mem_cgroup *to;
  415         unsigned long precharge;
  416         unsigned long moved_charge;
  417         unsigned long moved_swap;
  418         struct task_struct *moving_task;        /* a task moving charges */
  419         wait_queue_head_t waitq;                /* a waitq for other context */
  420 } mc = {
  421         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
  422         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
  423 };
  424 
  425 static bool move_anon(void)
  426 {
  427         return test_bit(MOVE_CHARGE_TYPE_ANON,
  428                                         &mc.to->move_charge_at_immigrate);
  429 }
  430 
  431 static bool move_file(void)
  432 {
  433         return test_bit(MOVE_CHARGE_TYPE_FILE,
  434                                         &mc.to->move_charge_at_immigrate);
  435 }
  436 
  437 /*
  438  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
  439  * limit reclaim to prevent infinite loops, if they ever occur.
  440  */
  441 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
  442 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
  443 
  444 enum charge_type {
  445         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
  446         MEM_CGROUP_CHARGE_TYPE_ANON,
  447         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
  448         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
  449         NR_CHARGE_TYPE,
  450 };
  451 
  452 /* for encoding cft->private value on file */
  453 enum res_type {
  454         _MEM,
  455         _MEMSWAP,
  456         _OOM_TYPE,
  457         _KMEM,
  458 };
  459 
  460 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
  461 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
  462 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
  463 /* Used for OOM nofiier */
  464 #define OOM_CONTROL             (0)
  465 
  466 /*
  467  * Reclaim flags for mem_cgroup_hierarchical_reclaim
  468  */
  469 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
  470 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
  471 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
  472 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
  473 
  474 static void mem_cgroup_get(struct mem_cgroup *memcg);
  475 static void mem_cgroup_put(struct mem_cgroup *memcg);
  476 
  477 static inline
  478 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
  479 {
  480         return container_of(s, struct mem_cgroup, css);
  481 }
  482 
  483 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
  484 {
  485         return (memcg == root_mem_cgroup);
  486 }
  487 
  488 /* Writing them here to avoid exposing memcg's inner layout */
  489 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
  490 
  491 void sock_update_memcg(struct sock *sk)
  492 {
  493         if (mem_cgroup_sockets_enabled) {
  494                 struct mem_cgroup *memcg;
  495                 struct cg_proto *cg_proto;
  496 
  497                 BUG_ON(!sk->sk_prot->proto_cgroup);
  498 
  499                 /* Socket cloning can throw us here with sk_cgrp already
  500                  * filled. It won't however, necessarily happen from
  501                  * process context. So the test for root memcg given
  502                  * the current task's memcg won't help us in this case.
  503                  *
  504                  * Respecting the original socket's memcg is a better
  505                  * decision in this case.
  506                  */
  507                 if (sk->sk_cgrp) {
  508                         BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
  509                         mem_cgroup_get(sk->sk_cgrp->memcg);
  510                         return;
  511                 }
  512 
  513                 rcu_read_lock();
  514                 memcg = mem_cgroup_from_task(current);
  515                 cg_proto = sk->sk_prot->proto_cgroup(memcg);
  516                 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
  517                         mem_cgroup_get(memcg);
  518                         sk->sk_cgrp = cg_proto;
  519                 }
  520                 rcu_read_unlock();
  521         }
  522 }
  523 EXPORT_SYMBOL(sock_update_memcg);
  524 
  525 void sock_release_memcg(struct sock *sk)
  526 {
  527         if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
  528                 struct mem_cgroup *memcg;
  529                 WARN_ON(!sk->sk_cgrp->memcg);
  530                 memcg = sk->sk_cgrp->memcg;
  531                 mem_cgroup_put(memcg);
  532         }
  533 }
  534 
  535 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
  536 {
  537         if (!memcg || mem_cgroup_is_root(memcg))
  538                 return NULL;
  539 
  540         return &memcg->tcp_mem.cg_proto;
  541 }
  542 EXPORT_SYMBOL(tcp_proto_cgroup);
  543 
  544 static void disarm_sock_keys(struct mem_cgroup *memcg)
  545 {
  546         if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
  547                 return;
  548         static_key_slow_dec(&memcg_socket_limit_enabled);
  549 }
  550 #else
  551 static void disarm_sock_keys(struct mem_cgroup *memcg)
  552 {
  553 }
  554 #endif
  555 
  556 #ifdef CONFIG_MEMCG_KMEM
  557 /*
  558  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
  559  * There are two main reasons for not using the css_id for this:
  560  *  1) this works better in sparse environments, where we have a lot of memcgs,
  561  *     but only a few kmem-limited. Or also, if we have, for instance, 200
  562  *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
  563  *     200 entry array for that.
  564  *
  565  *  2) In order not to violate the cgroup API, we would like to do all memory
  566  *     allocation in ->create(). At that point, we haven't yet allocated the
  567  *     css_id. Having a separate index prevents us from messing with the cgroup
  568  *     core for this
  569  *
  570  * The current size of the caches array is stored in
  571  * memcg_limited_groups_array_size.  It will double each time we have to
  572  * increase it.
  573  */
  574 static DEFINE_IDA(kmem_limited_groups);
  575 int memcg_limited_groups_array_size;
  576 
  577 /*
  578  * MIN_SIZE is different than 1, because we would like to avoid going through
  579  * the alloc/free process all the time. In a small machine, 4 kmem-limited
  580  * cgroups is a reasonable guess. In the future, it could be a parameter or
  581  * tunable, but that is strictly not necessary.
  582  *
  583  * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
  584  * this constant directly from cgroup, but it is understandable that this is
  585  * better kept as an internal representation in cgroup.c. In any case, the
  586  * css_id space is not getting any smaller, and we don't have to necessarily
  587  * increase ours as well if it increases.
  588  */
  589 #define MEMCG_CACHES_MIN_SIZE 4
  590 #define MEMCG_CACHES_MAX_SIZE 65535
  591 
  592 /*
  593  * A lot of the calls to the cache allocation functions are expected to be
  594  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
  595  * conditional to this static branch, we'll have to allow modules that does
  596  * kmem_cache_alloc and the such to see this symbol as well
  597  */
  598 struct static_key memcg_kmem_enabled_key;
  599 EXPORT_SYMBOL(memcg_kmem_enabled_key);
  600 
  601 static void disarm_kmem_keys(struct mem_cgroup *memcg)
  602 {
  603         if (memcg_kmem_is_active(memcg)) {
  604                 static_key_slow_dec(&memcg_kmem_enabled_key);
  605                 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
  606         }
  607         /*
  608          * This check can't live in kmem destruction function,
  609          * since the charges will outlive the cgroup
  610          */
  611         WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
  612 }
  613 #else
  614 static void disarm_kmem_keys(struct mem_cgroup *memcg)
  615 {
  616 }
  617 #endif /* CONFIG_MEMCG_KMEM */
  618 
  619 static void disarm_static_keys(struct mem_cgroup *memcg)
  620 {
  621         disarm_sock_keys(memcg);
  622         disarm_kmem_keys(memcg);
  623 }
  624 
  625 static void drain_all_stock_async(struct mem_cgroup *memcg);
  626 
  627 static struct mem_cgroup_per_zone *
  628 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
  629 {
  630         return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
  631 }
  632 
  633 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
  634 {
  635         return &memcg->css;
  636 }
  637 
  638 static struct mem_cgroup_per_zone *
  639 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
  640 {
  641         int nid = page_to_nid(page);
  642         int zid = page_zonenum(page);
  643 
  644         return mem_cgroup_zoneinfo(memcg, nid, zid);
  645 }
  646 
  647 static struct mem_cgroup_tree_per_zone *
  648 soft_limit_tree_node_zone(int nid, int zid)
  649 {
  650         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
  651 }
  652 
  653 static struct mem_cgroup_tree_per_zone *
  654 soft_limit_tree_from_page(struct page *page)
  655 {
  656         int nid = page_to_nid(page);
  657         int zid = page_zonenum(page);
  658 
  659         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
  660 }
  661 
  662 static void
  663 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
  664                                 struct mem_cgroup_per_zone *mz,
  665                                 struct mem_cgroup_tree_per_zone *mctz,
  666                                 unsigned long long new_usage_in_excess)
  667 {
  668         struct rb_node **p = &mctz->rb_root.rb_node;
  669         struct rb_node *parent = NULL;
  670         struct mem_cgroup_per_zone *mz_node;
  671 
  672         if (mz->on_tree)
  673                 return;
  674 
  675         mz->usage_in_excess = new_usage_in_excess;
  676         if (!mz->usage_in_excess)
  677                 return;
  678         while (*p) {
  679                 parent = *p;
  680                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
  681                                         tree_node);
  682                 if (mz->usage_in_excess < mz_node->usage_in_excess)
  683                         p = &(*p)->rb_left;
  684                 /*
  685                  * We can't avoid mem cgroups that are over their soft
  686                  * limit by the same amount
  687                  */
  688                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
  689                         p = &(*p)->rb_right;
  690         }
  691         rb_link_node(&mz->tree_node, parent, p);
  692         rb_insert_color(&mz->tree_node, &mctz->rb_root);
  693         mz->on_tree = true;
  694 }
  695 
  696 static void
  697 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
  698                                 struct mem_cgroup_per_zone *mz,
  699                                 struct mem_cgroup_tree_per_zone *mctz)
  700 {
  701         if (!mz->on_tree)
  702                 return;
  703         rb_erase(&mz->tree_node, &mctz->rb_root);
  704         mz->on_tree = false;
  705 }
  706 
  707 static void
  708 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
  709                                 struct mem_cgroup_per_zone *mz,
  710                                 struct mem_cgroup_tree_per_zone *mctz)
  711 {
  712         spin_lock(&mctz->lock);
  713         __mem_cgroup_remove_exceeded(memcg, mz, mctz);
  714         spin_unlock(&mctz->lock);
  715 }
  716 
  717 
  718 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
  719 {
  720         unsigned long long excess;
  721         struct mem_cgroup_per_zone *mz;
  722         struct mem_cgroup_tree_per_zone *mctz;
  723         int nid = page_to_nid(page);
  724         int zid = page_zonenum(page);
  725         mctz = soft_limit_tree_from_page(page);
  726 
  727         /*
  728          * Necessary to update all ancestors when hierarchy is used.
  729          * because their event counter is not touched.
  730          */
  731         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
  732                 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
  733                 excess = res_counter_soft_limit_excess(&memcg->res);
  734                 /*
  735                  * We have to update the tree if mz is on RB-tree or
  736                  * mem is over its softlimit.
  737                  */
  738                 if (excess || mz->on_tree) {
  739                         spin_lock(&mctz->lock);
  740                         /* if on-tree, remove it */
  741                         if (mz->on_tree)
  742                                 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
  743                         /*
  744                          * Insert again. mz->usage_in_excess will be updated.
  745                          * If excess is 0, no tree ops.
  746                          */
  747                         __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
  748                         spin_unlock(&mctz->lock);
  749                 }
  750         }
  751 }
  752 
  753 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
  754 {
  755         int node, zone;
  756         struct mem_cgroup_per_zone *mz;
  757         struct mem_cgroup_tree_per_zone *mctz;
  758 
  759         for_each_node(node) {
  760                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  761                         mz = mem_cgroup_zoneinfo(memcg, node, zone);
  762                         mctz = soft_limit_tree_node_zone(node, zone);
  763                         mem_cgroup_remove_exceeded(memcg, mz, mctz);
  764                 }
  765         }
  766 }
  767 
  768 static struct mem_cgroup_per_zone *
  769 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
  770 {
  771         struct rb_node *rightmost = NULL;
  772         struct mem_cgroup_per_zone *mz;
  773 
  774 retry:
  775         mz = NULL;
  776         rightmost = rb_last(&mctz->rb_root);
  777         if (!rightmost)
  778                 goto done;              /* Nothing to reclaim from */
  779 
  780         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
  781         /*
  782          * Remove the node now but someone else can add it back,
  783          * we will to add it back at the end of reclaim to its correct
  784          * position in the tree.
  785          */
  786         __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
  787         if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
  788                 !css_tryget(&mz->memcg->css))
  789                 goto retry;
  790 done:
  791         return mz;
  792 }
  793 
  794 static struct mem_cgroup_per_zone *
  795 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
  796 {
  797         struct mem_cgroup_per_zone *mz;
  798 
  799         spin_lock(&mctz->lock);
  800         mz = __mem_cgroup_largest_soft_limit_node(mctz);
  801         spin_unlock(&mctz->lock);
  802         return mz;
  803 }
  804 
  805 /*
  806  * Implementation Note: reading percpu statistics for memcg.
  807  *
  808  * Both of vmstat[] and percpu_counter has threshold and do periodic
  809  * synchronization to implement "quick" read. There are trade-off between
  810  * reading cost and precision of value. Then, we may have a chance to implement
  811  * a periodic synchronizion of counter in memcg's counter.
  812  *
  813  * But this _read() function is used for user interface now. The user accounts
  814  * memory usage by memory cgroup and he _always_ requires exact value because
  815  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
  816  * have to visit all online cpus and make sum. So, for now, unnecessary
  817  * synchronization is not implemented. (just implemented for cpu hotplug)
  818  *
  819  * If there are kernel internal actions which can make use of some not-exact
  820  * value, and reading all cpu value can be performance bottleneck in some
  821  * common workload, threashold and synchonization as vmstat[] should be
  822  * implemented.
  823  */
  824 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
  825                                  enum mem_cgroup_stat_index idx)
  826 {
  827         long val = 0;
  828         int cpu;
  829 
  830         get_online_cpus();
  831         for_each_online_cpu(cpu)
  832                 val += per_cpu(memcg->stat->count[idx], cpu);
  833 #ifdef CONFIG_HOTPLUG_CPU
  834         spin_lock(&memcg->pcp_counter_lock);
  835         val += memcg->nocpu_base.count[idx];
  836         spin_unlock(&memcg->pcp_counter_lock);
  837 #endif
  838         put_online_cpus();
  839         return val;
  840 }
  841 
  842 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
  843                                          bool charge)
  844 {
  845         int val = (charge) ? 1 : -1;
  846         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
  847 }
  848 
  849 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
  850                                             enum mem_cgroup_events_index idx)
  851 {
  852         unsigned long val = 0;
  853         int cpu;
  854 
  855         for_each_online_cpu(cpu)
  856                 val += per_cpu(memcg->stat->events[idx], cpu);
  857 #ifdef CONFIG_HOTPLUG_CPU
  858         spin_lock(&memcg->pcp_counter_lock);
  859         val += memcg->nocpu_base.events[idx];
  860         spin_unlock(&memcg->pcp_counter_lock);
  861 #endif
  862         return val;
  863 }
  864 
  865 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
  866                                          bool anon, int nr_pages)
  867 {
  868         preempt_disable();
  869 
  870         /*
  871          * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
  872          * counted as CACHE even if it's on ANON LRU.
  873          */
  874         if (anon)
  875                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
  876                                 nr_pages);
  877         else
  878                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
  879                                 nr_pages);
  880 
  881         /* pagein of a big page is an event. So, ignore page size */
  882         if (nr_pages > 0)
  883                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
  884         else {
  885                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
  886                 nr_pages = -nr_pages; /* for event */
  887         }
  888 
  889         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
  890 
  891         preempt_enable();
  892 }
  893 
  894 unsigned long
  895 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
  896 {
  897         struct mem_cgroup_per_zone *mz;
  898 
  899         mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
  900         return mz->lru_size[lru];
  901 }
  902 
  903 static unsigned long
  904 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
  905                         unsigned int lru_mask)
  906 {
  907         struct mem_cgroup_per_zone *mz;
  908         enum lru_list lru;
  909         unsigned long ret = 0;
  910 
  911         mz = mem_cgroup_zoneinfo(memcg, nid, zid);
  912 
  913         for_each_lru(lru) {
  914                 if (BIT(lru) & lru_mask)
  915                         ret += mz->lru_size[lru];
  916         }
  917         return ret;
  918 }
  919 
  920 static unsigned long
  921 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
  922                         int nid, unsigned int lru_mask)
  923 {
  924         u64 total = 0;
  925         int zid;
  926 
  927         for (zid = 0; zid < MAX_NR_ZONES; zid++)
  928                 total += mem_cgroup_zone_nr_lru_pages(memcg,
  929                                                 nid, zid, lru_mask);
  930 
  931         return total;
  932 }
  933 
  934 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
  935                         unsigned int lru_mask)
  936 {
  937         int nid;
  938         u64 total = 0;
  939 
  940         for_each_node_state(nid, N_MEMORY)
  941                 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
  942         return total;
  943 }
  944 
  945 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
  946                                        enum mem_cgroup_events_target target)
  947 {
  948         unsigned long val, next;
  949 
  950         val = __this_cpu_read(memcg->stat->nr_page_events);
  951         next = __this_cpu_read(memcg->stat->targets[target]);
  952         /* from time_after() in jiffies.h */
  953         if ((long)next - (long)val < 0) {
  954                 switch (target) {
  955                 case MEM_CGROUP_TARGET_THRESH:
  956                         next = val + THRESHOLDS_EVENTS_TARGET;
  957                         break;
  958                 case MEM_CGROUP_TARGET_SOFTLIMIT:
  959                         next = val + SOFTLIMIT_EVENTS_TARGET;
  960                         break;
  961                 case MEM_CGROUP_TARGET_NUMAINFO:
  962                         next = val + NUMAINFO_EVENTS_TARGET;
  963                         break;
  964                 default:
  965                         break;
  966                 }
  967                 __this_cpu_write(memcg->stat->targets[target], next);
  968                 return true;
  969         }
  970         return false;
  971 }
  972 
  973 /*
  974  * Check events in order.
  975  *
  976  */
  977 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
  978 {
  979         preempt_disable();
  980         /* threshold event is triggered in finer grain than soft limit */
  981         if (unlikely(mem_cgroup_event_ratelimit(memcg,
  982                                                 MEM_CGROUP_TARGET_THRESH))) {
  983                 bool do_softlimit;
  984                 bool do_numainfo __maybe_unused;
  985 
  986                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
  987                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
  988 #if MAX_NUMNODES > 1
  989                 do_numainfo = mem_cgroup_event_ratelimit(memcg,
  990                                                 MEM_CGROUP_TARGET_NUMAINFO);
  991 #endif
  992                 preempt_enable();
  993 
  994                 mem_cgroup_threshold(memcg);
  995                 if (unlikely(do_softlimit))
  996                         mem_cgroup_update_tree(memcg, page);
  997 #if MAX_NUMNODES > 1
  998                 if (unlikely(do_numainfo))
  999                         atomic_inc(&memcg->numainfo_events);
 1000 #endif
 1001         } else
 1002                 preempt_enable();
 1003 }
 1004 
 1005 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
 1006 {
 1007         return mem_cgroup_from_css(
 1008                 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
 1009 }
 1010 
 1011 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 1012 {
 1013         /*
 1014          * mm_update_next_owner() may clear mm->owner to NULL
 1015          * if it races with swapoff, page migration, etc.
 1016          * So this can be called with p == NULL.
 1017          */
 1018         if (unlikely(!p))
 1019                 return NULL;
 1020 
 1021         return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
 1022 }
 1023 
 1024 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
 1025 {
 1026         struct mem_cgroup *memcg = NULL;
 1027 
 1028         if (!mm)
 1029                 return NULL;
 1030         /*
 1031          * Because we have no locks, mm->owner's may be being moved to other
 1032          * cgroup. We use css_tryget() here even if this looks
 1033          * pessimistic (rather than adding locks here).
 1034          */
 1035         rcu_read_lock();
 1036         do {
 1037                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 1038                 if (unlikely(!memcg))
 1039                         break;
 1040         } while (!css_tryget(&memcg->css));
 1041         rcu_read_unlock();
 1042         return memcg;
 1043 }
 1044 
 1045 /**
 1046  * mem_cgroup_iter - iterate over memory cgroup hierarchy
 1047  * @root: hierarchy root
 1048  * @prev: previously returned memcg, NULL on first invocation
 1049  * @reclaim: cookie for shared reclaim walks, NULL for full walks
 1050  *
 1051  * Returns references to children of the hierarchy below @root, or
 1052  * @root itself, or %NULL after a full round-trip.
 1053  *
 1054  * Caller must pass the return value in @prev on subsequent
 1055  * invocations for reference counting, or use mem_cgroup_iter_break()
 1056  * to cancel a hierarchy walk before the round-trip is complete.
 1057  *
 1058  * Reclaimers can specify a zone and a priority level in @reclaim to
 1059  * divide up the memcgs in the hierarchy among all concurrent
 1060  * reclaimers operating on the same zone and priority.
 1061  */
 1062 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 1063                                    struct mem_cgroup *prev,
 1064                                    struct mem_cgroup_reclaim_cookie *reclaim)
 1065 {
 1066         struct mem_cgroup *memcg = NULL;
 1067         int id = 0;
 1068 
 1069         if (mem_cgroup_disabled())
 1070                 return NULL;
 1071 
 1072         if (!root)
 1073                 root = root_mem_cgroup;
 1074 
 1075         if (prev && !reclaim)
 1076                 id = css_id(&prev->css);
 1077 
 1078         if (prev && prev != root)
 1079                 css_put(&prev->css);
 1080 
 1081         if (!root->use_hierarchy && root != root_mem_cgroup) {
 1082                 if (prev)
 1083                         return NULL;
 1084                 return root;
 1085         }
 1086 
 1087         while (!memcg) {
 1088                 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
 1089                 struct cgroup_subsys_state *css;
 1090 
 1091                 if (reclaim) {
 1092                         int nid = zone_to_nid(reclaim->zone);
 1093                         int zid = zone_idx(reclaim->zone);
 1094                         struct mem_cgroup_per_zone *mz;
 1095 
 1096                         mz = mem_cgroup_zoneinfo(root, nid, zid);
 1097                         iter = &mz->reclaim_iter[reclaim->priority];
 1098                         if (prev && reclaim->generation != iter->generation)
 1099                                 return NULL;
 1100                         id = iter->position;
 1101                 }
 1102 
 1103                 rcu_read_lock();
 1104                 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
 1105                 if (css) {
 1106                         if (css == &root->css || css_tryget(css))
 1107                                 memcg = mem_cgroup_from_css(css);
 1108                 } else
 1109                         id = 0;
 1110                 rcu_read_unlock();
 1111 
 1112                 if (reclaim) {
 1113                         iter->position = id;
 1114                         if (!css)
 1115                                 iter->generation++;
 1116                         else if (!prev && memcg)
 1117                                 reclaim->generation = iter->generation;
 1118                 }
 1119 
 1120                 if (prev && !css)
 1121                         return NULL;
 1122         }
 1123         return memcg;
 1124 }
 1125 
 1126 /**
 1127  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 1128  * @root: hierarchy root
 1129  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 1130  */
 1131 void mem_cgroup_iter_break(struct mem_cgroup *root,
 1132                            struct mem_cgroup *prev)
 1133 {
 1134         if (!root)
 1135                 root = root_mem_cgroup;
 1136         if (prev && prev != root)
 1137                 css_put(&prev->css);
 1138 }
 1139 
 1140 /*
 1141  * Iteration constructs for visiting all cgroups (under a tree).  If
 1142  * loops are exited prematurely (break), mem_cgroup_iter_break() must
 1143  * be used for reference counting.
 1144  */
 1145 #define for_each_mem_cgroup_tree(iter, root)            \
 1146         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
 1147              iter != NULL;                              \
 1148              iter = mem_cgroup_iter(root, iter, NULL))
 1149 
 1150 #define for_each_mem_cgroup(iter)                       \
 1151         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
 1152              iter != NULL;                              \
 1153              iter = mem_cgroup_iter(NULL, iter, NULL))
 1154 
 1155 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
 1156 {
 1157         struct mem_cgroup *memcg;
 1158 
 1159         rcu_read_lock();
 1160         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 1161         if (unlikely(!memcg))
 1162                 goto out;
 1163 
 1164         switch (idx) {
 1165         case PGFAULT:
 1166                 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
 1167                 break;
 1168         case PGMAJFAULT:
 1169                 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
 1170                 break;
 1171         default:
 1172                 BUG();
 1173         }
 1174 out:
 1175         rcu_read_unlock();
 1176 }
 1177 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
 1178 
 1179 /**
 1180  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 1181  * @zone: zone of the wanted lruvec
 1182  * @memcg: memcg of the wanted lruvec
 1183  *
 1184  * Returns the lru list vector holding pages for the given @zone and
 1185  * @mem.  This can be the global zone lruvec, if the memory controller
 1186  * is disabled.
 1187  */
 1188 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
 1189                                       struct mem_cgroup *memcg)
 1190 {
 1191         struct mem_cgroup_per_zone *mz;
 1192         struct lruvec *lruvec;
 1193 
 1194         if (mem_cgroup_disabled()) {
 1195                 lruvec = &zone->lruvec;
 1196                 goto out;
 1197         }
 1198 
 1199         mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
 1200         lruvec = &mz->lruvec;
 1201 out:
 1202         /*
 1203          * Since a node can be onlined after the mem_cgroup was created,
 1204          * we have to be prepared to initialize lruvec->zone here;
 1205          * and if offlined then reonlined, we need to reinitialize it.
 1206          */
 1207         if (unlikely(lruvec->zone != zone))
 1208                 lruvec->zone = zone;
 1209         return lruvec;
 1210 }
 1211 
 1212 /*
 1213  * Following LRU functions are allowed to be used without PCG_LOCK.
 1214  * Operations are called by routine of global LRU independently from memcg.
 1215  * What we have to take care of here is validness of pc->mem_cgroup.
 1216  *
 1217  * Changes to pc->mem_cgroup happens when
 1218  * 1. charge
 1219  * 2. moving account
 1220  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 1221  * It is added to LRU before charge.
 1222  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 1223  * When moving account, the page is not on LRU. It's isolated.
 1224  */
 1225 
 1226 /**
 1227  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
 1228  * @page: the page
 1229  * @zone: zone of the page
 1230  */
 1231 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
 1232 {
 1233         struct mem_cgroup_per_zone *mz;
 1234         struct mem_cgroup *memcg;
 1235         struct page_cgroup *pc;
 1236         struct lruvec *lruvec;
 1237 
 1238         if (mem_cgroup_disabled()) {
 1239                 lruvec = &zone->lruvec;
 1240                 goto out;
 1241         }
 1242 
 1243         pc = lookup_page_cgroup(page);
 1244         memcg = pc->mem_cgroup;
 1245 
 1246         /*
 1247          * Surreptitiously switch any uncharged offlist page to root:
 1248          * an uncharged page off lru does nothing to secure
 1249          * its former mem_cgroup from sudden removal.
 1250          *
 1251          * Our caller holds lru_lock, and PageCgroupUsed is updated
 1252          * under page_cgroup lock: between them, they make all uses
 1253          * of pc->mem_cgroup safe.
 1254          */
 1255         if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
 1256                 pc->mem_cgroup = memcg = root_mem_cgroup;
 1257 
 1258         mz = page_cgroup_zoneinfo(memcg, page);
 1259         lruvec = &mz->lruvec;
 1260 out:
 1261         /*
 1262          * Since a node can be onlined after the mem_cgroup was created,
 1263          * we have to be prepared to initialize lruvec->zone here;
 1264          * and if offlined then reonlined, we need to reinitialize it.
 1265          */
 1266         if (unlikely(lruvec->zone != zone))
 1267                 lruvec->zone = zone;
 1268         return lruvec;
 1269 }
 1270 
 1271 /**
 1272  * mem_cgroup_update_lru_size - account for adding or removing an lru page
 1273  * @lruvec: mem_cgroup per zone lru vector
 1274  * @lru: index of lru list the page is sitting on
 1275  * @nr_pages: positive when adding or negative when removing
 1276  *
 1277  * This function must be called when a page is added to or removed from an
 1278  * lru list.
 1279  */
 1280 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
 1281                                 int nr_pages)
 1282 {
 1283         struct mem_cgroup_per_zone *mz;
 1284         unsigned long *lru_size;
 1285 
 1286         if (mem_cgroup_disabled())
 1287                 return;
 1288 
 1289         mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
 1290         lru_size = mz->lru_size + lru;
 1291         *lru_size += nr_pages;
 1292         VM_BUG_ON((long)(*lru_size) < 0);
 1293 }
 1294 
 1295 /*
 1296  * Checks whether given mem is same or in the root_mem_cgroup's
 1297  * hierarchy subtree
 1298  */
 1299 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
 1300                                   struct mem_cgroup *memcg)
 1301 {
 1302         if (root_memcg == memcg)
 1303                 return true;
 1304         if (!root_memcg->use_hierarchy || !memcg)
 1305                 return false;
 1306         return css_is_ancestor(&memcg->css, &root_memcg->css);
 1307 }
 1308 
 1309 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
 1310                                        struct mem_cgroup *memcg)
 1311 {
 1312         bool ret;
 1313 
 1314         rcu_read_lock();
 1315         ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
 1316         rcu_read_unlock();
 1317         return ret;
 1318 }
 1319 
 1320 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
 1321 {
 1322         int ret;
 1323         struct mem_cgroup *curr = NULL;
 1324         struct task_struct *p;
 1325 
 1326         p = find_lock_task_mm(task);
 1327         if (p) {
 1328                 curr = try_get_mem_cgroup_from_mm(p->mm);
 1329                 task_unlock(p);
 1330         } else {
 1331                 /*
 1332                  * All threads may have already detached their mm's, but the oom
 1333                  * killer still needs to detect if they have already been oom
 1334                  * killed to prevent needlessly killing additional tasks.
 1335                  */
 1336                 task_lock(task);
 1337                 curr = mem_cgroup_from_task(task);
 1338                 if (curr)
 1339                         css_get(&curr->css);
 1340                 task_unlock(task);
 1341         }
 1342         if (!curr)
 1343                 return 0;
 1344         /*
 1345          * We should check use_hierarchy of "memcg" not "curr". Because checking
 1346          * use_hierarchy of "curr" here make this function true if hierarchy is
 1347          * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
 1348          * hierarchy(even if use_hierarchy is disabled in "memcg").
 1349          */
 1350         ret = mem_cgroup_same_or_subtree(memcg, curr);
 1351         css_put(&curr->css);
 1352         return ret;
 1353 }
 1354 
 1355 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
 1356 {
 1357         unsigned long inactive_ratio;
 1358         unsigned long inactive;
 1359         unsigned long active;
 1360         unsigned long gb;
 1361 
 1362         inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
 1363         active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
 1364 
 1365         gb = (inactive + active) >> (30 - PAGE_SHIFT);
 1366         if (gb)
 1367                 inactive_ratio = int_sqrt(10 * gb);
 1368         else
 1369                 inactive_ratio = 1;
 1370 
 1371         return inactive * inactive_ratio < active;
 1372 }
 1373 
 1374 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
 1375 {
 1376         unsigned long active;
 1377         unsigned long inactive;
 1378 
 1379         inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
 1380         active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
 1381 
 1382         return (active > inactive);
 1383 }
 1384 
 1385 #define mem_cgroup_from_res_counter(counter, member)    \
 1386         container_of(counter, struct mem_cgroup, member)
 1387 
 1388 /**
 1389  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 1390  * @memcg: the memory cgroup
 1391  *
 1392  * Returns the maximum amount of memory @mem can be charged with, in
 1393  * pages.
 1394  */
 1395 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
 1396 {
 1397         unsigned long long margin;
 1398 
 1399         margin = res_counter_margin(&memcg->res);
 1400         if (do_swap_account)
 1401                 margin = min(margin, res_counter_margin(&memcg->memsw));
 1402         return margin >> PAGE_SHIFT;
 1403 }
 1404 
 1405 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
 1406 {
 1407         struct cgroup *cgrp = memcg->css.cgroup;
 1408 
 1409         /* root ? */
 1410         if (cgrp->parent == NULL)
 1411                 return vm_swappiness;
 1412 
 1413         return memcg->swappiness;
 1414 }
 1415 
 1416 /*
 1417  * memcg->moving_account is used for checking possibility that some thread is
 1418  * calling move_account(). When a thread on CPU-A starts moving pages under
 1419  * a memcg, other threads should check memcg->moving_account under
 1420  * rcu_read_lock(), like this:
 1421  *
 1422  *         CPU-A                                    CPU-B
 1423  *                                              rcu_read_lock()
 1424  *         memcg->moving_account+1              if (memcg->mocing_account)
 1425  *                                                   take heavy locks.
 1426  *         synchronize_rcu()                    update something.
 1427  *                                              rcu_read_unlock()
 1428  *         start move here.
 1429  */
 1430 
 1431 /* for quick checking without looking up memcg */
 1432 atomic_t memcg_moving __read_mostly;
 1433 
 1434 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
 1435 {
 1436         atomic_inc(&memcg_moving);
 1437         atomic_inc(&memcg->moving_account);
 1438         synchronize_rcu();
 1439 }
 1440 
 1441 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
 1442 {
 1443         /*
 1444          * Now, mem_cgroup_clear_mc() may call this function with NULL.
 1445          * We check NULL in callee rather than caller.
 1446          */
 1447         if (memcg) {
 1448                 atomic_dec(&memcg_moving);
 1449                 atomic_dec(&memcg->moving_account);
 1450         }
 1451 }
 1452 
 1453 /*
 1454  * 2 routines for checking "mem" is under move_account() or not.
 1455  *
 1456  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 1457  *                        is used for avoiding races in accounting.  If true,
 1458  *                        pc->mem_cgroup may be overwritten.
 1459  *
 1460  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 1461  *                        under hierarchy of moving cgroups. This is for
 1462  *                        waiting at hith-memory prressure caused by "move".
 1463  */
 1464 
 1465 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
 1466 {
 1467         VM_BUG_ON(!rcu_read_lock_held());
 1468         return atomic_read(&memcg->moving_account) > 0;
 1469 }
 1470 
 1471 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
 1472 {
 1473         struct mem_cgroup *from;
 1474         struct mem_cgroup *to;
 1475         bool ret = false;
 1476         /*
 1477          * Unlike task_move routines, we access mc.to, mc.from not under
 1478          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
 1479          */
 1480         spin_lock(&mc.lock);
 1481         from = mc.from;
 1482         to = mc.to;
 1483         if (!from)
 1484                 goto unlock;
 1485 
 1486         ret = mem_cgroup_same_or_subtree(memcg, from)
 1487                 || mem_cgroup_same_or_subtree(memcg, to);
 1488 unlock:
 1489         spin_unlock(&mc.lock);
 1490         return ret;
 1491 }
 1492 
 1493 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
 1494 {
 1495         if (mc.moving_task && current != mc.moving_task) {
 1496                 if (mem_cgroup_under_move(memcg)) {
 1497                         DEFINE_WAIT(wait);
 1498                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
 1499                         /* moving charge context might have finished. */
 1500                         if (mc.moving_task)
 1501                                 schedule();
 1502                         finish_wait(&mc.waitq, &wait);
 1503                         return true;
 1504                 }
 1505         }
 1506         return false;
 1507 }
 1508 
 1509 /*
 1510  * Take this lock when
 1511  * - a code tries to modify page's memcg while it's USED.
 1512  * - a code tries to modify page state accounting in a memcg.
 1513  * see mem_cgroup_stolen(), too.
 1514  */
 1515 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
 1516                                   unsigned long *flags)
 1517 {
 1518         spin_lock_irqsave(&memcg->move_lock, *flags);
 1519 }
 1520 
 1521 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
 1522                                 unsigned long *flags)
 1523 {
 1524         spin_unlock_irqrestore(&memcg->move_lock, *flags);
 1525 }
 1526 
 1527 /**
 1528  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
 1529  * @memcg: The memory cgroup that went over limit
 1530  * @p: Task that is going to be killed
 1531  *
 1532  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 1533  * enabled
 1534  */
 1535 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
 1536 {
 1537         struct cgroup *task_cgrp;
 1538         struct cgroup *mem_cgrp;
 1539         /*
 1540          * Need a buffer in BSS, can't rely on allocations. The code relies
 1541          * on the assumption that OOM is serialized for memory controller.
 1542          * If this assumption is broken, revisit this code.
 1543          */
 1544         static char memcg_name[PATH_MAX];
 1545         int ret;
 1546 
 1547         if (!memcg || !p)
 1548                 return;
 1549 
 1550         rcu_read_lock();
 1551 
 1552         mem_cgrp = memcg->css.cgroup;
 1553         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
 1554 
 1555         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
 1556         if (ret < 0) {
 1557                 /*
 1558                  * Unfortunately, we are unable to convert to a useful name
 1559                  * But we'll still print out the usage information
 1560                  */
 1561                 rcu_read_unlock();
 1562                 goto done;
 1563         }
 1564         rcu_read_unlock();
 1565 
 1566         printk(KERN_INFO "Task in %s killed", memcg_name);
 1567 
 1568         rcu_read_lock();
 1569         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
 1570         if (ret < 0) {
 1571                 rcu_read_unlock();
 1572                 goto done;
 1573         }
 1574         rcu_read_unlock();
 1575 
 1576         /*
 1577          * Continues from above, so we don't need an KERN_ level
 1578          */
 1579         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
 1580 done:
 1581 
 1582         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
 1583                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
 1584                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
 1585                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
 1586         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
 1587                 "failcnt %llu\n",
 1588                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
 1589                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
 1590                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
 1591         printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
 1592                 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
 1593                 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
 1594                 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
 1595 }
 1596 
 1597 /*
 1598  * This function returns the number of memcg under hierarchy tree. Returns
 1599  * 1(self count) if no children.
 1600  */
 1601 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
 1602 {
 1603         int num = 0;
 1604         struct mem_cgroup *iter;
 1605 
 1606         for_each_mem_cgroup_tree(iter, memcg)
 1607                 num++;
 1608         return num;
 1609 }
 1610 
 1611 /*
 1612  * Return the memory (and swap, if configured) limit for a memcg.
 1613  */
 1614 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
 1615 {
 1616         u64 limit;
 1617 
 1618         limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
 1619 
 1620         /*
 1621          * Do not consider swap space if we cannot swap due to swappiness
 1622          */
 1623         if (mem_cgroup_swappiness(memcg)) {
 1624                 u64 memsw;
 1625 
 1626                 limit += total_swap_pages << PAGE_SHIFT;
 1627                 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 1628 
 1629                 /*
 1630                  * If memsw is finite and limits the amount of swap space
 1631                  * available to this memcg, return that limit.
 1632                  */
 1633                 limit = min(limit, memsw);
 1634         }
 1635 
 1636         return limit;
 1637 }
 1638 
 1639 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
 1640                                      int order)
 1641 {
 1642         struct mem_cgroup *iter;
 1643         unsigned long chosen_points = 0;
 1644         unsigned long totalpages;
 1645         unsigned int points = 0;
 1646         struct task_struct *chosen = NULL;
 1647 
 1648         /*
 1649          * If current has a pending SIGKILL, then automatically select it.  The
 1650          * goal is to allow it to allocate so that it may quickly exit and free
 1651          * its memory.
 1652          */
 1653         if (fatal_signal_pending(current)) {
 1654                 set_thread_flag(TIF_MEMDIE);
 1655                 return;
 1656         }
 1657 
 1658         check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
 1659         totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
 1660         for_each_mem_cgroup_tree(iter, memcg) {
 1661                 struct cgroup *cgroup = iter->css.cgroup;
 1662                 struct cgroup_iter it;
 1663                 struct task_struct *task;
 1664 
 1665                 cgroup_iter_start(cgroup, &it);
 1666                 while ((task = cgroup_iter_next(cgroup, &it))) {
 1667                         switch (oom_scan_process_thread(task, totalpages, NULL,
 1668                                                         false)) {
 1669                         case OOM_SCAN_SELECT:
 1670                                 if (chosen)
 1671                                         put_task_struct(chosen);
 1672                                 chosen = task;
 1673                                 chosen_points = ULONG_MAX;
 1674                                 get_task_struct(chosen);
 1675                                 /* fall through */
 1676                         case OOM_SCAN_CONTINUE:
 1677                                 continue;
 1678                         case OOM_SCAN_ABORT:
 1679                                 cgroup_iter_end(cgroup, &it);
 1680                                 mem_cgroup_iter_break(memcg, iter);
 1681                                 if (chosen)
 1682                                         put_task_struct(chosen);
 1683                                 return;
 1684                         case OOM_SCAN_OK:
 1685                                 break;
 1686                         };
 1687                         points = oom_badness(task, memcg, NULL, totalpages);
 1688                         if (points > chosen_points) {
 1689                                 if (chosen)
 1690                                         put_task_struct(chosen);
 1691                                 chosen = task;
 1692                                 chosen_points = points;
 1693                                 get_task_struct(chosen);
 1694                         }
 1695                 }
 1696                 cgroup_iter_end(cgroup, &it);
 1697         }
 1698 
 1699         if (!chosen)
 1700                 return;
 1701         points = chosen_points * 1000 / totalpages;
 1702         oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
 1703                          NULL, "Memory cgroup out of memory");
 1704 }
 1705 
 1706 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
 1707                                         gfp_t gfp_mask,
 1708                                         unsigned long flags)
 1709 {
 1710         unsigned long total = 0;
 1711         bool noswap = false;
 1712         int loop;
 1713 
 1714         if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
 1715                 noswap = true;
 1716         if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
 1717                 noswap = true;
 1718 
 1719         for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
 1720                 if (loop)
 1721                         drain_all_stock_async(memcg);
 1722                 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
 1723                 /*
 1724                  * Allow limit shrinkers, which are triggered directly
 1725                  * by userspace, to catch signals and stop reclaim
 1726                  * after minimal progress, regardless of the margin.
 1727                  */
 1728                 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
 1729                         break;
 1730                 if (mem_cgroup_margin(memcg))
 1731                         break;
 1732                 /*
 1733                  * If nothing was reclaimed after two attempts, there
 1734                  * may be no reclaimable pages in this hierarchy.
 1735                  */
 1736                 if (loop && !total)
 1737                         break;
 1738         }
 1739         return total;
 1740 }
 1741 
 1742 /**
 1743  * test_mem_cgroup_node_reclaimable
 1744  * @memcg: the target memcg
 1745  * @nid: the node ID to be checked.
 1746  * @noswap : specify true here if the user wants flle only information.
 1747  *
 1748  * This function returns whether the specified memcg contains any
 1749  * reclaimable pages on a node. Returns true if there are any reclaimable
 1750  * pages in the node.
 1751  */
 1752 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
 1753                 int nid, bool noswap)
 1754 {
 1755         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
 1756                 return true;
 1757         if (noswap || !total_swap_pages)
 1758                 return false;
 1759         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
 1760                 return true;
 1761         return false;
 1762 
 1763 }
 1764 #if MAX_NUMNODES > 1
 1765 
 1766 /*
 1767  * Always updating the nodemask is not very good - even if we have an empty
 1768  * list or the wrong list here, we can start from some node and traverse all
 1769  * nodes based on the zonelist. So update the list loosely once per 10 secs.
 1770  *
 1771  */
 1772 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
 1773 {
 1774         int nid;
 1775         /*
 1776          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
 1777          * pagein/pageout changes since the last update.
 1778          */
 1779         if (!atomic_read(&memcg->numainfo_events))
 1780                 return;
 1781         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
 1782                 return;
 1783 
 1784         /* make a nodemask where this memcg uses memory from */
 1785         memcg->scan_nodes = node_states[N_MEMORY];
 1786 
 1787         for_each_node_mask(nid, node_states[N_MEMORY]) {
 1788 
 1789                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
 1790                         node_clear(nid, memcg->scan_nodes);
 1791         }
 1792 
 1793         atomic_set(&memcg->numainfo_events, 0);
 1794         atomic_set(&memcg->numainfo_updating, 0);
 1795 }
 1796 
 1797 /*
 1798  * Selecting a node where we start reclaim from. Because what we need is just
 1799  * reducing usage counter, start from anywhere is O,K. Considering
 1800  * memory reclaim from current node, there are pros. and cons.
 1801  *
 1802  * Freeing memory from current node means freeing memory from a node which
 1803  * we'll use or we've used. So, it may make LRU bad. And if several threads
 1804  * hit limits, it will see a contention on a node. But freeing from remote
 1805  * node means more costs for memory reclaim because of memory latency.
 1806  *
 1807  * Now, we use round-robin. Better algorithm is welcomed.
 1808  */
 1809 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
 1810 {
 1811         int node;
 1812 
 1813         mem_cgroup_may_update_nodemask(memcg);
 1814         node = memcg->last_scanned_node;
 1815 
 1816         node = next_node(node, memcg->scan_nodes);
 1817         if (node == MAX_NUMNODES)
 1818                 node = first_node(memcg->scan_nodes);
 1819         /*
 1820          * We call this when we hit limit, not when pages are added to LRU.
 1821          * No LRU may hold pages because all pages are UNEVICTABLE or
 1822          * memcg is too small and all pages are not on LRU. In that case,
 1823          * we use curret node.
 1824          */
 1825         if (unlikely(node == MAX_NUMNODES))
 1826                 node = numa_node_id();
 1827 
 1828         memcg->last_scanned_node = node;
 1829         return node;
 1830 }
 1831 
 1832 /*
 1833  * Check all nodes whether it contains reclaimable pages or not.
 1834  * For quick scan, we make use of scan_nodes. This will allow us to skip
 1835  * unused nodes. But scan_nodes is lazily updated and may not cotain
 1836  * enough new information. We need to do double check.
 1837  */
 1838 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
 1839 {
 1840         int nid;
 1841 
 1842         /*
 1843          * quick check...making use of scan_node.
 1844          * We can skip unused nodes.
 1845          */
 1846         if (!nodes_empty(memcg->scan_nodes)) {
 1847                 for (nid = first_node(memcg->scan_nodes);
 1848                      nid < MAX_NUMNODES;
 1849                      nid = next_node(nid, memcg->scan_nodes)) {
 1850 
 1851                         if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
 1852                                 return true;
 1853                 }
 1854         }
 1855         /*
 1856          * Check rest of nodes.
 1857          */
 1858         for_each_node_state(nid, N_MEMORY) {
 1859                 if (node_isset(nid, memcg->scan_nodes))
 1860                         continue;
 1861                 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
 1862                         return true;
 1863         }
 1864         return false;
 1865 }
 1866 
 1867 #else
 1868 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
 1869 {
 1870         return 0;
 1871 }
 1872 
 1873 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
 1874 {
 1875         return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
 1876 }
 1877 #endif
 1878 
 1879 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
 1880                                    struct zone *zone,
 1881                                    gfp_t gfp_mask,
 1882                                    unsigned long *total_scanned)
 1883 {
 1884         struct mem_cgroup *victim = NULL;
 1885         int total = 0;
 1886         int loop = 0;
 1887         unsigned long excess;
 1888         unsigned long nr_scanned;
 1889         struct mem_cgroup_reclaim_cookie reclaim = {
 1890                 .zone = zone,
 1891                 .priority = 0,
 1892         };
 1893 
 1894         excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
 1895 
 1896         while (1) {
 1897                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
 1898                 if (!victim) {
 1899                         loop++;
 1900                         if (loop >= 2) {
 1901                                 /*
 1902                                  * If we have not been able to reclaim
 1903                                  * anything, it might because there are
 1904                                  * no reclaimable pages under this hierarchy
 1905                                  */
 1906                                 if (!total)
 1907                                         break;
 1908                                 /*
 1909                                  * We want to do more targeted reclaim.
 1910                                  * excess >> 2 is not to excessive so as to
 1911                                  * reclaim too much, nor too less that we keep
 1912                                  * coming back to reclaim from this cgroup
 1913                                  */
 1914                                 if (total >= (excess >> 2) ||
 1915                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
 1916                                         break;
 1917                         }
 1918                         continue;
 1919                 }
 1920                 if (!mem_cgroup_reclaimable(victim, false))
 1921                         continue;
 1922                 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
 1923                                                      zone, &nr_scanned);
 1924                 *total_scanned += nr_scanned;
 1925                 if (!res_counter_soft_limit_excess(&root_memcg->res))
 1926                         break;
 1927         }
 1928         mem_cgroup_iter_break(root_memcg, victim);
 1929         return total;
 1930 }
 1931 
 1932 /*
 1933  * Check OOM-Killer is already running under our hierarchy.
 1934  * If someone is running, return false.
 1935  * Has to be called with memcg_oom_lock
 1936  */
 1937 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
 1938 {
 1939         struct mem_cgroup *iter, *failed = NULL;
 1940 
 1941         for_each_mem_cgroup_tree(iter, memcg) {
 1942                 if (iter->oom_lock) {
 1943                         /*
 1944                          * this subtree of our hierarchy is already locked
 1945                          * so we cannot give a lock.
 1946                          */
 1947                         failed = iter;
 1948                         mem_cgroup_iter_break(memcg, iter);
 1949                         break;
 1950                 } else
 1951                         iter->oom_lock = true;
 1952         }
 1953 
 1954         if (!failed)
 1955                 return true;
 1956 
 1957         /*
 1958          * OK, we failed to lock the whole subtree so we have to clean up
 1959          * what we set up to the failing subtree
 1960          */
 1961         for_each_mem_cgroup_tree(iter, memcg) {
 1962                 if (iter == failed) {
 1963                         mem_cgroup_iter_break(memcg, iter);
 1964                         break;
 1965                 }
 1966                 iter->oom_lock = false;
 1967         }
 1968         return false;
 1969 }
 1970 
 1971 /*
 1972  * Has to be called with memcg_oom_lock
 1973  */
 1974 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
 1975 {
 1976         struct mem_cgroup *iter;
 1977 
 1978         for_each_mem_cgroup_tree(iter, memcg)
 1979                 iter->oom_lock = false;
 1980         return 0;
 1981 }
 1982 
 1983 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
 1984 {
 1985         struct mem_cgroup *iter;
 1986 
 1987         for_each_mem_cgroup_tree(iter, memcg)
 1988                 atomic_inc(&iter->under_oom);
 1989 }
 1990 
 1991 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
 1992 {
 1993         struct mem_cgroup *iter;
 1994 
 1995         /*
 1996          * When a new child is created while the hierarchy is under oom,
 1997          * mem_cgroup_oom_lock() may not be called. We have to use
 1998          * atomic_add_unless() here.
 1999          */
 2000         for_each_mem_cgroup_tree(iter, memcg)
 2001                 atomic_add_unless(&iter->under_oom, -1, 0);
 2002 }
 2003 
 2004 static DEFINE_SPINLOCK(memcg_oom_lock);
 2005 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
 2006 
 2007 struct oom_wait_info {
 2008         struct mem_cgroup *memcg;
 2009         wait_queue_t    wait;
 2010 };
 2011 
 2012 static int memcg_oom_wake_function(wait_queue_t *wait,
 2013         unsigned mode, int sync, void *arg)
 2014 {
 2015         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
 2016         struct mem_cgroup *oom_wait_memcg;
 2017         struct oom_wait_info *oom_wait_info;
 2018 
 2019         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
 2020         oom_wait_memcg = oom_wait_info->memcg;
 2021 
 2022         /*
 2023          * Both of oom_wait_info->memcg and wake_memcg are stable under us.
 2024          * Then we can use css_is_ancestor without taking care of RCU.
 2025          */
 2026         if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
 2027                 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
 2028                 return 0;
 2029         return autoremove_wake_function(wait, mode, sync, arg);
 2030 }
 2031 
 2032 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
 2033 {
 2034         /* for filtering, pass "memcg" as argument. */
 2035         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
 2036 }
 2037 
 2038 static void memcg_oom_recover(struct mem_cgroup *memcg)
 2039 {
 2040         if (memcg && atomic_read(&memcg->under_oom))
 2041                 memcg_wakeup_oom(memcg);
 2042 }
 2043 
 2044 /*
 2045  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 2046  */
 2047 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
 2048                                   int order)
 2049 {
 2050         struct oom_wait_info owait;
 2051         bool locked, need_to_kill;
 2052 
 2053         owait.memcg = memcg;
 2054         owait.wait.flags = 0;
 2055         owait.wait.func = memcg_oom_wake_function;
 2056         owait.wait.private = current;
 2057         INIT_LIST_HEAD(&owait.wait.task_list);
 2058         need_to_kill = true;
 2059         mem_cgroup_mark_under_oom(memcg);
 2060 
 2061         /* At first, try to OOM lock hierarchy under memcg.*/
 2062         spin_lock(&memcg_oom_lock);
 2063         locked = mem_cgroup_oom_lock(memcg);
 2064         /*
 2065          * Even if signal_pending(), we can't quit charge() loop without
 2066          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
 2067          * under OOM is always welcomed, use TASK_KILLABLE here.
 2068          */
 2069         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
 2070         if (!locked || memcg->oom_kill_disable)
 2071                 need_to_kill = false;
 2072         if (locked)
 2073                 mem_cgroup_oom_notify(memcg);
 2074         spin_unlock(&memcg_oom_lock);
 2075 
 2076         if (need_to_kill) {
 2077                 finish_wait(&memcg_oom_waitq, &owait.wait);
 2078                 mem_cgroup_out_of_memory(memcg, mask, order);
 2079         } else {
 2080                 schedule();
 2081                 finish_wait(&memcg_oom_waitq, &owait.wait);
 2082         }
 2083         spin_lock(&memcg_oom_lock);
 2084         if (locked)
 2085                 mem_cgroup_oom_unlock(memcg);
 2086         memcg_wakeup_oom(memcg);
 2087         spin_unlock(&memcg_oom_lock);
 2088 
 2089         mem_cgroup_unmark_under_oom(memcg);
 2090 
 2091         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
 2092                 return false;
 2093         /* Give chance to dying process */
 2094         schedule_timeout_uninterruptible(1);
 2095         return true;
 2096 }
 2097 
 2098 /*
 2099  * Currently used to update mapped file statistics, but the routine can be
 2100  * generalized to update other statistics as well.
 2101  *
 2102  * Notes: Race condition
 2103  *
 2104  * We usually use page_cgroup_lock() for accessing page_cgroup member but
 2105  * it tends to be costly. But considering some conditions, we doesn't need
 2106  * to do so _always_.
 2107  *
 2108  * Considering "charge", lock_page_cgroup() is not required because all
 2109  * file-stat operations happen after a page is attached to radix-tree. There
 2110  * are no race with "charge".
 2111  *
 2112  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 2113  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 2114  * if there are race with "uncharge". Statistics itself is properly handled
 2115  * by flags.
 2116  *
 2117  * Considering "move", this is an only case we see a race. To make the race
 2118  * small, we check mm->moving_account and detect there are possibility of race
 2119  * If there is, we take a lock.
 2120  */
 2121 
 2122 void __mem_cgroup_begin_update_page_stat(struct page *page,
 2123                                 bool *locked, unsigned long *flags)
 2124 {
 2125         struct mem_cgroup *memcg;
 2126         struct page_cgroup *pc;
 2127 
 2128         pc = lookup_page_cgroup(page);
 2129 again:
 2130         memcg = pc->mem_cgroup;
 2131         if (unlikely(!memcg || !PageCgroupUsed(pc)))
 2132                 return;
 2133         /*
 2134          * If this memory cgroup is not under account moving, we don't
 2135          * need to take move_lock_mem_cgroup(). Because we already hold
 2136          * rcu_read_lock(), any calls to move_account will be delayed until
 2137          * rcu_read_unlock() if mem_cgroup_stolen() == true.
 2138          */
 2139         if (!mem_cgroup_stolen(memcg))
 2140                 return;
 2141 
 2142         move_lock_mem_cgroup(memcg, flags);
 2143         if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
 2144                 move_unlock_mem_cgroup(memcg, flags);
 2145                 goto again;
 2146         }
 2147         *locked = true;
 2148 }
 2149 
 2150 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
 2151 {
 2152         struct page_cgroup *pc = lookup_page_cgroup(page);
 2153 
 2154         /*
 2155          * It's guaranteed that pc->mem_cgroup never changes while
 2156          * lock is held because a routine modifies pc->mem_cgroup
 2157          * should take move_lock_mem_cgroup().
 2158          */
 2159         move_unlock_mem_cgroup(pc->mem_cgroup, flags);
 2160 }
 2161 
 2162 void mem_cgroup_update_page_stat(struct page *page,
 2163                                  enum mem_cgroup_page_stat_item idx, int val)
 2164 {
 2165         struct mem_cgroup *memcg;
 2166         struct page_cgroup *pc = lookup_page_cgroup(page);
 2167         unsigned long uninitialized_var(flags);
 2168 
 2169         if (mem_cgroup_disabled())
 2170                 return;
 2171 
 2172         memcg = pc->mem_cgroup;
 2173         if (unlikely(!memcg || !PageCgroupUsed(pc)))
 2174                 return;
 2175 
 2176         switch (idx) {
 2177         case MEMCG_NR_FILE_MAPPED:
 2178                 idx = MEM_CGROUP_STAT_FILE_MAPPED;
 2179                 break;
 2180         default:
 2181                 BUG();
 2182         }
 2183 
 2184         this_cpu_add(memcg->stat->count[idx], val);
 2185 }
 2186 
 2187 /*
 2188  * size of first charge trial. "32" comes from vmscan.c's magic value.
 2189  * TODO: maybe necessary to use big numbers in big irons.
 2190  */
 2191 #define CHARGE_BATCH    32U
 2192 struct memcg_stock_pcp {
 2193         struct mem_cgroup *cached; /* this never be root cgroup */
 2194         unsigned int nr_pages;
 2195         struct work_struct work;
 2196         unsigned long flags;
 2197 #define FLUSHING_CACHED_CHARGE  0
 2198 };
 2199 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
 2200 static DEFINE_MUTEX(percpu_charge_mutex);
 2201 
 2202 /**
 2203  * consume_stock: Try to consume stocked charge on this cpu.
 2204  * @memcg: memcg to consume from.
 2205  * @nr_pages: how many pages to charge.
 2206  *
 2207  * The charges will only happen if @memcg matches the current cpu's memcg
 2208  * stock, and at least @nr_pages are available in that stock.  Failure to
 2209  * service an allocation will refill the stock.
 2210  *
 2211  * returns true if successful, false otherwise.
 2212  */
 2213 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
 2214 {
 2215         struct memcg_stock_pcp *stock;
 2216         bool ret = true;
 2217 
 2218         if (nr_pages > CHARGE_BATCH)
 2219                 return false;
 2220 
 2221         stock = &get_cpu_var(memcg_stock);
 2222         if (memcg == stock->cached && stock->nr_pages >= nr_pages)
 2223                 stock->nr_pages -= nr_pages;
 2224         else /* need to call res_counter_charge */
 2225                 ret = false;
 2226         put_cpu_var(memcg_stock);
 2227         return ret;
 2228 }
 2229 
 2230 /*
 2231  * Returns stocks cached in percpu to res_counter and reset cached information.
 2232  */
 2233 static void drain_stock(struct memcg_stock_pcp *stock)
 2234 {
 2235         struct mem_cgroup *old = stock->cached;
 2236 
 2237         if (stock->nr_pages) {
 2238                 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
 2239 
 2240                 res_counter_uncharge(&old->res, bytes);
 2241                 if (do_swap_account)
 2242                         res_counter_uncharge(&old->memsw, bytes);
 2243                 stock->nr_pages = 0;
 2244         }
 2245         stock->cached = NULL;
 2246 }
 2247 
 2248 /*
 2249  * This must be called under preempt disabled or must be called by
 2250  * a thread which is pinned to local cpu.
 2251  */
 2252 static void drain_local_stock(struct work_struct *dummy)
 2253 {
 2254         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
 2255         drain_stock(stock);
 2256         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
 2257 }
 2258 
 2259 /*
 2260  * Cache charges(val) which is from res_counter, to local per_cpu area.
 2261  * This will be consumed by consume_stock() function, later.
 2262  */
 2263 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
 2264 {
 2265         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
 2266 
 2267         if (stock->cached != memcg) { /* reset if necessary */
 2268                 drain_stock(stock);
 2269                 stock->cached = memcg;
 2270         }
 2271         stock->nr_pages += nr_pages;
 2272         put_cpu_var(memcg_stock);
 2273 }
 2274 
 2275 /*
 2276  * Drains all per-CPU charge caches for given root_memcg resp. subtree
 2277  * of the hierarchy under it. sync flag says whether we should block
 2278  * until the work is done.
 2279  */
 2280 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
 2281 {
 2282         int cpu, curcpu;
 2283 
 2284         /* Notify other cpus that system-wide "drain" is running */
 2285         get_online_cpus();
 2286         curcpu = get_cpu();
 2287         for_each_online_cpu(cpu) {
 2288                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
 2289                 struct mem_cgroup *memcg;
 2290 
 2291                 memcg = stock->cached;
 2292                 if (!memcg || !stock->nr_pages)
 2293                         continue;
 2294                 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
 2295                         continue;
 2296                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
 2297                         if (cpu == curcpu)
 2298                                 drain_local_stock(&stock->work);
 2299                         else
 2300                                 schedule_work_on(cpu, &stock->work);
 2301                 }
 2302         }
 2303         put_cpu();
 2304 
 2305         if (!sync)
 2306                 goto out;
 2307 
 2308         for_each_online_cpu(cpu) {
 2309                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
 2310                 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
 2311                         flush_work(&stock->work);
 2312         }
 2313 out:
 2314         put_online_cpus();
 2315 }
 2316 
 2317 /*
 2318  * Tries to drain stocked charges in other cpus. This function is asynchronous
 2319  * and just put a work per cpu for draining localy on each cpu. Caller can
 2320  * expects some charges will be back to res_counter later but cannot wait for
 2321  * it.
 2322  */
 2323 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
 2324 {
 2325         /*
 2326          * If someone calls draining, avoid adding more kworker runs.
 2327          */
 2328         if (!mutex_trylock(&percpu_charge_mutex))
 2329                 return;
 2330         drain_all_stock(root_memcg, false);
 2331         mutex_unlock(&percpu_charge_mutex);
 2332 }
 2333 
 2334 /* This is a synchronous drain interface. */
 2335 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
 2336 {
 2337         /* called when force_empty is called */
 2338         mutex_lock(&percpu_charge_mutex);
 2339         drain_all_stock(root_memcg, true);
 2340         mutex_unlock(&percpu_charge_mutex);
 2341 }
 2342 
 2343 /*
 2344  * This function drains percpu counter value from DEAD cpu and
 2345  * move it to local cpu. Note that this function can be preempted.
 2346  */
 2347 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
 2348 {
 2349         int i;
 2350 
 2351         spin_lock(&memcg->pcp_counter_lock);
 2352         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
 2353                 long x = per_cpu(memcg->stat->count[i], cpu);
 2354 
 2355                 per_cpu(memcg->stat->count[i], cpu) = 0;
 2356                 memcg->nocpu_base.count[i] += x;
 2357         }
 2358         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
 2359                 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
 2360 
 2361                 per_cpu(memcg->stat->events[i], cpu) = 0;
 2362                 memcg->nocpu_base.events[i] += x;
 2363         }
 2364         spin_unlock(&memcg->pcp_counter_lock);
 2365 }
 2366 
 2367 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
 2368                                         unsigned long action,
 2369                                         void *hcpu)
 2370 {
 2371         int cpu = (unsigned long)hcpu;
 2372         struct memcg_stock_pcp *stock;
 2373         struct mem_cgroup *iter;
 2374 
 2375         if (action == CPU_ONLINE)
 2376                 return NOTIFY_OK;
 2377 
 2378         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
 2379                 return NOTIFY_OK;
 2380 
 2381         for_each_mem_cgroup(iter)
 2382                 mem_cgroup_drain_pcp_counter(iter, cpu);
 2383 
 2384         stock = &per_cpu(memcg_stock, cpu);
 2385         drain_stock(stock);
 2386         return NOTIFY_OK;
 2387 }
 2388 
 2389 
 2390 /* See __mem_cgroup_try_charge() for details */
 2391 enum {
 2392         CHARGE_OK,              /* success */
 2393         CHARGE_RETRY,           /* need to retry but retry is not bad */
 2394         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
 2395         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
 2396         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
 2397 };
 2398 
 2399 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
 2400                                 unsigned int nr_pages, unsigned int min_pages,
 2401                                 bool oom_check)
 2402 {
 2403         unsigned long csize = nr_pages * PAGE_SIZE;
 2404         struct mem_cgroup *mem_over_limit;
 2405         struct res_counter *fail_res;
 2406         unsigned long flags = 0;
 2407         int ret;
 2408 
 2409         ret = res_counter_charge(&memcg->res, csize, &fail_res);
 2410 
 2411         if (likely(!ret)) {
 2412                 if (!do_swap_account)
 2413                         return CHARGE_OK;
 2414                 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
 2415                 if (likely(!ret))
 2416                         return CHARGE_OK;
 2417 
 2418                 res_counter_uncharge(&memcg->res, csize);
 2419                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
 2420                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
 2421         } else
 2422                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
 2423         /*
 2424          * Never reclaim on behalf of optional batching, retry with a
 2425          * single page instead.
 2426          */
 2427         if (nr_pages > min_pages)
 2428                 return CHARGE_RETRY;
 2429 
 2430         if (!(gfp_mask & __GFP_WAIT))
 2431                 return CHARGE_WOULDBLOCK;
 2432 
 2433         if (gfp_mask & __GFP_NORETRY)
 2434                 return CHARGE_NOMEM;
 2435 
 2436         ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
 2437         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
 2438                 return CHARGE_RETRY;
 2439         /*
 2440          * Even though the limit is exceeded at this point, reclaim
 2441          * may have been able to free some pages.  Retry the charge
 2442          * before killing the task.
 2443          *
 2444          * Only for regular pages, though: huge pages are rather
 2445          * unlikely to succeed so close to the limit, and we fall back
 2446          * to regular pages anyway in case of failure.
 2447          */
 2448         if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
 2449                 return CHARGE_RETRY;
 2450 
 2451         /*
 2452          * At task move, charge accounts can be doubly counted. So, it's
 2453          * better to wait until the end of task_move if something is going on.
 2454          */
 2455         if (mem_cgroup_wait_acct_move(mem_over_limit))
 2456                 return CHARGE_RETRY;
 2457 
 2458         /* If we don't need to call oom-killer at el, return immediately */
 2459         if (!oom_check)
 2460                 return CHARGE_NOMEM;
 2461         /* check OOM */
 2462         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
 2463                 return CHARGE_OOM_DIE;
 2464 
 2465         return CHARGE_RETRY;
 2466 }
 2467 
 2468 /*
 2469  * __mem_cgroup_try_charge() does
 2470  * 1. detect memcg to be charged against from passed *mm and *ptr,
 2471  * 2. update res_counter
 2472  * 3. call memory reclaim if necessary.
 2473  *
 2474  * In some special case, if the task is fatal, fatal_signal_pending() or
 2475  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 2476  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 2477  * as possible without any hazards. 2: all pages should have a valid
 2478  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 2479  * pointer, that is treated as a charge to root_mem_cgroup.
 2480  *
 2481  * So __mem_cgroup_try_charge() will return
 2482  *  0       ...  on success, filling *ptr with a valid memcg pointer.
 2483  *  -ENOMEM ...  charge failure because of resource limits.
 2484  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 2485  *
 2486  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 2487  * the oom-killer can be invoked.
 2488  */
 2489 static int __mem_cgroup_try_charge(struct mm_struct *mm,
 2490                                    gfp_t gfp_mask,
 2491                                    unsigned int nr_pages,
 2492                                    struct mem_cgroup **ptr,
 2493                                    bool oom)
 2494 {
 2495         unsigned int batch = max(CHARGE_BATCH, nr_pages);
 2496         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
 2497         struct mem_cgroup *memcg = NULL;
 2498         int ret;
 2499 
 2500         /*
 2501          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
 2502          * in system level. So, allow to go ahead dying process in addition to
 2503          * MEMDIE process.
 2504          */
 2505         if (unlikely(test_thread_flag(TIF_MEMDIE)
 2506                      || fatal_signal_pending(current)))
 2507                 goto bypass;
 2508 
 2509         /*
 2510          * We always charge the cgroup the mm_struct belongs to.
 2511          * The mm_struct's mem_cgroup changes on task migration if the
 2512          * thread group leader migrates. It's possible that mm is not
 2513          * set, if so charge the root memcg (happens for pagecache usage).
 2514          */
 2515         if (!*ptr && !mm)
 2516                 *ptr = root_mem_cgroup;
 2517 again:
 2518         if (*ptr) { /* css should be a valid one */
 2519                 memcg = *ptr;
 2520                 if (mem_cgroup_is_root(memcg))
 2521                         goto done;
 2522                 if (consume_stock(memcg, nr_pages))
 2523                         goto done;
 2524                 css_get(&memcg->css);
 2525         } else {
 2526                 struct task_struct *p;
 2527 
 2528                 rcu_read_lock();
 2529                 p = rcu_dereference(mm->owner);
 2530                 /*
 2531                  * Because we don't have task_lock(), "p" can exit.
 2532                  * In that case, "memcg" can point to root or p can be NULL with
 2533                  * race with swapoff. Then, we have small risk of mis-accouning.
 2534                  * But such kind of mis-account by race always happens because
 2535                  * we don't have cgroup_mutex(). It's overkill and we allo that
 2536                  * small race, here.
 2537                  * (*) swapoff at el will charge against mm-struct not against
 2538                  * task-struct. So, mm->owner can be NULL.
 2539                  */
 2540                 memcg = mem_cgroup_from_task(p);
 2541                 if (!memcg)
 2542                         memcg = root_mem_cgroup;
 2543                 if (mem_cgroup_is_root(memcg)) {
 2544                         rcu_read_unlock();
 2545                         goto done;
 2546                 }
 2547                 if (consume_stock(memcg, nr_pages)) {
 2548                         /*
 2549                          * It seems dagerous to access memcg without css_get().
 2550                          * But considering how consume_stok works, it's not
 2551                          * necessary. If consume_stock success, some charges
 2552                          * from this memcg are cached on this cpu. So, we
 2553                          * don't need to call css_get()/css_tryget() before
 2554                          * calling consume_stock().
 2555                          */
 2556                         rcu_read_unlock();
 2557                         goto done;
 2558                 }
 2559                 /* after here, we may be blocked. we need to get refcnt */
 2560                 if (!css_tryget(&memcg->css)) {
 2561                         rcu_read_unlock();
 2562                         goto again;
 2563                 }
 2564                 rcu_read_unlock();
 2565         }
 2566 
 2567         do {
 2568                 bool oom_check;
 2569 
 2570                 /* If killed, bypass charge */
 2571                 if (fatal_signal_pending(current)) {
 2572                         css_put(&memcg->css);
 2573                         goto bypass;
 2574                 }
 2575 
 2576                 oom_check = false;
 2577                 if (oom && !nr_oom_retries) {
 2578                         oom_check = true;
 2579                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
 2580                 }
 2581 
 2582                 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
 2583                     oom_check);
 2584                 switch (ret) {
 2585                 case CHARGE_OK:
 2586                         break;
 2587                 case CHARGE_RETRY: /* not in OOM situation but retry */
 2588                         batch = nr_pages;
 2589                         css_put(&memcg->css);
 2590                         memcg = NULL;
 2591                         goto again;
 2592                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
 2593                         css_put(&memcg->css);
 2594                         goto nomem;
 2595                 case CHARGE_NOMEM: /* OOM routine works */
 2596                         if (!oom) {
 2597                                 css_put(&memcg->css);
 2598                                 goto nomem;
 2599                         }
 2600                         /* If oom, we never return -ENOMEM */
 2601                         nr_oom_retries--;
 2602                         break;
 2603                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
 2604                         css_put(&memcg->css);
 2605                         goto bypass;
 2606                 }
 2607         } while (ret != CHARGE_OK);
 2608 
 2609         if (batch > nr_pages)
 2610                 refill_stock(memcg, batch - nr_pages);
 2611         css_put(&memcg->css);
 2612 done:
 2613         *ptr = memcg;
 2614         return 0;
 2615 nomem:
 2616         *ptr = NULL;
 2617         return -ENOMEM;
 2618 bypass:
 2619         *ptr = root_mem_cgroup;
 2620         return -EINTR;
 2621 }
 2622 
 2623 /*
 2624  * Somemtimes we have to undo a charge we got by try_charge().
 2625  * This function is for that and do uncharge, put css's refcnt.
 2626  * gotten by try_charge().
 2627  */
 2628 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
 2629                                        unsigned int nr_pages)
 2630 {
 2631         if (!mem_cgroup_is_root(memcg)) {
 2632                 unsigned long bytes = nr_pages * PAGE_SIZE;
 2633 
 2634                 res_counter_uncharge(&memcg->res, bytes);
 2635                 if (do_swap_account)
 2636                         res_counter_uncharge(&memcg->memsw, bytes);
 2637         }
 2638 }
 2639 
 2640 /*
 2641  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 2642  * This is useful when moving usage to parent cgroup.
 2643  */
 2644 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
 2645                                         unsigned int nr_pages)
 2646 {
 2647         unsigned long bytes = nr_pages * PAGE_SIZE;
 2648 
 2649         if (mem_cgroup_is_root(memcg))
 2650                 return;
 2651 
 2652         res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
 2653         if (do_swap_account)
 2654                 res_counter_uncharge_until(&memcg->memsw,
 2655                                                 memcg->memsw.parent, bytes);
 2656 }
 2657 
 2658 /*
 2659  * A helper function to get mem_cgroup from ID. must be called under
 2660  * rcu_read_lock().  The caller is responsible for calling css_tryget if
 2661  * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 2662  * called against removed memcg.)
 2663  */
 2664 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
 2665 {
 2666         struct cgroup_subsys_state *css;
 2667 
 2668         /* ID 0 is unused ID */
 2669         if (!id)
 2670                 return NULL;
 2671         css = css_lookup(&mem_cgroup_subsys, id);
 2672         if (!css)
 2673                 return NULL;
 2674         return mem_cgroup_from_css(css);
 2675 }
 2676 
 2677 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
 2678 {
 2679         struct mem_cgroup *memcg = NULL;
 2680         struct page_cgroup *pc;
 2681         unsigned short id;
 2682         swp_entry_t ent;
 2683 
 2684         VM_BUG_ON(!PageLocked(page));
 2685 
 2686         pc = lookup_page_cgroup(page);
 2687         lock_page_cgroup(pc);
 2688         if (PageCgroupUsed(pc)) {
 2689                 memcg = pc->mem_cgroup;
 2690                 if (memcg && !css_tryget(&memcg->css))
 2691                         memcg = NULL;
 2692         } else if (PageSwapCache(page)) {
 2693                 ent.val = page_private(page);
 2694                 id = lookup_swap_cgroup_id(ent);
 2695                 rcu_read_lock();
 2696                 memcg = mem_cgroup_lookup(id);
 2697                 if (memcg && !css_tryget(&memcg->css))
 2698                         memcg = NULL;
 2699                 rcu_read_unlock();
 2700         }
 2701         unlock_page_cgroup(pc);
 2702         return memcg;
 2703 }
 2704 
 2705 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
 2706                                        struct page *page,
 2707                                        unsigned int nr_pages,
 2708                                        enum charge_type ctype,
 2709                                        bool lrucare)
 2710 {
 2711         struct page_cgroup *pc = lookup_page_cgroup(page);
 2712         struct zone *uninitialized_var(zone);
 2713         struct lruvec *lruvec;
 2714         bool was_on_lru = false;
 2715         bool anon;
 2716 
 2717         lock_page_cgroup(pc);
 2718         VM_BUG_ON(PageCgroupUsed(pc));
 2719         /*
 2720          * we don't need page_cgroup_lock about tail pages, becase they are not
 2721          * accessed by any other context at this point.
 2722          */
 2723 
 2724         /*
 2725          * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
 2726          * may already be on some other mem_cgroup's LRU.  Take care of it.
 2727          */
 2728         if (lrucare) {
 2729                 zone = page_zone(page);
 2730                 spin_lock_irq(&zone->lru_lock);
 2731                 if (PageLRU(page)) {
 2732                         lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
 2733                         ClearPageLRU(page);
 2734                         del_page_from_lru_list(page, lruvec, page_lru(page));
 2735                         was_on_lru = true;
 2736                 }
 2737         }
 2738 
 2739         pc->mem_cgroup = memcg;
 2740         /*
 2741          * We access a page_cgroup asynchronously without lock_page_cgroup().
 2742          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
 2743          * is accessed after testing USED bit. To make pc->mem_cgroup visible
 2744          * before USED bit, we need memory barrier here.
 2745          * See mem_cgroup_add_lru_list(), etc.
 2746          */
 2747         smp_wmb();
 2748         SetPageCgroupUsed(pc);
 2749 
 2750         if (lrucare) {
 2751                 if (was_on_lru) {
 2752                         lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
 2753                         VM_BUG_ON(PageLRU(page));
 2754                         SetPageLRU(page);
 2755                         add_page_to_lru_list(page, lruvec, page_lru(page));
 2756                 }
 2757                 spin_unlock_irq(&zone->lru_lock);
 2758         }
 2759 
 2760         if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
 2761                 anon = true;
 2762         else
 2763                 anon = false;
 2764 
 2765         mem_cgroup_charge_statistics(memcg, anon, nr_pages);
 2766         unlock_page_cgroup(pc);
 2767 
 2768         /*
 2769          * "charge_statistics" updated event counter. Then, check it.
 2770          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
 2771          * if they exceeds softlimit.
 2772          */
 2773         memcg_check_events(memcg, page);
 2774 }
 2775 
 2776 static DEFINE_MUTEX(set_limit_mutex);
 2777 
 2778 #ifdef CONFIG_MEMCG_KMEM
 2779 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
 2780 {
 2781         return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
 2782                 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
 2783 }
 2784 
 2785 /*
 2786  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 2787  * in the memcg_cache_params struct.
 2788  */
 2789 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
 2790 {
 2791         struct kmem_cache *cachep;
 2792 
 2793         VM_BUG_ON(p->is_root_cache);
 2794         cachep = p->root_cache;
 2795         return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
 2796 }
 2797 
 2798 #ifdef CONFIG_SLABINFO
 2799 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
 2800                                         struct seq_file *m)
 2801 {
 2802         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
 2803         struct memcg_cache_params *params;
 2804 
 2805         if (!memcg_can_account_kmem(memcg))
 2806                 return -EIO;
 2807 
 2808         print_slabinfo_header(m);
 2809 
 2810         mutex_lock(&memcg->slab_caches_mutex);
 2811         list_for_each_entry(params, &memcg->memcg_slab_caches, list)
 2812                 cache_show(memcg_params_to_cache(params), m);
 2813         mutex_unlock(&memcg->slab_caches_mutex);
 2814 
 2815         return 0;
 2816 }
 2817 #endif
 2818 
 2819 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
 2820 {
 2821         struct res_counter *fail_res;
 2822         struct mem_cgroup *_memcg;
 2823         int ret = 0;
 2824         bool may_oom;
 2825 
 2826         ret = res_counter_charge(&memcg->kmem, size, &fail_res);
 2827         if (ret)
 2828                 return ret;
 2829 
 2830         /*
 2831          * Conditions under which we can wait for the oom_killer. Those are
 2832          * the same conditions tested by the core page allocator
 2833          */
 2834         may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
 2835 
 2836         _memcg = memcg;
 2837         ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
 2838                                       &_memcg, may_oom);
 2839 
 2840         if (ret == -EINTR)  {
 2841                 /*
 2842                  * __mem_cgroup_try_charge() chosed to bypass to root due to
 2843                  * OOM kill or fatal signal.  Since our only options are to
 2844                  * either fail the allocation or charge it to this cgroup, do
 2845                  * it as a temporary condition. But we can't fail. From a
 2846                  * kmem/slab perspective, the cache has already been selected,
 2847                  * by mem_cgroup_kmem_get_cache(), so it is too late to change
 2848                  * our minds.
 2849                  *
 2850                  * This condition will only trigger if the task entered
 2851                  * memcg_charge_kmem in a sane state, but was OOM-killed during
 2852                  * __mem_cgroup_try_charge() above. Tasks that were already
 2853                  * dying when the allocation triggers should have been already
 2854                  * directed to the root cgroup in memcontrol.h
 2855                  */
 2856                 res_counter_charge_nofail(&memcg->res, size, &fail_res);
 2857                 if (do_swap_account)
 2858                         res_counter_charge_nofail(&memcg->memsw, size,
 2859                                                   &fail_res);
 2860                 ret = 0;
 2861         } else if (ret)
 2862                 res_counter_uncharge(&memcg->kmem, size);
 2863 
 2864         return ret;
 2865 }
 2866 
 2867 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
 2868 {
 2869         res_counter_uncharge(&memcg->res, size);
 2870         if (do_swap_account)
 2871                 res_counter_uncharge(&memcg->memsw, size);
 2872 
 2873         /* Not down to 0 */
 2874         if (res_counter_uncharge(&memcg->kmem, size))
 2875                 return;
 2876 
 2877         if (memcg_kmem_test_and_clear_dead(memcg))
 2878                 mem_cgroup_put(memcg);
 2879 }
 2880 
 2881 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
 2882 {
 2883         if (!memcg)
 2884                 return;
 2885 
 2886         mutex_lock(&memcg->slab_caches_mutex);
 2887         list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
 2888         mutex_unlock(&memcg->slab_caches_mutex);
 2889 }
 2890 
 2891 /*
 2892  * helper for acessing a memcg's index. It will be used as an index in the
 2893  * child cache array in kmem_cache, and also to derive its name. This function
 2894  * will return -1 when this is not a kmem-limited memcg.
 2895  */
 2896 int memcg_cache_id(struct mem_cgroup *memcg)
 2897 {
 2898         return memcg ? memcg->kmemcg_id : -1;
 2899 }
 2900 
 2901 /*
 2902  * This ends up being protected by the set_limit mutex, during normal
 2903  * operation, because that is its main call site.
 2904  *
 2905  * But when we create a new cache, we can call this as well if its parent
 2906  * is kmem-limited. That will have to hold set_limit_mutex as well.
 2907  */
 2908 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
 2909 {
 2910         int num, ret;
 2911 
 2912         num = ida_simple_get(&kmem_limited_groups,
 2913                                 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
 2914         if (num < 0)
 2915                 return num;
 2916         /*
 2917          * After this point, kmem_accounted (that we test atomically in
 2918          * the beginning of this conditional), is no longer 0. This
 2919          * guarantees only one process will set the following boolean
 2920          * to true. We don't need test_and_set because we're protected
 2921          * by the set_limit_mutex anyway.
 2922          */
 2923         memcg_kmem_set_activated(memcg);
 2924 
 2925         ret = memcg_update_all_caches(num+1);
 2926         if (ret) {
 2927                 ida_simple_remove(&kmem_limited_groups, num);
 2928                 memcg_kmem_clear_activated(memcg);
 2929                 return ret;
 2930         }
 2931 
 2932         memcg->kmemcg_id = num;
 2933         INIT_LIST_HEAD(&memcg->memcg_slab_caches);
 2934         mutex_init(&memcg->slab_caches_mutex);
 2935         return 0;
 2936 }
 2937 
 2938 static size_t memcg_caches_array_size(int num_groups)
 2939 {
 2940         ssize_t size;
 2941         if (num_groups <= 0)
 2942                 return 0;
 2943 
 2944         size = 2 * num_groups;
 2945         if (size < MEMCG_CACHES_MIN_SIZE)
 2946                 size = MEMCG_CACHES_MIN_SIZE;
 2947         else if (size > MEMCG_CACHES_MAX_SIZE)
 2948                 size = MEMCG_CACHES_MAX_SIZE;
 2949 
 2950         return size;
 2951 }
 2952 
 2953 /*
 2954  * We should update the current array size iff all caches updates succeed. This
 2955  * can only be done from the slab side. The slab mutex needs to be held when
 2956  * calling this.
 2957  */
 2958 void memcg_update_array_size(int num)
 2959 {
 2960         if (num > memcg_limited_groups_array_size)
 2961                 memcg_limited_groups_array_size = memcg_caches_array_size(num);
 2962 }
 2963 
 2964 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
 2965 {
 2966         struct memcg_cache_params *cur_params = s->memcg_params;
 2967 
 2968         VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
 2969 
 2970         if (num_groups > memcg_limited_groups_array_size) {
 2971                 int i;
 2972                 ssize_t size = memcg_caches_array_size(num_groups);
 2973 
 2974                 size *= sizeof(void *);
 2975                 size += sizeof(struct memcg_cache_params);
 2976 
 2977                 s->memcg_params = kzalloc(size, GFP_KERNEL);
 2978                 if (!s->memcg_params) {
 2979                         s->memcg_params = cur_params;
 2980                         return -ENOMEM;
 2981                 }
 2982 
 2983                 s->memcg_params->is_root_cache = true;
 2984 
 2985                 /*
 2986                  * There is the chance it will be bigger than
 2987                  * memcg_limited_groups_array_size, if we failed an allocation
 2988                  * in a cache, in which case all caches updated before it, will
 2989                  * have a bigger array.
 2990                  *
 2991                  * But if that is the case, the data after
 2992                  * memcg_limited_groups_array_size is certainly unused
 2993                  */
 2994                 for (i = 0; i < memcg_limited_groups_array_size; i++) {
 2995                         if (!cur_params->memcg_caches[i])
 2996                                 continue;
 2997                         s->memcg_params->memcg_caches[i] =
 2998                                                 cur_params->memcg_caches[i];
 2999                 }
 3000 
 3001                 /*
 3002                  * Ideally, we would wait until all caches succeed, and only
 3003                  * then free the old one. But this is not worth the extra
 3004                  * pointer per-cache we'd have to have for this.
 3005                  *
 3006                  * It is not a big deal if some caches are left with a size
 3007                  * bigger than the others. And all updates will reset this
 3008                  * anyway.
 3009                  */
 3010                 kfree(cur_params);
 3011         }
 3012         return 0;
 3013 }
 3014 
 3015 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
 3016                          struct kmem_cache *root_cache)
 3017 {
 3018         size_t size = sizeof(struct memcg_cache_params);
 3019 
 3020         if (!memcg_kmem_enabled())
 3021                 return 0;
 3022 
 3023         if (!memcg)
 3024                 size += memcg_limited_groups_array_size * sizeof(void *);
 3025 
 3026         s->memcg_params = kzalloc(size, GFP_KERNEL);
 3027         if (!s->memcg_params)
 3028                 return -ENOMEM;
 3029 
 3030         if (memcg) {
 3031                 s->memcg_params->memcg = memcg;
 3032                 s->memcg_params->root_cache = root_cache;
 3033         }
 3034         return 0;
 3035 }
 3036 
 3037 void memcg_release_cache(struct kmem_cache *s)
 3038 {
 3039         struct kmem_cache *root;
 3040         struct mem_cgroup *memcg;
 3041         int id;
 3042 
 3043         /*
 3044          * This happens, for instance, when a root cache goes away before we
 3045          * add any memcg.
 3046          */
 3047         if (!s->memcg_params)
 3048                 return;
 3049 
 3050         if (s->memcg_params->is_root_cache)
 3051                 goto out;
 3052 
 3053         memcg = s->memcg_params->memcg;
 3054         id  = memcg_cache_id(memcg);
 3055 
 3056         root = s->memcg_params->root_cache;
 3057         root->memcg_params->memcg_caches[id] = NULL;
 3058         mem_cgroup_put(memcg);
 3059 
 3060         mutex_lock(&memcg->slab_caches_mutex);
 3061         list_del(&s->memcg_params->list);
 3062         mutex_unlock(&memcg->slab_caches_mutex);
 3063 
 3064 out:
 3065         kfree(s->memcg_params);
 3066 }
 3067 
 3068 /*
 3069  * During the creation a new cache, we need to disable our accounting mechanism
 3070  * altogether. This is true even if we are not creating, but rather just
 3071  * enqueing new caches to be created.
 3072  *
 3073  * This is because that process will trigger allocations; some visible, like
 3074  * explicit kmallocs to auxiliary data structures, name strings and internal
 3075  * cache structures; some well concealed, like INIT_WORK() that can allocate
 3076  * objects during debug.
 3077  *
 3078  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 3079  * to it. This may not be a bounded recursion: since the first cache creation
 3080  * failed to complete (waiting on the allocation), we'll just try to create the
 3081  * cache again, failing at the same point.
 3082  *
 3083  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 3084  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 3085  * inside the following two functions.
 3086  */
 3087 static inline void memcg_stop_kmem_account(void)
 3088 {
 3089         VM_BUG_ON(!current->mm);
 3090         current->memcg_kmem_skip_account++;
 3091 }
 3092 
 3093 static inline void memcg_resume_kmem_account(void)
 3094 {
 3095         VM_BUG_ON(!current->mm);
 3096         current->memcg_kmem_skip_account--;
 3097 }
 3098 
 3099 static void kmem_cache_destroy_work_func(struct work_struct *w)
 3100 {
 3101         struct kmem_cache *cachep;
 3102         struct memcg_cache_params *p;
 3103 
 3104         p = container_of(w, struct memcg_cache_params, destroy);
 3105 
 3106         cachep = memcg_params_to_cache(p);
 3107 
 3108         /*
 3109          * If we get down to 0 after shrink, we could delete right away.
 3110          * However, memcg_release_pages() already puts us back in the workqueue
 3111          * in that case. If we proceed deleting, we'll get a dangling
 3112          * reference, and removing the object from the workqueue in that case
 3113          * is unnecessary complication. We are not a fast path.
 3114          *
 3115          * Note that this case is fundamentally different from racing with
 3116          * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
 3117          * kmem_cache_shrink, not only we would be reinserting a dead cache
 3118          * into the queue, but doing so from inside the worker racing to
 3119          * destroy it.
 3120          *
 3121          * So if we aren't down to zero, we'll just schedule a worker and try
 3122          * again
 3123          */
 3124         if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
 3125                 kmem_cache_shrink(cachep);
 3126                 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
 3127                         return;
 3128         } else
 3129                 kmem_cache_destroy(cachep);
 3130 }
 3131 
 3132 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
 3133 {
 3134         if (!cachep->memcg_params->dead)
 3135                 return;
 3136 
 3137         /*
 3138          * There are many ways in which we can get here.
 3139          *
 3140          * We can get to a memory-pressure situation while the delayed work is
 3141          * still pending to run. The vmscan shrinkers can then release all
 3142          * cache memory and get us to destruction. If this is the case, we'll
 3143          * be executed twice, which is a bug (the second time will execute over
 3144          * bogus data). In this case, cancelling the work should be fine.
 3145          *
 3146          * But we can also get here from the worker itself, if
 3147          * kmem_cache_shrink is enough to shake all the remaining objects and
 3148          * get the page count to 0. In this case, we'll deadlock if we try to
 3149          * cancel the work (the worker runs with an internal lock held, which
 3150          * is the same lock we would hold for cancel_work_sync().)
 3151          *
 3152          * Since we can't possibly know who got us here, just refrain from
 3153          * running if there is already work pending
 3154          */
 3155         if (work_pending(&cachep->memcg_params->destroy))
 3156                 return;
 3157         /*
 3158          * We have to defer the actual destroying to a workqueue, because
 3159          * we might currently be in a context that cannot sleep.
 3160          */
 3161         schedule_work(&cachep->memcg_params->destroy);
 3162 }
 3163 
 3164 static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
 3165 {
 3166         char *name;
 3167         struct dentry *dentry;
 3168 
 3169         rcu_read_lock();
 3170         dentry = rcu_dereference(memcg->css.cgroup->dentry);
 3171         rcu_read_unlock();
 3172 
 3173         BUG_ON(dentry == NULL);
 3174 
 3175         name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
 3176                          memcg_cache_id(memcg), dentry->d_name.name);
 3177 
 3178         return name;
 3179 }
 3180 
 3181 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
 3182                                          struct kmem_cache *s)
 3183 {
 3184         char *name;
 3185         struct kmem_cache *new;
 3186 
 3187         name = memcg_cache_name(memcg, s);
 3188         if (!name)
 3189                 return NULL;
 3190 
 3191         new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
 3192                                       (s->flags & ~SLAB_PANIC), s->ctor, s);
 3193 
 3194         if (new)
 3195                 new->allocflags |= __GFP_KMEMCG;
 3196 
 3197         kfree(name);
 3198         return new;
 3199 }
 3200 
 3201 /*
 3202  * This lock protects updaters, not readers. We want readers to be as fast as
 3203  * they can, and they will either see NULL or a valid cache value. Our model
 3204  * allow them to see NULL, in which case the root memcg will be selected.
 3205  *
 3206  * We need this lock because multiple allocations to the same cache from a non
 3207  * will span more than one worker. Only one of them can create the cache.
 3208  */
 3209 static DEFINE_MUTEX(memcg_cache_mutex);
 3210 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
 3211                                                   struct kmem_cache *cachep)
 3212 {
 3213         struct kmem_cache *new_cachep;
 3214         int idx;
 3215 
 3216         BUG_ON(!memcg_can_account_kmem(memcg));
 3217 
 3218         idx = memcg_cache_id(memcg);
 3219 
 3220         mutex_lock(&memcg_cache_mutex);
 3221         new_cachep = cachep->memcg_params->memcg_caches[idx];
 3222         if (new_cachep)
 3223                 goto out;
 3224 
 3225         new_cachep = kmem_cache_dup(memcg, cachep);
 3226         if (new_cachep == NULL) {
 3227                 new_cachep = cachep;
 3228                 goto out;
 3229         }
 3230 
 3231         mem_cgroup_get(memcg);
 3232         atomic_set(&new_cachep->memcg_params->nr_pages , 0);
 3233 
 3234         cachep->memcg_params->memcg_caches[idx] = new_cachep;
 3235         /*
 3236          * the readers won't lock, make sure everybody sees the updated value,
 3237          * so they won't put stuff in the queue again for no reason
 3238          */
 3239         wmb();
 3240 out:
 3241         mutex_unlock(&memcg_cache_mutex);
 3242         return new_cachep;
 3243 }
 3244 
 3245 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
 3246 {
 3247         struct kmem_cache *c;
 3248         int i;
 3249 
 3250         if (!s->memcg_params)
 3251                 return;
 3252         if (!s->memcg_params->is_root_cache)
 3253                 return;
 3254 
 3255         /*
 3256          * If the cache is being destroyed, we trust that there is no one else
 3257          * requesting objects from it. Even if there are, the sanity checks in
 3258          * kmem_cache_destroy should caught this ill-case.
 3259          *
 3260          * Still, we don't want anyone else freeing memcg_caches under our
 3261          * noses, which can happen if a new memcg comes to life. As usual,
 3262          * we'll take the set_limit_mutex to protect ourselves against this.
 3263          */
 3264         mutex_lock(&set_limit_mutex);
 3265         for (i = 0; i < memcg_limited_groups_array_size; i++) {
 3266                 c = s->memcg_params->memcg_caches[i];
 3267                 if (!c)
 3268                         continue;
 3269 
 3270                 /*
 3271                  * We will now manually delete the caches, so to avoid races
 3272                  * we need to cancel all pending destruction workers and
 3273                  * proceed with destruction ourselves.
 3274                  *
 3275                  * kmem_cache_destroy() will call kmem_cache_shrink internally,
 3276                  * and that could spawn the workers again: it is likely that
 3277                  * the cache still have active pages until this very moment.
 3278                  * This would lead us back to mem_cgroup_destroy_cache.
 3279                  *
 3280                  * But that will not execute at all if the "dead" flag is not
 3281                  * set, so flip it down to guarantee we are in control.
 3282                  */
 3283                 c->memcg_params->dead = false;
 3284                 cancel_work_sync(&c->memcg_params->destroy);
 3285                 kmem_cache_destroy(c);
 3286         }
 3287         mutex_unlock(&set_limit_mutex);
 3288 }
 3289 
 3290 struct create_work {
 3291         struct mem_cgroup *memcg;
 3292         struct kmem_cache *cachep;
 3293         struct work_struct work;
 3294 };
 3295 
 3296 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
 3297 {
 3298         struct kmem_cache *cachep;
 3299         struct memcg_cache_params *params;
 3300 
 3301         if (!memcg_kmem_is_active(memcg))
 3302                 return;
 3303 
 3304         mutex_lock(&memcg->slab_caches_mutex);
 3305         list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
 3306                 cachep = memcg_params_to_cache(params);
 3307                 cachep->memcg_params->dead = true;
 3308                 INIT_WORK(&cachep->memcg_params->destroy,
 3309                                   kmem_cache_destroy_work_func);
 3310                 schedule_work(&cachep->memcg_params->destroy);
 3311         }
 3312         mutex_unlock(&memcg->slab_caches_mutex);
 3313 }
 3314 
 3315 static void memcg_create_cache_work_func(struct work_struct *w)
 3316 {
 3317         struct create_work *cw;
 3318 
 3319         cw = container_of(w, struct create_work, work);
 3320         memcg_create_kmem_cache(cw->memcg, cw->cachep);
 3321         /* Drop the reference gotten when we enqueued. */
 3322         css_put(&cw->memcg->css);
 3323         kfree(cw);
 3324 }
 3325 
 3326 /*
 3327  * Enqueue the creation of a per-memcg kmem_cache.
 3328  * Called with rcu_read_lock.
 3329  */
 3330 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
 3331                                          struct kmem_cache *cachep)
 3332 {
 3333         struct create_work *cw;
 3334 
 3335         cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
 3336         if (cw == NULL)
 3337                 return;
 3338 
 3339         /* The corresponding put will be done in the workqueue. */
 3340         if (!css_tryget(&memcg->css)) {
 3341                 kfree(cw);
 3342                 return;
 3343         }
 3344 
 3345         cw->memcg = memcg;
 3346         cw->cachep = cachep;
 3347 
 3348         INIT_WORK(&cw->work, memcg_create_cache_work_func);
 3349         schedule_work(&cw->work);
 3350 }
 3351 
 3352 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
 3353                                        struct kmem_cache *cachep)
 3354 {
 3355         /*
 3356          * We need to stop accounting when we kmalloc, because if the
 3357          * corresponding kmalloc cache is not yet created, the first allocation
 3358          * in __memcg_create_cache_enqueue will recurse.
 3359          *
 3360          * However, it is better to enclose the whole function. Depending on
 3361          * the debugging options enabled, INIT_WORK(), for instance, can
 3362          * trigger an allocation. This too, will make us recurse. Because at
 3363          * this point we can't allow ourselves back into memcg_kmem_get_cache,
 3364          * the safest choice is to do it like this, wrapping the whole function.
 3365          */
 3366         memcg_stop_kmem_account();
 3367         __memcg_create_cache_enqueue(memcg, cachep);
 3368         memcg_resume_kmem_account();
 3369 }
 3370 /*
 3371  * Return the kmem_cache we're supposed to use for a slab allocation.
 3372  * We try to use the current memcg's version of the cache.
 3373  *
 3374  * If the cache does not exist yet, if we are the first user of it,
 3375  * we either create it immediately, if possible, or create it asynchronously
 3376  * in a workqueue.
 3377  * In the latter case, we will let the current allocation go through with
 3378  * the original cache.
 3379  *
 3380  * Can't be called in interrupt context or from kernel threads.
 3381  * This function needs to be called with rcu_read_lock() held.
 3382  */
 3383 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
 3384                                           gfp_t gfp)
 3385 {
 3386         struct mem_cgroup *memcg;
 3387         int idx;
 3388 
 3389         VM_BUG_ON(!cachep->memcg_params);
 3390         VM_BUG_ON(!cachep->memcg_params->is_root_cache);
 3391 
 3392         if (!current->mm || current->memcg_kmem_skip_account)
 3393                 return cachep;
 3394 
 3395         rcu_read_lock();
 3396         memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
 3397         rcu_read_unlock();
 3398 
 3399         if (!memcg_can_account_kmem(memcg))
 3400                 return cachep;
 3401 
 3402         idx = memcg_cache_id(memcg);
 3403 
 3404         /*
 3405          * barrier to mare sure we're always seeing the up to date value.  The
 3406          * code updating memcg_caches will issue a write barrier to match this.
 3407          */
 3408         read_barrier_depends();
 3409         if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
 3410                 /*
 3411                  * If we are in a safe context (can wait, and not in interrupt
 3412                  * context), we could be be predictable and return right away.
 3413                  * This would guarantee that the allocation being performed
 3414                  * already belongs in the new cache.
 3415                  *
 3416                  * However, there are some clashes that can arrive from locking.
 3417                  * For instance, because we acquire the slab_mutex while doing
 3418                  * kmem_cache_dup, this means no further allocation could happen
 3419                  * with the slab_mutex held.
 3420                  *
 3421                  * Also, because cache creation issue get_online_cpus(), this
 3422                  * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
 3423                  * that ends up reversed during cpu hotplug. (cpuset allocates
 3424                  * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
 3425                  * better to defer everything.
 3426                  */
 3427                 memcg_create_cache_enqueue(memcg, cachep);
 3428                 return cachep;
 3429         }
 3430 
 3431         return cachep->memcg_params->memcg_caches[idx];
 3432 }
 3433 EXPORT_SYMBOL(__memcg_kmem_get_cache);
 3434 
 3435 /*
 3436  * We need to verify if the allocation against current->mm->owner's memcg is
 3437  * possible for the given order. But the page is not allocated yet, so we'll
 3438  * need a further commit step to do the final arrangements.
 3439  *
 3440  * It is possible for the task to switch cgroups in this mean time, so at
 3441  * commit time, we can't rely on task conversion any longer.  We'll then use
 3442  * the handle argument to return to the caller which cgroup we should commit
 3443  * against. We could also return the memcg directly and avoid the pointer
 3444  * passing, but a boolean return value gives better semantics considering
 3445  * the compiled-out case as well.
 3446  *
 3447  * Returning true means the allocation is possible.
 3448  */
 3449 bool
 3450 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
 3451 {
 3452         struct mem_cgroup *memcg;
 3453         int ret;
 3454 
 3455         *_memcg = NULL;
 3456         memcg = try_get_mem_cgroup_from_mm(current->mm);
 3457 
 3458         /*
 3459          * very rare case described in mem_cgroup_from_task. Unfortunately there
 3460          * isn't much we can do without complicating this too much, and it would
 3461          * be gfp-dependent anyway. Just let it go
 3462          */
 3463         if (unlikely(!memcg))
 3464                 return true;
 3465 
 3466         if (!memcg_can_account_kmem(memcg)) {
 3467                 css_put(&memcg->css);
 3468                 return true;
 3469         }
 3470 
 3471         ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
 3472         if (!ret)
 3473                 *_memcg = memcg;
 3474 
 3475         css_put(&memcg->css);
 3476         return (ret == 0);
 3477 }
 3478 
 3479 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
 3480                               int order)
 3481 {
 3482         struct page_cgroup *pc;
 3483 
 3484         VM_BUG_ON(mem_cgroup_is_root(memcg));
 3485 
 3486         /* The page allocation failed. Revert */
 3487         if (!page) {
 3488                 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
 3489                 return;
 3490         }
 3491 
 3492         pc = lookup_page_cgroup(page);
 3493         lock_page_cgroup(pc);
 3494         pc->mem_cgroup = memcg;
 3495         SetPageCgroupUsed(pc);
 3496         unlock_page_cgroup(pc);
 3497 }
 3498 
 3499 void __memcg_kmem_uncharge_pages(struct page *page, int order)
 3500 {
 3501         struct mem_cgroup *memcg = NULL;
 3502         struct page_cgroup *pc;
 3503 
 3504 
 3505         pc = lookup_page_cgroup(page);
 3506         /*
 3507          * Fast unlocked return. Theoretically might have changed, have to
 3508          * check again after locking.
 3509          */
 3510         if (!PageCgroupUsed(pc))
 3511                 return;
 3512 
 3513         lock_page_cgroup(pc);
 3514         if (PageCgroupUsed(pc)) {
 3515                 memcg = pc->mem_cgroup;
 3516                 ClearPageCgroupUsed(pc);
 3517         }
 3518         unlock_page_cgroup(pc);
 3519 
 3520         /*
 3521          * We trust that only if there is a memcg associated with the page, it
 3522          * is a valid allocation
 3523          */
 3524         if (!memcg)
 3525                 return;
 3526 
 3527         VM_BUG_ON(mem_cgroup_is_root(memcg));
 3528         memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
 3529 }
 3530 #else
 3531 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
 3532 {
 3533 }
 3534 #endif /* CONFIG_MEMCG_KMEM */
 3535 
 3536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 3537 
 3538 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
 3539 /*
 3540  * Because tail pages are not marked as "used", set it. We're under
 3541  * zone->lru_lock, 'splitting on pmd' and compound_lock.
 3542  * charge/uncharge will be never happen and move_account() is done under
 3543  * compound_lock(), so we don't have to take care of races.
 3544  */
 3545 void mem_cgroup_split_huge_fixup(struct page *head)
 3546 {
 3547         struct page_cgroup *head_pc = lookup_page_cgroup(head);
 3548         struct page_cgroup *pc;
 3549         int i;
 3550 
 3551         if (mem_cgroup_disabled())
 3552                 return;
 3553         for (i = 1; i < HPAGE_PMD_NR; i++) {
 3554                 pc = head_pc + i;
 3555                 pc->mem_cgroup = head_pc->mem_cgroup;
 3556                 smp_wmb();/* see __commit_charge() */
 3557                 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
 3558         }
 3559 }
 3560 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 3561 
 3562 /**
 3563  * mem_cgroup_move_account - move account of the page
 3564  * @page: the page
 3565  * @nr_pages: number of regular pages (>1 for huge pages)
 3566  * @pc: page_cgroup of the page.
 3567  * @from: mem_cgroup which the page is moved from.
 3568  * @to: mem_cgroup which the page is moved to. @from != @to.
 3569  *
 3570  * The caller must confirm following.
 3571  * - page is not on LRU (isolate_page() is useful.)
 3572  * - compound_lock is held when nr_pages > 1
 3573  *
 3574  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 3575  * from old cgroup.
 3576  */
 3577 static int mem_cgroup_move_account(struct page *page,
 3578                                    unsigned int nr_pages,
 3579                                    struct page_cgroup *pc,
 3580                                    struct mem_cgroup *from,
 3581                                    struct mem_cgroup *to)
 3582 {
 3583         unsigned long flags;
 3584         int ret;
 3585         bool anon = PageAnon(page);
 3586 
 3587         VM_BUG_ON(from == to);
 3588         VM_BUG_ON(PageLRU(page));
 3589         /*
 3590          * The page is isolated from LRU. So, collapse function
 3591          * will not handle this page. But page splitting can happen.
 3592          * Do this check under compound_page_lock(). The caller should
 3593          * hold it.
 3594          */
 3595         ret = -EBUSY;
 3596         if (nr_pages > 1 && !PageTransHuge(page))
 3597                 goto out;
 3598 
 3599         lock_page_cgroup(pc);
 3600 
 3601         ret = -EINVAL;
 3602         if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
 3603                 goto unlock;
 3604 
 3605         move_lock_mem_cgroup(from, &flags);
 3606 
 3607         if (!anon && page_mapped(page)) {
 3608                 /* Update mapped_file data for mem_cgroup */
 3609                 preempt_disable();
 3610                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
 3611                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
 3612                 preempt_enable();
 3613         }
 3614         mem_cgroup_charge_statistics(from, anon, -nr_pages);
 3615 
 3616         /* caller should have done css_get */
 3617         pc->mem_cgroup = to;
 3618         mem_cgroup_charge_statistics(to, anon, nr_pages);
 3619         move_unlock_mem_cgroup(from, &flags);
 3620         ret = 0;
 3621 unlock:
 3622         unlock_page_cgroup(pc);
 3623         /*
 3624          * check events
 3625          */
 3626         memcg_check_events(to, page);
 3627         memcg_check_events(from, page);
 3628 out:
 3629         return ret;
 3630 }
 3631 
 3632 /**
 3633  * mem_cgroup_move_parent - moves page to the parent group
 3634  * @page: the page to move
 3635  * @pc: page_cgroup of the page
 3636  * @child: page's cgroup
 3637  *
 3638  * move charges to its parent or the root cgroup if the group has no
 3639  * parent (aka use_hierarchy==0).
 3640  * Although this might fail (get_page_unless_zero, isolate_lru_page or
 3641  * mem_cgroup_move_account fails) the failure is always temporary and
 3642  * it signals a race with a page removal/uncharge or migration. In the
 3643  * first case the page is on the way out and it will vanish from the LRU
 3644  * on the next attempt and the call should be retried later.
 3645  * Isolation from the LRU fails only if page has been isolated from
 3646  * the LRU since we looked at it and that usually means either global
 3647  * reclaim or migration going on. The page will either get back to the
 3648  * LRU or vanish.
 3649  * Finaly mem_cgroup_move_account fails only if the page got uncharged
 3650  * (!PageCgroupUsed) or moved to a different group. The page will
 3651  * disappear in the next attempt.
 3652  */
 3653 static int mem_cgroup_move_parent(struct page *page,
 3654                                   struct page_cgroup *pc,
 3655                                   struct mem_cgroup *child)
 3656 {
 3657         struct mem_cgroup *parent;
 3658         unsigned int nr_pages;
 3659         unsigned long uninitialized_var(flags);
 3660         int ret;
 3661 
 3662         VM_BUG_ON(mem_cgroup_is_root(child));
 3663 
 3664         ret = -EBUSY;
 3665         if (!get_page_unless_zero(page))
 3666                 goto out;
 3667         if (isolate_lru_page(page))
 3668                 goto put;
 3669 
 3670         nr_pages = hpage_nr_pages(page);
 3671 
 3672         parent = parent_mem_cgroup(child);
 3673         /*
 3674          * If no parent, move charges to root cgroup.
 3675          */
 3676         if (!parent)
 3677                 parent = root_mem_cgroup;
 3678 
 3679         if (nr_pages > 1) {
 3680                 VM_BUG_ON(!PageTransHuge(page));
 3681                 flags = compound_lock_irqsave(page);
 3682         }
 3683 
 3684         ret = mem_cgroup_move_account(page, nr_pages,
 3685                                 pc, child, parent);
 3686         if (!ret)
 3687                 __mem_cgroup_cancel_local_charge(child, nr_pages);
 3688 
 3689         if (nr_pages > 1)
 3690                 compound_unlock_irqrestore(page, flags);
 3691         putback_lru_page(page);
 3692 put:
 3693         put_page(page);
 3694 out:
 3695         return ret;
 3696 }
 3697 
 3698 /*
 3699  * Charge the memory controller for page usage.
 3700  * Return
 3701  * 0 if the charge was successful
 3702  * < 0 if the cgroup is over its limit
 3703  */
 3704 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
 3705                                 gfp_t gfp_mask, enum charge_type ctype)
 3706 {
 3707         struct mem_cgroup *memcg = NULL;
 3708         unsigned int nr_pages = 1;
 3709         bool oom = true;
 3710         int ret;
 3711 
 3712         if (PageTransHuge(page)) {
 3713                 nr_pages <<= compound_order(page);
 3714                 VM_BUG_ON(!PageTransHuge(page));
 3715                 /*
 3716                  * Never OOM-kill a process for a huge page.  The
 3717                  * fault handler will fall back to regular pages.
 3718                  */
 3719                 oom = false;
 3720         }
 3721 
 3722         ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
 3723         if (ret == -ENOMEM)
 3724                 return ret;
 3725         __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
 3726         return 0;
 3727 }
 3728 
 3729 int mem_cgroup_newpage_charge(struct page *page,
 3730                               struct mm_struct *mm, gfp_t gfp_mask)
 3731 {
 3732         if (mem_cgroup_disabled())
 3733                 return 0;
 3734         VM_BUG_ON(page_mapped(page));
 3735         VM_BUG_ON(page->mapping && !PageAnon(page));
 3736         VM_BUG_ON(!mm);
 3737         return mem_cgroup_charge_common(page, mm, gfp_mask,
 3738                                         MEM_CGROUP_CHARGE_TYPE_ANON);
 3739 }
 3740 
 3741 /*
 3742  * While swap-in, try_charge -> commit or cancel, the page is locked.
 3743  * And when try_charge() successfully returns, one refcnt to memcg without
 3744  * struct page_cgroup is acquired. This refcnt will be consumed by
 3745  * "commit()" or removed by "cancel()"
 3746  */
 3747 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
 3748                                           struct page *page,
 3749                                           gfp_t mask,
 3750                                           struct mem_cgroup **memcgp)
 3751 {
 3752         struct mem_cgroup *memcg;
 3753         struct page_cgroup *pc;
 3754         int ret;
 3755 
 3756         pc = lookup_page_cgroup(page);
 3757         /*
 3758          * Every swap fault against a single page tries to charge the
 3759          * page, bail as early as possible.  shmem_unuse() encounters
 3760          * already charged pages, too.  The USED bit is protected by
 3761          * the page lock, which serializes swap cache removal, which
 3762          * in turn serializes uncharging.
 3763          */
 3764         if (PageCgroupUsed(pc))
 3765                 return 0;
 3766         if (!do_swap_account)
 3767                 goto charge_cur_mm;
 3768         memcg = try_get_mem_cgroup_from_page(page);
 3769         if (!memcg)
 3770                 goto charge_cur_mm;
 3771         *memcgp = memcg;
 3772         ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
 3773         css_put(&memcg->css);
 3774         if (ret == -EINTR)
 3775                 ret = 0;
 3776         return ret;
 3777 charge_cur_mm:
 3778         ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
 3779         if (ret == -EINTR)
 3780                 ret = 0;
 3781         return ret;
 3782 }
 3783 
 3784 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
 3785                                  gfp_t gfp_mask, struct mem_cgroup **memcgp)
 3786 {
 3787         *memcgp = NULL;
 3788         if (mem_cgroup_disabled())
 3789                 return 0;
 3790         /*
 3791          * A racing thread's fault, or swapoff, may have already
 3792          * updated the pte, and even removed page from swap cache: in
 3793          * those cases unuse_pte()'s pte_same() test will fail; but
 3794          * there's also a KSM case which does need to charge the page.
 3795          */
 3796         if (!PageSwapCache(page)) {
 3797                 int ret;
 3798 
 3799                 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
 3800                 if (ret == -EINTR)
 3801                         ret = 0;
 3802                 return ret;
 3803         }
 3804         return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
 3805 }
 3806 
 3807 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
 3808 {
 3809         if (mem_cgroup_disabled())
 3810                 return;
 3811         if (!memcg)
 3812                 return;
 3813         __mem_cgroup_cancel_charge(memcg, 1);
 3814 }
 3815 
 3816 static void
 3817 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
 3818                                         enum charge_type ctype)
 3819 {
 3820         if (mem_cgroup_disabled())
 3821                 return;
 3822         if (!memcg)
 3823                 return;
 3824 
 3825         __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
 3826         /*
 3827          * Now swap is on-memory. This means this page may be
 3828          * counted both as mem and swap....double count.
 3829          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
 3830          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
 3831          * may call delete_from_swap_cache() before reach here.
 3832          */
 3833         if (do_swap_account && PageSwapCache(page)) {
 3834                 swp_entry_t ent = {.val = page_private(page)};
 3835                 mem_cgroup_uncharge_swap(ent);
 3836         }
 3837 }
 3838 
 3839 void mem_cgroup_commit_charge_swapin(struct page *page,
 3840                                      struct mem_cgroup *memcg)
 3841 {
 3842         __mem_cgroup_commit_charge_swapin(page, memcg,
 3843                                           MEM_CGROUP_CHARGE_TYPE_ANON);
 3844 }
 3845 
 3846 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
 3847                                 gfp_t gfp_mask)
 3848 {
 3849         struct mem_cgroup *memcg = NULL;
 3850         enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
 3851         int ret;
 3852 
 3853         if (mem_cgroup_disabled())
 3854                 return 0;
 3855         if (PageCompound(page))
 3856                 return 0;
 3857 
 3858         if (!PageSwapCache(page))
 3859                 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
 3860         else { /* page is swapcache/shmem */
 3861                 ret = __mem_cgroup_try_charge_swapin(mm, page,
 3862                                                      gfp_mask, &memcg);
 3863                 if (!ret)
 3864                         __mem_cgroup_commit_charge_swapin(page, memcg, type);
 3865         }
 3866         return ret;
 3867 }
 3868 
 3869 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
 3870                                    unsigned int nr_pages,
 3871                                    const enum charge_type ctype)
 3872 {
 3873         struct memcg_batch_info *batch = NULL;
 3874         bool uncharge_memsw = true;
 3875 
 3876         /* If swapout, usage of swap doesn't decrease */
 3877         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
 3878                 uncharge_memsw = false;
 3879 
 3880         batch = &current->memcg_batch;
 3881         /*
 3882          * In usual, we do css_get() when we remember memcg pointer.
 3883          * But in this case, we keep res->usage until end of a series of
 3884          * uncharges. Then, it's ok to ignore memcg's refcnt.
 3885          */
 3886         if (!batch->memcg)
 3887                 batch->memcg = memcg;
 3888         /*
 3889          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
 3890          * In those cases, all pages freed continuously can be expected to be in
 3891          * the same cgroup and we have chance to coalesce uncharges.
 3892          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
 3893          * because we want to do uncharge as soon as possible.
 3894          */
 3895 
 3896         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
 3897                 goto direct_uncharge;
 3898 
 3899         if (nr_pages > 1)
 3900                 goto direct_uncharge;
 3901 
 3902         /*
 3903          * In typical case, batch->memcg == mem. This means we can
 3904          * merge a series of uncharges to an uncharge of res_counter.
 3905          * If not, we uncharge res_counter ony by one.
 3906          */
 3907         if (batch->memcg != memcg)
 3908                 goto direct_uncharge;
 3909         /* remember freed charge and uncharge it later */
 3910         batch->nr_pages++;
 3911         if (uncharge_memsw)
 3912                 batch->memsw_nr_pages++;
 3913         return;
 3914 direct_uncharge:
 3915         res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
 3916         if (uncharge_memsw)
 3917                 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
 3918         if (unlikely(batch->memcg != memcg))
 3919                 memcg_oom_recover(memcg);
 3920 }
 3921 
 3922 /*
 3923  * uncharge if !page_mapped(page)
 3924  */
 3925 static struct mem_cgroup *
 3926 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
 3927                              bool end_migration)
 3928 {
 3929         struct mem_cgroup *memcg = NULL;
 3930         unsigned int nr_pages = 1;
 3931         struct page_cgroup *pc;
 3932         bool anon;
 3933 
 3934         if (mem_cgroup_disabled())
 3935                 return NULL;
 3936 
 3937         VM_BUG_ON(PageSwapCache(page));
 3938 
 3939         if (PageTransHuge(page)) {
 3940                 nr_pages <<= compound_order(page);
 3941                 VM_BUG_ON(!PageTransHuge(page));
 3942         }
 3943         /*
 3944          * Check if our page_cgroup is valid
 3945          */
 3946         pc = lookup_page_cgroup(page);
 3947         if (unlikely(!PageCgroupUsed(pc)))
 3948                 return NULL;
 3949 
 3950         lock_page_cgroup(pc);
 3951 
 3952         memcg = pc->mem_cgroup;
 3953 
 3954         if (!PageCgroupUsed(pc))
 3955                 goto unlock_out;
 3956 
 3957         anon = PageAnon(page);
 3958 
 3959         switch (ctype) {
 3960         case MEM_CGROUP_CHARGE_TYPE_ANON:
 3961                 /*
 3962                  * Generally PageAnon tells if it's the anon statistics to be
 3963                  * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
 3964                  * used before page reached the stage of being marked PageAnon.
 3965                  */
 3966                 anon = true;
 3967                 /* fallthrough */
 3968         case MEM_CGROUP_CHARGE_TYPE_DROP:
 3969                 /* See mem_cgroup_prepare_migration() */
 3970                 if (page_mapped(page))
 3971                         goto unlock_out;
 3972                 /*
 3973                  * Pages under migration may not be uncharged.  But
 3974                  * end_migration() /must/ be the one uncharging the
 3975                  * unused post-migration page and so it has to call
 3976                  * here with the migration bit still set.  See the
 3977                  * res_counter handling below.
 3978                  */
 3979                 if (!end_migration && PageCgroupMigration(pc))
 3980                         goto unlock_out;
 3981                 break;
 3982         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
 3983                 if (!PageAnon(page)) {  /* Shared memory */
 3984                         if (page->mapping && !page_is_file_cache(page))
 3985                                 goto unlock_out;
 3986                 } else if (page_mapped(page)) /* Anon */
 3987                                 goto unlock_out;
 3988                 break;
 3989         default:
 3990                 break;
 3991         }
 3992 
 3993         mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
 3994 
 3995         ClearPageCgroupUsed(pc);
 3996         /*
 3997          * pc->mem_cgroup is not cleared here. It will be accessed when it's
 3998          * freed from LRU. This is safe because uncharged page is expected not
 3999          * to be reused (freed soon). Exception is SwapCache, it's handled by
 4000          * special functions.
 4001          */
 4002 
 4003         unlock_page_cgroup(pc);
 4004         /*
 4005          * even after unlock, we have memcg->res.usage here and this memcg
 4006          * will never be freed.
 4007          */
 4008         memcg_check_events(memcg, page);
 4009         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
 4010                 mem_cgroup_swap_statistics(memcg, true);
 4011                 mem_cgroup_get(memcg);
 4012         }
 4013         /*
 4014          * Migration does not charge the res_counter for the
 4015          * replacement page, so leave it alone when phasing out the
 4016          * page that is unused after the migration.
 4017          */
 4018         if (!end_migration && !mem_cgroup_is_root(memcg))
 4019                 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
 4020 
 4021         return memcg;
 4022 
 4023 unlock_out:
 4024         unlock_page_cgroup(pc);
 4025         return NULL;
 4026 }
 4027 
 4028 void mem_cgroup_uncharge_page(struct page *page)
 4029 {
 4030         /* early check. */
 4031         if (page_mapped(page))
 4032                 return;
 4033         VM_BUG_ON(page->mapping && !PageAnon(page));
 4034         if (PageSwapCache(page))
 4035                 return;
 4036         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
 4037 }
 4038 
 4039 void mem_cgroup_uncharge_cache_page(struct page *page)
 4040 {
 4041         VM_BUG_ON(page_mapped(page));
 4042         VM_BUG_ON(page->mapping);
 4043         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
 4044 }
 4045 
 4046 /*
 4047  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 4048  * In that cases, pages are freed continuously and we can expect pages
 4049  * are in the same memcg. All these calls itself limits the number of
 4050  * pages freed at once, then uncharge_start/end() is called properly.
 4051  * This may be called prural(2) times in a context,
 4052  */
 4053 
 4054 void mem_cgroup_uncharge_start(void)
 4055 {
 4056         current->memcg_batch.do_batch++;
 4057         /* We can do nest. */
 4058         if (current->memcg_batch.do_batch == 1) {
 4059                 current->memcg_batch.memcg = NULL;
 4060                 current->memcg_batch.nr_pages = 0;
 4061                 current->memcg_batch.memsw_nr_pages = 0;
 4062         }
 4063 }
 4064 
 4065 void mem_cgroup_uncharge_end(void)
 4066 {
 4067         struct memcg_batch_info *batch = &current->memcg_batch;
 4068 
 4069         if (!batch->do_batch)
 4070                 return;
 4071 
 4072         batch->do_batch--;
 4073         if (batch->do_batch) /* If stacked, do nothing. */
 4074                 return;
 4075 
 4076         if (!batch->memcg)
 4077                 return;
 4078         /*
 4079          * This "batch->memcg" is valid without any css_get/put etc...
 4080          * bacause we hide charges behind us.
 4081          */
 4082         if (batch->nr_pages)
 4083                 res_counter_uncharge(&batch->memcg->res,
 4084                                      batch->nr_pages * PAGE_SIZE);
 4085         if (batch->memsw_nr_pages)
 4086                 res_counter_uncharge(&batch->memcg->memsw,
 4087                                      batch->memsw_nr_pages * PAGE_SIZE);
 4088         memcg_oom_recover(batch->memcg);
 4089         /* forget this pointer (for sanity check) */
 4090         batch->memcg = NULL;
 4091 }
 4092 
 4093 #ifdef CONFIG_SWAP
 4094 /*
 4095  * called after __delete_from_swap_cache() and drop "page" account.
 4096  * memcg information is recorded to swap_cgroup of "ent"
 4097  */
 4098 void
 4099 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
 4100 {
 4101         struct mem_cgroup *memcg;
 4102         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
 4103 
 4104         if (!swapout) /* this was a swap cache but the swap is unused ! */
 4105                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
 4106 
 4107         memcg = __mem_cgroup_uncharge_common(page, ctype, false);
 4108 
 4109         /*
 4110          * record memcg information,  if swapout && memcg != NULL,
 4111          * mem_cgroup_get() was called in uncharge().
 4112          */
 4113         if (do_swap_account && swapout && memcg)
 4114                 swap_cgroup_record(ent, css_id(&memcg->css));
 4115 }
 4116 #endif
 4117 
 4118 #ifdef CONFIG_MEMCG_SWAP
 4119 /*
 4120  * called from swap_entry_free(). remove record in swap_cgroup and
 4121  * uncharge "memsw" account.
 4122  */
 4123 void mem_cgroup_uncharge_swap(swp_entry_t ent)
 4124 {
 4125         struct mem_cgroup *memcg;
 4126         unsigned short id;
 4127 
 4128         if (!do_swap_account)
 4129                 return;
 4130 
 4131         id = swap_cgroup_record(ent, 0);
 4132         rcu_read_lock();
 4133         memcg = mem_cgroup_lookup(id);
 4134         if (memcg) {
 4135                 /*
 4136                  * We uncharge this because swap is freed.
 4137                  * This memcg can be obsolete one. We avoid calling css_tryget
 4138                  */
 4139                 if (!mem_cgroup_is_root(memcg))
 4140                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
 4141                 mem_cgroup_swap_statistics(memcg, false);
 4142                 mem_cgroup_put(memcg);
 4143         }
 4144         rcu_read_unlock();
 4145 }
 4146 
 4147 /**
 4148  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 4149  * @entry: swap entry to be moved
 4150  * @from:  mem_cgroup which the entry is moved from
 4151  * @to:  mem_cgroup which the entry is moved to
 4152  *
 4153  * It succeeds only when the swap_cgroup's record for this entry is the same
 4154  * as the mem_cgroup's id of @from.
 4155  *
 4156  * Returns 0 on success, -EINVAL on failure.
 4157  *
 4158  * The caller must have charged to @to, IOW, called res_counter_charge() about
 4159  * both res and memsw, and called css_get().
 4160  */
 4161 static int mem_cgroup_move_swap_account(swp_entry_t entry,
 4162                                 struct mem_cgroup *from, struct mem_cgroup *to)
 4163 {
 4164         unsigned short old_id, new_id;
 4165 
 4166         old_id = css_id(&from->css);
 4167         new_id = css_id(&to->css);
 4168 
 4169         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
 4170                 mem_cgroup_swap_statistics(from, false);
 4171                 mem_cgroup_swap_statistics(to, true);
 4172                 /*
 4173                  * This function is only called from task migration context now.
 4174                  * It postpones res_counter and refcount handling till the end
 4175                  * of task migration(mem_cgroup_clear_mc()) for performance
 4176                  * improvement. But we cannot postpone mem_cgroup_get(to)
 4177                  * because if the process that has been moved to @to does
 4178                  * swap-in, the refcount of @to might be decreased to 0.
 4179                  */
 4180                 mem_cgroup_get(to);
 4181                 return 0;
 4182         }
 4183         return -EINVAL;
 4184 }
 4185 #else
 4186 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
 4187                                 struct mem_cgroup *from, struct mem_cgroup *to)
 4188 {
 4189         return -EINVAL;
 4190 }
 4191 #endif
 4192 
 4193 /*
 4194  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 4195  * page belongs to.
 4196  */
 4197 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
 4198                                   struct mem_cgroup **memcgp)
 4199 {
 4200         struct mem_cgroup *memcg = NULL;
 4201         unsigned int nr_pages = 1;
 4202         struct page_cgroup *pc;
 4203         enum charge_type ctype;
 4204 
 4205         *memcgp = NULL;
 4206 
 4207         if (mem_cgroup_disabled())
 4208                 return;
 4209 
 4210         if (PageTransHuge(page))
 4211                 nr_pages <<= compound_order(page);
 4212 
 4213         pc = lookup_page_cgroup(page);
 4214         lock_page_cgroup(pc);
 4215         if (PageCgroupUsed(pc)) {
 4216                 memcg = pc->mem_cgroup;
 4217                 css_get(&memcg->css);
 4218                 /*
 4219                  * At migrating an anonymous page, its mapcount goes down
 4220                  * to 0 and uncharge() will be called. But, even if it's fully
 4221                  * unmapped, migration may fail and this page has to be
 4222                  * charged again. We set MIGRATION flag here and delay uncharge
 4223                  * until end_migration() is called
 4224                  *
 4225                  * Corner Case Thinking
 4226                  * A)
 4227                  * When the old page was mapped as Anon and it's unmap-and-freed
 4228                  * while migration was ongoing.
 4229                  * If unmap finds the old page, uncharge() of it will be delayed
 4230                  * until end_migration(). If unmap finds a new page, it's
 4231                  * uncharged when it make mapcount to be 1->0. If unmap code
 4232                  * finds swap_migration_entry, the new page will not be mapped
 4233                  * and end_migration() will find it(mapcount==0).
 4234                  *
 4235                  * B)
 4236                  * When the old page was mapped but migraion fails, the kernel
 4237                  * remaps it. A charge for it is kept by MIGRATION flag even
 4238                  * if mapcount goes down to 0. We can do remap successfully
 4239                  * without charging it again.
 4240                  *
 4241                  * C)
 4242                  * The "old" page is under lock_page() until the end of
 4243                  * migration, so, the old page itself will not be swapped-out.
 4244                  * If the new page is swapped out before end_migraton, our
 4245                  * hook to usual swap-out path will catch the event.
 4246                  */
 4247                 if (PageAnon(page))
 4248                         SetPageCgroupMigration(pc);
 4249         }
 4250         unlock_page_cgroup(pc);
 4251         /*
 4252          * If the page is not charged at this point,
 4253          * we return here.
 4254          */
 4255         if (!memcg)
 4256                 return;
 4257 
 4258         *memcgp = memcg;
 4259         /*
 4260          * We charge new page before it's used/mapped. So, even if unlock_page()
 4261          * is called before end_migration, we can catch all events on this new
 4262          * page. In the case new page is migrated but not remapped, new page's
 4263          * mapcount will be finally 0 and we call uncharge in end_migration().
 4264          */
 4265         if (PageAnon(page))
 4266                 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
 4267         else
 4268                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
 4269         /*
 4270          * The page is committed to the memcg, but it's not actually
 4271          * charged to the res_counter since we plan on replacing the
 4272          * old one and only one page is going to be left afterwards.
 4273          */
 4274         __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
 4275 }
 4276 
 4277 /* remove redundant charge if migration failed*/
 4278 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
 4279         struct page *oldpage, struct page *newpage, bool migration_ok)
 4280 {
 4281         struct page *used, *unused;
 4282         struct page_cgroup *pc;
 4283         bool anon;
 4284 
 4285         if (!memcg)
 4286                 return;
 4287 
 4288         if (!migration_ok) {
 4289                 used = oldpage;
 4290                 unused = newpage;
 4291         } else {
 4292                 used = newpage;
 4293                 unused = oldpage;
 4294         }
 4295         anon = PageAnon(used);
 4296         __mem_cgroup_uncharge_common(unused,
 4297                                      anon ? MEM_CGROUP_CHARGE_TYPE_ANON
 4298                                      : MEM_CGROUP_CHARGE_TYPE_CACHE,
 4299                                      true);
 4300         css_put(&memcg->css);
 4301         /*
 4302          * We disallowed uncharge of pages under migration because mapcount
 4303          * of the page goes down to zero, temporarly.
 4304          * Clear the flag and check the page should be charged.
 4305          */
 4306         pc = lookup_page_cgroup(oldpage);
 4307         lock_page_cgroup(pc);
 4308         ClearPageCgroupMigration(pc);
 4309         unlock_page_cgroup(pc);
 4310 
 4311         /*
 4312          * If a page is a file cache, radix-tree replacement is very atomic
 4313          * and we can skip this check. When it was an Anon page, its mapcount
 4314          * goes down to 0. But because we added MIGRATION flage, it's not
 4315          * uncharged yet. There are several case but page->mapcount check
 4316          * and USED bit check in mem_cgroup_uncharge_page() will do enough
 4317          * check. (see prepare_charge() also)
 4318          */
 4319         if (anon)
 4320                 mem_cgroup_uncharge_page(used);
 4321 }
 4322 
 4323 /*
 4324  * At replace page cache, newpage is not under any memcg but it's on
 4325  * LRU. So, this function doesn't touch res_counter but handles LRU
 4326  * in correct way. Both pages are locked so we cannot race with uncharge.
 4327  */
 4328 void mem_cgroup_replace_page_cache(struct page *oldpage,
 4329                                   struct page *newpage)
 4330 {
 4331         struct mem_cgroup *memcg = NULL;
 4332         struct page_cgroup *pc;
 4333         enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
 4334 
 4335         if (mem_cgroup_disabled())
 4336                 return;
 4337 
 4338         pc = lookup_page_cgroup(oldpage);
 4339         /* fix accounting on old pages */
 4340         lock_page_cgroup(pc);
 4341         if (PageCgroupUsed(pc)) {
 4342                 memcg = pc->mem_cgroup;
 4343                 mem_cgroup_charge_statistics(memcg, false, -1);
 4344                 ClearPageCgroupUsed(pc);
 4345         }
 4346         unlock_page_cgroup(pc);
 4347 
 4348         /*
 4349          * When called from shmem_replace_page(), in some cases the
 4350          * oldpage has already been charged, and in some cases not.
 4351          */
 4352         if (!memcg)
 4353                 return;
 4354         /*
 4355          * Even if newpage->mapping was NULL before starting replacement,
 4356          * the newpage may be on LRU(or pagevec for LRU) already. We lock
 4357          * LRU while we overwrite pc->mem_cgroup.
 4358          */
 4359         __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
 4360 }
 4361 
 4362 #ifdef CONFIG_DEBUG_VM
 4363 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
 4364 {
 4365         struct page_cgroup *pc;
 4366 
 4367         pc = lookup_page_cgroup(page);
 4368         /*
 4369          * Can be NULL while feeding pages into the page allocator for
 4370          * the first time, i.e. during boot or memory hotplug;
 4371          * or when mem_cgroup_disabled().
 4372          */
 4373         if (likely(pc) && PageCgroupUsed(pc))
 4374                 return pc;
 4375         return NULL;
 4376 }
 4377 
 4378 bool mem_cgroup_bad_page_check(struct page *page)
 4379 {
 4380         if (mem_cgroup_disabled())
 4381                 return false;
 4382 
 4383         return lookup_page_cgroup_used(page) != NULL;
 4384 }
 4385 
 4386 void mem_cgroup_print_bad_page(struct page *page)
 4387 {
 4388         struct page_cgroup *pc;
 4389 
 4390         pc = lookup_page_cgroup_used(page);
 4391         if (pc) {
 4392                 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
 4393                        pc, pc->flags, pc->mem_cgroup);
 4394         }
 4395 }
 4396 #endif
 4397 
 4398 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
 4399                                 unsigned long long val)
 4400 {
 4401         int retry_count;
 4402         u64 memswlimit, memlimit;
 4403         int ret = 0;
 4404         int children = mem_cgroup_count_children(memcg);
 4405         u64 curusage, oldusage;
 4406         int enlarge;
 4407 
 4408         /*
 4409          * For keeping hierarchical_reclaim simple, how long we should retry
 4410          * is depends on callers. We set our retry-count to be function
 4411          * of # of children which we should visit in this loop.
 4412          */
 4413         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
 4414 
 4415         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
 4416 
 4417         enlarge = 0;
 4418         while (retry_count) {
 4419                 if (signal_pending(current)) {
 4420                         ret = -EINTR;
 4421                         break;
 4422                 }
 4423                 /*
 4424                  * Rather than hide all in some function, I do this in
 4425                  * open coded manner. You see what this really does.
 4426                  * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
 4427                  */
 4428                 mutex_lock(&set_limit_mutex);
 4429                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 4430                 if (memswlimit < val) {
 4431                         ret = -EINVAL;
 4432                         mutex_unlock(&set_limit_mutex);
 4433                         break;
 4434                 }
 4435 
 4436                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
 4437                 if (memlimit < val)
 4438                         enlarge = 1;
 4439 
 4440                 ret = res_counter_set_limit(&memcg->res, val);
 4441                 if (!ret) {
 4442                         if (memswlimit == val)
 4443                                 memcg->memsw_is_minimum = true;
 4444                         else
 4445                                 memcg->memsw_is_minimum = false;
 4446                 }
 4447                 mutex_unlock(&set_limit_mutex);
 4448 
 4449                 if (!ret)
 4450                         break;
 4451 
 4452                 mem_cgroup_reclaim(memcg, GFP_KERNEL,
 4453                                    MEM_CGROUP_RECLAIM_SHRINK);
 4454                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
 4455                 /* Usage is reduced ? */
 4456                 if (curusage >= oldusage)
 4457                         retry_count--;
 4458                 else
 4459                         oldusage = curusage;
 4460         }
 4461         if (!ret && enlarge)
 4462                 memcg_oom_recover(memcg);
 4463 
 4464         return ret;
 4465 }
 4466 
 4467 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
 4468                                         unsigned long long val)
 4469 {
 4470         int retry_count;
 4471         u64 memlimit, memswlimit, oldusage, curusage;
 4472         int children = mem_cgroup_count_children(memcg);
 4473         int ret = -EBUSY;
 4474         int enlarge = 0;
 4475 
 4476         /* see mem_cgroup_resize_res_limit */
 4477         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
 4478         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
 4479         while (retry_count) {
 4480                 if (signal_pending(current)) {
 4481                         ret = -EINTR;
 4482                         break;
 4483                 }
 4484                 /*
 4485                  * Rather than hide all in some function, I do this in
 4486                  * open coded manner. You see what this really does.
 4487                  * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
 4488                  */
 4489                 mutex_lock(&set_limit_mutex);
 4490                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
 4491                 if (memlimit > val) {
 4492                         ret = -EINVAL;
 4493                         mutex_unlock(&set_limit_mutex);
 4494                         break;
 4495                 }
 4496                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 4497                 if (memswlimit < val)
 4498                         enlarge = 1;
 4499                 ret = res_counter_set_limit(&memcg->memsw, val);
 4500                 if (!ret) {
 4501                         if (memlimit == val)
 4502                                 memcg->memsw_is_minimum = true;
 4503                         else
 4504                                 memcg->memsw_is_minimum = false;
 4505                 }
 4506                 mutex_unlock(&set_limit_mutex);
 4507 
 4508                 if (!ret)
 4509                         break;
 4510 
 4511                 mem_cgroup_reclaim(memcg, GFP_KERNEL,
 4512                                    MEM_CGROUP_RECLAIM_NOSWAP |
 4513                                    MEM_CGROUP_RECLAIM_SHRINK);
 4514                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
 4515                 /* Usage is reduced ? */
 4516                 if (curusage >= oldusage)
 4517                         retry_count--;
 4518                 else
 4519                         oldusage = curusage;
 4520         }
 4521         if (!ret && enlarge)
 4522                 memcg_oom_recover(memcg);
 4523         return ret;
 4524 }
 4525 
 4526 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
 4527                                             gfp_t gfp_mask,
 4528                                             unsigned long *total_scanned)
 4529 {
 4530         unsigned long nr_reclaimed = 0;
 4531         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
 4532         unsigned long reclaimed;
 4533         int loop = 0;
 4534         struct mem_cgroup_tree_per_zone *mctz;
 4535         unsigned long long excess;
 4536         unsigned long nr_scanned;
 4537 
 4538         if (order > 0)
 4539                 return 0;
 4540 
 4541         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
 4542         /*
 4543          * This loop can run a while, specially if mem_cgroup's continuously
 4544          * keep exceeding their soft limit and putting the system under
 4545          * pressure
 4546          */
 4547         do {
 4548                 if (next_mz)
 4549                         mz = next_mz;
 4550                 else
 4551                         mz = mem_cgroup_largest_soft_limit_node(mctz);
 4552                 if (!mz)
 4553                         break;
 4554 
 4555                 nr_scanned = 0;
 4556                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
 4557                                                     gfp_mask, &nr_scanned);
 4558                 nr_reclaimed += reclaimed;
 4559                 *total_scanned += nr_scanned;
 4560                 spin_lock(&mctz->lock);
 4561 
 4562                 /*
 4563                  * If we failed to reclaim anything from this memory cgroup
 4564                  * it is time to move on to the next cgroup
 4565                  */
 4566                 next_mz = NULL;
 4567                 if (!reclaimed) {
 4568                         do {
 4569                                 /*
 4570                                  * Loop until we find yet another one.
 4571                                  *
 4572                                  * By the time we get the soft_limit lock
 4573                                  * again, someone might have aded the
 4574                                  * group back on the RB tree. Iterate to
 4575                                  * make sure we get a different mem.
 4576                                  * mem_cgroup_largest_soft_limit_node returns
 4577                                  * NULL if no other cgroup is present on
 4578                                  * the tree
 4579                                  */
 4580                                 next_mz =
 4581                                 __mem_cgroup_largest_soft_limit_node(mctz);
 4582                                 if (next_mz == mz)
 4583                                         css_put(&next_mz->memcg->css);
 4584                                 else /* next_mz == NULL or other memcg */
 4585                                         break;
 4586                         } while (1);
 4587                 }
 4588                 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
 4589                 excess = res_counter_soft_limit_excess(&mz->memcg->res);
 4590                 /*
 4591                  * One school of thought says that we should not add
 4592                  * back the node to the tree if reclaim returns 0.
 4593                  * But our reclaim could return 0, simply because due
 4594                  * to priority we are exposing a smaller subset of
 4595                  * memory to reclaim from. Consider this as a longer
 4596                  * term TODO.
 4597                  */
 4598                 /* If excess == 0, no tree ops */
 4599                 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
 4600                 spin_unlock(&mctz->lock);
 4601                 css_put(&mz->memcg->css);
 4602                 loop++;
 4603                 /*
 4604                  * Could not reclaim anything and there are no more
 4605                  * mem cgroups to try or we seem to be looping without
 4606                  * reclaiming anything.
 4607                  */
 4608                 if (!nr_reclaimed &&
 4609                         (next_mz == NULL ||
 4610                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
 4611                         break;
 4612         } while (!nr_reclaimed);
 4613         if (next_mz)
 4614                 css_put(&next_mz->memcg->css);
 4615         return nr_reclaimed;
 4616 }
 4617 
 4618 /**
 4619  * mem_cgroup_force_empty_list - clears LRU of a group
 4620  * @memcg: group to clear
 4621  * @node: NUMA node
 4622  * @zid: zone id
 4623  * @lru: lru to to clear
 4624  *
 4625  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
 4626  * reclaim the pages page themselves - pages are moved to the parent (or root)
 4627  * group.
 4628  */
 4629 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
 4630                                 int node, int zid, enum lru_list lru)
 4631 {
 4632         struct lruvec *lruvec;
 4633         unsigned long flags;
 4634         struct list_head *list;
 4635         struct page *busy;
 4636         struct zone *zone;
 4637 
 4638         zone = &NODE_DATA(node)->node_zones[zid];
 4639         lruvec = mem_cgroup_zone_lruvec(zone, memcg);
 4640         list = &lruvec->lists[lru];
 4641 
 4642         busy = NULL;
 4643         do {
 4644                 struct page_cgroup *pc;
 4645                 struct page *page;
 4646 
 4647                 spin_lock_irqsave(&zone->lru_lock, flags);
 4648                 if (list_empty(list)) {
 4649                         spin_unlock_irqrestore(&zone->lru_lock, flags);
 4650                         break;
 4651                 }
 4652                 page = list_entry(list->prev, struct page, lru);
 4653                 if (busy == page) {
 4654                         list_move(&page->lru, list);
 4655                         busy = NULL;
 4656                         spin_unlock_irqrestore(&zone->lru_lock, flags);
 4657                         continue;
 4658                 }
 4659                 spin_unlock_irqrestore(&zone->lru_lock, flags);
 4660 
 4661                 pc = lookup_page_cgroup(page);
 4662 
 4663                 if (mem_cgroup_move_parent(page, pc, memcg)) {
 4664                         /* found lock contention or "pc" is obsolete. */
 4665                         busy = page;
 4666                         cond_resched();
 4667                 } else
 4668                         busy = NULL;
 4669         } while (!list_empty(list));
 4670 }
 4671 
 4672 /*
 4673  * make mem_cgroup's charge to be 0 if there is no task by moving
 4674  * all the charges and pages to the parent.
 4675  * This enables deleting this mem_cgroup.
 4676  *
 4677  * Caller is responsible for holding css reference on the memcg.
 4678  */
 4679 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
 4680 {
 4681         int node, zid;
 4682         u64 usage;
 4683 
 4684         do {
 4685                 /* This is for making all *used* pages to be on LRU. */
 4686                 lru_add_drain_all();
 4687                 drain_all_stock_sync(memcg);
 4688                 mem_cgroup_start_move(memcg);
 4689                 for_each_node_state(node, N_MEMORY) {
 4690                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 4691                                 enum lru_list lru;
 4692                                 for_each_lru(lru) {
 4693                                         mem_cgroup_force_empty_list(memcg,
 4694                                                         node, zid, lru);
 4695                                 }
 4696                         }
 4697                 }
 4698                 mem_cgroup_end_move(memcg);
 4699                 memcg_oom_recover(memcg);
 4700                 cond_resched();
 4701 
 4702                 /*
 4703                  * Kernel memory may not necessarily be trackable to a specific
 4704                  * process. So they are not migrated, and therefore we can't
 4705                  * expect their value to drop to 0 here.
 4706                  * Having res filled up with kmem only is enough.
 4707                  *
 4708                  * This is a safety check because mem_cgroup_force_empty_list
 4709                  * could have raced with mem_cgroup_replace_page_cache callers
 4710                  * so the lru seemed empty but the page could have been added
 4711                  * right after the check. RES_USAGE should be safe as we always
 4712                  * charge before adding to the LRU.
 4713                  */
 4714                 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
 4715                         res_counter_read_u64(&memcg->kmem, RES_USAGE);
 4716         } while (usage > 0);
 4717 }
 4718 
 4719 /*
 4720  * Reclaims as many pages from the given memcg as possible and moves
 4721  * the rest to the parent.
 4722  *
 4723  * Caller is responsible for holding css reference for memcg.
 4724  */
 4725 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
 4726 {
 4727         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
 4728         struct cgroup *cgrp = memcg->css.cgroup;
 4729 
 4730         /* returns EBUSY if there is a task or if we come here twice. */
 4731         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
 4732                 return -EBUSY;
 4733 
 4734         /* we call try-to-free pages for make this cgroup empty */
 4735         lru_add_drain_all();
 4736         /* try to free all pages in this cgroup */
 4737         while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
 4738                 int progress;
 4739 
 4740                 if (signal_pending(current))
 4741                         return -EINTR;
 4742 
 4743                 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
 4744                                                 false);
 4745                 if (!progress) {
 4746                         nr_retries--;
 4747                         /* maybe some writeback is necessary */
 4748                         congestion_wait(BLK_RW_ASYNC, HZ/10);
 4749                 }
 4750 
 4751         }
 4752         lru_add_drain();
 4753         mem_cgroup_reparent_charges(memcg);
 4754 
 4755         return 0;
 4756 }
 4757 
 4758 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
 4759 {
 4760         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
 4761         int ret;
 4762 
 4763         if (mem_cgroup_is_root(memcg))
 4764                 return -EINVAL;
 4765         css_get(&memcg->css);
 4766         ret = mem_cgroup_force_empty(memcg);
 4767         css_put(&memcg->css);
 4768 
 4769         return ret;
 4770 }
 4771 
 4772 
 4773 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
 4774 {
 4775         return mem_cgroup_from_cont(cont)->use_hierarchy;
 4776 }
 4777 
 4778 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
 4779                                         u64 val)
 4780 {
 4781         int retval = 0;
 4782         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
 4783         struct cgroup *parent = cont->parent;
 4784         struct mem_cgroup *parent_memcg = NULL;
 4785 
 4786         if (parent)
 4787                 parent_memcg = mem_cgroup_from_cont(parent);
 4788 
 4789         cgroup_lock();
 4790 
 4791         if (memcg->use_hierarchy == val)
 4792                 goto out;
 4793 
 4794         /*
 4795          * If parent's use_hierarchy is set, we can't make any modifications
 4796          * in the child subtrees. If it is unset, then the change can
 4797          * occur, provided the current cgroup has no children.
 4798          *
 4799          * For the root cgroup, parent_mem is NULL, we allow value to be
 4800          * set if there are no children.
 4801          */
 4802         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
 4803                                 (val == 1 || val == 0)) {
 4804                 if (list_empty(&cont->children))
 4805                         memcg->use_hierarchy = val;
 4806                 else
 4807                         retval = -EBUSY;
 4808         } else
 4809                 retval = -EINVAL;
 4810 
 4811 out:
 4812         cgroup_unlock();
 4813 
 4814         return retval;
 4815 }
 4816 
 4817 
 4818 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
 4819                                                enum mem_cgroup_stat_index idx)
 4820 {
 4821         struct mem_cgroup *iter;
 4822         long val = 0;
 4823 
 4824         /* Per-cpu values can be negative, use a signed accumulator */
 4825         for_each_mem_cgroup_tree(iter, memcg)
 4826                 val += mem_cgroup_read_stat(iter, idx);
 4827 
 4828         if (val < 0) /* race ? */
 4829                 val = 0;
 4830         return val;
 4831 }
 4832 
 4833 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
 4834 {
 4835         u64 val;
 4836 
 4837         if (!mem_cgroup_is_root(memcg)) {
 4838                 if (!swap)
 4839                         return res_counter_read_u64(&memcg->res, RES_USAGE);
 4840                 else
 4841                         return res_counter_read_u64(&memcg->memsw, RES_USAGE);
 4842         }
 4843 
 4844         val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
 4845         val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
 4846 
 4847         if (swap)
 4848                 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
 4849 
 4850         return val << PAGE_SHIFT;
 4851 }
 4852 
 4853 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
 4854                                struct file *file, char __user *buf,
 4855                                size_t nbytes, loff_t *ppos)
 4856 {
 4857         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
 4858         char str[64];
 4859         u64 val;
 4860         int name, len;
 4861         enum res_type type;
 4862 
 4863         type = MEMFILE_TYPE(cft->private);
 4864         name = MEMFILE_ATTR(cft->private);
 4865 
 4866         if (!do_swap_account && type == _MEMSWAP)
 4867                 return -EOPNOTSUPP;
 4868 
 4869         switch (type) {
 4870         case _MEM:
 4871                 if (name == RES_USAGE)
 4872                         val = mem_cgroup_usage(memcg, false);
 4873                 else
 4874                         val = res_counter_read_u64(&memcg->res, name);
 4875                 break;
 4876         case _MEMSWAP:
 4877                 if (name == RES_USAGE)
 4878                         val = mem_cgroup_usage(memcg, true);
 4879                 else
 4880                         val = res_counter_read_u64(&memcg->memsw, name);
 4881                 break;
 4882         case _KMEM:
 4883                 val = res_counter_read_u64(&memcg->kmem, name);
 4884                 break;
 4885         default:
 4886                 BUG();
 4887         }
 4888 
 4889         len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
 4890         return simple_read_from_buffer(buf, nbytes, ppos, str, len);
 4891 }
 4892 
 4893 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
 4894 {
 4895         int ret = -EINVAL;
 4896 #ifdef CONFIG_MEMCG_KMEM
 4897         bool must_inc_static_branch = false;
 4898 
 4899         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
 4900         /*
 4901          * For simplicity, we won't allow this to be disabled.  It also can't
 4902          * be changed if the cgroup has children already, or if tasks had
 4903          * already joined.
 4904          *
 4905          * If tasks join before we set the limit, a person looking at
 4906          * kmem.usage_in_bytes will have no way to determine when it took
 4907          * place, which makes the value quite meaningless.
 4908          *
 4909          * After it first became limited, changes in the value of the limit are
 4910          * of course permitted.
 4911          *
 4912          * Taking the cgroup_lock is really offensive, but it is so far the only
 4913          * way to guarantee that no children will appear. There are plenty of
 4914          * other offenders, and they should all go away. Fine grained locking
 4915          * is probably the way to go here. When we are fully hierarchical, we
 4916          * can also get rid of the use_hierarchy check.
 4917          */
 4918         cgroup_lock();
 4919         mutex_lock(&set_limit_mutex);
 4920         if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
 4921                 if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
 4922                                                 !list_empty(&cont->children))) {
 4923                         ret = -EBUSY;
 4924                         goto out;
 4925                 }
 4926                 ret = res_counter_set_limit(&memcg->kmem, val);
 4927                 VM_BUG_ON(ret);
 4928 
 4929                 ret = memcg_update_cache_sizes(memcg);
 4930                 if (ret) {
 4931                         res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
 4932                         goto out;
 4933                 }
 4934                 must_inc_static_branch = true;
 4935                 /*
 4936                  * kmem charges can outlive the cgroup. In the case of slab
 4937                  * pages, for instance, a page contain objects from various
 4938                  * processes, so it is unfeasible to migrate them away. We
 4939                  * need to reference count the memcg because of that.
 4940                  */
 4941                 mem_cgroup_get(memcg);
 4942         } else
 4943                 ret = res_counter_set_limit(&memcg->kmem, val);
 4944 out:
 4945         mutex_unlock(&set_limit_mutex);
 4946         cgroup_unlock();
 4947 
 4948         /*
 4949          * We are by now familiar with the fact that we can't inc the static
 4950          * branch inside cgroup_lock. See disarm functions for details. A
 4951          * worker here is overkill, but also wrong: After the limit is set, we
 4952          * must start accounting right away. Since this operation can't fail,
 4953          * we can safely defer it to here - no rollback will be needed.
 4954          *
 4955          * The boolean used to control this is also safe, because
 4956          * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
 4957          * able to set it to true;
 4958          */
 4959         if (must_inc_static_branch) {
 4960                 static_key_slow_inc(&memcg_kmem_enabled_key);
 4961                 /*
 4962                  * setting the active bit after the inc will guarantee no one
 4963                  * starts accounting before all call sites are patched
 4964                  */
 4965                 memcg_kmem_set_active(memcg);
 4966         }
 4967 
 4968 #endif
 4969         return ret;
 4970 }
 4971 
 4972 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
 4973 {
 4974         int ret = 0;
 4975         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
 4976         if (!parent)
 4977                 goto out;
 4978 
 4979         memcg->kmem_account_flags = parent->kmem_account_flags;
 4980 #ifdef CONFIG_MEMCG_KMEM
 4981         /*
 4982          * When that happen, we need to disable the static branch only on those
 4983          * memcgs that enabled it. To achieve this, we would be forced to
 4984          * complicate the code by keeping track of which memcgs were the ones
 4985          * that actually enabled limits, and which ones got it from its
 4986          * parents.
 4987          *
 4988          * It is a lot simpler just to do static_key_slow_inc() on every child
 4989          * that is accounted.
 4990          */
 4991         if (!memcg_kmem_is_active(memcg))
 4992                 goto out;
 4993 
 4994         /*
 4995          * destroy(), called if we fail, will issue static_key_slow_inc() and
 4996          * mem_cgroup_put() if kmem is enabled. We have to either call them
 4997          * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
 4998          * this more consistent, since it always leads to the same destroy path
 4999          */
 5000         mem_cgroup_get(memcg);
 5001         static_key_slow_inc(&memcg_kmem_enabled_key);
 5002 
 5003         mutex_lock(&set_limit_mutex);
 5004         ret = memcg_update_cache_sizes(memcg);
 5005         mutex_unlock(&set_limit_mutex);
 5006 #endif
 5007 out:
 5008         return ret;
 5009 }
 5010 
 5011 /*
 5012  * The user of this function is...
 5013  * RES_LIMIT.
 5014  */
 5015 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
 5016                             const char *buffer)
 5017 {
 5018         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
 5019         enum res_type type;
 5020         int name;
 5021         unsigned long long val;
 5022         int ret;
 5023 
 5024         type = MEMFILE_TYPE(cft->private);
 5025         name = MEMFILE_ATTR(cft->private);
 5026 
 5027         if (!do_swap_account && type == _MEMSWAP)
 5028                 return -EOPNOTSUPP;
 5029 
 5030         switch (name) {
 5031         case RES_LIMIT:
 5032                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
 5033                         ret = -EINVAL;
 5034                         break;
 5035                 }
 5036                 /* This function does all necessary parse...reuse it */
 5037                 ret = res_counter_memparse_write_strategy(buffer, &val);
 5038                 if (ret)
 5039                         break;
 5040                 if (type == _MEM)
 5041                         ret = mem_cgroup_resize_limit(memcg, val);
 5042                 else if (type == _MEMSWAP)
 5043                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
 5044                 else if (type == _KMEM)
 5045                         ret = memcg_update_kmem_limit(cont, val);
 5046                 else
 5047                         return -EINVAL;
 5048                 break;
 5049         case RES_SOFT_LIMIT:
 5050                 ret = res_counter_memparse_write_strategy(buffer, &val);
 5051                 if (ret)
 5052                         break;
 5053                 /*
 5054                  * For memsw, soft limits are hard to implement in terms
 5055                  * of semantics, for now, we support soft limits for
 5056                  * control without swap
 5057                  */
 5058                 if (type == _MEM)
 5059                         ret = res_counter_set_soft_limit(&memcg->res, val);
 5060                 else
 5061                         ret = -EINVAL;
 5062                 break;
 5063         default:
 5064                 ret = -EINVAL; /* should be BUG() ? */
 5065                 break;
 5066         }
 5067         return ret;
 5068 }
 5069 
 5070 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
 5071                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
 5072 {
 5073         struct cgroup *cgroup;
 5074         unsigned long long min_limit, min_memsw_limit, tmp;
 5075 
 5076         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
 5077         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 5078         cgroup = memcg->css.cgroup;
 5079         if (!memcg->use_hierarchy)
 5080                 goto out;
 5081 
 5082         while (cgroup->parent) {
 5083                 cgroup = cgroup->parent;
 5084                 memcg = mem_cgroup_from_cont(cgroup);
 5085                 if (!memcg->use_hierarchy)
 5086                         break;
 5087                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
 5088                 min_limit = min(min_limit, tmp);
 5089                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 5090                 min_memsw_limit = min(min_memsw_limit, tmp);
 5091         }
 5092 out:
 5093         *mem_limit = min_limit;
 5094         *memsw_limit = min_memsw_limit;
 5095 }
 5096 
 5097 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
 5098 {
 5099         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
 5100         int name;
 5101         enum res_type type;
 5102 
 5103         type = MEMFILE_TYPE(event);
 5104         name = MEMFILE_ATTR(event);
 5105 
 5106         if (!do_swap_account && type == _MEMSWAP)
 5107                 return -EOPNOTSUPP;
 5108 
 5109         switch (name) {
 5110         case RES_MAX_USAGE:
 5111                 if (type == _MEM)
 5112                         res_counter_reset_max(&memcg->res);
 5113                 else if (type == _MEMSWAP)
 5114                         res_counter_reset_max(&memcg->memsw);
 5115                 else if (type == _KMEM)
 5116                         res_counter_reset_max(&memcg->kmem);
 5117                 else
 5118                         return -EINVAL;
 5119                 break;
 5120         case RES_FAILCNT:
 5121                 if (type == _MEM)
 5122                         res_counter_reset_failcnt(&memcg->res);
 5123                 else if (type == _MEMSWAP)
 5124                         res_counter_reset_failcnt(&memcg->memsw);
 5125                 else if (type == _KMEM)
 5126                         res_counter_reset_failcnt(&memcg->kmem);
 5127                 else
 5128                         return -EINVAL;
 5129                 break;
 5130         }
 5131 
 5132         return 0;
 5133 }
 5134 
 5135 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
 5136                                         struct cftype *cft)
 5137 {
 5138         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
 5139 }
 5140 
 5141 #ifdef CONFIG_MMU
 5142 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
 5143                                         struct cftype *cft, u64 val)
 5144 {
 5145         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
 5146 
 5147         if (val >= (1 << NR_MOVE_TYPE))
 5148                 return -EINVAL;
 5149         /*
 5150          * We check this value several times in both in can_attach() and
 5151          * attach(), so we need cgroup lock to prevent this value from being
 5152          * inconsistent.
 5153          */
 5154         cgroup_lock();
 5155         memcg->move_charge_at_immigrate = val;
 5156         cgroup_unlock();
 5157 
 5158         return 0;
 5159 }
 5160 #else
 5161 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
 5162                                         struct cftype *cft, u64 val)
 5163 {
 5164         return -ENOSYS;
 5165 }
 5166 #endif
 5167 
 5168 #ifdef CONFIG_NUMA
 5169 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
 5170                                       struct seq_file *m)
 5171 {
 5172         int nid;
 5173         unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
 5174         unsigned long node_nr;
 5175         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
 5176 
 5177         total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
 5178         seq_printf(m, "total=%lu", total_nr);
 5179         for_each_node_state(nid, N_MEMORY) {
 5180                 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
 5181                 seq_printf(m, " N%d=%lu", nid, node_nr);
 5182         }
 5183         seq_putc(m, '\n');
 5184 
 5185         file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
 5186         seq_printf(m, "file=%lu", file_nr);
 5187         for_each_node_state(nid, N_MEMORY) {
 5188                 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
 5189                                 LRU_ALL_FILE);
 5190                 seq_printf(m, " N%d=%lu", nid, node_nr);
 5191         }
 5192         seq_putc(m, '\n');
 5193 
 5194         anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
 5195         seq_printf(m, "anon=%lu", anon_nr);
 5196         for_each_node_state(nid, N_MEMORY) {
 5197                 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
 5198                                 LRU_ALL_ANON);
 5199                 seq_printf(m, " N%d=%lu", nid, node_nr);
 5200         }
 5201         seq_putc(m, '\n');
 5202 
 5203         unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
 5204         seq_printf(m, "unevictable=%lu", unevictable_nr);
 5205         for_each_node_state(nid, N_MEMORY) {
 5206                 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
 5207                                 BIT(LRU_UNEVICTABLE));
 5208                 seq_printf(m, " N%d=%lu", nid, node_nr);
 5209         }
 5210         seq_putc(m, '\n');
 5211         return 0;
 5212 }
 5213 #endif /* CONFIG_NUMA */
 5214 
 5215 static const char * const mem_cgroup_lru_names[] = {
 5216         "inactive_anon",
 5217         "active_anon",
 5218         "inactive_file",
 5219         "active_file",
 5220         "unevictable",
 5221 };
 5222 
 5223 static inline void mem_cgroup_lru_names_not_uptodate(void)
 5224 {
 5225         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
 5226 }
 5227 
 5228 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
 5229                                  struct seq_file *m)
 5230 {
 5231         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
 5232         struct mem_cgroup *mi;
 5233         unsigned int i;
 5234 
 5235         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
 5236                 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
 5237                         continue;
 5238                 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
 5239                            mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
 5240         }
 5241 
 5242         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
 5243                 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
 5244                            mem_cgroup_read_events(memcg, i));
 5245 
 5246         for (i = 0; i < NR_LRU_LISTS; i++)
 5247                 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
 5248                            mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
 5249 
 5250         /* Hierarchical information */
 5251         {
 5252                 unsigned long long limit, memsw_limit;
 5253                 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
 5254                 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
 5255                 if (do_swap_account)
 5256                         seq_printf(m, "hierarchical_memsw_limit %llu\n",
 5257                                    memsw_limit);
 5258         }
 5259 
 5260         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
 5261                 long long val = 0;
 5262 
 5263                 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
 5264                         continue;
 5265                 for_each_mem_cgroup_tree(mi, memcg)
 5266                         val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
 5267                 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
 5268         }
 5269 
 5270         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
 5271                 unsigned long long val = 0;
 5272 
 5273                 for_each_mem_cgroup_tree(mi, memcg)
 5274                         val += mem_cgroup_read_events(mi, i);
 5275                 seq_printf(m, "total_%s %llu\n",
 5276                            mem_cgroup_events_names[i], val);
 5277         }
 5278 
 5279         for (i = 0; i < NR_LRU_LISTS; i++) {
 5280                 unsigned long long val = 0;
 5281 
 5282                 for_each_mem_cgroup_tree(mi, memcg)
 5283                         val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
 5284                 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
 5285         }
 5286 
 5287 #ifdef CONFIG_DEBUG_VM
 5288         {
 5289                 int nid, zid;
 5290                 struct mem_cgroup_per_zone *mz;
 5291                 struct zone_reclaim_stat *rstat;
 5292                 unsigned long recent_rotated[2] = {0, 0};
 5293                 unsigned long recent_scanned[2] = {0, 0};
 5294 
 5295                 for_each_online_node(nid)
 5296                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 5297                                 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 5298                                 rstat = &mz->lruvec.reclaim_stat;
 5299 
 5300                                 recent_rotated[0] += rstat->recent_rotated[0];
 5301                                 recent_rotated[1] += rstat->recent_rotated[1];
 5302                                 recent_scanned[0] += rstat->recent_scanned[0];
 5303                                 recent_scanned[1] += rstat->recent_scanned[1];
 5304                         }
 5305                 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
 5306                 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
 5307                 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
 5308                 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
 5309         }
 5310 #endif
 5311 
 5312         return 0;
 5313 }
 5314 
 5315 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
 5316 {
 5317         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
 5318 
 5319         return mem_cgroup_swappiness(memcg);
 5320 }
 5321 
 5322 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
 5323                                        u64 val)
 5324 {
 5325         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
 5326         struct mem_cgroup *parent;
 5327 
 5328         if (val > 100)
 5329                 return -EINVAL;
 5330 
 5331         if (cgrp->parent == NULL)
 5332                 return -EINVAL;
 5333 
 5334         parent = mem_cgroup_from_cont(cgrp->parent);
 5335 
 5336         cgroup_lock();
 5337 
 5338         /* If under hierarchy, only empty-root can set this value */
 5339         if ((parent->use_hierarchy) ||
 5340             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
 5341                 cgroup_unlock();
 5342                 return -EINVAL;
 5343         }
 5344 
 5345         memcg->swappiness = val;
 5346 
 5347         cgroup_unlock();
 5348 
 5349         return 0;
 5350 }
 5351 
 5352 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
 5353 {
 5354         struct mem_cgroup_threshold_ary *t;
 5355         u64 usage;
 5356         int i;
 5357 
 5358         rcu_read_lock();
 5359         if (!swap)
 5360                 t = rcu_dereference(memcg->thresholds.primary);
 5361         else
 5362                 t = rcu_dereference(memcg->memsw_thresholds.primary);
 5363 
 5364         if (!t)
 5365                 goto unlock;
 5366 
 5367         usage = mem_cgroup_usage(memcg, swap);
 5368 
 5369         /*
 5370          * current_threshold points to threshold just below or equal to usage.
 5371          * If it's not true, a threshold was crossed after last
 5372          * call of __mem_cgroup_threshold().
 5373          */
 5374         i = t->current_threshold;
 5375 
 5376         /*
 5377          * Iterate backward over array of thresholds starting from
 5378          * current_threshold and check if a threshold is crossed.
 5379          * If none of thresholds below usage is crossed, we read
 5380          * only one element of the array here.
 5381          */
 5382         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
 5383                 eventfd_signal(t->entries[i].eventfd, 1);
 5384 
 5385         /* i = current_threshold + 1 */
 5386         i++;
 5387 
 5388         /*
 5389          * Iterate forward over array of thresholds starting from
 5390          * current_threshold+1 and check if a threshold is crossed.
 5391          * If none of thresholds above usage is crossed, we read
 5392          * only one element of the array here.
 5393          */
 5394         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
 5395                 eventfd_signal(t->entries[i].eventfd, 1);
 5396 
 5397         /* Update current_threshold */
 5398         t->current_threshold = i - 1;
 5399 unlock:
 5400         rcu_read_unlock();
 5401 }
 5402 
 5403 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
 5404 {
 5405         while (memcg) {
 5406                 __mem_cgroup_threshold(memcg, false);
 5407                 if (do_swap_account)
 5408                         __mem_cgroup_threshold(memcg, true);
 5409 
 5410                 memcg = parent_mem_cgroup(memcg);
 5411         }
 5412 }
 5413 
 5414 static int compare_thresholds(const void *a, const void *b)
 5415 {
 5416         const struct mem_cgroup_threshold *_a = a;
 5417         const struct mem_cgroup_threshold *_b = b;
 5418 
 5419         return _a->threshold - _b->threshold;
 5420 }
 5421 
 5422 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
 5423 {
 5424         struct mem_cgroup_eventfd_list *ev;
 5425 
 5426         list_for_each_entry(ev, &memcg->oom_notify, list)
 5427                 eventfd_signal(ev->eventfd, 1);
 5428         return 0;
 5429 }
 5430 
 5431 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
 5432 {
 5433         struct mem_cgroup *iter;
 5434 
 5435         for_each_mem_cgroup_tree(iter, memcg)
 5436                 mem_cgroup_oom_notify_cb(iter);
 5437 }
 5438 
 5439 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
 5440         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
 5441 {
 5442         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
 5443         struct mem_cgroup_thresholds *thresholds;
 5444         struct mem_cgroup_threshold_ary *new;
 5445         enum res_type type = MEMFILE_TYPE(cft->private);
 5446         u64 threshold, usage;
 5447         int i, size, ret;
 5448 
 5449         ret = res_counter_memparse_write_strategy(args, &threshold);
 5450         if (ret)
 5451                 return ret;
 5452 
 5453         mutex_lock(&memcg->thresholds_lock);
 5454 
 5455         if (type == _MEM)
 5456                 thresholds = &memcg->thresholds;
 5457         else if (type == _MEMSWAP)
 5458                 thresholds = &memcg->memsw_thresholds;
 5459         else
 5460                 BUG();
 5461 
 5462         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
 5463 
 5464         /* Check if a threshold crossed before adding a new one */
 5465         if (thresholds->primary)
 5466                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
 5467 
 5468         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
 5469 
 5470         /* Allocate memory for new array of thresholds */
 5471         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
 5472                         GFP_KERNEL);
 5473         if (!new) {
 5474                 ret = -ENOMEM;
 5475                 goto unlock;
 5476         }
 5477         new->size = size;
 5478 
 5479         /* Copy thresholds (if any) to new array */
 5480         if (thresholds->primary) {
 5481                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
 5482                                 sizeof(struct mem_cgroup_threshold));
 5483         }
 5484 
 5485         /* Add new threshold */
 5486         new->entries[size - 1].eventfd = eventfd;
 5487         new->entries[size - 1].threshold = threshold;
 5488 
 5489         /* Sort thresholds. Registering of new threshold isn't time-critical */
 5490         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
 5491                         compare_thresholds, NULL);
 5492 
 5493         /* Find current threshold */
 5494         new->current_threshold = -1;
 5495         for (i = 0; i < size; i++) {
 5496                 if (new->entries[i].threshold <= usage) {
 5497                         /*
 5498                          * new->current_threshold will not be used until
 5499                          * rcu_assign_pointer(), so it's safe to increment
 5500                          * it here.
 5501                          */
 5502                         ++new->current_threshold;
 5503                 } else
 5504                         break;
 5505         }
 5506 
 5507         /* Free old spare buffer and save old primary buffer as spare */
 5508         kfree(thresholds->spare);
 5509         thresholds->spare = thresholds->primary;
 5510 
 5511         rcu_assign_pointer(thresholds->primary, new);
 5512 
 5513         /* To be sure that nobody uses thresholds */
 5514         synchronize_rcu();
 5515 
 5516 unlock:
 5517         mutex_unlock(&memcg->thresholds_lock);
 5518 
 5519         return ret;
 5520 }
 5521 
 5522 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
 5523         struct cftype *cft, struct eventfd_ctx *eventfd)
 5524 {
 5525         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
 5526         struct mem_cgroup_thresholds *thresholds;
 5527         struct mem_cgroup_threshold_ary *new;
 5528         enum res_type type = MEMFILE_TYPE(cft->private);
 5529         u64 usage;
 5530         int i, j, size;
 5531 
 5532         mutex_lock(&memcg->thresholds_lock);
 5533         if (type == _MEM)
 5534                 thresholds = &memcg->thresholds;
 5535         else if (type == _MEMSWAP)
 5536                 thresholds = &memcg->memsw_thresholds;
 5537         else
 5538                 BUG();
 5539 
 5540         if (!thresholds->primary)
 5541                 goto unlock;
 5542 
 5543         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
 5544 
 5545         /* Check if a threshold crossed before removing */
 5546         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
 5547 
 5548         /* Calculate new number of threshold */
 5549         size = 0;
 5550         for (i = 0; i < thresholds->primary->size; i++) {
 5551                 if (thresholds->primary->entries[i].eventfd != eventfd)
 5552                         size++;
 5553         }
 5554 
 5555         new = thresholds->spare;
 5556 
 5557         /* Set thresholds array to NULL if we don't have thresholds */
 5558         if (!size) {
 5559                 kfree(new);
 5560                 new = NULL;
 5561                 goto swap_buffers;
 5562         }
 5563 
 5564         new->size = size;
 5565 
 5566         /* Copy thresholds and find current threshold */
 5567         new->current_threshold = -1;
 5568         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
 5569                 if (thresholds->primary->entries[i].eventfd == eventfd)
 5570                         continue;
 5571 
 5572                 new->entries[j] = thresholds->primary->entries[i];
 5573                 if (new->entries[j].threshold <= usage) {
 5574                         /*
 5575                          * new->current_threshold will not be used
 5576                          * until rcu_assign_pointer(), so it's safe to increment
 5577                          * it here.
 5578                          */
 5579                         ++new->current_threshold;
 5580                 }
 5581                 j++;
 5582         }
 5583 
 5584 swap_buffers:
 5585         /* Swap primary and spare array */
 5586         thresholds->spare = thresholds->primary;
 5587         /* If all events are unregistered, free the spare array */
 5588         if (!new) {
 5589                 kfree(thresholds->spare);
 5590                 thresholds->spare = NULL;
 5591         }
 5592 
 5593         rcu_assign_pointer(thresholds->primary, new);
 5594 
 5595         /* To be sure that nobody uses thresholds */
 5596         synchronize_rcu();
 5597 unlock:
 5598         mutex_unlock(&memcg->thresholds_lock);
 5599 }
 5600 
 5601 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
 5602         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
 5603 {
 5604         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
 5605         struct mem_cgroup_eventfd_list *event;
 5606         enum res_type type = MEMFILE_TYPE(cft->private);
 5607 
 5608         BUG_ON(type != _OOM_TYPE);
 5609         event = kmalloc(sizeof(*event), GFP_KERNEL);
 5610         if (!event)
 5611                 return -ENOMEM;
 5612 
 5613         spin_lock(&memcg_oom_lock);
 5614 
 5615         event->eventfd = eventfd;
 5616         list_add(&event->list, &memcg->oom_notify);
 5617 
 5618         /* already in OOM ? */
 5619         if (atomic_read(&memcg->under_oom))
 5620                 eventfd_signal(eventfd, 1);
 5621         spin_unlock(&memcg_oom_lock);
 5622 
 5623         return 0;
 5624 }
 5625 
 5626 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
 5627         struct cftype *cft, struct eventfd_ctx *eventfd)
 5628 {
 5629         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
 5630         struct mem_cgroup_eventfd_list *ev, *tmp;
 5631         enum res_type type = MEMFILE_TYPE(cft->private);
 5632 
 5633         BUG_ON(type != _OOM_TYPE);
 5634 
 5635         spin_lock(&memcg_oom_lock);
 5636 
 5637         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
 5638                 if (ev->eventfd == eventfd) {
 5639                         list_del(&ev->list);
 5640                         kfree(ev);
 5641                 }
 5642         }
 5643 
 5644         spin_unlock(&memcg_oom_lock);
 5645 }
 5646 
 5647 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
 5648         struct cftype *cft,  struct cgroup_map_cb *cb)
 5649 {
 5650         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
 5651 
 5652         cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
 5653 
 5654         if (atomic_read(&memcg->under_oom))
 5655                 cb->fill(cb, "under_oom", 1);
 5656         else
 5657                 cb->fill(cb, "under_oom", 0);
 5658         return 0;
 5659 }
 5660 
 5661 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
 5662         struct cftype *cft, u64 val)
 5663 {
 5664         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
 5665         struct mem_cgroup *parent;
 5666 
 5667         /* cannot set to root cgroup and only 0 and 1 are allowed */
 5668         if (!cgrp->parent || !((val == 0) || (val == 1)))
 5669                 return -EINVAL;
 5670 
 5671         parent = mem_cgroup_from_cont(cgrp->parent);
 5672 
 5673         cgroup_lock();
 5674         /* oom-kill-disable is a flag for subhierarchy. */
 5675         if ((parent->use_hierarchy) ||
 5676             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
 5677                 cgroup_unlock();
 5678                 return -EINVAL;
 5679         }
 5680         memcg->oom_kill_disable = val;
 5681         if (!val)
 5682                 memcg_oom_recover(memcg);
 5683         cgroup_unlock();
 5684         return 0;
 5685 }
 5686 
 5687 #ifdef CONFIG_MEMCG_KMEM
 5688 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
 5689 {
 5690         int ret;
 5691 
 5692         memcg->kmemcg_id = -1;
 5693         ret = memcg_propagate_kmem(memcg);
 5694         if (ret)
 5695                 return ret;
 5696 
 5697         return mem_cgroup_sockets_init(memcg, ss);
 5698 };
 5699 
 5700 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
 5701 {
 5702         mem_cgroup_sockets_destroy(memcg);
 5703 
 5704         memcg_kmem_mark_dead(memcg);
 5705 
 5706         if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
 5707                 return;
 5708 
 5709         /*
 5710          * Charges already down to 0, undo mem_cgroup_get() done in the charge
 5711          * path here, being careful not to race with memcg_uncharge_kmem: it is
 5712          * possible that the charges went down to 0 between mark_dead and the
 5713          * res_counter read, so in that case, we don't need the put
 5714          */
 5715         if (memcg_kmem_test_and_clear_dead(memcg))
 5716                 mem_cgroup_put(memcg);
 5717 }
 5718 #else
 5719 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
 5720 {
 5721         return 0;
 5722 }
 5723 
 5724 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
 5725 {
 5726 }
 5727 #endif
 5728 
 5729 static struct cftype mem_cgroup_files[] = {
 5730         {
 5731                 .name = "usage_in_bytes",
 5732                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
 5733                 .read = mem_cgroup_read,
 5734                 .register_event = mem_cgroup_usage_register_event,
 5735                 .unregister_event = mem_cgroup_usage_unregister_event,
 5736         },
 5737         {
 5738                 .name = "max_usage_in_bytes",
 5739                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
 5740                 .trigger = mem_cgroup_reset,
 5741                 .read = mem_cgroup_read,
 5742         },
 5743         {
 5744                 .name = "limit_in_bytes",
 5745                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
 5746                 .write_string = mem_cgroup_write,
 5747                 .read = mem_cgroup_read,
 5748         },
 5749         {
 5750                 .name = "soft_limit_in_bytes",
 5751                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
 5752                 .write_string = mem_cgroup_write,
 5753                 .read = mem_cgroup_read,
 5754         },
 5755         {
 5756                 .name = "failcnt",
 5757                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
 5758                 .trigger = mem_cgroup_reset,
 5759                 .read = mem_cgroup_read,
 5760         },
 5761         {
 5762                 .name = "stat",
 5763                 .read_seq_string = memcg_stat_show,
 5764         },
 5765         {
 5766                 .name = "force_empty",
 5767                 .trigger = mem_cgroup_force_empty_write,
 5768         },
 5769         {
 5770                 .name = "use_hierarchy",
 5771                 .write_u64 = mem_cgroup_hierarchy_write,
 5772                 .read_u64 = mem_cgroup_hierarchy_read,
 5773         },
 5774         {
 5775                 .name = "swappiness",
 5776                 .read_u64 = mem_cgroup_swappiness_read,
 5777                 .write_u64 = mem_cgroup_swappiness_write,
 5778         },
 5779         {
 5780                 .name = "move_charge_at_immigrate",
 5781                 .read_u64 = mem_cgroup_move_charge_read,
 5782                 .write_u64 = mem_cgroup_move_charge_write,
 5783         },
 5784         {
 5785                 .name = "oom_control",
 5786                 .read_map = mem_cgroup_oom_control_read,
 5787                 .write_u64 = mem_cgroup_oom_control_write,
 5788                 .register_event = mem_cgroup_oom_register_event,
 5789                 .unregister_event = mem_cgroup_oom_unregister_event,
 5790                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
 5791         },
 5792 #ifdef CONFIG_NUMA
 5793         {
 5794                 .name = "numa_stat",
 5795                 .read_seq_string = memcg_numa_stat_show,
 5796         },
 5797 #endif
 5798 #ifdef CONFIG_MEMCG_SWAP
 5799         {
 5800                 .name = "memsw.usage_in_bytes",
 5801                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
 5802                 .read = mem_cgroup_read,
 5803                 .register_event = mem_cgroup_usage_register_event,
 5804                 .unregister_event = mem_cgroup_usage_unregister_event,
 5805         },
 5806         {
 5807                 .name = "memsw.max_usage_in_bytes",
 5808                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
 5809                 .trigger = mem_cgroup_reset,
 5810                 .read = mem_cgroup_read,
 5811         },
 5812         {
 5813                 .name = "memsw.limit_in_bytes",
 5814                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
 5815                 .write_string = mem_cgroup_write,
 5816                 .read = mem_cgroup_read,
 5817         },
 5818         {
 5819                 .name = "memsw.failcnt",
 5820                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
 5821                 .trigger = mem_cgroup_reset,
 5822                 .read = mem_cgroup_read,
 5823         },
 5824 #endif
 5825 #ifdef CONFIG_MEMCG_KMEM
 5826         {
 5827                 .name = "kmem.limit_in_bytes",
 5828                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
 5829                 .write_string = mem_cgroup_write,
 5830                 .read = mem_cgroup_read,
 5831         },
 5832         {
 5833                 .name = "kmem.usage_in_bytes",
 5834                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
 5835                 .read = mem_cgroup_read,
 5836         },
 5837         {
 5838                 .name = "kmem.failcnt",
 5839                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
 5840                 .trigger = mem_cgroup_reset,
 5841                 .read = mem_cgroup_read,
 5842         },
 5843         {
 5844                 .name = "kmem.max_usage_in_bytes",
 5845                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
 5846                 .trigger = mem_cgroup_reset,
 5847                 .read = mem_cgroup_read,
 5848         },
 5849 #ifdef CONFIG_SLABINFO
 5850         {
 5851                 .name = "kmem.slabinfo",
 5852                 .read_seq_string = mem_cgroup_slabinfo_read,
 5853         },
 5854 #endif
 5855 #endif
 5856         { },    /* terminate */
 5857 };
 5858 
 5859 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
 5860 {
 5861         struct mem_cgroup_per_node *pn;
 5862         struct mem_cgroup_per_zone *mz;
 5863         int zone, tmp = node;
 5864         /*
 5865          * This routine is called against possible nodes.
 5866          * But it's BUG to call kmalloc() against offline node.
 5867          *
 5868          * TODO: this routine can waste much memory for nodes which will
 5869          *       never be onlined. It's better to use memory hotplug callback
 5870          *       function.
 5871          */
 5872         if (!node_state(node, N_NORMAL_MEMORY))
 5873                 tmp = -1;
 5874         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
 5875         if (!pn)
 5876                 return 1;
 5877 
 5878         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 5879                 mz = &pn->zoneinfo[zone];
 5880                 lruvec_init(&mz->lruvec);
 5881                 mz->usage_in_excess = 0;
 5882                 mz->on_tree = false;
 5883                 mz->memcg = memcg;
 5884         }
 5885         memcg->info.nodeinfo[node] = pn;
 5886         return 0;
 5887 }
 5888 
 5889 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
 5890 {
 5891         kfree(memcg->info.nodeinfo[node]);
 5892 }
 5893 
 5894 static struct mem_cgroup *mem_cgroup_alloc(void)
 5895 {
 5896         struct mem_cgroup *memcg;
 5897         int size = sizeof(struct mem_cgroup);
 5898 
 5899         /* Can be very big if MAX_NUMNODES is very big */
 5900         if (size < PAGE_SIZE)
 5901                 memcg = kzalloc(size, GFP_KERNEL);
 5902         else
 5903                 memcg = vzalloc(size);
 5904 
 5905         if (!memcg)
 5906                 return NULL;
 5907 
 5908         memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
 5909         if (!memcg->stat)
 5910                 goto out_free;
 5911         spin_lock_init(&memcg->pcp_counter_lock);
 5912         return memcg;
 5913 
 5914 out_free:
 5915         if (size < PAGE_SIZE)
 5916                 kfree(memcg);
 5917         else
 5918                 vfree(memcg);
 5919         return NULL;
 5920 }
 5921 
 5922 /*
 5923  * At destroying mem_cgroup, references from swap_cgroup can remain.
 5924  * (scanning all at force_empty is too costly...)
 5925  *
 5926  * Instead of clearing all references at force_empty, we remember
 5927  * the number of reference from swap_cgroup and free mem_cgroup when
 5928  * it goes down to 0.
 5929  *
 5930  * Removal of cgroup itself succeeds regardless of refs from swap.
 5931  */
 5932 
 5933 static void __mem_cgroup_free(struct mem_cgroup *memcg)
 5934 {
 5935         int node;
 5936         int size = sizeof(struct mem_cgroup);
 5937 
 5938         mem_cgroup_remove_from_trees(memcg);
 5939         free_css_id(&mem_cgroup_subsys, &memcg->css);
 5940 
 5941         for_each_node(node)
 5942                 free_mem_cgroup_per_zone_info(memcg, node);
 5943 
 5944         free_percpu(memcg->stat);
 5945 
 5946         /*
 5947          * We need to make sure that (at least for now), the jump label
 5948          * destruction code runs outside of the cgroup lock. This is because
 5949          * get_online_cpus(), which is called from the static_branch update,
 5950          * can't be called inside the cgroup_lock. cpusets are the ones
 5951          * enforcing this dependency, so if they ever change, we might as well.
 5952          *
 5953          * schedule_work() will guarantee this happens. Be careful if you need
 5954          * to move this code around, and make sure it is outside
 5955          * the cgroup_lock.
 5956          */
 5957         disarm_static_keys(memcg);
 5958         if (size < PAGE_SIZE)
 5959                 kfree(memcg);
 5960         else
 5961                 vfree(memcg);
 5962 }
 5963 
 5964 
 5965 /*
 5966  * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 5967  * but in process context.  The work_freeing structure is overlaid
 5968  * on the rcu_freeing structure, which itself is overlaid on memsw.
 5969  */
 5970 static void free_work(struct work_struct *work)
 5971 {
 5972         struct mem_cgroup *memcg;
 5973 
 5974         memcg = container_of(work, struct mem_cgroup, work_freeing);
 5975         __mem_cgroup_free(memcg);
 5976 }
 5977 
 5978 static void free_rcu(struct rcu_head *rcu_head)
 5979 {
 5980         struct mem_cgroup *memcg;
 5981 
 5982         memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
 5983         INIT_WORK(&memcg->work_freeing, free_work);
 5984         schedule_work(&memcg->work_freeing);
 5985 }
 5986 
 5987 static void mem_cgroup_get(struct mem_cgroup *memcg)
 5988 {
 5989         atomic_inc(&memcg->refcnt);
 5990 }
 5991 
 5992 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
 5993 {
 5994         if (atomic_sub_and_test(count, &memcg->refcnt)) {
 5995                 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
 5996                 call_rcu(&memcg->rcu_freeing, free_rcu);
 5997                 if (parent)
 5998                         mem_cgroup_put(parent);
 5999         }
 6000 }
 6001 
 6002 static void mem_cgroup_put(struct mem_cgroup *memcg)
 6003 {
 6004         __mem_cgroup_put(memcg, 1);
 6005 }
 6006 
 6007 /*
 6008  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 6009  */
 6010 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
 6011 {
 6012         if (!memcg->res.parent)
 6013                 return NULL;
 6014         return mem_cgroup_from_res_counter(memcg->res.parent, res);
 6015 }
 6016 EXPORT_SYMBOL(parent_mem_cgroup);
 6017 
 6018 #ifdef CONFIG_MEMCG_SWAP
 6019 static void __init enable_swap_cgroup(void)
 6020 {
 6021         if (!mem_cgroup_disabled() && really_do_swap_account)
 6022                 do_swap_account = 1;
 6023 }
 6024 #else
 6025 static void __init enable_swap_cgroup(void)
 6026 {
 6027 }
 6028 #endif
 6029 
 6030 static int mem_cgroup_soft_limit_tree_init(void)
 6031 {
 6032         struct mem_cgroup_tree_per_node *rtpn;
 6033         struct mem_cgroup_tree_per_zone *rtpz;
 6034         int tmp, node, zone;
 6035 
 6036         for_each_node(node) {
 6037                 tmp = node;
 6038                 if (!node_state(node, N_NORMAL_MEMORY))
 6039                         tmp = -1;
 6040                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
 6041                 if (!rtpn)
 6042                         goto err_cleanup;
 6043 
 6044                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
 6045 
 6046                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 6047                         rtpz = &rtpn->rb_tree_per_zone[zone];
 6048                         rtpz->rb_root = RB_ROOT;
 6049                         spin_lock_init(&rtpz->lock);
 6050                 }
 6051         }
 6052         return 0;
 6053 
 6054 err_cleanup:
 6055         for_each_node(node) {
 6056                 if (!soft_limit_tree.rb_tree_per_node[node])
 6057                         break;
 6058                 kfree(soft_limit_tree.rb_tree_per_node[node]);
 6059                 soft_limit_tree.rb_tree_per_node[node] = NULL;
 6060         }
 6061         return 1;
 6062 
 6063 }
 6064 
 6065 static struct cgroup_subsys_state * __ref
 6066 mem_cgroup_css_alloc(struct cgroup *cont)
 6067 {
 6068         struct mem_cgroup *memcg, *parent;
 6069         long error = -ENOMEM;
 6070         int node;
 6071 
 6072         memcg = mem_cgroup_alloc();
 6073         if (!memcg)
 6074                 return ERR_PTR(error);
 6075 
 6076         for_each_node(node)
 6077                 if (alloc_mem_cgroup_per_zone_info(memcg, node))
 6078                         goto free_out;
 6079 
 6080         /* root ? */
 6081         if (cont->parent == NULL) {
 6082                 int cpu;
 6083                 enable_swap_cgroup();
 6084                 parent = NULL;
 6085                 if (mem_cgroup_soft_limit_tree_init())
 6086                         goto free_out;
 6087                 root_mem_cgroup = memcg;
 6088                 for_each_possible_cpu(cpu) {
 6089                         struct memcg_stock_pcp *stock =
 6090                                                 &per_cpu(memcg_stock, cpu);
 6091                         INIT_WORK(&stock->work, drain_local_stock);
 6092                 }
 6093         } else {
 6094                 parent = mem_cgroup_from_cont(cont->parent);
 6095                 memcg->use_hierarchy = parent->use_hierarchy;
 6096                 memcg->oom_kill_disable = parent->oom_kill_disable;
 6097         }
 6098 
 6099         if (parent && parent->use_hierarchy) {
 6100                 res_counter_init(&memcg->res, &parent->res);
 6101                 res_counter_init(&memcg->memsw, &parent->memsw);
 6102                 res_counter_init(&memcg->kmem, &parent->kmem);
 6103 
 6104                 /*
 6105                  * We increment refcnt of the parent to ensure that we can
 6106                  * safely access it on res_counter_charge/uncharge.
 6107                  * This refcnt will be decremented when freeing this
 6108                  * mem_cgroup(see mem_cgroup_put).
 6109                  */
 6110                 mem_cgroup_get(parent);
 6111         } else {
 6112                 res_counter_init(&memcg->res, NULL);
 6113                 res_counter_init(&memcg->memsw, NULL);
 6114                 res_counter_init(&memcg->kmem, NULL);
 6115                 /*
 6116                  * Deeper hierachy with use_hierarchy == false doesn't make
 6117                  * much sense so let cgroup subsystem know about this
 6118                  * unfortunate state in our controller.
 6119                  */
 6120                 if (parent && parent != root_mem_cgroup)
 6121                         mem_cgroup_subsys.broken_hierarchy = true;
 6122         }
 6123         memcg->last_scanned_node = MAX_NUMNODES;
 6124         INIT_LIST_HEAD(&memcg->oom_notify);
 6125 
 6126         if (parent)
 6127                 memcg->swappiness = mem_cgroup_swappiness(parent);
 6128         atomic_set(&memcg->refcnt, 1);
 6129         memcg->move_charge_at_immigrate = 0;
 6130         mutex_init(&memcg->thresholds_lock);
 6131         spin_lock_init(&memcg->move_lock);
 6132 
 6133         error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
 6134         if (error) {
 6135                 /*
 6136                  * We call put now because our (and parent's) refcnts
 6137                  * are already in place. mem_cgroup_put() will internally
 6138                  * call __mem_cgroup_free, so return directly
 6139                  */
 6140                 mem_cgroup_put(memcg);
 6141                 return ERR_PTR(error);
 6142         }
 6143         return &memcg->css;
 6144 free_out:
 6145         __mem_cgroup_free(memcg);
 6146         return ERR_PTR(error);
 6147 }
 6148 
 6149 static void mem_cgroup_css_offline(struct cgroup *cont)
 6150 {
 6151         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
 6152 
 6153         mem_cgroup_reparent_charges(memcg);
 6154         mem_cgroup_destroy_all_caches(memcg);
 6155 }
 6156 
 6157 static void mem_cgroup_css_free(struct cgroup *cont)
 6158 {
 6159         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
 6160 
 6161         kmem_cgroup_destroy(memcg);
 6162 
 6163         mem_cgroup_put(memcg);
 6164 }
 6165 
 6166 #ifdef CONFIG_MMU
 6167 /* Handlers for move charge at task migration. */
 6168 #define PRECHARGE_COUNT_AT_ONCE 256
 6169 static int mem_cgroup_do_precharge(unsigned long count)
 6170 {
 6171         int ret = 0;
 6172         int batch_count = PRECHARGE_COUNT_AT_ONCE;
 6173         struct mem_cgroup *memcg = mc.to;
 6174 
 6175         if (mem_cgroup_is_root(memcg)) {
 6176                 mc.precharge += count;
 6177                 /* we don't need css_get for root */
 6178                 return ret;
 6179         }
 6180         /* try to charge at once */
 6181         if (count > 1) {
 6182                 struct res_counter *dummy;
 6183                 /*
 6184                  * "memcg" cannot be under rmdir() because we've already checked
 6185                  * by cgroup_lock_live_cgroup() that it is not removed and we
 6186                  * are still under the same cgroup_mutex. So we can postpone
 6187                  * css_get().
 6188                  */
 6189                 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
 6190                         goto one_by_one;
 6191                 if (do_swap_account && res_counter_charge(&memcg->memsw,
 6192                                                 PAGE_SIZE * count, &dummy)) {
 6193                         res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
 6194                         goto one_by_one;
 6195                 }
 6196                 mc.precharge += count;
 6197                 return ret;
 6198         }
 6199 one_by_one:
 6200         /* fall back to one by one charge */
 6201         while (count--) {
 6202                 if (signal_pending(current)) {
 6203                         ret = -EINTR;
 6204                         break;
 6205                 }
 6206                 if (!batch_count--) {
 6207                         batch_count = PRECHARGE_COUNT_AT_ONCE;
 6208                         cond_resched();
 6209                 }
 6210                 ret = __mem_cgroup_try_charge(NULL,
 6211                                         GFP_KERNEL, 1, &memcg, false);
 6212                 if (ret)
 6213                         /* mem_cgroup_clear_mc() will do uncharge later */
 6214                         return ret;
 6215                 mc.precharge++;
 6216         }
 6217         return ret;
 6218 }
 6219 
 6220 /**
 6221  * get_mctgt_type - get target type of moving charge
 6222  * @vma: the vma the pte to be checked belongs
 6223  * @addr: the address corresponding to the pte to be checked
 6224  * @ptent: the pte to be checked
 6225  * @target: the pointer the target page or swap ent will be stored(can be NULL)
 6226  *
 6227  * Returns
 6228  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 6229  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 6230  *     move charge. if @target is not NULL, the page is stored in target->page
 6231  *     with extra refcnt got(Callers should handle it).
 6232  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 6233  *     target for charge migration. if @target is not NULL, the entry is stored
 6234  *     in target->ent.
 6235  *
 6236  * Called with pte lock held.
 6237  */
 6238 union mc_target {
 6239         struct page     *page;
 6240         swp_entry_t     ent;
 6241 };
 6242 
 6243 enum mc_target_type {
 6244         MC_TARGET_NONE = 0,
 6245         MC_TARGET_PAGE,
 6246         MC_TARGET_SWAP,
 6247 };
 6248 
 6249 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
 6250                                                 unsigned long addr, pte_t ptent)
 6251 {
 6252         struct page *page = vm_normal_page(vma, addr, ptent);
 6253 
 6254         if (!page || !page_mapped(page))
 6255                 return NULL;
 6256         if (PageAnon(page)) {
 6257                 /* we don't move shared anon */
 6258                 if (!move_anon())
 6259                         return NULL;
 6260         } else if (!move_file())
 6261                 /* we ignore mapcount for file pages */
 6262                 return NULL;
 6263         if (!get_page_unless_zero(page))
 6264                 return NULL;
 6265 
 6266         return page;
 6267 }
 6268 
 6269 #ifdef CONFIG_SWAP
 6270 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
 6271                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
 6272 {
 6273         struct page *page = NULL;
 6274         swp_entry_t ent = pte_to_swp_entry(ptent);
 6275 
 6276         if (!move_anon() || non_swap_entry(ent))
 6277                 return NULL;
 6278         /*
 6279          * Because lookup_swap_cache() updates some statistics counter,
 6280          * we call find_get_page() with swapper_space directly.
 6281          */
 6282         page = find_get_page(&swapper_space, ent.val);
 6283         if (do_swap_account)
 6284                 entry->val = ent.val;
 6285 
 6286         return page;
 6287 }
 6288 #else
 6289 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
 6290                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
 6291 {
 6292         return NULL;
 6293 }
 6294 #endif
 6295 
 6296 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
 6297                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
 6298 {
 6299         struct page *page = NULL;
 6300         struct address_space *mapping;
 6301         pgoff_t pgoff;
 6302 
 6303         if (!vma->vm_file) /* anonymous vma */
 6304                 return NULL;
 6305         if (!move_file())
 6306                 return NULL;
 6307 
 6308         mapping = vma->vm_file->f_mapping;
 6309         if (pte_none(ptent))
 6310                 pgoff = linear_page_index(vma, addr);
 6311         else /* pte_file(ptent) is true */
 6312                 pgoff = pte_to_pgoff(ptent);
 6313 
 6314         /* page is moved even if it's not RSS of this task(page-faulted). */
 6315         page = find_get_page(mapping, pgoff);
 6316 
 6317 #ifdef CONFIG_SWAP
 6318         /* shmem/tmpfs may report page out on swap: account for that too. */
 6319         if (radix_tree_exceptional_entry(page)) {
 6320                 swp_entry_t swap = radix_to_swp_entry(page);
 6321                 if (do_swap_account)
 6322                         *entry = swap;
 6323                 page = find_get_page(&swapper_space, swap.val);
 6324         }
 6325 #endif
 6326         return page;
 6327 }
 6328 
 6329 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
 6330                 unsigned long addr, pte_t ptent, union mc_target *target)
 6331 {
 6332         struct page *page = NULL;
 6333         struct page_cgroup *pc;
 6334         enum mc_target_type ret = MC_TARGET_NONE;
 6335         swp_entry_t ent = { .val = 0 };
 6336 
 6337         if (pte_present(ptent))
 6338                 page = mc_handle_present_pte(vma, addr, ptent);
 6339         else if (is_swap_pte(ptent))
 6340                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
 6341         else if (pte_none(ptent) || pte_file(ptent))
 6342                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
 6343 
 6344         if (!page && !ent.val)
 6345                 return ret;
 6346         if (page) {
 6347                 pc = lookup_page_cgroup(page);
 6348                 /*
 6349                  * Do only loose check w/o page_cgroup lock.
 6350                  * mem_cgroup_move_account() checks the pc is valid or not under
 6351                  * the lock.
 6352                  */
 6353                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
 6354                         ret = MC_TARGET_PAGE;
 6355                         if (target)
 6356                                 target->page = page;
 6357                 }
 6358                 if (!ret || !target)
 6359                         put_page(page);
 6360         }
 6361         /* There is a swap entry and a page doesn't exist or isn't charged */
 6362         if (ent.val && !ret &&
 6363                         css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
 6364                 ret = MC_TARGET_SWAP;
 6365                 if (target)
 6366                         target->ent = ent;
 6367         }
 6368         return ret;
 6369 }
 6370 
 6371 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 6372 /*
 6373  * We don't consider swapping or file mapped pages because THP does not
 6374  * support them for now.
 6375  * Caller should make sure that pmd_trans_huge(pmd) is true.
 6376  */
 6377 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
 6378                 unsigned long addr, pmd_t pmd, union mc_target *target)
 6379 {
 6380         struct page *page = NULL;
 6381         struct page_cgroup *pc;
 6382         enum mc_target_type ret = MC_TARGET_NONE;
 6383 
 6384         page = pmd_page(pmd);
 6385         VM_BUG_ON(!page || !PageHead(page));
 6386         if (!move_anon())
 6387                 return ret;
 6388         pc = lookup_page_cgroup(page);
 6389         if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
 6390                 ret = MC_TARGET_PAGE;
 6391                 if (target) {
 6392                         get_page(page);
 6393                         target->page = page;
 6394                 }
 6395         }
 6396         return ret;
 6397 }
 6398 #else
 6399 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
 6400                 unsigned long addr, pmd_t pmd, union mc_target *target)
 6401 {
 6402         return MC_TARGET_NONE;
 6403 }
 6404 #endif
 6405 
 6406 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
 6407                                         unsigned long addr, unsigned long end,
 6408                                         struct mm_walk *walk)
 6409 {
 6410         struct vm_area_struct *vma = walk->private;
 6411         pte_t *pte;
 6412         spinlock_t *ptl;
 6413 
 6414         if (pmd_trans_huge_lock(pmd, vma) == 1) {
 6415                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
 6416                         mc.precharge += HPAGE_PMD_NR;
 6417                 spin_unlock(&vma->vm_mm->page_table_lock);
 6418                 return 0;
 6419         }
 6420 
 6421         if (pmd_trans_unstable(pmd))
 6422                 return 0;
 6423         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 6424         for (; addr != end; pte++, addr += PAGE_SIZE)
 6425                 if (get_mctgt_type(vma, addr, *pte, NULL))
 6426                         mc.precharge++; /* increment precharge temporarily */
 6427         pte_unmap_unlock(pte - 1, ptl);
 6428         cond_resched();
 6429 
 6430         return 0;
 6431 }
 6432 
 6433 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
 6434 {
 6435         unsigned long precharge;
 6436         struct vm_area_struct *vma;
 6437 
 6438         down_read(&mm->mmap_sem);
 6439         for (vma = mm->mmap; vma; vma = vma->vm_next) {
 6440                 struct mm_walk mem_cgroup_count_precharge_walk = {
 6441                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
 6442                         .mm = mm,
 6443                         .private = vma,
 6444                 };
 6445                 if (is_vm_hugetlb_page(vma))
 6446                         continue;
 6447                 walk_page_range(vma->vm_start, vma->vm_end,
 6448                                         &mem_cgroup_count_precharge_walk);
 6449         }
 6450         up_read(&mm->mmap_sem);
 6451 
 6452         precharge = mc.precharge;
 6453         mc.precharge = 0;
 6454 
 6455         return precharge;
 6456 }
 6457 
 6458 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
 6459 {
 6460         unsigned long precharge = mem_cgroup_count_precharge(mm);
 6461 
 6462         VM_BUG_ON(mc.moving_task);
 6463         mc.moving_task = current;
 6464         return mem_cgroup_do_precharge(precharge);
 6465 }
 6466 
 6467 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
 6468 static void __mem_cgroup_clear_mc(void)
 6469 {
 6470         struct mem_cgroup *from = mc.from;
 6471         struct mem_cgroup *to = mc.to;
 6472 
 6473         /* we must uncharge all the leftover precharges from mc.to */
 6474         if (mc.precharge) {
 6475                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
 6476                 mc.precharge = 0;
 6477         }
 6478         /*
 6479          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
 6480          * we must uncharge here.
 6481          */
 6482         if (mc.moved_charge) {
 6483                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
 6484                 mc.moved_charge = 0;
 6485         }
 6486         /* we must fixup refcnts and charges */
 6487         if (mc.moved_swap) {
 6488                 /* uncharge swap account from the old cgroup */
 6489                 if (!mem_cgroup_is_root(mc.from))
 6490                         res_counter_uncharge(&mc.from->memsw,
 6491                                                 PAGE_SIZE * mc.moved_swap);
 6492                 __mem_cgroup_put(mc.from, mc.moved_swap);
 6493 
 6494                 if (!mem_cgroup_is_root(mc.to)) {
 6495                         /*
 6496                          * we charged both to->res and to->memsw, so we should
 6497                          * uncharge to->res.
 6498                          */
 6499                         res_counter_uncharge(&mc.to->res,
 6500                                                 PAGE_SIZE * mc.moved_swap);
 6501                 }
 6502                 /* we've already done mem_cgroup_get(mc.to) */
 6503                 mc.moved_swap = 0;
 6504         }
 6505         memcg_oom_recover(from);
 6506         memcg_oom_recover(to);
 6507         wake_up_all(&mc.waitq);
 6508 }
 6509 
 6510 static void mem_cgroup_clear_mc(void)
 6511 {
 6512         struct mem_cgroup *from = mc.from;
 6513 
 6514         /*
 6515          * we must clear moving_task before waking up waiters at the end of
 6516          * task migration.
 6517          */
 6518         mc.moving_task = NULL;
 6519         __mem_cgroup_clear_mc();
 6520         spin_lock(&mc.lock);
 6521         mc.from = NULL;
 6522         mc.to = NULL;
 6523         spin_unlock(&mc.lock);
 6524         mem_cgroup_end_move(from);
 6525 }
 6526 
 6527 static int mem_cgroup_can_attach(struct cgroup *cgroup,
 6528                                  struct cgroup_taskset *tset)
 6529 {
 6530         struct task_struct *p = cgroup_taskset_first(tset);
 6531         int ret = 0;
 6532         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
 6533 
 6534         if (memcg->move_charge_at_immigrate) {
 6535                 struct mm_struct *mm;
 6536                 struct mem_cgroup *from = mem_cgroup_from_task(p);
 6537 
 6538                 VM_BUG_ON(from == memcg);
 6539 
 6540                 mm = get_task_mm(p);
 6541                 if (!mm)
 6542                         return 0;
 6543                 /* We move charges only when we move a owner of the mm */
 6544                 if (mm->owner == p) {
 6545                         VM_BUG_ON(mc.from);
 6546                         VM_BUG_ON(mc.to);
 6547                         VM_BUG_ON(mc.precharge);
 6548                         VM_BUG_ON(mc.moved_charge);
 6549                         VM_BUG_ON(mc.moved_swap);
 6550                         mem_cgroup_start_move(from);
 6551                         spin_lock(&mc.lock);
 6552                         mc.from = from;
 6553                         mc.to = memcg;
 6554                         spin_unlock(&mc.lock);
 6555                         /* We set mc.moving_task later */
 6556 
 6557                         ret = mem_cgroup_precharge_mc(mm);
 6558                         if (ret)
 6559                                 mem_cgroup_clear_mc();
 6560                 }
 6561                 mmput(mm);
 6562         }
 6563         return ret;
 6564 }
 6565 
 6566 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
 6567                                      struct cgroup_taskset *tset)
 6568 {
 6569         mem_cgroup_clear_mc();
 6570 }
 6571 
 6572 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
 6573                                 unsigned long addr, unsigned long end,
 6574                                 struct mm_walk *walk)
 6575 {
 6576         int ret = 0;
 6577         struct vm_area_struct *vma = walk->private;
 6578         pte_t *pte;
 6579         spinlock_t *ptl;
 6580         enum mc_target_type target_type;
 6581         union mc_target target;
 6582         struct page *page;
 6583         struct page_cgroup *pc;
 6584 
 6585         /*
 6586          * We don't take compound_lock() here but no race with splitting thp
 6587          * happens because:
 6588          *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
 6589          *    under splitting, which means there's no concurrent thp split,
 6590          *  - if another thread runs into split_huge_page() just after we
 6591          *    entered this if-block, the thread must wait for page table lock
 6592          *    to be unlocked in __split_huge_page_splitting(), where the main
 6593          *    part of thp split is not executed yet.
 6594          */
 6595         if (pmd_trans_huge_lock(pmd, vma) == 1) {
 6596                 if (mc.precharge < HPAGE_PMD_NR) {
 6597                         spin_unlock(&vma->vm_mm->page_table_lock);
 6598                         return 0;
 6599                 }
 6600                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
 6601                 if (target_type == MC_TARGET_PAGE) {
 6602                         page = target.page;
 6603                         if (!isolate_lru_page(page)) {
 6604                                 pc = lookup_page_cgroup(page);
 6605                                 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
 6606                                                         pc, mc.from, mc.to)) {
 6607                                         mc.precharge -= HPAGE_PMD_NR;
 6608                                         mc.moved_charge += HPAGE_PMD_NR;
 6609                                 }
 6610                                 putback_lru_page(page);
 6611                         }
 6612                         put_page(page);
 6613                 }
 6614                 spin_unlock(&vma->vm_mm->page_table_lock);
 6615                 return 0;
 6616         }
 6617 
 6618         if (pmd_trans_unstable(pmd))
 6619                 return 0;
 6620 retry:
 6621         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 6622         for (; addr != end; addr += PAGE_SIZE) {
 6623                 pte_t ptent = *(pte++);
 6624                 swp_entry_t ent;
 6625 
 6626                 if (!mc.precharge)
 6627                         break;
 6628 
 6629                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
 6630                 case MC_TARGET_PAGE:
 6631                         page = target.page;
 6632                         if (isolate_lru_page(page))
 6633                                 goto put;
 6634                         pc = lookup_page_cgroup(page);
 6635                         if (!mem_cgroup_move_account(page, 1, pc,
 6636                                                      mc.from, mc.to)) {
 6637                                 mc.precharge--;
 6638                                 /* we uncharge from mc.from later. */
 6639                                 mc.moved_charge++;
 6640                         }
 6641                         putback_lru_page(page);
 6642 put:                    /* get_mctgt_type() gets the page */
 6643                         put_page(page);
 6644                         break;
 6645                 case MC_TARGET_SWAP:
 6646                         ent = target.ent;
 6647                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
 6648                                 mc.precharge--;
 6649                                 /* we fixup refcnts and charges later. */
 6650                                 mc.moved_swap++;
 6651                         }
 6652                         break;
 6653                 default:
 6654                         break;
 6655                 }
 6656         }
 6657         pte_unmap_unlock(pte - 1, ptl);
 6658         cond_resched();
 6659 
 6660         if (addr != end) {
 6661                 /*
 6662                  * We have consumed all precharges we got in can_attach().
 6663                  * We try charge one by one, but don't do any additional
 6664                  * charges to mc.to if we have failed in charge once in attach()
 6665                  * phase.
 6666                  */
 6667                 ret = mem_cgroup_do_precharge(1);
 6668                 if (!ret)
 6669                         goto retry;
 6670         }
 6671 
 6672         return ret;
 6673 }
 6674 
 6675 static void mem_cgroup_move_charge(struct mm_struct *mm)
 6676 {
 6677         struct vm_area_struct *vma;
 6678 
 6679         lru_add_drain_all();
 6680 retry:
 6681         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
 6682                 /*
 6683                  * Someone who are holding the mmap_sem might be waiting in
 6684                  * waitq. So we cancel all extra charges, wake up all waiters,
 6685                  * and retry. Because we cancel precharges, we might not be able
 6686                  * to move enough charges, but moving charge is a best-effort
 6687                  * feature anyway, so it wouldn't be a big problem.
 6688                  */
 6689                 __mem_cgroup_clear_mc();
 6690                 cond_resched();
 6691                 goto retry;
 6692         }
 6693         for (vma = mm->mmap; vma; vma = vma->vm_next) {
 6694                 int ret;
 6695                 struct mm_walk mem_cgroup_move_charge_walk = {
 6696                         .pmd_entry = mem_cgroup_move_charge_pte_range,
 6697                         .mm = mm,
 6698                         .private = vma,
 6699                 };
 6700                 if (is_vm_hugetlb_page(vma))
 6701                         continue;
 6702                 ret = walk_page_range(vma->vm_start, vma->vm_end,
 6703                                                 &mem_cgroup_move_charge_walk);
 6704                 if (ret)
 6705                         /*
 6706                          * means we have consumed all precharges and failed in
 6707                          * doing additional charge. Just abandon here.
 6708                          */
 6709                         break;
 6710         }
 6711         up_read(&mm->mmap_sem);
 6712 }
 6713 
 6714 static void mem_cgroup_move_task(struct cgroup *cont,
 6715                                  struct cgroup_taskset *tset)
 6716 {
 6717         struct task_struct *p = cgroup_taskset_first(tset);
 6718         struct mm_struct *mm = get_task_mm(p);
 6719 
 6720         if (mm) {
 6721                 if (mc.to)
 6722                         mem_cgroup_move_charge(mm);
 6723                 mmput(mm);
 6724         }
 6725         if (mc.to)
 6726                 mem_cgroup_clear_mc();
 6727 }
 6728 #else   /* !CONFIG_MMU */
 6729 static int mem_cgroup_can_attach(struct cgroup *cgroup,
 6730                                  struct cgroup_taskset *tset)
 6731 {
 6732         return 0;
 6733 }
 6734 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
 6735                                      struct cgroup_taskset *tset)
 6736 {
 6737 }
 6738 static void mem_cgroup_move_task(struct cgroup *cont,
 6739                                  struct cgroup_taskset *tset)
 6740 {
 6741 }
 6742 #endif
 6743 
 6744 struct cgroup_subsys mem_cgroup_subsys = {
 6745         .name = "memory",
 6746         .subsys_id = mem_cgroup_subsys_id,
 6747         .css_alloc = mem_cgroup_css_alloc,
 6748         .css_offline = mem_cgroup_css_offline,
 6749         .css_free = mem_cgroup_css_free,
 6750         .can_attach = mem_cgroup_can_attach,
 6751         .cancel_attach = mem_cgroup_cancel_attach,
 6752         .attach = mem_cgroup_move_task,
 6753         .base_cftypes = mem_cgroup_files,
 6754         .early_init = 0,
 6755         .use_id = 1,
 6756 };
 6757 
 6758 /*
 6759  * The rest of init is performed during ->css_alloc() for root css which
 6760  * happens before initcalls.  hotcpu_notifier() can't be done together as
 6761  * it would introduce circular locking by adding cgroup_lock -> cpu hotplug
 6762  * dependency.  Do it from a subsys_initcall().
 6763  */
 6764 static int __init mem_cgroup_init(void)
 6765 {
 6766         hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
 6767         return 0;
 6768 }
 6769 subsys_initcall(mem_cgroup_init);
 6770 
 6771 #ifdef CONFIG_MEMCG_SWAP
 6772 static int __init enable_swap_account(char *s)
 6773 {
 6774         /* consider enabled if no parameter or 1 is given */
 6775         if (!strcmp(s, "1"))
 6776                 really_do_swap_account = 1;
 6777         else if (!strcmp(s, ""))
 6778                 really_do_swap_account = 0;
 6779         return 1;
 6780 }
 6781 __setup("swapaccount=", enable_swap_account);
 6782 
 6783 #endif

Cache object: df4986a48cbf9540cf9cf165e6eac162


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.