The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/memory-failure.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (C) 2008, 2009 Intel Corporation
    3  * Authors: Andi Kleen, Fengguang Wu
    4  *
    5  * This software may be redistributed and/or modified under the terms of
    6  * the GNU General Public License ("GPL") version 2 only as published by the
    7  * Free Software Foundation.
    8  *
    9  * High level machine check handler. Handles pages reported by the
   10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
   11  * failure.
   12  * 
   13  * In addition there is a "soft offline" entry point that allows stop using
   14  * not-yet-corrupted-by-suspicious pages without killing anything.
   15  *
   16  * Handles page cache pages in various states.  The tricky part
   17  * here is that we can access any page asynchronously in respect to 
   18  * other VM users, because memory failures could happen anytime and 
   19  * anywhere. This could violate some of their assumptions. This is why 
   20  * this code has to be extremely careful. Generally it tries to use 
   21  * normal locking rules, as in get the standard locks, even if that means 
   22  * the error handling takes potentially a long time.
   23  * 
   24  * There are several operations here with exponential complexity because
   25  * of unsuitable VM data structures. For example the operation to map back 
   26  * from RMAP chains to processes has to walk the complete process list and 
   27  * has non linear complexity with the number. But since memory corruptions
   28  * are rare we hope to get away with this. This avoids impacting the core 
   29  * VM.
   30  */
   31 
   32 /*
   33  * Notebook:
   34  * - hugetlb needs more code
   35  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
   36  * - pass bad pages to kdump next kernel
   37  */
   38 #include <linux/kernel.h>
   39 #include <linux/mm.h>
   40 #include <linux/page-flags.h>
   41 #include <linux/kernel-page-flags.h>
   42 #include <linux/sched.h>
   43 #include <linux/ksm.h>
   44 #include <linux/rmap.h>
   45 #include <linux/export.h>
   46 #include <linux/pagemap.h>
   47 #include <linux/swap.h>
   48 #include <linux/backing-dev.h>
   49 #include <linux/migrate.h>
   50 #include <linux/page-isolation.h>
   51 #include <linux/suspend.h>
   52 #include <linux/slab.h>
   53 #include <linux/swapops.h>
   54 #include <linux/hugetlb.h>
   55 #include <linux/memory_hotplug.h>
   56 #include <linux/mm_inline.h>
   57 #include <linux/kfifo.h>
   58 #include "internal.h"
   59 
   60 int sysctl_memory_failure_early_kill __read_mostly = 0;
   61 
   62 int sysctl_memory_failure_recovery __read_mostly = 1;
   63 
   64 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
   65 
   66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
   67 
   68 u32 hwpoison_filter_enable = 0;
   69 u32 hwpoison_filter_dev_major = ~0U;
   70 u32 hwpoison_filter_dev_minor = ~0U;
   71 u64 hwpoison_filter_flags_mask;
   72 u64 hwpoison_filter_flags_value;
   73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
   74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
   75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
   76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
   77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
   78 
   79 static int hwpoison_filter_dev(struct page *p)
   80 {
   81         struct address_space *mapping;
   82         dev_t dev;
   83 
   84         if (hwpoison_filter_dev_major == ~0U &&
   85             hwpoison_filter_dev_minor == ~0U)
   86                 return 0;
   87 
   88         /*
   89          * page_mapping() does not accept slab pages.
   90          */
   91         if (PageSlab(p))
   92                 return -EINVAL;
   93 
   94         mapping = page_mapping(p);
   95         if (mapping == NULL || mapping->host == NULL)
   96                 return -EINVAL;
   97 
   98         dev = mapping->host->i_sb->s_dev;
   99         if (hwpoison_filter_dev_major != ~0U &&
  100             hwpoison_filter_dev_major != MAJOR(dev))
  101                 return -EINVAL;
  102         if (hwpoison_filter_dev_minor != ~0U &&
  103             hwpoison_filter_dev_minor != MINOR(dev))
  104                 return -EINVAL;
  105 
  106         return 0;
  107 }
  108 
  109 static int hwpoison_filter_flags(struct page *p)
  110 {
  111         if (!hwpoison_filter_flags_mask)
  112                 return 0;
  113 
  114         if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  115                                     hwpoison_filter_flags_value)
  116                 return 0;
  117         else
  118                 return -EINVAL;
  119 }
  120 
  121 /*
  122  * This allows stress tests to limit test scope to a collection of tasks
  123  * by putting them under some memcg. This prevents killing unrelated/important
  124  * processes such as /sbin/init. Note that the target task may share clean
  125  * pages with init (eg. libc text), which is harmless. If the target task
  126  * share _dirty_ pages with another task B, the test scheme must make sure B
  127  * is also included in the memcg. At last, due to race conditions this filter
  128  * can only guarantee that the page either belongs to the memcg tasks, or is
  129  * a freed page.
  130  */
  131 #ifdef  CONFIG_MEMCG_SWAP
  132 u64 hwpoison_filter_memcg;
  133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  134 static int hwpoison_filter_task(struct page *p)
  135 {
  136         struct mem_cgroup *mem;
  137         struct cgroup_subsys_state *css;
  138         unsigned long ino;
  139 
  140         if (!hwpoison_filter_memcg)
  141                 return 0;
  142 
  143         mem = try_get_mem_cgroup_from_page(p);
  144         if (!mem)
  145                 return -EINVAL;
  146 
  147         css = mem_cgroup_css(mem);
  148         /* root_mem_cgroup has NULL dentries */
  149         if (!css->cgroup->dentry)
  150                 return -EINVAL;
  151 
  152         ino = css->cgroup->dentry->d_inode->i_ino;
  153         css_put(css);
  154 
  155         if (ino != hwpoison_filter_memcg)
  156                 return -EINVAL;
  157 
  158         return 0;
  159 }
  160 #else
  161 static int hwpoison_filter_task(struct page *p) { return 0; }
  162 #endif
  163 
  164 int hwpoison_filter(struct page *p)
  165 {
  166         if (!hwpoison_filter_enable)
  167                 return 0;
  168 
  169         if (hwpoison_filter_dev(p))
  170                 return -EINVAL;
  171 
  172         if (hwpoison_filter_flags(p))
  173                 return -EINVAL;
  174 
  175         if (hwpoison_filter_task(p))
  176                 return -EINVAL;
  177 
  178         return 0;
  179 }
  180 #else
  181 int hwpoison_filter(struct page *p)
  182 {
  183         return 0;
  184 }
  185 #endif
  186 
  187 EXPORT_SYMBOL_GPL(hwpoison_filter);
  188 
  189 /*
  190  * Send all the processes who have the page mapped a signal.
  191  * ``action optional'' if they are not immediately affected by the error
  192  * ``action required'' if error happened in current execution context
  193  */
  194 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
  195                         unsigned long pfn, struct page *page, int flags)
  196 {
  197         struct siginfo si;
  198         int ret;
  199 
  200         printk(KERN_ERR
  201                 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
  202                 pfn, t->comm, t->pid);
  203         si.si_signo = SIGBUS;
  204         si.si_errno = 0;
  205         si.si_addr = (void *)addr;
  206 #ifdef __ARCH_SI_TRAPNO
  207         si.si_trapno = trapno;
  208 #endif
  209         si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
  210 
  211         if ((flags & MF_ACTION_REQUIRED) && t == current) {
  212                 si.si_code = BUS_MCEERR_AR;
  213                 ret = force_sig_info(SIGBUS, &si, t);
  214         } else {
  215                 /*
  216                  * Don't use force here, it's convenient if the signal
  217                  * can be temporarily blocked.
  218                  * This could cause a loop when the user sets SIGBUS
  219                  * to SIG_IGN, but hopefully no one will do that?
  220                  */
  221                 si.si_code = BUS_MCEERR_AO;
  222                 ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
  223         }
  224         if (ret < 0)
  225                 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
  226                        t->comm, t->pid, ret);
  227         return ret;
  228 }
  229 
  230 /*
  231  * When a unknown page type is encountered drain as many buffers as possible
  232  * in the hope to turn the page into a LRU or free page, which we can handle.
  233  */
  234 void shake_page(struct page *p, int access)
  235 {
  236         if (!PageSlab(p)) {
  237                 lru_add_drain_all();
  238                 if (PageLRU(p))
  239                         return;
  240                 drain_all_pages();
  241                 if (PageLRU(p) || is_free_buddy_page(p))
  242                         return;
  243         }
  244 
  245         /*
  246          * Only call shrink_slab here (which would also shrink other caches) if
  247          * access is not potentially fatal.
  248          */
  249         if (access) {
  250                 int nr;
  251                 do {
  252                         struct shrink_control shrink = {
  253                                 .gfp_mask = GFP_KERNEL,
  254                         };
  255 
  256                         nr = shrink_slab(&shrink, 1000, 1000);
  257                         if (page_count(p) == 1)
  258                                 break;
  259                 } while (nr > 10);
  260         }
  261 }
  262 EXPORT_SYMBOL_GPL(shake_page);
  263 
  264 /*
  265  * Kill all processes that have a poisoned page mapped and then isolate
  266  * the page.
  267  *
  268  * General strategy:
  269  * Find all processes having the page mapped and kill them.
  270  * But we keep a page reference around so that the page is not
  271  * actually freed yet.
  272  * Then stash the page away
  273  *
  274  * There's no convenient way to get back to mapped processes
  275  * from the VMAs. So do a brute-force search over all
  276  * running processes.
  277  *
  278  * Remember that machine checks are not common (or rather
  279  * if they are common you have other problems), so this shouldn't
  280  * be a performance issue.
  281  *
  282  * Also there are some races possible while we get from the
  283  * error detection to actually handle it.
  284  */
  285 
  286 struct to_kill {
  287         struct list_head nd;
  288         struct task_struct *tsk;
  289         unsigned long addr;
  290         char addr_valid;
  291 };
  292 
  293 /*
  294  * Failure handling: if we can't find or can't kill a process there's
  295  * not much we can do.  We just print a message and ignore otherwise.
  296  */
  297 
  298 /*
  299  * Schedule a process for later kill.
  300  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  301  * TBD would GFP_NOIO be enough?
  302  */
  303 static void add_to_kill(struct task_struct *tsk, struct page *p,
  304                        struct vm_area_struct *vma,
  305                        struct list_head *to_kill,
  306                        struct to_kill **tkc)
  307 {
  308         struct to_kill *tk;
  309 
  310         if (*tkc) {
  311                 tk = *tkc;
  312                 *tkc = NULL;
  313         } else {
  314                 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  315                 if (!tk) {
  316                         printk(KERN_ERR
  317                 "MCE: Out of memory while machine check handling\n");
  318                         return;
  319                 }
  320         }
  321         tk->addr = page_address_in_vma(p, vma);
  322         tk->addr_valid = 1;
  323 
  324         /*
  325          * In theory we don't have to kill when the page was
  326          * munmaped. But it could be also a mremap. Since that's
  327          * likely very rare kill anyways just out of paranoia, but use
  328          * a SIGKILL because the error is not contained anymore.
  329          */
  330         if (tk->addr == -EFAULT) {
  331                 pr_info("MCE: Unable to find user space address %lx in %s\n",
  332                         page_to_pfn(p), tsk->comm);
  333                 tk->addr_valid = 0;
  334         }
  335         get_task_struct(tsk);
  336         tk->tsk = tsk;
  337         list_add_tail(&tk->nd, to_kill);
  338 }
  339 
  340 /*
  341  * Kill the processes that have been collected earlier.
  342  *
  343  * Only do anything when DOIT is set, otherwise just free the list
  344  * (this is used for clean pages which do not need killing)
  345  * Also when FAIL is set do a force kill because something went
  346  * wrong earlier.
  347  */
  348 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
  349                           int fail, struct page *page, unsigned long pfn,
  350                           int flags)
  351 {
  352         struct to_kill *tk, *next;
  353 
  354         list_for_each_entry_safe (tk, next, to_kill, nd) {
  355                 if (forcekill) {
  356                         /*
  357                          * In case something went wrong with munmapping
  358                          * make sure the process doesn't catch the
  359                          * signal and then access the memory. Just kill it.
  360                          */
  361                         if (fail || tk->addr_valid == 0) {
  362                                 printk(KERN_ERR
  363                 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  364                                         pfn, tk->tsk->comm, tk->tsk->pid);
  365                                 force_sig(SIGKILL, tk->tsk);
  366                         }
  367 
  368                         /*
  369                          * In theory the process could have mapped
  370                          * something else on the address in-between. We could
  371                          * check for that, but we need to tell the
  372                          * process anyways.
  373                          */
  374                         else if (kill_proc(tk->tsk, tk->addr, trapno,
  375                                               pfn, page, flags) < 0)
  376                                 printk(KERN_ERR
  377                 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
  378                                         pfn, tk->tsk->comm, tk->tsk->pid);
  379                 }
  380                 put_task_struct(tk->tsk);
  381                 kfree(tk);
  382         }
  383 }
  384 
  385 static int task_early_kill(struct task_struct *tsk)
  386 {
  387         if (!tsk->mm)
  388                 return 0;
  389         if (tsk->flags & PF_MCE_PROCESS)
  390                 return !!(tsk->flags & PF_MCE_EARLY);
  391         return sysctl_memory_failure_early_kill;
  392 }
  393 
  394 /*
  395  * Collect processes when the error hit an anonymous page.
  396  */
  397 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  398                               struct to_kill **tkc)
  399 {
  400         struct vm_area_struct *vma;
  401         struct task_struct *tsk;
  402         struct anon_vma *av;
  403         pgoff_t pgoff;
  404 
  405         av = page_lock_anon_vma_read(page);
  406         if (av == NULL) /* Not actually mapped anymore */
  407                 return;
  408 
  409         pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  410         read_lock(&tasklist_lock);
  411         for_each_process (tsk) {
  412                 struct anon_vma_chain *vmac;
  413 
  414                 if (!task_early_kill(tsk))
  415                         continue;
  416                 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
  417                                                pgoff, pgoff) {
  418                         vma = vmac->vma;
  419                         if (!page_mapped_in_vma(page, vma))
  420                                 continue;
  421                         if (vma->vm_mm == tsk->mm)
  422                                 add_to_kill(tsk, page, vma, to_kill, tkc);
  423                 }
  424         }
  425         read_unlock(&tasklist_lock);
  426         page_unlock_anon_vma_read(av);
  427 }
  428 
  429 /*
  430  * Collect processes when the error hit a file mapped page.
  431  */
  432 static void collect_procs_file(struct page *page, struct list_head *to_kill,
  433                               struct to_kill **tkc)
  434 {
  435         struct vm_area_struct *vma;
  436         struct task_struct *tsk;
  437         struct address_space *mapping = page->mapping;
  438 
  439         mutex_lock(&mapping->i_mmap_mutex);
  440         read_lock(&tasklist_lock);
  441         for_each_process(tsk) {
  442                 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  443 
  444                 if (!task_early_kill(tsk))
  445                         continue;
  446 
  447                 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
  448                                       pgoff) {
  449                         /*
  450                          * Send early kill signal to tasks where a vma covers
  451                          * the page but the corrupted page is not necessarily
  452                          * mapped it in its pte.
  453                          * Assume applications who requested early kill want
  454                          * to be informed of all such data corruptions.
  455                          */
  456                         if (vma->vm_mm == tsk->mm)
  457                                 add_to_kill(tsk, page, vma, to_kill, tkc);
  458                 }
  459         }
  460         read_unlock(&tasklist_lock);
  461         mutex_unlock(&mapping->i_mmap_mutex);
  462 }
  463 
  464 /*
  465  * Collect the processes who have the corrupted page mapped to kill.
  466  * This is done in two steps for locking reasons.
  467  * First preallocate one tokill structure outside the spin locks,
  468  * so that we can kill at least one process reasonably reliable.
  469  */
  470 static void collect_procs(struct page *page, struct list_head *tokill)
  471 {
  472         struct to_kill *tk;
  473 
  474         if (!page->mapping)
  475                 return;
  476 
  477         tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  478         if (!tk)
  479                 return;
  480         if (PageAnon(page))
  481                 collect_procs_anon(page, tokill, &tk);
  482         else
  483                 collect_procs_file(page, tokill, &tk);
  484         kfree(tk);
  485 }
  486 
  487 /*
  488  * Error handlers for various types of pages.
  489  */
  490 
  491 enum outcome {
  492         IGNORED,        /* Error: cannot be handled */
  493         FAILED,         /* Error: handling failed */
  494         DELAYED,        /* Will be handled later */
  495         RECOVERED,      /* Successfully recovered */
  496 };
  497 
  498 static const char *action_name[] = {
  499         [IGNORED] = "Ignored",
  500         [FAILED] = "Failed",
  501         [DELAYED] = "Delayed",
  502         [RECOVERED] = "Recovered",
  503 };
  504 
  505 /*
  506  * XXX: It is possible that a page is isolated from LRU cache,
  507  * and then kept in swap cache or failed to remove from page cache.
  508  * The page count will stop it from being freed by unpoison.
  509  * Stress tests should be aware of this memory leak problem.
  510  */
  511 static int delete_from_lru_cache(struct page *p)
  512 {
  513         if (!isolate_lru_page(p)) {
  514                 /*
  515                  * Clear sensible page flags, so that the buddy system won't
  516                  * complain when the page is unpoison-and-freed.
  517                  */
  518                 ClearPageActive(p);
  519                 ClearPageUnevictable(p);
  520                 /*
  521                  * drop the page count elevated by isolate_lru_page()
  522                  */
  523                 page_cache_release(p);
  524                 return 0;
  525         }
  526         return -EIO;
  527 }
  528 
  529 /*
  530  * Error hit kernel page.
  531  * Do nothing, try to be lucky and not touch this instead. For a few cases we
  532  * could be more sophisticated.
  533  */
  534 static int me_kernel(struct page *p, unsigned long pfn)
  535 {
  536         return IGNORED;
  537 }
  538 
  539 /*
  540  * Page in unknown state. Do nothing.
  541  */
  542 static int me_unknown(struct page *p, unsigned long pfn)
  543 {
  544         printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
  545         return FAILED;
  546 }
  547 
  548 /*
  549  * Clean (or cleaned) page cache page.
  550  */
  551 static int me_pagecache_clean(struct page *p, unsigned long pfn)
  552 {
  553         int err;
  554         int ret = FAILED;
  555         struct address_space *mapping;
  556 
  557         delete_from_lru_cache(p);
  558 
  559         /*
  560          * For anonymous pages we're done the only reference left
  561          * should be the one m_f() holds.
  562          */
  563         if (PageAnon(p))
  564                 return RECOVERED;
  565 
  566         /*
  567          * Now truncate the page in the page cache. This is really
  568          * more like a "temporary hole punch"
  569          * Don't do this for block devices when someone else
  570          * has a reference, because it could be file system metadata
  571          * and that's not safe to truncate.
  572          */
  573         mapping = page_mapping(p);
  574         if (!mapping) {
  575                 /*
  576                  * Page has been teared down in the meanwhile
  577                  */
  578                 return FAILED;
  579         }
  580 
  581         /*
  582          * Truncation is a bit tricky. Enable it per file system for now.
  583          *
  584          * Open: to take i_mutex or not for this? Right now we don't.
  585          */
  586         if (mapping->a_ops->error_remove_page) {
  587                 err = mapping->a_ops->error_remove_page(mapping, p);
  588                 if (err != 0) {
  589                         printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
  590                                         pfn, err);
  591                 } else if (page_has_private(p) &&
  592                                 !try_to_release_page(p, GFP_NOIO)) {
  593                         pr_info("MCE %#lx: failed to release buffers\n", pfn);
  594                 } else {
  595                         ret = RECOVERED;
  596                 }
  597         } else {
  598                 /*
  599                  * If the file system doesn't support it just invalidate
  600                  * This fails on dirty or anything with private pages
  601                  */
  602                 if (invalidate_inode_page(p))
  603                         ret = RECOVERED;
  604                 else
  605                         printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
  606                                 pfn);
  607         }
  608         return ret;
  609 }
  610 
  611 /*
  612  * Dirty cache page page
  613  * Issues: when the error hit a hole page the error is not properly
  614  * propagated.
  615  */
  616 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  617 {
  618         struct address_space *mapping = page_mapping(p);
  619 
  620         SetPageError(p);
  621         /* TBD: print more information about the file. */
  622         if (mapping) {
  623                 /*
  624                  * IO error will be reported by write(), fsync(), etc.
  625                  * who check the mapping.
  626                  * This way the application knows that something went
  627                  * wrong with its dirty file data.
  628                  *
  629                  * There's one open issue:
  630                  *
  631                  * The EIO will be only reported on the next IO
  632                  * operation and then cleared through the IO map.
  633                  * Normally Linux has two mechanisms to pass IO error
  634                  * first through the AS_EIO flag in the address space
  635                  * and then through the PageError flag in the page.
  636                  * Since we drop pages on memory failure handling the
  637                  * only mechanism open to use is through AS_AIO.
  638                  *
  639                  * This has the disadvantage that it gets cleared on
  640                  * the first operation that returns an error, while
  641                  * the PageError bit is more sticky and only cleared
  642                  * when the page is reread or dropped.  If an
  643                  * application assumes it will always get error on
  644                  * fsync, but does other operations on the fd before
  645                  * and the page is dropped between then the error
  646                  * will not be properly reported.
  647                  *
  648                  * This can already happen even without hwpoisoned
  649                  * pages: first on metadata IO errors (which only
  650                  * report through AS_EIO) or when the page is dropped
  651                  * at the wrong time.
  652                  *
  653                  * So right now we assume that the application DTRT on
  654                  * the first EIO, but we're not worse than other parts
  655                  * of the kernel.
  656                  */
  657                 mapping_set_error(mapping, EIO);
  658         }
  659 
  660         return me_pagecache_clean(p, pfn);
  661 }
  662 
  663 /*
  664  * Clean and dirty swap cache.
  665  *
  666  * Dirty swap cache page is tricky to handle. The page could live both in page
  667  * cache and swap cache(ie. page is freshly swapped in). So it could be
  668  * referenced concurrently by 2 types of PTEs:
  669  * normal PTEs and swap PTEs. We try to handle them consistently by calling
  670  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  671  * and then
  672  *      - clear dirty bit to prevent IO
  673  *      - remove from LRU
  674  *      - but keep in the swap cache, so that when we return to it on
  675  *        a later page fault, we know the application is accessing
  676  *        corrupted data and shall be killed (we installed simple
  677  *        interception code in do_swap_page to catch it).
  678  *
  679  * Clean swap cache pages can be directly isolated. A later page fault will
  680  * bring in the known good data from disk.
  681  */
  682 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  683 {
  684         ClearPageDirty(p);
  685         /* Trigger EIO in shmem: */
  686         ClearPageUptodate(p);
  687 
  688         if (!delete_from_lru_cache(p))
  689                 return DELAYED;
  690         else
  691                 return FAILED;
  692 }
  693 
  694 static int me_swapcache_clean(struct page *p, unsigned long pfn)
  695 {
  696         delete_from_swap_cache(p);
  697 
  698         if (!delete_from_lru_cache(p))
  699                 return RECOVERED;
  700         else
  701                 return FAILED;
  702 }
  703 
  704 /*
  705  * Huge pages. Needs work.
  706  * Issues:
  707  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
  708  *   To narrow down kill region to one page, we need to break up pmd.
  709  */
  710 static int me_huge_page(struct page *p, unsigned long pfn)
  711 {
  712         int res = 0;
  713         struct page *hpage = compound_head(p);
  714         /*
  715          * We can safely recover from error on free or reserved (i.e.
  716          * not in-use) hugepage by dequeuing it from freelist.
  717          * To check whether a hugepage is in-use or not, we can't use
  718          * page->lru because it can be used in other hugepage operations,
  719          * such as __unmap_hugepage_range() and gather_surplus_pages().
  720          * So instead we use page_mapping() and PageAnon().
  721          * We assume that this function is called with page lock held,
  722          * so there is no race between isolation and mapping/unmapping.
  723          */
  724         if (!(page_mapping(hpage) || PageAnon(hpage))) {
  725                 res = dequeue_hwpoisoned_huge_page(hpage);
  726                 if (!res)
  727                         return RECOVERED;
  728         }
  729         return DELAYED;
  730 }
  731 
  732 /*
  733  * Various page states we can handle.
  734  *
  735  * A page state is defined by its current page->flags bits.
  736  * The table matches them in order and calls the right handler.
  737  *
  738  * This is quite tricky because we can access page at any time
  739  * in its live cycle, so all accesses have to be extremely careful.
  740  *
  741  * This is not complete. More states could be added.
  742  * For any missing state don't attempt recovery.
  743  */
  744 
  745 #define dirty           (1UL << PG_dirty)
  746 #define sc              (1UL << PG_swapcache)
  747 #define unevict         (1UL << PG_unevictable)
  748 #define mlock           (1UL << PG_mlocked)
  749 #define writeback       (1UL << PG_writeback)
  750 #define lru             (1UL << PG_lru)
  751 #define swapbacked      (1UL << PG_swapbacked)
  752 #define head            (1UL << PG_head)
  753 #define tail            (1UL << PG_tail)
  754 #define compound        (1UL << PG_compound)
  755 #define slab            (1UL << PG_slab)
  756 #define reserved        (1UL << PG_reserved)
  757 
  758 static struct page_state {
  759         unsigned long mask;
  760         unsigned long res;
  761         char *msg;
  762         int (*action)(struct page *p, unsigned long pfn);
  763 } error_states[] = {
  764         { reserved,     reserved,       "reserved kernel",      me_kernel },
  765         /*
  766          * free pages are specially detected outside this table:
  767          * PG_buddy pages only make a small fraction of all free pages.
  768          */
  769 
  770         /*
  771          * Could in theory check if slab page is free or if we can drop
  772          * currently unused objects without touching them. But just
  773          * treat it as standard kernel for now.
  774          */
  775         { slab,         slab,           "kernel slab",  me_kernel },
  776 
  777 #ifdef CONFIG_PAGEFLAGS_EXTENDED
  778         { head,         head,           "huge",         me_huge_page },
  779         { tail,         tail,           "huge",         me_huge_page },
  780 #else
  781         { compound,     compound,       "huge",         me_huge_page },
  782 #endif
  783 
  784         { sc|dirty,     sc|dirty,       "dirty swapcache",      me_swapcache_dirty },
  785         { sc|dirty,     sc,             "clean swapcache",      me_swapcache_clean },
  786 
  787         { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
  788         { unevict,      unevict,        "clean unevictable LRU", me_pagecache_clean },
  789 
  790         { mlock|dirty,  mlock|dirty,    "dirty mlocked LRU",    me_pagecache_dirty },
  791         { mlock,        mlock,          "clean mlocked LRU",    me_pagecache_clean },
  792 
  793         { lru|dirty,    lru|dirty,      "dirty LRU",    me_pagecache_dirty },
  794         { lru|dirty,    lru,            "clean LRU",    me_pagecache_clean },
  795 
  796         /*
  797          * Catchall entry: must be at end.
  798          */
  799         { 0,            0,              "unknown page state",   me_unknown },
  800 };
  801 
  802 #undef dirty
  803 #undef sc
  804 #undef unevict
  805 #undef mlock
  806 #undef writeback
  807 #undef lru
  808 #undef swapbacked
  809 #undef head
  810 #undef tail
  811 #undef compound
  812 #undef slab
  813 #undef reserved
  814 
  815 /*
  816  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
  817  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
  818  */
  819 static void action_result(unsigned long pfn, char *msg, int result)
  820 {
  821         pr_err("MCE %#lx: %s page recovery: %s\n",
  822                 pfn, msg, action_name[result]);
  823 }
  824 
  825 static int page_action(struct page_state *ps, struct page *p,
  826                         unsigned long pfn)
  827 {
  828         int result;
  829         int count;
  830 
  831         result = ps->action(p, pfn);
  832         action_result(pfn, ps->msg, result);
  833 
  834         count = page_count(p) - 1;
  835         if (ps->action == me_swapcache_dirty && result == DELAYED)
  836                 count--;
  837         if (count != 0) {
  838                 printk(KERN_ERR
  839                        "MCE %#lx: %s page still referenced by %d users\n",
  840                        pfn, ps->msg, count);
  841                 result = FAILED;
  842         }
  843 
  844         /* Could do more checks here if page looks ok */
  845         /*
  846          * Could adjust zone counters here to correct for the missing page.
  847          */
  848 
  849         return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
  850 }
  851 
  852 /*
  853  * Do all that is necessary to remove user space mappings. Unmap
  854  * the pages and send SIGBUS to the processes if the data was dirty.
  855  */
  856 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
  857                                   int trapno, int flags)
  858 {
  859         enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  860         struct address_space *mapping;
  861         LIST_HEAD(tokill);
  862         int ret;
  863         int kill = 1, forcekill;
  864         struct page *hpage = compound_head(p);
  865         struct page *ppage;
  866 
  867         if (PageReserved(p) || PageSlab(p))
  868                 return SWAP_SUCCESS;
  869 
  870         /*
  871          * This check implies we don't kill processes if their pages
  872          * are in the swap cache early. Those are always late kills.
  873          */
  874         if (!page_mapped(hpage))
  875                 return SWAP_SUCCESS;
  876 
  877         if (PageKsm(p))
  878                 return SWAP_FAIL;
  879 
  880         if (PageSwapCache(p)) {
  881                 printk(KERN_ERR
  882                        "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
  883                 ttu |= TTU_IGNORE_HWPOISON;
  884         }
  885 
  886         /*
  887          * Propagate the dirty bit from PTEs to struct page first, because we
  888          * need this to decide if we should kill or just drop the page.
  889          * XXX: the dirty test could be racy: set_page_dirty() may not always
  890          * be called inside page lock (it's recommended but not enforced).
  891          */
  892         mapping = page_mapping(hpage);
  893         if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
  894             mapping_cap_writeback_dirty(mapping)) {
  895                 if (page_mkclean(hpage)) {
  896                         SetPageDirty(hpage);
  897                 } else {
  898                         kill = 0;
  899                         ttu |= TTU_IGNORE_HWPOISON;
  900                         printk(KERN_INFO
  901         "MCE %#lx: corrupted page was clean: dropped without side effects\n",
  902                                 pfn);
  903                 }
  904         }
  905 
  906         /*
  907          * ppage: poisoned page
  908          *   if p is regular page(4k page)
  909          *        ppage == real poisoned page;
  910          *   else p is hugetlb or THP, ppage == head page.
  911          */
  912         ppage = hpage;
  913 
  914         if (PageTransHuge(hpage)) {
  915                 /*
  916                  * Verify that this isn't a hugetlbfs head page, the check for
  917                  * PageAnon is just for avoid tripping a split_huge_page
  918                  * internal debug check, as split_huge_page refuses to deal with
  919                  * anything that isn't an anon page. PageAnon can't go away fro
  920                  * under us because we hold a refcount on the hpage, without a
  921                  * refcount on the hpage. split_huge_page can't be safely called
  922                  * in the first place, having a refcount on the tail isn't
  923                  * enough * to be safe.
  924                  */
  925                 if (!PageHuge(hpage) && PageAnon(hpage)) {
  926                         if (unlikely(split_huge_page(hpage))) {
  927                                 /*
  928                                  * FIXME: if splitting THP is failed, it is
  929                                  * better to stop the following operation rather
  930                                  * than causing panic by unmapping. System might
  931                                  * survive if the page is freed later.
  932                                  */
  933                                 printk(KERN_INFO
  934                                         "MCE %#lx: failed to split THP\n", pfn);
  935 
  936                                 BUG_ON(!PageHWPoison(p));
  937                                 return SWAP_FAIL;
  938                         }
  939                         /* THP is split, so ppage should be the real poisoned page. */
  940                         ppage = p;
  941                 }
  942         }
  943 
  944         /*
  945          * First collect all the processes that have the page
  946          * mapped in dirty form.  This has to be done before try_to_unmap,
  947          * because ttu takes the rmap data structures down.
  948          *
  949          * Error handling: We ignore errors here because
  950          * there's nothing that can be done.
  951          */
  952         if (kill)
  953                 collect_procs(ppage, &tokill);
  954 
  955         if (hpage != ppage)
  956                 lock_page(ppage);
  957 
  958         ret = try_to_unmap(ppage, ttu);
  959         if (ret != SWAP_SUCCESS)
  960                 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
  961                                 pfn, page_mapcount(ppage));
  962 
  963         if (hpage != ppage)
  964                 unlock_page(ppage);
  965 
  966         /*
  967          * Now that the dirty bit has been propagated to the
  968          * struct page and all unmaps done we can decide if
  969          * killing is needed or not.  Only kill when the page
  970          * was dirty or the process is not restartable,
  971          * otherwise the tokill list is merely
  972          * freed.  When there was a problem unmapping earlier
  973          * use a more force-full uncatchable kill to prevent
  974          * any accesses to the poisoned memory.
  975          */
  976         forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
  977         kill_procs(&tokill, forcekill, trapno,
  978                       ret != SWAP_SUCCESS, p, pfn, flags);
  979 
  980         return ret;
  981 }
  982 
  983 static void set_page_hwpoison_huge_page(struct page *hpage)
  984 {
  985         int i;
  986         int nr_pages = 1 << compound_trans_order(hpage);
  987         for (i = 0; i < nr_pages; i++)
  988                 SetPageHWPoison(hpage + i);
  989 }
  990 
  991 static void clear_page_hwpoison_huge_page(struct page *hpage)
  992 {
  993         int i;
  994         int nr_pages = 1 << compound_trans_order(hpage);
  995         for (i = 0; i < nr_pages; i++)
  996                 ClearPageHWPoison(hpage + i);
  997 }
  998 
  999 /**
 1000  * memory_failure - Handle memory failure of a page.
 1001  * @pfn: Page Number of the corrupted page
 1002  * @trapno: Trap number reported in the signal to user space.
 1003  * @flags: fine tune action taken
 1004  *
 1005  * This function is called by the low level machine check code
 1006  * of an architecture when it detects hardware memory corruption
 1007  * of a page. It tries its best to recover, which includes
 1008  * dropping pages, killing processes etc.
 1009  *
 1010  * The function is primarily of use for corruptions that
 1011  * happen outside the current execution context (e.g. when
 1012  * detected by a background scrubber)
 1013  *
 1014  * Must run in process context (e.g. a work queue) with interrupts
 1015  * enabled and no spinlocks hold.
 1016  */
 1017 int memory_failure(unsigned long pfn, int trapno, int flags)
 1018 {
 1019         struct page_state *ps;
 1020         struct page *p;
 1021         struct page *hpage;
 1022         int res;
 1023         unsigned int nr_pages;
 1024 
 1025         if (!sysctl_memory_failure_recovery)
 1026                 panic("Memory failure from trap %d on page %lx", trapno, pfn);
 1027 
 1028         if (!pfn_valid(pfn)) {
 1029                 printk(KERN_ERR
 1030                        "MCE %#lx: memory outside kernel control\n",
 1031                        pfn);
 1032                 return -ENXIO;
 1033         }
 1034 
 1035         p = pfn_to_page(pfn);
 1036         hpage = compound_head(p);
 1037         if (TestSetPageHWPoison(p)) {
 1038                 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
 1039                 return 0;
 1040         }
 1041 
 1042         nr_pages = 1 << compound_trans_order(hpage);
 1043         atomic_long_add(nr_pages, &mce_bad_pages);
 1044 
 1045         /*
 1046          * We need/can do nothing about count=0 pages.
 1047          * 1) it's a free page, and therefore in safe hand:
 1048          *    prep_new_page() will be the gate keeper.
 1049          * 2) it's a free hugepage, which is also safe:
 1050          *    an affected hugepage will be dequeued from hugepage freelist,
 1051          *    so there's no concern about reusing it ever after.
 1052          * 3) it's part of a non-compound high order page.
 1053          *    Implies some kernel user: cannot stop them from
 1054          *    R/W the page; let's pray that the page has been
 1055          *    used and will be freed some time later.
 1056          * In fact it's dangerous to directly bump up page count from 0,
 1057          * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
 1058          */
 1059         if (!(flags & MF_COUNT_INCREASED) &&
 1060                 !get_page_unless_zero(hpage)) {
 1061                 if (is_free_buddy_page(p)) {
 1062                         action_result(pfn, "free buddy", DELAYED);
 1063                         return 0;
 1064                 } else if (PageHuge(hpage)) {
 1065                         /*
 1066                          * Check "just unpoisoned", "filter hit", and
 1067                          * "race with other subpage."
 1068                          */
 1069                         lock_page(hpage);
 1070                         if (!PageHWPoison(hpage)
 1071                             || (hwpoison_filter(p) && TestClearPageHWPoison(p))
 1072                             || (p != hpage && TestSetPageHWPoison(hpage))) {
 1073                                 atomic_long_sub(nr_pages, &mce_bad_pages);
 1074                                 return 0;
 1075                         }
 1076                         set_page_hwpoison_huge_page(hpage);
 1077                         res = dequeue_hwpoisoned_huge_page(hpage);
 1078                         action_result(pfn, "free huge",
 1079                                       res ? IGNORED : DELAYED);
 1080                         unlock_page(hpage);
 1081                         return res;
 1082                 } else {
 1083                         action_result(pfn, "high order kernel", IGNORED);
 1084                         return -EBUSY;
 1085                 }
 1086         }
 1087 
 1088         /*
 1089          * We ignore non-LRU pages for good reasons.
 1090          * - PG_locked is only well defined for LRU pages and a few others
 1091          * - to avoid races with __set_page_locked()
 1092          * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
 1093          * The check (unnecessarily) ignores LRU pages being isolated and
 1094          * walked by the page reclaim code, however that's not a big loss.
 1095          */
 1096         if (!PageHuge(p) && !PageTransTail(p)) {
 1097                 if (!PageLRU(p))
 1098                         shake_page(p, 0);
 1099                 if (!PageLRU(p)) {
 1100                         /*
 1101                          * shake_page could have turned it free.
 1102                          */
 1103                         if (is_free_buddy_page(p)) {
 1104                                 action_result(pfn, "free buddy, 2nd try",
 1105                                                 DELAYED);
 1106                                 return 0;
 1107                         }
 1108                         action_result(pfn, "non LRU", IGNORED);
 1109                         put_page(p);
 1110                         return -EBUSY;
 1111                 }
 1112         }
 1113 
 1114         /*
 1115          * Lock the page and wait for writeback to finish.
 1116          * It's very difficult to mess with pages currently under IO
 1117          * and in many cases impossible, so we just avoid it here.
 1118          */
 1119         lock_page(hpage);
 1120 
 1121         /*
 1122          * unpoison always clear PG_hwpoison inside page lock
 1123          */
 1124         if (!PageHWPoison(p)) {
 1125                 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
 1126                 res = 0;
 1127                 goto out;
 1128         }
 1129         if (hwpoison_filter(p)) {
 1130                 if (TestClearPageHWPoison(p))
 1131                         atomic_long_sub(nr_pages, &mce_bad_pages);
 1132                 unlock_page(hpage);
 1133                 put_page(hpage);
 1134                 return 0;
 1135         }
 1136 
 1137         /*
 1138          * For error on the tail page, we should set PG_hwpoison
 1139          * on the head page to show that the hugepage is hwpoisoned
 1140          */
 1141         if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
 1142                 action_result(pfn, "hugepage already hardware poisoned",
 1143                                 IGNORED);
 1144                 unlock_page(hpage);
 1145                 put_page(hpage);
 1146                 return 0;
 1147         }
 1148         /*
 1149          * Set PG_hwpoison on all pages in an error hugepage,
 1150          * because containment is done in hugepage unit for now.
 1151          * Since we have done TestSetPageHWPoison() for the head page with
 1152          * page lock held, we can safely set PG_hwpoison bits on tail pages.
 1153          */
 1154         if (PageHuge(p))
 1155                 set_page_hwpoison_huge_page(hpage);
 1156 
 1157         wait_on_page_writeback(p);
 1158 
 1159         /*
 1160          * Now take care of user space mappings.
 1161          * Abort on fail: __delete_from_page_cache() assumes unmapped page.
 1162          */
 1163         if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) {
 1164                 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
 1165                 res = -EBUSY;
 1166                 goto out;
 1167         }
 1168 
 1169         /*
 1170          * Torn down by someone else?
 1171          */
 1172         if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
 1173                 action_result(pfn, "already truncated LRU", IGNORED);
 1174                 res = -EBUSY;
 1175                 goto out;
 1176         }
 1177 
 1178         res = -EBUSY;
 1179         for (ps = error_states;; ps++) {
 1180                 if ((p->flags & ps->mask) == ps->res) {
 1181                         res = page_action(ps, p, pfn);
 1182                         break;
 1183                 }
 1184         }
 1185 out:
 1186         unlock_page(hpage);
 1187         return res;
 1188 }
 1189 EXPORT_SYMBOL_GPL(memory_failure);
 1190 
 1191 #define MEMORY_FAILURE_FIFO_ORDER       4
 1192 #define MEMORY_FAILURE_FIFO_SIZE        (1 << MEMORY_FAILURE_FIFO_ORDER)
 1193 
 1194 struct memory_failure_entry {
 1195         unsigned long pfn;
 1196         int trapno;
 1197         int flags;
 1198 };
 1199 
 1200 struct memory_failure_cpu {
 1201         DECLARE_KFIFO(fifo, struct memory_failure_entry,
 1202                       MEMORY_FAILURE_FIFO_SIZE);
 1203         spinlock_t lock;
 1204         struct work_struct work;
 1205 };
 1206 
 1207 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
 1208 
 1209 /**
 1210  * memory_failure_queue - Schedule handling memory failure of a page.
 1211  * @pfn: Page Number of the corrupted page
 1212  * @trapno: Trap number reported in the signal to user space.
 1213  * @flags: Flags for memory failure handling
 1214  *
 1215  * This function is called by the low level hardware error handler
 1216  * when it detects hardware memory corruption of a page. It schedules
 1217  * the recovering of error page, including dropping pages, killing
 1218  * processes etc.
 1219  *
 1220  * The function is primarily of use for corruptions that
 1221  * happen outside the current execution context (e.g. when
 1222  * detected by a background scrubber)
 1223  *
 1224  * Can run in IRQ context.
 1225  */
 1226 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
 1227 {
 1228         struct memory_failure_cpu *mf_cpu;
 1229         unsigned long proc_flags;
 1230         struct memory_failure_entry entry = {
 1231                 .pfn =          pfn,
 1232                 .trapno =       trapno,
 1233                 .flags =        flags,
 1234         };
 1235 
 1236         mf_cpu = &get_cpu_var(memory_failure_cpu);
 1237         spin_lock_irqsave(&mf_cpu->lock, proc_flags);
 1238         if (kfifo_put(&mf_cpu->fifo, &entry))
 1239                 schedule_work_on(smp_processor_id(), &mf_cpu->work);
 1240         else
 1241                 pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
 1242                        pfn);
 1243         spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
 1244         put_cpu_var(memory_failure_cpu);
 1245 }
 1246 EXPORT_SYMBOL_GPL(memory_failure_queue);
 1247 
 1248 static void memory_failure_work_func(struct work_struct *work)
 1249 {
 1250         struct memory_failure_cpu *mf_cpu;
 1251         struct memory_failure_entry entry = { 0, };
 1252         unsigned long proc_flags;
 1253         int gotten;
 1254 
 1255         mf_cpu = &__get_cpu_var(memory_failure_cpu);
 1256         for (;;) {
 1257                 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
 1258                 gotten = kfifo_get(&mf_cpu->fifo, &entry);
 1259                 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
 1260                 if (!gotten)
 1261                         break;
 1262                 memory_failure(entry.pfn, entry.trapno, entry.flags);
 1263         }
 1264 }
 1265 
 1266 static int __init memory_failure_init(void)
 1267 {
 1268         struct memory_failure_cpu *mf_cpu;
 1269         int cpu;
 1270 
 1271         for_each_possible_cpu(cpu) {
 1272                 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
 1273                 spin_lock_init(&mf_cpu->lock);
 1274                 INIT_KFIFO(mf_cpu->fifo);
 1275                 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
 1276         }
 1277 
 1278         return 0;
 1279 }
 1280 core_initcall(memory_failure_init);
 1281 
 1282 /**
 1283  * unpoison_memory - Unpoison a previously poisoned page
 1284  * @pfn: Page number of the to be unpoisoned page
 1285  *
 1286  * Software-unpoison a page that has been poisoned by
 1287  * memory_failure() earlier.
 1288  *
 1289  * This is only done on the software-level, so it only works
 1290  * for linux injected failures, not real hardware failures
 1291  *
 1292  * Returns 0 for success, otherwise -errno.
 1293  */
 1294 int unpoison_memory(unsigned long pfn)
 1295 {
 1296         struct page *page;
 1297         struct page *p;
 1298         int freeit = 0;
 1299         unsigned int nr_pages;
 1300 
 1301         if (!pfn_valid(pfn))
 1302                 return -ENXIO;
 1303 
 1304         p = pfn_to_page(pfn);
 1305         page = compound_head(p);
 1306 
 1307         if (!PageHWPoison(p)) {
 1308                 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
 1309                 return 0;
 1310         }
 1311 
 1312         nr_pages = 1 << compound_trans_order(page);
 1313 
 1314         if (!get_page_unless_zero(page)) {
 1315                 /*
 1316                  * Since HWPoisoned hugepage should have non-zero refcount,
 1317                  * race between memory failure and unpoison seems to happen.
 1318                  * In such case unpoison fails and memory failure runs
 1319                  * to the end.
 1320                  */
 1321                 if (PageHuge(page)) {
 1322                         pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
 1323                         return 0;
 1324                 }
 1325                 if (TestClearPageHWPoison(p))
 1326                         atomic_long_sub(nr_pages, &mce_bad_pages);
 1327                 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
 1328                 return 0;
 1329         }
 1330 
 1331         lock_page(page);
 1332         /*
 1333          * This test is racy because PG_hwpoison is set outside of page lock.
 1334          * That's acceptable because that won't trigger kernel panic. Instead,
 1335          * the PG_hwpoison page will be caught and isolated on the entrance to
 1336          * the free buddy page pool.
 1337          */
 1338         if (TestClearPageHWPoison(page)) {
 1339                 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
 1340                 atomic_long_sub(nr_pages, &mce_bad_pages);
 1341                 freeit = 1;
 1342                 if (PageHuge(page))
 1343                         clear_page_hwpoison_huge_page(page);
 1344         }
 1345         unlock_page(page);
 1346 
 1347         put_page(page);
 1348         if (freeit)
 1349                 put_page(page);
 1350 
 1351         return 0;
 1352 }
 1353 EXPORT_SYMBOL(unpoison_memory);
 1354 
 1355 static struct page *new_page(struct page *p, unsigned long private, int **x)
 1356 {
 1357         int nid = page_to_nid(p);
 1358         if (PageHuge(p))
 1359                 return alloc_huge_page_node(page_hstate(compound_head(p)),
 1360                                                    nid);
 1361         else
 1362                 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
 1363 }
 1364 
 1365 /*
 1366  * Safely get reference count of an arbitrary page.
 1367  * Returns 0 for a free page, -EIO for a zero refcount page
 1368  * that is not free, and 1 for any other page type.
 1369  * For 1 the page is returned with increased page count, otherwise not.
 1370  */
 1371 static int get_any_page(struct page *p, unsigned long pfn, int flags)
 1372 {
 1373         int ret;
 1374 
 1375         if (flags & MF_COUNT_INCREASED)
 1376                 return 1;
 1377 
 1378         /*
 1379          * The lock_memory_hotplug prevents a race with memory hotplug.
 1380          * This is a big hammer, a better would be nicer.
 1381          */
 1382         lock_memory_hotplug();
 1383 
 1384         /*
 1385          * Isolate the page, so that it doesn't get reallocated if it
 1386          * was free.
 1387          */
 1388         set_migratetype_isolate(p, true);
 1389         /*
 1390          * When the target page is a free hugepage, just remove it
 1391          * from free hugepage list.
 1392          */
 1393         if (!get_page_unless_zero(compound_head(p))) {
 1394                 if (PageHuge(p)) {
 1395                         pr_info("%s: %#lx free huge page\n", __func__, pfn);
 1396                         ret = dequeue_hwpoisoned_huge_page(compound_head(p));
 1397                 } else if (is_free_buddy_page(p)) {
 1398                         pr_info("%s: %#lx free buddy page\n", __func__, pfn);
 1399                         /* Set hwpoison bit while page is still isolated */
 1400                         SetPageHWPoison(p);
 1401                         ret = 0;
 1402                 } else {
 1403                         pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
 1404                                 __func__, pfn, p->flags);
 1405                         ret = -EIO;
 1406                 }
 1407         } else {
 1408                 /* Not a free page */
 1409                 ret = 1;
 1410         }
 1411         unset_migratetype_isolate(p, MIGRATE_MOVABLE);
 1412         unlock_memory_hotplug();
 1413         return ret;
 1414 }
 1415 
 1416 static int soft_offline_huge_page(struct page *page, int flags)
 1417 {
 1418         int ret;
 1419         unsigned long pfn = page_to_pfn(page);
 1420         struct page *hpage = compound_head(page);
 1421 
 1422         ret = get_any_page(page, pfn, flags);
 1423         if (ret < 0)
 1424                 return ret;
 1425         if (ret == 0)
 1426                 goto done;
 1427 
 1428         if (PageHWPoison(hpage)) {
 1429                 put_page(hpage);
 1430                 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
 1431                 return -EBUSY;
 1432         }
 1433 
 1434         /* Keep page count to indicate a given hugepage is isolated. */
 1435         ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL, false,
 1436                                 MIGRATE_SYNC);
 1437         put_page(hpage);
 1438         if (ret) {
 1439                 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
 1440                         pfn, ret, page->flags);
 1441                 return ret;
 1442         }
 1443 done:
 1444         if (!PageHWPoison(hpage))
 1445                 atomic_long_add(1 << compound_trans_order(hpage),
 1446                                 &mce_bad_pages);
 1447         set_page_hwpoison_huge_page(hpage);
 1448         dequeue_hwpoisoned_huge_page(hpage);
 1449         /* keep elevated page count for bad page */
 1450         return ret;
 1451 }
 1452 
 1453 /**
 1454  * soft_offline_page - Soft offline a page.
 1455  * @page: page to offline
 1456  * @flags: flags. Same as memory_failure().
 1457  *
 1458  * Returns 0 on success, otherwise negated errno.
 1459  *
 1460  * Soft offline a page, by migration or invalidation,
 1461  * without killing anything. This is for the case when
 1462  * a page is not corrupted yet (so it's still valid to access),
 1463  * but has had a number of corrected errors and is better taken
 1464  * out.
 1465  *
 1466  * The actual policy on when to do that is maintained by
 1467  * user space.
 1468  *
 1469  * This should never impact any application or cause data loss,
 1470  * however it might take some time.
 1471  *
 1472  * This is not a 100% solution for all memory, but tries to be
 1473  * ``good enough'' for the majority of memory.
 1474  */
 1475 int soft_offline_page(struct page *page, int flags)
 1476 {
 1477         int ret;
 1478         unsigned long pfn = page_to_pfn(page);
 1479         struct page *hpage = compound_trans_head(page);
 1480 
 1481         if (PageHuge(page))
 1482                 return soft_offline_huge_page(page, flags);
 1483         if (PageTransHuge(hpage)) {
 1484                 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
 1485                         pr_info("soft offline: %#lx: failed to split THP\n",
 1486                                 pfn);
 1487                         return -EBUSY;
 1488                 }
 1489         }
 1490 
 1491         ret = get_any_page(page, pfn, flags);
 1492         if (ret < 0)
 1493                 return ret;
 1494         if (ret == 0)
 1495                 goto done;
 1496 
 1497         /*
 1498          * Page cache page we can handle?
 1499          */
 1500         if (!PageLRU(page)) {
 1501                 /*
 1502                  * Try to free it.
 1503                  */
 1504                 put_page(page);
 1505                 shake_page(page, 1);
 1506 
 1507                 /*
 1508                  * Did it turn free?
 1509                  */
 1510                 ret = get_any_page(page, pfn, 0);
 1511                 if (ret < 0)
 1512                         return ret;
 1513                 if (ret == 0)
 1514                         goto done;
 1515         }
 1516         if (!PageLRU(page)) {
 1517                 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
 1518                         pfn, page->flags);
 1519                 return -EIO;
 1520         }
 1521 
 1522         lock_page(page);
 1523         wait_on_page_writeback(page);
 1524 
 1525         /*
 1526          * Synchronized using the page lock with memory_failure()
 1527          */
 1528         if (PageHWPoison(page)) {
 1529                 unlock_page(page);
 1530                 put_page(page);
 1531                 pr_info("soft offline: %#lx page already poisoned\n", pfn);
 1532                 return -EBUSY;
 1533         }
 1534 
 1535         /*
 1536          * Try to invalidate first. This should work for
 1537          * non dirty unmapped page cache pages.
 1538          */
 1539         ret = invalidate_inode_page(page);
 1540         unlock_page(page);
 1541         /*
 1542          * RED-PEN would be better to keep it isolated here, but we
 1543          * would need to fix isolation locking first.
 1544          */
 1545         if (ret == 1) {
 1546                 put_page(page);
 1547                 ret = 0;
 1548                 pr_info("soft_offline: %#lx: invalidated\n", pfn);
 1549                 goto done;
 1550         }
 1551 
 1552         /*
 1553          * Simple invalidation didn't work.
 1554          * Try to migrate to a new page instead. migrate.c
 1555          * handles a large number of cases for us.
 1556          */
 1557         ret = isolate_lru_page(page);
 1558         /*
 1559          * Drop page reference which is came from get_any_page()
 1560          * successful isolate_lru_page() already took another one.
 1561          */
 1562         put_page(page);
 1563         if (!ret) {
 1564                 LIST_HEAD(pagelist);
 1565                 inc_zone_page_state(page, NR_ISOLATED_ANON +
 1566                                             page_is_file_cache(page));
 1567                 list_add(&page->lru, &pagelist);
 1568                 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
 1569                                                         false, MIGRATE_SYNC,
 1570                                                         MR_MEMORY_FAILURE);
 1571                 if (ret) {
 1572                         putback_lru_pages(&pagelist);
 1573                         pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
 1574                                 pfn, ret, page->flags);
 1575                         if (ret > 0)
 1576                                 ret = -EIO;
 1577                 }
 1578         } else {
 1579                 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
 1580                         pfn, ret, page_count(page), page->flags);
 1581         }
 1582         if (ret)
 1583                 return ret;
 1584 
 1585 done:
 1586         atomic_long_add(1, &mce_bad_pages);
 1587         SetPageHWPoison(page);
 1588         /* keep elevated page count for bad page */
 1589         return ret;
 1590 }

Cache object: fb224cd65f317d603508dd1f36ec4f1f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.