The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/memory.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  *  linux/mm/memory.c
    3  *
    4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
    5  */
    6 
    7 /*
    8  * demand-loading started 01.12.91 - seems it is high on the list of
    9  * things wanted, and it should be easy to implement. - Linus
   10  */
   11 
   12 /*
   13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
   14  * pages started 02.12.91, seems to work. - Linus.
   15  *
   16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
   17  * would have taken more than the 6M I have free, but it worked well as
   18  * far as I could see.
   19  *
   20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
   21  */
   22 
   23 /*
   24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
   25  * thought has to go into this. Oh, well..
   26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
   27  *              Found it. Everything seems to work now.
   28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
   29  */
   30 
   31 /*
   32  * 05.04.94  -  Multi-page memory management added for v1.1.
   33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
   34  *
   35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
   36  *              (Gerhard.Wichert@pdb.siemens.de)
   37  *
   38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
   39  */
   40 
   41 #include <linux/kernel_stat.h>
   42 #include <linux/mm.h>
   43 #include <linux/hugetlb.h>
   44 #include <linux/mman.h>
   45 #include <linux/swap.h>
   46 #include <linux/highmem.h>
   47 #include <linux/pagemap.h>
   48 #include <linux/ksm.h>
   49 #include <linux/rmap.h>
   50 #include <linux/export.h>
   51 #include <linux/delayacct.h>
   52 #include <linux/init.h>
   53 #include <linux/writeback.h>
   54 #include <linux/memcontrol.h>
   55 #include <linux/mmu_notifier.h>
   56 #include <linux/kallsyms.h>
   57 #include <linux/swapops.h>
   58 #include <linux/elf.h>
   59 #include <linux/gfp.h>
   60 #include <linux/migrate.h>
   61 #include <linux/string.h>
   62 
   63 #include <asm/io.h>
   64 #include <asm/pgalloc.h>
   65 #include <asm/uaccess.h>
   66 #include <asm/tlb.h>
   67 #include <asm/tlbflush.h>
   68 #include <asm/pgtable.h>
   69 
   70 #include "internal.h"
   71 
   72 #ifndef CONFIG_NEED_MULTIPLE_NODES
   73 /* use the per-pgdat data instead for discontigmem - mbligh */
   74 unsigned long max_mapnr;
   75 struct page *mem_map;
   76 
   77 EXPORT_SYMBOL(max_mapnr);
   78 EXPORT_SYMBOL(mem_map);
   79 #endif
   80 
   81 unsigned long num_physpages;
   82 /*
   83  * A number of key systems in x86 including ioremap() rely on the assumption
   84  * that high_memory defines the upper bound on direct map memory, then end
   85  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
   86  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
   87  * and ZONE_HIGHMEM.
   88  */
   89 void * high_memory;
   90 
   91 EXPORT_SYMBOL(num_physpages);
   92 EXPORT_SYMBOL(high_memory);
   93 
   94 /*
   95  * Randomize the address space (stacks, mmaps, brk, etc.).
   96  *
   97  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
   98  *   as ancient (libc5 based) binaries can segfault. )
   99  */
  100 int randomize_va_space __read_mostly =
  101 #ifdef CONFIG_COMPAT_BRK
  102                                         1;
  103 #else
  104                                         2;
  105 #endif
  106 
  107 static int __init disable_randmaps(char *s)
  108 {
  109         randomize_va_space = 0;
  110         return 1;
  111 }
  112 __setup("norandmaps", disable_randmaps);
  113 
  114 unsigned long zero_pfn __read_mostly;
  115 unsigned long highest_memmap_pfn __read_mostly;
  116 
  117 /*
  118  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  119  */
  120 static int __init init_zero_pfn(void)
  121 {
  122         zero_pfn = page_to_pfn(ZERO_PAGE(0));
  123         return 0;
  124 }
  125 core_initcall(init_zero_pfn);
  126 
  127 
  128 #if defined(SPLIT_RSS_COUNTING)
  129 
  130 void sync_mm_rss(struct mm_struct *mm)
  131 {
  132         int i;
  133 
  134         for (i = 0; i < NR_MM_COUNTERS; i++) {
  135                 if (current->rss_stat.count[i]) {
  136                         add_mm_counter(mm, i, current->rss_stat.count[i]);
  137                         current->rss_stat.count[i] = 0;
  138                 }
  139         }
  140         current->rss_stat.events = 0;
  141 }
  142 
  143 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  144 {
  145         struct task_struct *task = current;
  146 
  147         if (likely(task->mm == mm))
  148                 task->rss_stat.count[member] += val;
  149         else
  150                 add_mm_counter(mm, member, val);
  151 }
  152 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  153 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  154 
  155 /* sync counter once per 64 page faults */
  156 #define TASK_RSS_EVENTS_THRESH  (64)
  157 static void check_sync_rss_stat(struct task_struct *task)
  158 {
  159         if (unlikely(task != current))
  160                 return;
  161         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  162                 sync_mm_rss(task->mm);
  163 }
  164 #else /* SPLIT_RSS_COUNTING */
  165 
  166 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  167 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  168 
  169 static void check_sync_rss_stat(struct task_struct *task)
  170 {
  171 }
  172 
  173 #endif /* SPLIT_RSS_COUNTING */
  174 
  175 #ifdef HAVE_GENERIC_MMU_GATHER
  176 
  177 static int tlb_next_batch(struct mmu_gather *tlb)
  178 {
  179         struct mmu_gather_batch *batch;
  180 
  181         batch = tlb->active;
  182         if (batch->next) {
  183                 tlb->active = batch->next;
  184                 return 1;
  185         }
  186 
  187         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
  188                 return 0;
  189 
  190         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  191         if (!batch)
  192                 return 0;
  193 
  194         tlb->batch_count++;
  195         batch->next = NULL;
  196         batch->nr   = 0;
  197         batch->max  = MAX_GATHER_BATCH;
  198 
  199         tlb->active->next = batch;
  200         tlb->active = batch;
  201 
  202         return 1;
  203 }
  204 
  205 /* tlb_gather_mmu
  206  *      Called to initialize an (on-stack) mmu_gather structure for page-table
  207  *      tear-down from @mm. The @fullmm argument is used when @mm is without
  208  *      users and we're going to destroy the full address space (exit/execve).
  209  */
  210 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
  211 {
  212         tlb->mm = mm;
  213 
  214         tlb->fullmm     = fullmm;
  215         tlb->start      = -1UL;
  216         tlb->end        = 0;
  217         tlb->need_flush = 0;
  218         tlb->fast_mode  = (num_possible_cpus() == 1);
  219         tlb->local.next = NULL;
  220         tlb->local.nr   = 0;
  221         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
  222         tlb->active     = &tlb->local;
  223         tlb->batch_count = 0;
  224 
  225 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  226         tlb->batch = NULL;
  227 #endif
  228 }
  229 
  230 void tlb_flush_mmu(struct mmu_gather *tlb)
  231 {
  232         struct mmu_gather_batch *batch;
  233 
  234         if (!tlb->need_flush)
  235                 return;
  236         tlb->need_flush = 0;
  237         tlb_flush(tlb);
  238 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  239         tlb_table_flush(tlb);
  240 #endif
  241 
  242         if (tlb_fast_mode(tlb))
  243                 return;
  244 
  245         for (batch = &tlb->local; batch; batch = batch->next) {
  246                 free_pages_and_swap_cache(batch->pages, batch->nr);
  247                 batch->nr = 0;
  248         }
  249         tlb->active = &tlb->local;
  250 }
  251 
  252 /* tlb_finish_mmu
  253  *      Called at the end of the shootdown operation to free up any resources
  254  *      that were required.
  255  */
  256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  257 {
  258         struct mmu_gather_batch *batch, *next;
  259 
  260         tlb->start = start;
  261         tlb->end   = end;
  262         tlb_flush_mmu(tlb);
  263 
  264         /* keep the page table cache within bounds */
  265         check_pgt_cache();
  266 
  267         for (batch = tlb->local.next; batch; batch = next) {
  268                 next = batch->next;
  269                 free_pages((unsigned long)batch, 0);
  270         }
  271         tlb->local.next = NULL;
  272 }
  273 
  274 /* __tlb_remove_page
  275  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  276  *      handling the additional races in SMP caused by other CPUs caching valid
  277  *      mappings in their TLBs. Returns the number of free page slots left.
  278  *      When out of page slots we must call tlb_flush_mmu().
  279  */
  280 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  281 {
  282         struct mmu_gather_batch *batch;
  283 
  284         VM_BUG_ON(!tlb->need_flush);
  285 
  286         if (tlb_fast_mode(tlb)) {
  287                 free_page_and_swap_cache(page);
  288                 return 1; /* avoid calling tlb_flush_mmu() */
  289         }
  290 
  291         batch = tlb->active;
  292         batch->pages[batch->nr++] = page;
  293         if (batch->nr == batch->max) {
  294                 if (!tlb_next_batch(tlb))
  295                         return 0;
  296                 batch = tlb->active;
  297         }
  298         VM_BUG_ON(batch->nr > batch->max);
  299 
  300         return batch->max - batch->nr;
  301 }
  302 
  303 #endif /* HAVE_GENERIC_MMU_GATHER */
  304 
  305 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  306 
  307 /*
  308  * See the comment near struct mmu_table_batch.
  309  */
  310 
  311 static void tlb_remove_table_smp_sync(void *arg)
  312 {
  313         /* Simply deliver the interrupt */
  314 }
  315 
  316 static void tlb_remove_table_one(void *table)
  317 {
  318         /*
  319          * This isn't an RCU grace period and hence the page-tables cannot be
  320          * assumed to be actually RCU-freed.
  321          *
  322          * It is however sufficient for software page-table walkers that rely on
  323          * IRQ disabling. See the comment near struct mmu_table_batch.
  324          */
  325         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  326         __tlb_remove_table(table);
  327 }
  328 
  329 static void tlb_remove_table_rcu(struct rcu_head *head)
  330 {
  331         struct mmu_table_batch *batch;
  332         int i;
  333 
  334         batch = container_of(head, struct mmu_table_batch, rcu);
  335 
  336         for (i = 0; i < batch->nr; i++)
  337                 __tlb_remove_table(batch->tables[i]);
  338 
  339         free_page((unsigned long)batch);
  340 }
  341 
  342 void tlb_table_flush(struct mmu_gather *tlb)
  343 {
  344         struct mmu_table_batch **batch = &tlb->batch;
  345 
  346         if (*batch) {
  347                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  348                 *batch = NULL;
  349         }
  350 }
  351 
  352 void tlb_remove_table(struct mmu_gather *tlb, void *table)
  353 {
  354         struct mmu_table_batch **batch = &tlb->batch;
  355 
  356         tlb->need_flush = 1;
  357 
  358         /*
  359          * When there's less then two users of this mm there cannot be a
  360          * concurrent page-table walk.
  361          */
  362         if (atomic_read(&tlb->mm->mm_users) < 2) {
  363                 __tlb_remove_table(table);
  364                 return;
  365         }
  366 
  367         if (*batch == NULL) {
  368                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  369                 if (*batch == NULL) {
  370                         tlb_remove_table_one(table);
  371                         return;
  372                 }
  373                 (*batch)->nr = 0;
  374         }
  375         (*batch)->tables[(*batch)->nr++] = table;
  376         if ((*batch)->nr == MAX_TABLE_BATCH)
  377                 tlb_table_flush(tlb);
  378 }
  379 
  380 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  381 
  382 /*
  383  * If a p?d_bad entry is found while walking page tables, report
  384  * the error, before resetting entry to p?d_none.  Usually (but
  385  * very seldom) called out from the p?d_none_or_clear_bad macros.
  386  */
  387 
  388 void pgd_clear_bad(pgd_t *pgd)
  389 {
  390         pgd_ERROR(*pgd);
  391         pgd_clear(pgd);
  392 }
  393 
  394 void pud_clear_bad(pud_t *pud)
  395 {
  396         pud_ERROR(*pud);
  397         pud_clear(pud);
  398 }
  399 
  400 void pmd_clear_bad(pmd_t *pmd)
  401 {
  402         pmd_ERROR(*pmd);
  403         pmd_clear(pmd);
  404 }
  405 
  406 /*
  407  * Note: this doesn't free the actual pages themselves. That
  408  * has been handled earlier when unmapping all the memory regions.
  409  */
  410 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  411                            unsigned long addr)
  412 {
  413         pgtable_t token = pmd_pgtable(*pmd);
  414         pmd_clear(pmd);
  415         pte_free_tlb(tlb, token, addr);
  416         tlb->mm->nr_ptes--;
  417 }
  418 
  419 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  420                                 unsigned long addr, unsigned long end,
  421                                 unsigned long floor, unsigned long ceiling)
  422 {
  423         pmd_t *pmd;
  424         unsigned long next;
  425         unsigned long start;
  426 
  427         start = addr;
  428         pmd = pmd_offset(pud, addr);
  429         do {
  430                 next = pmd_addr_end(addr, end);
  431                 if (pmd_none_or_clear_bad(pmd))
  432                         continue;
  433                 free_pte_range(tlb, pmd, addr);
  434         } while (pmd++, addr = next, addr != end);
  435 
  436         start &= PUD_MASK;
  437         if (start < floor)
  438                 return;
  439         if (ceiling) {
  440                 ceiling &= PUD_MASK;
  441                 if (!ceiling)
  442                         return;
  443         }
  444         if (end - 1 > ceiling - 1)
  445                 return;
  446 
  447         pmd = pmd_offset(pud, start);
  448         pud_clear(pud);
  449         pmd_free_tlb(tlb, pmd, start);
  450 }
  451 
  452 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  453                                 unsigned long addr, unsigned long end,
  454                                 unsigned long floor, unsigned long ceiling)
  455 {
  456         pud_t *pud;
  457         unsigned long next;
  458         unsigned long start;
  459 
  460         start = addr;
  461         pud = pud_offset(pgd, addr);
  462         do {
  463                 next = pud_addr_end(addr, end);
  464                 if (pud_none_or_clear_bad(pud))
  465                         continue;
  466                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  467         } while (pud++, addr = next, addr != end);
  468 
  469         start &= PGDIR_MASK;
  470         if (start < floor)
  471                 return;
  472         if (ceiling) {
  473                 ceiling &= PGDIR_MASK;
  474                 if (!ceiling)
  475                         return;
  476         }
  477         if (end - 1 > ceiling - 1)
  478                 return;
  479 
  480         pud = pud_offset(pgd, start);
  481         pgd_clear(pgd);
  482         pud_free_tlb(tlb, pud, start);
  483 }
  484 
  485 /*
  486  * This function frees user-level page tables of a process.
  487  *
  488  * Must be called with pagetable lock held.
  489  */
  490 void free_pgd_range(struct mmu_gather *tlb,
  491                         unsigned long addr, unsigned long end,
  492                         unsigned long floor, unsigned long ceiling)
  493 {
  494         pgd_t *pgd;
  495         unsigned long next;
  496 
  497         /*
  498          * The next few lines have given us lots of grief...
  499          *
  500          * Why are we testing PMD* at this top level?  Because often
  501          * there will be no work to do at all, and we'd prefer not to
  502          * go all the way down to the bottom just to discover that.
  503          *
  504          * Why all these "- 1"s?  Because 0 represents both the bottom
  505          * of the address space and the top of it (using -1 for the
  506          * top wouldn't help much: the masks would do the wrong thing).
  507          * The rule is that addr 0 and floor 0 refer to the bottom of
  508          * the address space, but end 0 and ceiling 0 refer to the top
  509          * Comparisons need to use "end - 1" and "ceiling - 1" (though
  510          * that end 0 case should be mythical).
  511          *
  512          * Wherever addr is brought up or ceiling brought down, we must
  513          * be careful to reject "the opposite 0" before it confuses the
  514          * subsequent tests.  But what about where end is brought down
  515          * by PMD_SIZE below? no, end can't go down to 0 there.
  516          *
  517          * Whereas we round start (addr) and ceiling down, by different
  518          * masks at different levels, in order to test whether a table
  519          * now has no other vmas using it, so can be freed, we don't
  520          * bother to round floor or end up - the tests don't need that.
  521          */
  522 
  523         addr &= PMD_MASK;
  524         if (addr < floor) {
  525                 addr += PMD_SIZE;
  526                 if (!addr)
  527                         return;
  528         }
  529         if (ceiling) {
  530                 ceiling &= PMD_MASK;
  531                 if (!ceiling)
  532                         return;
  533         }
  534         if (end - 1 > ceiling - 1)
  535                 end -= PMD_SIZE;
  536         if (addr > end - 1)
  537                 return;
  538 
  539         pgd = pgd_offset(tlb->mm, addr);
  540         do {
  541                 next = pgd_addr_end(addr, end);
  542                 if (pgd_none_or_clear_bad(pgd))
  543                         continue;
  544                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  545         } while (pgd++, addr = next, addr != end);
  546 }
  547 
  548 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  549                 unsigned long floor, unsigned long ceiling)
  550 {
  551         while (vma) {
  552                 struct vm_area_struct *next = vma->vm_next;
  553                 unsigned long addr = vma->vm_start;
  554 
  555                 /*
  556                  * Hide vma from rmap and truncate_pagecache before freeing
  557                  * pgtables
  558                  */
  559                 unlink_anon_vmas(vma);
  560                 unlink_file_vma(vma);
  561 
  562                 if (is_vm_hugetlb_page(vma)) {
  563                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  564                                 floor, next? next->vm_start: ceiling);
  565                 } else {
  566                         /*
  567                          * Optimization: gather nearby vmas into one call down
  568                          */
  569                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  570                                && !is_vm_hugetlb_page(next)) {
  571                                 vma = next;
  572                                 next = vma->vm_next;
  573                                 unlink_anon_vmas(vma);
  574                                 unlink_file_vma(vma);
  575                         }
  576                         free_pgd_range(tlb, addr, vma->vm_end,
  577                                 floor, next? next->vm_start: ceiling);
  578                 }
  579                 vma = next;
  580         }
  581 }
  582 
  583 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  584                 pmd_t *pmd, unsigned long address)
  585 {
  586         pgtable_t new = pte_alloc_one(mm, address);
  587         int wait_split_huge_page;
  588         if (!new)
  589                 return -ENOMEM;
  590 
  591         /*
  592          * Ensure all pte setup (eg. pte page lock and page clearing) are
  593          * visible before the pte is made visible to other CPUs by being
  594          * put into page tables.
  595          *
  596          * The other side of the story is the pointer chasing in the page
  597          * table walking code (when walking the page table without locking;
  598          * ie. most of the time). Fortunately, these data accesses consist
  599          * of a chain of data-dependent loads, meaning most CPUs (alpha
  600          * being the notable exception) will already guarantee loads are
  601          * seen in-order. See the alpha page table accessors for the
  602          * smp_read_barrier_depends() barriers in page table walking code.
  603          */
  604         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  605 
  606         spin_lock(&mm->page_table_lock);
  607         wait_split_huge_page = 0;
  608         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
  609                 mm->nr_ptes++;
  610                 pmd_populate(mm, pmd, new);
  611                 new = NULL;
  612         } else if (unlikely(pmd_trans_splitting(*pmd)))
  613                 wait_split_huge_page = 1;
  614         spin_unlock(&mm->page_table_lock);
  615         if (new)
  616                 pte_free(mm, new);
  617         if (wait_split_huge_page)
  618                 wait_split_huge_page(vma->anon_vma, pmd);
  619         return 0;
  620 }
  621 
  622 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  623 {
  624         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  625         if (!new)
  626                 return -ENOMEM;
  627 
  628         smp_wmb(); /* See comment in __pte_alloc */
  629 
  630         spin_lock(&init_mm.page_table_lock);
  631         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
  632                 pmd_populate_kernel(&init_mm, pmd, new);
  633                 new = NULL;
  634         } else
  635                 VM_BUG_ON(pmd_trans_splitting(*pmd));
  636         spin_unlock(&init_mm.page_table_lock);
  637         if (new)
  638                 pte_free_kernel(&init_mm, new);
  639         return 0;
  640 }
  641 
  642 static inline void init_rss_vec(int *rss)
  643 {
  644         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  645 }
  646 
  647 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  648 {
  649         int i;
  650 
  651         if (current->mm == mm)
  652                 sync_mm_rss(mm);
  653         for (i = 0; i < NR_MM_COUNTERS; i++)
  654                 if (rss[i])
  655                         add_mm_counter(mm, i, rss[i]);
  656 }
  657 
  658 /*
  659  * This function is called to print an error when a bad pte
  660  * is found. For example, we might have a PFN-mapped pte in
  661  * a region that doesn't allow it.
  662  *
  663  * The calling function must still handle the error.
  664  */
  665 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  666                           pte_t pte, struct page *page)
  667 {
  668         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  669         pud_t *pud = pud_offset(pgd, addr);
  670         pmd_t *pmd = pmd_offset(pud, addr);
  671         struct address_space *mapping;
  672         pgoff_t index;
  673         static unsigned long resume;
  674         static unsigned long nr_shown;
  675         static unsigned long nr_unshown;
  676 
  677         /*
  678          * Allow a burst of 60 reports, then keep quiet for that minute;
  679          * or allow a steady drip of one report per second.
  680          */
  681         if (nr_shown == 60) {
  682                 if (time_before(jiffies, resume)) {
  683                         nr_unshown++;
  684                         return;
  685                 }
  686                 if (nr_unshown) {
  687                         printk(KERN_ALERT
  688                                 "BUG: Bad page map: %lu messages suppressed\n",
  689                                 nr_unshown);
  690                         nr_unshown = 0;
  691                 }
  692                 nr_shown = 0;
  693         }
  694         if (nr_shown++ == 0)
  695                 resume = jiffies + 60 * HZ;
  696 
  697         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  698         index = linear_page_index(vma, addr);
  699 
  700         printk(KERN_ALERT
  701                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
  702                 current->comm,
  703                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
  704         if (page)
  705                 dump_page(page);
  706         printk(KERN_ALERT
  707                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  708                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  709         /*
  710          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  711          */
  712         if (vma->vm_ops)
  713                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  714                                 (unsigned long)vma->vm_ops->fault);
  715         if (vma->vm_file && vma->vm_file->f_op)
  716                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  717                                 (unsigned long)vma->vm_file->f_op->mmap);
  718         dump_stack();
  719         add_taint(TAINT_BAD_PAGE);
  720 }
  721 
  722 static inline bool is_cow_mapping(vm_flags_t flags)
  723 {
  724         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  725 }
  726 
  727 /*
  728  * vm_normal_page -- This function gets the "struct page" associated with a pte.
  729  *
  730  * "Special" mappings do not wish to be associated with a "struct page" (either
  731  * it doesn't exist, or it exists but they don't want to touch it). In this
  732  * case, NULL is returned here. "Normal" mappings do have a struct page.
  733  *
  734  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  735  * pte bit, in which case this function is trivial. Secondly, an architecture
  736  * may not have a spare pte bit, which requires a more complicated scheme,
  737  * described below.
  738  *
  739  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  740  * special mapping (even if there are underlying and valid "struct pages").
  741  * COWed pages of a VM_PFNMAP are always normal.
  742  *
  743  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  744  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  745  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  746  * mapping will always honor the rule
  747  *
  748  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  749  *
  750  * And for normal mappings this is false.
  751  *
  752  * This restricts such mappings to be a linear translation from virtual address
  753  * to pfn. To get around this restriction, we allow arbitrary mappings so long
  754  * as the vma is not a COW mapping; in that case, we know that all ptes are
  755  * special (because none can have been COWed).
  756  *
  757  *
  758  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  759  *
  760  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  761  * page" backing, however the difference is that _all_ pages with a struct
  762  * page (that is, those where pfn_valid is true) are refcounted and considered
  763  * normal pages by the VM. The disadvantage is that pages are refcounted
  764  * (which can be slower and simply not an option for some PFNMAP users). The
  765  * advantage is that we don't have to follow the strict linearity rule of
  766  * PFNMAP mappings in order to support COWable mappings.
  767  *
  768  */
  769 #ifdef __HAVE_ARCH_PTE_SPECIAL
  770 # define HAVE_PTE_SPECIAL 1
  771 #else
  772 # define HAVE_PTE_SPECIAL 0
  773 #endif
  774 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  775                                 pte_t pte)
  776 {
  777         unsigned long pfn = pte_pfn(pte);
  778 
  779         if (HAVE_PTE_SPECIAL) {
  780                 if (likely(!pte_special(pte)))
  781                         goto check_pfn;
  782                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  783                         return NULL;
  784                 if (!is_zero_pfn(pfn))
  785                         print_bad_pte(vma, addr, pte, NULL);
  786                 return NULL;
  787         }
  788 
  789         /* !HAVE_PTE_SPECIAL case follows: */
  790 
  791         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  792                 if (vma->vm_flags & VM_MIXEDMAP) {
  793                         if (!pfn_valid(pfn))
  794                                 return NULL;
  795                         goto out;
  796                 } else {
  797                         unsigned long off;
  798                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
  799                         if (pfn == vma->vm_pgoff + off)
  800                                 return NULL;
  801                         if (!is_cow_mapping(vma->vm_flags))
  802                                 return NULL;
  803                 }
  804         }
  805 
  806         if (is_zero_pfn(pfn))
  807                 return NULL;
  808 check_pfn:
  809         if (unlikely(pfn > highest_memmap_pfn)) {
  810                 print_bad_pte(vma, addr, pte, NULL);
  811                 return NULL;
  812         }
  813 
  814         /*
  815          * NOTE! We still have PageReserved() pages in the page tables.
  816          * eg. VDSO mappings can cause them to exist.
  817          */
  818 out:
  819         return pfn_to_page(pfn);
  820 }
  821 
  822 /*
  823  * copy one vm_area from one task to the other. Assumes the page tables
  824  * already present in the new task to be cleared in the whole range
  825  * covered by this vma.
  826  */
  827 
  828 static inline unsigned long
  829 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  830                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  831                 unsigned long addr, int *rss)
  832 {
  833         unsigned long vm_flags = vma->vm_flags;
  834         pte_t pte = *src_pte;
  835         struct page *page;
  836 
  837         /* pte contains position in swap or file, so copy. */
  838         if (unlikely(!pte_present(pte))) {
  839                 if (!pte_file(pte)) {
  840                         swp_entry_t entry = pte_to_swp_entry(pte);
  841 
  842                         if (swap_duplicate(entry) < 0)
  843                                 return entry.val;
  844 
  845                         /* make sure dst_mm is on swapoff's mmlist. */
  846                         if (unlikely(list_empty(&dst_mm->mmlist))) {
  847                                 spin_lock(&mmlist_lock);
  848                                 if (list_empty(&dst_mm->mmlist))
  849                                         list_add(&dst_mm->mmlist,
  850                                                  &src_mm->mmlist);
  851                                 spin_unlock(&mmlist_lock);
  852                         }
  853                         if (likely(!non_swap_entry(entry)))
  854                                 rss[MM_SWAPENTS]++;
  855                         else if (is_migration_entry(entry)) {
  856                                 page = migration_entry_to_page(entry);
  857 
  858                                 if (PageAnon(page))
  859                                         rss[MM_ANONPAGES]++;
  860                                 else
  861                                         rss[MM_FILEPAGES]++;
  862 
  863                                 if (is_write_migration_entry(entry) &&
  864                                     is_cow_mapping(vm_flags)) {
  865                                         /*
  866                                          * COW mappings require pages in both
  867                                          * parent and child to be set to read.
  868                                          */
  869                                         make_migration_entry_read(&entry);
  870                                         pte = swp_entry_to_pte(entry);
  871                                         set_pte_at(src_mm, addr, src_pte, pte);
  872                                 }
  873                         }
  874                 }
  875                 goto out_set_pte;
  876         }
  877 
  878         /*
  879          * If it's a COW mapping, write protect it both
  880          * in the parent and the child
  881          */
  882         if (is_cow_mapping(vm_flags)) {
  883                 ptep_set_wrprotect(src_mm, addr, src_pte);
  884                 pte = pte_wrprotect(pte);
  885         }
  886 
  887         /*
  888          * If it's a shared mapping, mark it clean in
  889          * the child
  890          */
  891         if (vm_flags & VM_SHARED)
  892                 pte = pte_mkclean(pte);
  893         pte = pte_mkold(pte);
  894 
  895         page = vm_normal_page(vma, addr, pte);
  896         if (page) {
  897                 get_page(page);
  898                 page_dup_rmap(page);
  899                 if (PageAnon(page))
  900                         rss[MM_ANONPAGES]++;
  901                 else
  902                         rss[MM_FILEPAGES]++;
  903         }
  904 
  905 out_set_pte:
  906         set_pte_at(dst_mm, addr, dst_pte, pte);
  907         return 0;
  908 }
  909 
  910 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  911                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  912                    unsigned long addr, unsigned long end)
  913 {
  914         pte_t *orig_src_pte, *orig_dst_pte;
  915         pte_t *src_pte, *dst_pte;
  916         spinlock_t *src_ptl, *dst_ptl;
  917         int progress = 0;
  918         int rss[NR_MM_COUNTERS];
  919         swp_entry_t entry = (swp_entry_t){0};
  920 
  921 again:
  922         init_rss_vec(rss);
  923 
  924         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  925         if (!dst_pte)
  926                 return -ENOMEM;
  927         src_pte = pte_offset_map(src_pmd, addr);
  928         src_ptl = pte_lockptr(src_mm, src_pmd);
  929         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  930         orig_src_pte = src_pte;
  931         orig_dst_pte = dst_pte;
  932         arch_enter_lazy_mmu_mode();
  933 
  934         do {
  935                 /*
  936                  * We are holding two locks at this point - either of them
  937                  * could generate latencies in another task on another CPU.
  938                  */
  939                 if (progress >= 32) {
  940                         progress = 0;
  941                         if (need_resched() ||
  942                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  943                                 break;
  944                 }
  945                 if (pte_none(*src_pte)) {
  946                         progress++;
  947                         continue;
  948                 }
  949                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  950                                                         vma, addr, rss);
  951                 if (entry.val)
  952                         break;
  953                 progress += 8;
  954         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  955 
  956         arch_leave_lazy_mmu_mode();
  957         spin_unlock(src_ptl);
  958         pte_unmap(orig_src_pte);
  959         add_mm_rss_vec(dst_mm, rss);
  960         pte_unmap_unlock(orig_dst_pte, dst_ptl);
  961         cond_resched();
  962 
  963         if (entry.val) {
  964                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  965                         return -ENOMEM;
  966                 progress = 0;
  967         }
  968         if (addr != end)
  969                 goto again;
  970         return 0;
  971 }
  972 
  973 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  974                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  975                 unsigned long addr, unsigned long end)
  976 {
  977         pmd_t *src_pmd, *dst_pmd;
  978         unsigned long next;
  979 
  980         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  981         if (!dst_pmd)
  982                 return -ENOMEM;
  983         src_pmd = pmd_offset(src_pud, addr);
  984         do {
  985                 next = pmd_addr_end(addr, end);
  986                 if (pmd_trans_huge(*src_pmd)) {
  987                         int err;
  988                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  989                         err = copy_huge_pmd(dst_mm, src_mm,
  990                                             dst_pmd, src_pmd, addr, vma);
  991                         if (err == -ENOMEM)
  992                                 return -ENOMEM;
  993                         if (!err)
  994                                 continue;
  995                         /* fall through */
  996                 }
  997                 if (pmd_none_or_clear_bad(src_pmd))
  998                         continue;
  999                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
 1000                                                 vma, addr, next))
 1001                         return -ENOMEM;
 1002         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
 1003         return 0;
 1004 }
 1005 
 1006 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 1007                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
 1008                 unsigned long addr, unsigned long end)
 1009 {
 1010         pud_t *src_pud, *dst_pud;
 1011         unsigned long next;
 1012 
 1013         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
 1014         if (!dst_pud)
 1015                 return -ENOMEM;
 1016         src_pud = pud_offset(src_pgd, addr);
 1017         do {
 1018                 next = pud_addr_end(addr, end);
 1019                 if (pud_none_or_clear_bad(src_pud))
 1020                         continue;
 1021                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
 1022                                                 vma, addr, next))
 1023                         return -ENOMEM;
 1024         } while (dst_pud++, src_pud++, addr = next, addr != end);
 1025         return 0;
 1026 }
 1027 
 1028 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 1029                 struct vm_area_struct *vma)
 1030 {
 1031         pgd_t *src_pgd, *dst_pgd;
 1032         unsigned long next;
 1033         unsigned long addr = vma->vm_start;
 1034         unsigned long end = vma->vm_end;
 1035         unsigned long mmun_start;       /* For mmu_notifiers */
 1036         unsigned long mmun_end;         /* For mmu_notifiers */
 1037         bool is_cow;
 1038         int ret;
 1039 
 1040         /*
 1041          * Don't copy ptes where a page fault will fill them correctly.
 1042          * Fork becomes much lighter when there are big shared or private
 1043          * readonly mappings. The tradeoff is that copy_page_range is more
 1044          * efficient than faulting.
 1045          */
 1046         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
 1047                                VM_PFNMAP | VM_MIXEDMAP))) {
 1048                 if (!vma->anon_vma)
 1049                         return 0;
 1050         }
 1051 
 1052         if (is_vm_hugetlb_page(vma))
 1053                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
 1054 
 1055         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
 1056                 /*
 1057                  * We do not free on error cases below as remove_vma
 1058                  * gets called on error from higher level routine
 1059                  */
 1060                 ret = track_pfn_copy(vma);
 1061                 if (ret)
 1062                         return ret;
 1063         }
 1064 
 1065         /*
 1066          * We need to invalidate the secondary MMU mappings only when
 1067          * there could be a permission downgrade on the ptes of the
 1068          * parent mm. And a permission downgrade will only happen if
 1069          * is_cow_mapping() returns true.
 1070          */
 1071         is_cow = is_cow_mapping(vma->vm_flags);
 1072         mmun_start = addr;
 1073         mmun_end   = end;
 1074         if (is_cow)
 1075                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
 1076                                                     mmun_end);
 1077 
 1078         ret = 0;
 1079         dst_pgd = pgd_offset(dst_mm, addr);
 1080         src_pgd = pgd_offset(src_mm, addr);
 1081         do {
 1082                 next = pgd_addr_end(addr, end);
 1083                 if (pgd_none_or_clear_bad(src_pgd))
 1084                         continue;
 1085                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
 1086                                             vma, addr, next))) {
 1087                         ret = -ENOMEM;
 1088                         break;
 1089                 }
 1090         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
 1091 
 1092         if (is_cow)
 1093                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
 1094         return ret;
 1095 }
 1096 
 1097 static unsigned long zap_pte_range(struct mmu_gather *tlb,
 1098                                 struct vm_area_struct *vma, pmd_t *pmd,
 1099                                 unsigned long addr, unsigned long end,
 1100                                 struct zap_details *details)
 1101 {
 1102         struct mm_struct *mm = tlb->mm;
 1103         int force_flush = 0;
 1104         int rss[NR_MM_COUNTERS];
 1105         spinlock_t *ptl;
 1106         pte_t *start_pte;
 1107         pte_t *pte;
 1108 
 1109 again:
 1110         init_rss_vec(rss);
 1111         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 1112         pte = start_pte;
 1113         arch_enter_lazy_mmu_mode();
 1114         do {
 1115                 pte_t ptent = *pte;
 1116                 if (pte_none(ptent)) {
 1117                         continue;
 1118                 }
 1119 
 1120                 if (pte_present(ptent)) {
 1121                         struct page *page;
 1122 
 1123                         page = vm_normal_page(vma, addr, ptent);
 1124                         if (unlikely(details) && page) {
 1125                                 /*
 1126                                  * unmap_shared_mapping_pages() wants to
 1127                                  * invalidate cache without truncating:
 1128                                  * unmap shared but keep private pages.
 1129                                  */
 1130                                 if (details->check_mapping &&
 1131                                     details->check_mapping != page->mapping)
 1132                                         continue;
 1133                                 /*
 1134                                  * Each page->index must be checked when
 1135                                  * invalidating or truncating nonlinear.
 1136                                  */
 1137                                 if (details->nonlinear_vma &&
 1138                                     (page->index < details->first_index ||
 1139                                      page->index > details->last_index))
 1140                                         continue;
 1141                         }
 1142                         ptent = ptep_get_and_clear_full(mm, addr, pte,
 1143                                                         tlb->fullmm);
 1144                         tlb_remove_tlb_entry(tlb, pte, addr);
 1145                         if (unlikely(!page))
 1146                                 continue;
 1147                         if (unlikely(details) && details->nonlinear_vma
 1148                             && linear_page_index(details->nonlinear_vma,
 1149                                                 addr) != page->index)
 1150                                 set_pte_at(mm, addr, pte,
 1151                                            pgoff_to_pte(page->index));
 1152                         if (PageAnon(page))
 1153                                 rss[MM_ANONPAGES]--;
 1154                         else {
 1155                                 if (pte_dirty(ptent))
 1156                                         set_page_dirty(page);
 1157                                 if (pte_young(ptent) &&
 1158                                     likely(!VM_SequentialReadHint(vma)))
 1159                                         mark_page_accessed(page);
 1160                                 rss[MM_FILEPAGES]--;
 1161                         }
 1162                         page_remove_rmap(page);
 1163                         if (unlikely(page_mapcount(page) < 0))
 1164                                 print_bad_pte(vma, addr, ptent, page);
 1165                         force_flush = !__tlb_remove_page(tlb, page);
 1166                         if (force_flush)
 1167                                 break;
 1168                         continue;
 1169                 }
 1170                 /*
 1171                  * If details->check_mapping, we leave swap entries;
 1172                  * if details->nonlinear_vma, we leave file entries.
 1173                  */
 1174                 if (unlikely(details))
 1175                         continue;
 1176                 if (pte_file(ptent)) {
 1177                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
 1178                                 print_bad_pte(vma, addr, ptent, NULL);
 1179                 } else {
 1180                         swp_entry_t entry = pte_to_swp_entry(ptent);
 1181 
 1182                         if (!non_swap_entry(entry))
 1183                                 rss[MM_SWAPENTS]--;
 1184                         else if (is_migration_entry(entry)) {
 1185                                 struct page *page;
 1186 
 1187                                 page = migration_entry_to_page(entry);
 1188 
 1189                                 if (PageAnon(page))
 1190                                         rss[MM_ANONPAGES]--;
 1191                                 else
 1192                                         rss[MM_FILEPAGES]--;
 1193                         }
 1194                         if (unlikely(!free_swap_and_cache(entry)))
 1195                                 print_bad_pte(vma, addr, ptent, NULL);
 1196                 }
 1197                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
 1198         } while (pte++, addr += PAGE_SIZE, addr != end);
 1199 
 1200         add_mm_rss_vec(mm, rss);
 1201         arch_leave_lazy_mmu_mode();
 1202         pte_unmap_unlock(start_pte, ptl);
 1203 
 1204         /*
 1205          * mmu_gather ran out of room to batch pages, we break out of
 1206          * the PTE lock to avoid doing the potential expensive TLB invalidate
 1207          * and page-free while holding it.
 1208          */
 1209         if (force_flush) {
 1210                 force_flush = 0;
 1211 
 1212 #ifdef HAVE_GENERIC_MMU_GATHER
 1213                 tlb->start = addr;
 1214                 tlb->end = end;
 1215 #endif
 1216                 tlb_flush_mmu(tlb);
 1217                 if (addr != end)
 1218                         goto again;
 1219         }
 1220 
 1221         return addr;
 1222 }
 1223 
 1224 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
 1225                                 struct vm_area_struct *vma, pud_t *pud,
 1226                                 unsigned long addr, unsigned long end,
 1227                                 struct zap_details *details)
 1228 {
 1229         pmd_t *pmd;
 1230         unsigned long next;
 1231 
 1232         pmd = pmd_offset(pud, addr);
 1233         do {
 1234                 next = pmd_addr_end(addr, end);
 1235                 if (pmd_trans_huge(*pmd)) {
 1236                         if (next - addr != HPAGE_PMD_SIZE) {
 1237 #ifdef CONFIG_DEBUG_VM
 1238                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
 1239                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
 1240                                                 __func__, addr, end,
 1241                                                 vma->vm_start,
 1242                                                 vma->vm_end);
 1243                                         BUG();
 1244                                 }
 1245 #endif
 1246                                 split_huge_page_pmd(vma, addr, pmd);
 1247                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
 1248                                 goto next;
 1249                         /* fall through */
 1250                 }
 1251                 /*
 1252                  * Here there can be other concurrent MADV_DONTNEED or
 1253                  * trans huge page faults running, and if the pmd is
 1254                  * none or trans huge it can change under us. This is
 1255                  * because MADV_DONTNEED holds the mmap_sem in read
 1256                  * mode.
 1257                  */
 1258                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
 1259                         goto next;
 1260                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
 1261 next:
 1262                 cond_resched();
 1263         } while (pmd++, addr = next, addr != end);
 1264 
 1265         return addr;
 1266 }
 1267 
 1268 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
 1269                                 struct vm_area_struct *vma, pgd_t *pgd,
 1270                                 unsigned long addr, unsigned long end,
 1271                                 struct zap_details *details)
 1272 {
 1273         pud_t *pud;
 1274         unsigned long next;
 1275 
 1276         pud = pud_offset(pgd, addr);
 1277         do {
 1278                 next = pud_addr_end(addr, end);
 1279                 if (pud_none_or_clear_bad(pud))
 1280                         continue;
 1281                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
 1282         } while (pud++, addr = next, addr != end);
 1283 
 1284         return addr;
 1285 }
 1286 
 1287 static void unmap_page_range(struct mmu_gather *tlb,
 1288                              struct vm_area_struct *vma,
 1289                              unsigned long addr, unsigned long end,
 1290                              struct zap_details *details)
 1291 {
 1292         pgd_t *pgd;
 1293         unsigned long next;
 1294 
 1295         if (details && !details->check_mapping && !details->nonlinear_vma)
 1296                 details = NULL;
 1297 
 1298         BUG_ON(addr >= end);
 1299         mem_cgroup_uncharge_start();
 1300         tlb_start_vma(tlb, vma);
 1301         pgd = pgd_offset(vma->vm_mm, addr);
 1302         do {
 1303                 next = pgd_addr_end(addr, end);
 1304                 if (pgd_none_or_clear_bad(pgd))
 1305                         continue;
 1306                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
 1307         } while (pgd++, addr = next, addr != end);
 1308         tlb_end_vma(tlb, vma);
 1309         mem_cgroup_uncharge_end();
 1310 }
 1311 
 1312 
 1313 static void unmap_single_vma(struct mmu_gather *tlb,
 1314                 struct vm_area_struct *vma, unsigned long start_addr,
 1315                 unsigned long end_addr,
 1316                 struct zap_details *details)
 1317 {
 1318         unsigned long start = max(vma->vm_start, start_addr);
 1319         unsigned long end;
 1320 
 1321         if (start >= vma->vm_end)
 1322                 return;
 1323         end = min(vma->vm_end, end_addr);
 1324         if (end <= vma->vm_start)
 1325                 return;
 1326 
 1327         if (vma->vm_file)
 1328                 uprobe_munmap(vma, start, end);
 1329 
 1330         if (unlikely(vma->vm_flags & VM_PFNMAP))
 1331                 untrack_pfn(vma, 0, 0);
 1332 
 1333         if (start != end) {
 1334                 if (unlikely(is_vm_hugetlb_page(vma))) {
 1335                         /*
 1336                          * It is undesirable to test vma->vm_file as it
 1337                          * should be non-null for valid hugetlb area.
 1338                          * However, vm_file will be NULL in the error
 1339                          * cleanup path of do_mmap_pgoff. When
 1340                          * hugetlbfs ->mmap method fails,
 1341                          * do_mmap_pgoff() nullifies vma->vm_file
 1342                          * before calling this function to clean up.
 1343                          * Since no pte has actually been setup, it is
 1344                          * safe to do nothing in this case.
 1345                          */
 1346                         if (vma->vm_file) {
 1347                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
 1348                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
 1349                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
 1350                         }
 1351                 } else
 1352                         unmap_page_range(tlb, vma, start, end, details);
 1353         }
 1354 }
 1355 
 1356 /**
 1357  * unmap_vmas - unmap a range of memory covered by a list of vma's
 1358  * @tlb: address of the caller's struct mmu_gather
 1359  * @vma: the starting vma
 1360  * @start_addr: virtual address at which to start unmapping
 1361  * @end_addr: virtual address at which to end unmapping
 1362  *
 1363  * Unmap all pages in the vma list.
 1364  *
 1365  * Only addresses between `start' and `end' will be unmapped.
 1366  *
 1367  * The VMA list must be sorted in ascending virtual address order.
 1368  *
 1369  * unmap_vmas() assumes that the caller will flush the whole unmapped address
 1370  * range after unmap_vmas() returns.  So the only responsibility here is to
 1371  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
 1372  * drops the lock and schedules.
 1373  */
 1374 void unmap_vmas(struct mmu_gather *tlb,
 1375                 struct vm_area_struct *vma, unsigned long start_addr,
 1376                 unsigned long end_addr)
 1377 {
 1378         struct mm_struct *mm = vma->vm_mm;
 1379 
 1380         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
 1381         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
 1382                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
 1383         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
 1384 }
 1385 
 1386 /**
 1387  * zap_page_range - remove user pages in a given range
 1388  * @vma: vm_area_struct holding the applicable pages
 1389  * @start: starting address of pages to zap
 1390  * @size: number of bytes to zap
 1391  * @details: details of nonlinear truncation or shared cache invalidation
 1392  *
 1393  * Caller must protect the VMA list
 1394  */
 1395 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
 1396                 unsigned long size, struct zap_details *details)
 1397 {
 1398         struct mm_struct *mm = vma->vm_mm;
 1399         struct mmu_gather tlb;
 1400         unsigned long end = start + size;
 1401 
 1402         lru_add_drain();
 1403         tlb_gather_mmu(&tlb, mm, 0);
 1404         update_hiwater_rss(mm);
 1405         mmu_notifier_invalidate_range_start(mm, start, end);
 1406         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
 1407                 unmap_single_vma(&tlb, vma, start, end, details);
 1408         mmu_notifier_invalidate_range_end(mm, start, end);
 1409         tlb_finish_mmu(&tlb, start, end);
 1410 }
 1411 
 1412 /**
 1413  * zap_page_range_single - remove user pages in a given range
 1414  * @vma: vm_area_struct holding the applicable pages
 1415  * @address: starting address of pages to zap
 1416  * @size: number of bytes to zap
 1417  * @details: details of nonlinear truncation or shared cache invalidation
 1418  *
 1419  * The range must fit into one VMA.
 1420  */
 1421 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
 1422                 unsigned long size, struct zap_details *details)
 1423 {
 1424         struct mm_struct *mm = vma->vm_mm;
 1425         struct mmu_gather tlb;
 1426         unsigned long end = address + size;
 1427 
 1428         lru_add_drain();
 1429         tlb_gather_mmu(&tlb, mm, 0);
 1430         update_hiwater_rss(mm);
 1431         mmu_notifier_invalidate_range_start(mm, address, end);
 1432         unmap_single_vma(&tlb, vma, address, end, details);
 1433         mmu_notifier_invalidate_range_end(mm, address, end);
 1434         tlb_finish_mmu(&tlb, address, end);
 1435 }
 1436 
 1437 /**
 1438  * zap_vma_ptes - remove ptes mapping the vma
 1439  * @vma: vm_area_struct holding ptes to be zapped
 1440  * @address: starting address of pages to zap
 1441  * @size: number of bytes to zap
 1442  *
 1443  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
 1444  *
 1445  * The entire address range must be fully contained within the vma.
 1446  *
 1447  * Returns 0 if successful.
 1448  */
 1449 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
 1450                 unsigned long size)
 1451 {
 1452         if (address < vma->vm_start || address + size > vma->vm_end ||
 1453                         !(vma->vm_flags & VM_PFNMAP))
 1454                 return -1;
 1455         zap_page_range_single(vma, address, size, NULL);
 1456         return 0;
 1457 }
 1458 EXPORT_SYMBOL_GPL(zap_vma_ptes);
 1459 
 1460 /**
 1461  * follow_page - look up a page descriptor from a user-virtual address
 1462  * @vma: vm_area_struct mapping @address
 1463  * @address: virtual address to look up
 1464  * @flags: flags modifying lookup behaviour
 1465  *
 1466  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 1467  *
 1468  * Returns the mapped (struct page *), %NULL if no mapping exists, or
 1469  * an error pointer if there is a mapping to something not represented
 1470  * by a page descriptor (see also vm_normal_page()).
 1471  */
 1472 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
 1473                         unsigned int flags)
 1474 {
 1475         pgd_t *pgd;
 1476         pud_t *pud;
 1477         pmd_t *pmd;
 1478         pte_t *ptep, pte;
 1479         spinlock_t *ptl;
 1480         struct page *page;
 1481         struct mm_struct *mm = vma->vm_mm;
 1482 
 1483         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
 1484         if (!IS_ERR(page)) {
 1485                 BUG_ON(flags & FOLL_GET);
 1486                 goto out;
 1487         }
 1488 
 1489         page = NULL;
 1490         pgd = pgd_offset(mm, address);
 1491         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
 1492                 goto no_page_table;
 1493 
 1494         pud = pud_offset(pgd, address);
 1495         if (pud_none(*pud))
 1496                 goto no_page_table;
 1497         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
 1498                 BUG_ON(flags & FOLL_GET);
 1499                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
 1500                 goto out;
 1501         }
 1502         if (unlikely(pud_bad(*pud)))
 1503                 goto no_page_table;
 1504 
 1505         pmd = pmd_offset(pud, address);
 1506         if (pmd_none(*pmd))
 1507                 goto no_page_table;
 1508         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
 1509                 BUG_ON(flags & FOLL_GET);
 1510                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
 1511                 goto out;
 1512         }
 1513         if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
 1514                 goto no_page_table;
 1515         if (pmd_trans_huge(*pmd)) {
 1516                 if (flags & FOLL_SPLIT) {
 1517                         split_huge_page_pmd(vma, address, pmd);
 1518                         goto split_fallthrough;
 1519                 }
 1520                 spin_lock(&mm->page_table_lock);
 1521                 if (likely(pmd_trans_huge(*pmd))) {
 1522                         if (unlikely(pmd_trans_splitting(*pmd))) {
 1523                                 spin_unlock(&mm->page_table_lock);
 1524                                 wait_split_huge_page(vma->anon_vma, pmd);
 1525                         } else {
 1526                                 page = follow_trans_huge_pmd(vma, address,
 1527                                                              pmd, flags);
 1528                                 spin_unlock(&mm->page_table_lock);
 1529                                 goto out;
 1530                         }
 1531                 } else
 1532                         spin_unlock(&mm->page_table_lock);
 1533                 /* fall through */
 1534         }
 1535 split_fallthrough:
 1536         if (unlikely(pmd_bad(*pmd)))
 1537                 goto no_page_table;
 1538 
 1539         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
 1540 
 1541         pte = *ptep;
 1542         if (!pte_present(pte))
 1543                 goto no_page;
 1544         if ((flags & FOLL_NUMA) && pte_numa(pte))
 1545                 goto no_page;
 1546         if ((flags & FOLL_WRITE) && !pte_write(pte))
 1547                 goto unlock;
 1548 
 1549         page = vm_normal_page(vma, address, pte);
 1550         if (unlikely(!page)) {
 1551                 if ((flags & FOLL_DUMP) ||
 1552                     !is_zero_pfn(pte_pfn(pte)))
 1553                         goto bad_page;
 1554                 page = pte_page(pte);
 1555         }
 1556 
 1557         if (flags & FOLL_GET)
 1558                 get_page_foll(page);
 1559         if (flags & FOLL_TOUCH) {
 1560                 if ((flags & FOLL_WRITE) &&
 1561                     !pte_dirty(pte) && !PageDirty(page))
 1562                         set_page_dirty(page);
 1563                 /*
 1564                  * pte_mkyoung() would be more correct here, but atomic care
 1565                  * is needed to avoid losing the dirty bit: it is easier to use
 1566                  * mark_page_accessed().
 1567                  */
 1568                 mark_page_accessed(page);
 1569         }
 1570         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
 1571                 /*
 1572                  * The preliminary mapping check is mainly to avoid the
 1573                  * pointless overhead of lock_page on the ZERO_PAGE
 1574                  * which might bounce very badly if there is contention.
 1575                  *
 1576                  * If the page is already locked, we don't need to
 1577                  * handle it now - vmscan will handle it later if and
 1578                  * when it attempts to reclaim the page.
 1579                  */
 1580                 if (page->mapping && trylock_page(page)) {
 1581                         lru_add_drain();  /* push cached pages to LRU */
 1582                         /*
 1583                          * Because we lock page here, and migration is
 1584                          * blocked by the pte's page reference, and we
 1585                          * know the page is still mapped, we don't even
 1586                          * need to check for file-cache page truncation.
 1587                          */
 1588                         mlock_vma_page(page);
 1589                         unlock_page(page);
 1590                 }
 1591         }
 1592 unlock:
 1593         pte_unmap_unlock(ptep, ptl);
 1594 out:
 1595         return page;
 1596 
 1597 bad_page:
 1598         pte_unmap_unlock(ptep, ptl);
 1599         return ERR_PTR(-EFAULT);
 1600 
 1601 no_page:
 1602         pte_unmap_unlock(ptep, ptl);
 1603         if (!pte_none(pte))
 1604                 return page;
 1605 
 1606 no_page_table:
 1607         /*
 1608          * When core dumping an enormous anonymous area that nobody
 1609          * has touched so far, we don't want to allocate unnecessary pages or
 1610          * page tables.  Return error instead of NULL to skip handle_mm_fault,
 1611          * then get_dump_page() will return NULL to leave a hole in the dump.
 1612          * But we can only make this optimization where a hole would surely
 1613          * be zero-filled if handle_mm_fault() actually did handle it.
 1614          */
 1615         if ((flags & FOLL_DUMP) &&
 1616             (!vma->vm_ops || !vma->vm_ops->fault))
 1617                 return ERR_PTR(-EFAULT);
 1618         return page;
 1619 }
 1620 
 1621 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
 1622 {
 1623         return stack_guard_page_start(vma, addr) ||
 1624                stack_guard_page_end(vma, addr+PAGE_SIZE);
 1625 }
 1626 
 1627 /**
 1628  * __get_user_pages() - pin user pages in memory
 1629  * @tsk:        task_struct of target task
 1630  * @mm:         mm_struct of target mm
 1631  * @start:      starting user address
 1632  * @nr_pages:   number of pages from start to pin
 1633  * @gup_flags:  flags modifying pin behaviour
 1634  * @pages:      array that receives pointers to the pages pinned.
 1635  *              Should be at least nr_pages long. Or NULL, if caller
 1636  *              only intends to ensure the pages are faulted in.
 1637  * @vmas:       array of pointers to vmas corresponding to each page.
 1638  *              Or NULL if the caller does not require them.
 1639  * @nonblocking: whether waiting for disk IO or mmap_sem contention
 1640  *
 1641  * Returns number of pages pinned. This may be fewer than the number
 1642  * requested. If nr_pages is 0 or negative, returns 0. If no pages
 1643  * were pinned, returns -errno. Each page returned must be released
 1644  * with a put_page() call when it is finished with. vmas will only
 1645  * remain valid while mmap_sem is held.
 1646  *
 1647  * Must be called with mmap_sem held for read or write.
 1648  *
 1649  * __get_user_pages walks a process's page tables and takes a reference to
 1650  * each struct page that each user address corresponds to at a given
 1651  * instant. That is, it takes the page that would be accessed if a user
 1652  * thread accesses the given user virtual address at that instant.
 1653  *
 1654  * This does not guarantee that the page exists in the user mappings when
 1655  * __get_user_pages returns, and there may even be a completely different
 1656  * page there in some cases (eg. if mmapped pagecache has been invalidated
 1657  * and subsequently re faulted). However it does guarantee that the page
 1658  * won't be freed completely. And mostly callers simply care that the page
 1659  * contains data that was valid *at some point in time*. Typically, an IO
 1660  * or similar operation cannot guarantee anything stronger anyway because
 1661  * locks can't be held over the syscall boundary.
 1662  *
 1663  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 1664  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 1665  * appropriate) must be called after the page is finished with, and
 1666  * before put_page is called.
 1667  *
 1668  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
 1669  * or mmap_sem contention, and if waiting is needed to pin all pages,
 1670  * *@nonblocking will be set to 0.
 1671  *
 1672  * In most cases, get_user_pages or get_user_pages_fast should be used
 1673  * instead of __get_user_pages. __get_user_pages should be used only if
 1674  * you need some special @gup_flags.
 1675  */
 1676 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 1677                      unsigned long start, int nr_pages, unsigned int gup_flags,
 1678                      struct page **pages, struct vm_area_struct **vmas,
 1679                      int *nonblocking)
 1680 {
 1681         int i;
 1682         unsigned long vm_flags;
 1683 
 1684         if (nr_pages <= 0)
 1685                 return 0;
 1686 
 1687         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
 1688 
 1689         /* 
 1690          * Require read or write permissions.
 1691          * If FOLL_FORCE is set, we only require the "MAY" flags.
 1692          */
 1693         vm_flags  = (gup_flags & FOLL_WRITE) ?
 1694                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
 1695         vm_flags &= (gup_flags & FOLL_FORCE) ?
 1696                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
 1697 
 1698         /*
 1699          * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
 1700          * would be called on PROT_NONE ranges. We must never invoke
 1701          * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
 1702          * page faults would unprotect the PROT_NONE ranges if
 1703          * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
 1704          * bitflag. So to avoid that, don't set FOLL_NUMA if
 1705          * FOLL_FORCE is set.
 1706          */
 1707         if (!(gup_flags & FOLL_FORCE))
 1708                 gup_flags |= FOLL_NUMA;
 1709 
 1710         i = 0;
 1711 
 1712         do {
 1713                 struct vm_area_struct *vma;
 1714 
 1715                 vma = find_extend_vma(mm, start);
 1716                 if (!vma && in_gate_area(mm, start)) {
 1717                         unsigned long pg = start & PAGE_MASK;
 1718                         pgd_t *pgd;
 1719                         pud_t *pud;
 1720                         pmd_t *pmd;
 1721                         pte_t *pte;
 1722 
 1723                         /* user gate pages are read-only */
 1724                         if (gup_flags & FOLL_WRITE)
 1725                                 return i ? : -EFAULT;
 1726                         if (pg > TASK_SIZE)
 1727                                 pgd = pgd_offset_k(pg);
 1728                         else
 1729                                 pgd = pgd_offset_gate(mm, pg);
 1730                         BUG_ON(pgd_none(*pgd));
 1731                         pud = pud_offset(pgd, pg);
 1732                         BUG_ON(pud_none(*pud));
 1733                         pmd = pmd_offset(pud, pg);
 1734                         if (pmd_none(*pmd))
 1735                                 return i ? : -EFAULT;
 1736                         VM_BUG_ON(pmd_trans_huge(*pmd));
 1737                         pte = pte_offset_map(pmd, pg);
 1738                         if (pte_none(*pte)) {
 1739                                 pte_unmap(pte);
 1740                                 return i ? : -EFAULT;
 1741                         }
 1742                         vma = get_gate_vma(mm);
 1743                         if (pages) {
 1744                                 struct page *page;
 1745 
 1746                                 page = vm_normal_page(vma, start, *pte);
 1747                                 if (!page) {
 1748                                         if (!(gup_flags & FOLL_DUMP) &&
 1749                                              is_zero_pfn(pte_pfn(*pte)))
 1750                                                 page = pte_page(*pte);
 1751                                         else {
 1752                                                 pte_unmap(pte);
 1753                                                 return i ? : -EFAULT;
 1754                                         }
 1755                                 }
 1756                                 pages[i] = page;
 1757                                 get_page(page);
 1758                         }
 1759                         pte_unmap(pte);
 1760                         goto next_page;
 1761                 }
 1762 
 1763                 if (!vma ||
 1764                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
 1765                     !(vm_flags & vma->vm_flags))
 1766                         return i ? : -EFAULT;
 1767 
 1768                 if (is_vm_hugetlb_page(vma)) {
 1769                         i = follow_hugetlb_page(mm, vma, pages, vmas,
 1770                                         &start, &nr_pages, i, gup_flags);
 1771                         continue;
 1772                 }
 1773 
 1774                 do {
 1775                         struct page *page;
 1776                         unsigned int foll_flags = gup_flags;
 1777 
 1778                         /*
 1779                          * If we have a pending SIGKILL, don't keep faulting
 1780                          * pages and potentially allocating memory.
 1781                          */
 1782                         if (unlikely(fatal_signal_pending(current)))
 1783                                 return i ? i : -ERESTARTSYS;
 1784 
 1785                         cond_resched();
 1786                         while (!(page = follow_page(vma, start, foll_flags))) {
 1787                                 int ret;
 1788                                 unsigned int fault_flags = 0;
 1789 
 1790                                 /* For mlock, just skip the stack guard page. */
 1791                                 if (foll_flags & FOLL_MLOCK) {
 1792                                         if (stack_guard_page(vma, start))
 1793                                                 goto next_page;
 1794                                 }
 1795                                 if (foll_flags & FOLL_WRITE)
 1796                                         fault_flags |= FAULT_FLAG_WRITE;
 1797                                 if (nonblocking)
 1798                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
 1799                                 if (foll_flags & FOLL_NOWAIT)
 1800                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
 1801 
 1802                                 ret = handle_mm_fault(mm, vma, start,
 1803                                                         fault_flags);
 1804 
 1805                                 if (ret & VM_FAULT_ERROR) {
 1806                                         if (ret & VM_FAULT_OOM)
 1807                                                 return i ? i : -ENOMEM;
 1808                                         if (ret & (VM_FAULT_HWPOISON |
 1809                                                    VM_FAULT_HWPOISON_LARGE)) {
 1810                                                 if (i)
 1811                                                         return i;
 1812                                                 else if (gup_flags & FOLL_HWPOISON)
 1813                                                         return -EHWPOISON;
 1814                                                 else
 1815                                                         return -EFAULT;
 1816                                         }
 1817                                         if (ret & VM_FAULT_SIGBUS)
 1818                                                 return i ? i : -EFAULT;
 1819                                         BUG();
 1820                                 }
 1821 
 1822                                 if (tsk) {
 1823                                         if (ret & VM_FAULT_MAJOR)
 1824                                                 tsk->maj_flt++;
 1825                                         else
 1826                                                 tsk->min_flt++;
 1827                                 }
 1828 
 1829                                 if (ret & VM_FAULT_RETRY) {
 1830                                         if (nonblocking)
 1831                                                 *nonblocking = 0;
 1832                                         return i;
 1833                                 }
 1834 
 1835                                 /*
 1836                                  * The VM_FAULT_WRITE bit tells us that
 1837                                  * do_wp_page has broken COW when necessary,
 1838                                  * even if maybe_mkwrite decided not to set
 1839                                  * pte_write. We can thus safely do subsequent
 1840                                  * page lookups as if they were reads. But only
 1841                                  * do so when looping for pte_write is futile:
 1842                                  * in some cases userspace may also be wanting
 1843                                  * to write to the gotten user page, which a
 1844                                  * read fault here might prevent (a readonly
 1845                                  * page might get reCOWed by userspace write).
 1846                                  */
 1847                                 if ((ret & VM_FAULT_WRITE) &&
 1848                                     !(vma->vm_flags & VM_WRITE))
 1849                                         foll_flags &= ~FOLL_WRITE;
 1850 
 1851                                 cond_resched();
 1852                         }
 1853                         if (IS_ERR(page))
 1854                                 return i ? i : PTR_ERR(page);
 1855                         if (pages) {
 1856                                 pages[i] = page;
 1857 
 1858                                 flush_anon_page(vma, page, start);
 1859                                 flush_dcache_page(page);
 1860                         }
 1861 next_page:
 1862                         if (vmas)
 1863                                 vmas[i] = vma;
 1864                         i++;
 1865                         start += PAGE_SIZE;
 1866                         nr_pages--;
 1867                 } while (nr_pages && start < vma->vm_end);
 1868         } while (nr_pages);
 1869         return i;
 1870 }
 1871 EXPORT_SYMBOL(__get_user_pages);
 1872 
 1873 /*
 1874  * fixup_user_fault() - manually resolve a user page fault
 1875  * @tsk:        the task_struct to use for page fault accounting, or
 1876  *              NULL if faults are not to be recorded.
 1877  * @mm:         mm_struct of target mm
 1878  * @address:    user address
 1879  * @fault_flags:flags to pass down to handle_mm_fault()
 1880  *
 1881  * This is meant to be called in the specific scenario where for locking reasons
 1882  * we try to access user memory in atomic context (within a pagefault_disable()
 1883  * section), this returns -EFAULT, and we want to resolve the user fault before
 1884  * trying again.
 1885  *
 1886  * Typically this is meant to be used by the futex code.
 1887  *
 1888  * The main difference with get_user_pages() is that this function will
 1889  * unconditionally call handle_mm_fault() which will in turn perform all the
 1890  * necessary SW fixup of the dirty and young bits in the PTE, while
 1891  * handle_mm_fault() only guarantees to update these in the struct page.
 1892  *
 1893  * This is important for some architectures where those bits also gate the
 1894  * access permission to the page because they are maintained in software.  On
 1895  * such architectures, gup() will not be enough to make a subsequent access
 1896  * succeed.
 1897  *
 1898  * This should be called with the mm_sem held for read.
 1899  */
 1900 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
 1901                      unsigned long address, unsigned int fault_flags)
 1902 {
 1903         struct vm_area_struct *vma;
 1904         int ret;
 1905 
 1906         vma = find_extend_vma(mm, address);
 1907         if (!vma || address < vma->vm_start)
 1908                 return -EFAULT;
 1909 
 1910         ret = handle_mm_fault(mm, vma, address, fault_flags);
 1911         if (ret & VM_FAULT_ERROR) {
 1912                 if (ret & VM_FAULT_OOM)
 1913                         return -ENOMEM;
 1914                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
 1915                         return -EHWPOISON;
 1916                 if (ret & VM_FAULT_SIGBUS)
 1917                         return -EFAULT;
 1918                 BUG();
 1919         }
 1920         if (tsk) {
 1921                 if (ret & VM_FAULT_MAJOR)
 1922                         tsk->maj_flt++;
 1923                 else
 1924                         tsk->min_flt++;
 1925         }
 1926         return 0;
 1927 }
 1928 
 1929 /*
 1930  * get_user_pages() - pin user pages in memory
 1931  * @tsk:        the task_struct to use for page fault accounting, or
 1932  *              NULL if faults are not to be recorded.
 1933  * @mm:         mm_struct of target mm
 1934  * @start:      starting user address
 1935  * @nr_pages:   number of pages from start to pin
 1936  * @write:      whether pages will be written to by the caller
 1937  * @force:      whether to force write access even if user mapping is
 1938  *              readonly. This will result in the page being COWed even
 1939  *              in MAP_SHARED mappings. You do not want this.
 1940  * @pages:      array that receives pointers to the pages pinned.
 1941  *              Should be at least nr_pages long. Or NULL, if caller
 1942  *              only intends to ensure the pages are faulted in.
 1943  * @vmas:       array of pointers to vmas corresponding to each page.
 1944  *              Or NULL if the caller does not require them.
 1945  *
 1946  * Returns number of pages pinned. This may be fewer than the number
 1947  * requested. If nr_pages is 0 or negative, returns 0. If no pages
 1948  * were pinned, returns -errno. Each page returned must be released
 1949  * with a put_page() call when it is finished with. vmas will only
 1950  * remain valid while mmap_sem is held.
 1951  *
 1952  * Must be called with mmap_sem held for read or write.
 1953  *
 1954  * get_user_pages walks a process's page tables and takes a reference to
 1955  * each struct page that each user address corresponds to at a given
 1956  * instant. That is, it takes the page that would be accessed if a user
 1957  * thread accesses the given user virtual address at that instant.
 1958  *
 1959  * This does not guarantee that the page exists in the user mappings when
 1960  * get_user_pages returns, and there may even be a completely different
 1961  * page there in some cases (eg. if mmapped pagecache has been invalidated
 1962  * and subsequently re faulted). However it does guarantee that the page
 1963  * won't be freed completely. And mostly callers simply care that the page
 1964  * contains data that was valid *at some point in time*. Typically, an IO
 1965  * or similar operation cannot guarantee anything stronger anyway because
 1966  * locks can't be held over the syscall boundary.
 1967  *
 1968  * If write=0, the page must not be written to. If the page is written to,
 1969  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
 1970  * after the page is finished with, and before put_page is called.
 1971  *
 1972  * get_user_pages is typically used for fewer-copy IO operations, to get a
 1973  * handle on the memory by some means other than accesses via the user virtual
 1974  * addresses. The pages may be submitted for DMA to devices or accessed via
 1975  * their kernel linear mapping (via the kmap APIs). Care should be taken to
 1976  * use the correct cache flushing APIs.
 1977  *
 1978  * See also get_user_pages_fast, for performance critical applications.
 1979  */
 1980 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 1981                 unsigned long start, int nr_pages, int write, int force,
 1982                 struct page **pages, struct vm_area_struct **vmas)
 1983 {
 1984         int flags = FOLL_TOUCH;
 1985 
 1986         if (pages)
 1987                 flags |= FOLL_GET;
 1988         if (write)
 1989                 flags |= FOLL_WRITE;
 1990         if (force)
 1991                 flags |= FOLL_FORCE;
 1992 
 1993         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
 1994                                 NULL);
 1995 }
 1996 EXPORT_SYMBOL(get_user_pages);
 1997 
 1998 /**
 1999  * get_dump_page() - pin user page in memory while writing it to core dump
 2000  * @addr: user address
 2001  *
 2002  * Returns struct page pointer of user page pinned for dump,
 2003  * to be freed afterwards by page_cache_release() or put_page().
 2004  *
 2005  * Returns NULL on any kind of failure - a hole must then be inserted into
 2006  * the corefile, to preserve alignment with its headers; and also returns
 2007  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
 2008  * allowing a hole to be left in the corefile to save diskspace.
 2009  *
 2010  * Called without mmap_sem, but after all other threads have been killed.
 2011  */
 2012 #ifdef CONFIG_ELF_CORE
 2013 struct page *get_dump_page(unsigned long addr)
 2014 {
 2015         struct vm_area_struct *vma;
 2016         struct page *page;
 2017 
 2018         if (__get_user_pages(current, current->mm, addr, 1,
 2019                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
 2020                              NULL) < 1)
 2021                 return NULL;
 2022         flush_cache_page(vma, addr, page_to_pfn(page));
 2023         return page;
 2024 }
 2025 #endif /* CONFIG_ELF_CORE */
 2026 
 2027 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
 2028                         spinlock_t **ptl)
 2029 {
 2030         pgd_t * pgd = pgd_offset(mm, addr);
 2031         pud_t * pud = pud_alloc(mm, pgd, addr);
 2032         if (pud) {
 2033                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
 2034                 if (pmd) {
 2035                         VM_BUG_ON(pmd_trans_huge(*pmd));
 2036                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
 2037                 }
 2038         }
 2039         return NULL;
 2040 }
 2041 
 2042 /*
 2043  * This is the old fallback for page remapping.
 2044  *
 2045  * For historical reasons, it only allows reserved pages. Only
 2046  * old drivers should use this, and they needed to mark their
 2047  * pages reserved for the old functions anyway.
 2048  */
 2049 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
 2050                         struct page *page, pgprot_t prot)
 2051 {
 2052         struct mm_struct *mm = vma->vm_mm;
 2053         int retval;
 2054         pte_t *pte;
 2055         spinlock_t *ptl;
 2056 
 2057         retval = -EINVAL;
 2058         if (PageAnon(page))
 2059                 goto out;
 2060         retval = -ENOMEM;
 2061         flush_dcache_page(page);
 2062         pte = get_locked_pte(mm, addr, &ptl);
 2063         if (!pte)
 2064                 goto out;
 2065         retval = -EBUSY;
 2066         if (!pte_none(*pte))
 2067                 goto out_unlock;
 2068 
 2069         /* Ok, finally just insert the thing.. */
 2070         get_page(page);
 2071         inc_mm_counter_fast(mm, MM_FILEPAGES);
 2072         page_add_file_rmap(page);
 2073         set_pte_at(mm, addr, pte, mk_pte(page, prot));
 2074 
 2075         retval = 0;
 2076         pte_unmap_unlock(pte, ptl);
 2077         return retval;
 2078 out_unlock:
 2079         pte_unmap_unlock(pte, ptl);
 2080 out:
 2081         return retval;
 2082 }
 2083 
 2084 /**
 2085  * vm_insert_page - insert single page into user vma
 2086  * @vma: user vma to map to
 2087  * @addr: target user address of this page
 2088  * @page: source kernel page
 2089  *
 2090  * This allows drivers to insert individual pages they've allocated
 2091  * into a user vma.
 2092  *
 2093  * The page has to be a nice clean _individual_ kernel allocation.
 2094  * If you allocate a compound page, you need to have marked it as
 2095  * such (__GFP_COMP), or manually just split the page up yourself
 2096  * (see split_page()).
 2097  *
 2098  * NOTE! Traditionally this was done with "remap_pfn_range()" which
 2099  * took an arbitrary page protection parameter. This doesn't allow
 2100  * that. Your vma protection will have to be set up correctly, which
 2101  * means that if you want a shared writable mapping, you'd better
 2102  * ask for a shared writable mapping!
 2103  *
 2104  * The page does not need to be reserved.
 2105  *
 2106  * Usually this function is called from f_op->mmap() handler
 2107  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
 2108  * Caller must set VM_MIXEDMAP on vma if it wants to call this
 2109  * function from other places, for example from page-fault handler.
 2110  */
 2111 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
 2112                         struct page *page)
 2113 {
 2114         if (addr < vma->vm_start || addr >= vma->vm_end)
 2115                 return -EFAULT;
 2116         if (!page_count(page))
 2117                 return -EINVAL;
 2118         if (!(vma->vm_flags & VM_MIXEDMAP)) {
 2119                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
 2120                 BUG_ON(vma->vm_flags & VM_PFNMAP);
 2121                 vma->vm_flags |= VM_MIXEDMAP;
 2122         }
 2123         return insert_page(vma, addr, page, vma->vm_page_prot);
 2124 }
 2125 EXPORT_SYMBOL(vm_insert_page);
 2126 
 2127 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
 2128                         unsigned long pfn, pgprot_t prot)
 2129 {
 2130         struct mm_struct *mm = vma->vm_mm;
 2131         int retval;
 2132         pte_t *pte, entry;
 2133         spinlock_t *ptl;
 2134 
 2135         retval = -ENOMEM;
 2136         pte = get_locked_pte(mm, addr, &ptl);
 2137         if (!pte)
 2138                 goto out;
 2139         retval = -EBUSY;
 2140         if (!pte_none(*pte))
 2141                 goto out_unlock;
 2142 
 2143         /* Ok, finally just insert the thing.. */
 2144         entry = pte_mkspecial(pfn_pte(pfn, prot));
 2145         set_pte_at(mm, addr, pte, entry);
 2146         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
 2147 
 2148         retval = 0;
 2149 out_unlock:
 2150         pte_unmap_unlock(pte, ptl);
 2151 out:
 2152         return retval;
 2153 }
 2154 
 2155 /**
 2156  * vm_insert_pfn - insert single pfn into user vma
 2157  * @vma: user vma to map to
 2158  * @addr: target user address of this page
 2159  * @pfn: source kernel pfn
 2160  *
 2161  * Similar to vm_insert_page, this allows drivers to insert individual pages
 2162  * they've allocated into a user vma. Same comments apply.
 2163  *
 2164  * This function should only be called from a vm_ops->fault handler, and
 2165  * in that case the handler should return NULL.
 2166  *
 2167  * vma cannot be a COW mapping.
 2168  *
 2169  * As this is called only for pages that do not currently exist, we
 2170  * do not need to flush old virtual caches or the TLB.
 2171  */
 2172 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
 2173                         unsigned long pfn)
 2174 {
 2175         int ret;
 2176         pgprot_t pgprot = vma->vm_page_prot;
 2177         /*
 2178          * Technically, architectures with pte_special can avoid all these
 2179          * restrictions (same for remap_pfn_range).  However we would like
 2180          * consistency in testing and feature parity among all, so we should
 2181          * try to keep these invariants in place for everybody.
 2182          */
 2183         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 2184         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 2185                                                 (VM_PFNMAP|VM_MIXEDMAP));
 2186         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 2187         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
 2188 
 2189         if (addr < vma->vm_start || addr >= vma->vm_end)
 2190                 return -EFAULT;
 2191         if (track_pfn_insert(vma, &pgprot, pfn))
 2192                 return -EINVAL;
 2193 
 2194         ret = insert_pfn(vma, addr, pfn, pgprot);
 2195 
 2196         return ret;
 2197 }
 2198 EXPORT_SYMBOL(vm_insert_pfn);
 2199 
 2200 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
 2201                         unsigned long pfn)
 2202 {
 2203         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
 2204 
 2205         if (addr < vma->vm_start || addr >= vma->vm_end)
 2206                 return -EFAULT;
 2207 
 2208         /*
 2209          * If we don't have pte special, then we have to use the pfn_valid()
 2210          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
 2211          * refcount the page if pfn_valid is true (hence insert_page rather
 2212          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
 2213          * without pte special, it would there be refcounted as a normal page.
 2214          */
 2215         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
 2216                 struct page *page;
 2217 
 2218                 page = pfn_to_page(pfn);
 2219                 return insert_page(vma, addr, page, vma->vm_page_prot);
 2220         }
 2221         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
 2222 }
 2223 EXPORT_SYMBOL(vm_insert_mixed);
 2224 
 2225 /*
 2226  * maps a range of physical memory into the requested pages. the old
 2227  * mappings are removed. any references to nonexistent pages results
 2228  * in null mappings (currently treated as "copy-on-access")
 2229  */
 2230 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
 2231                         unsigned long addr, unsigned long end,
 2232                         unsigned long pfn, pgprot_t prot)
 2233 {
 2234         pte_t *pte;
 2235         spinlock_t *ptl;
 2236 
 2237         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
 2238         if (!pte)
 2239                 return -ENOMEM;
 2240         arch_enter_lazy_mmu_mode();
 2241         do {
 2242                 BUG_ON(!pte_none(*pte));
 2243                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
 2244                 pfn++;
 2245         } while (pte++, addr += PAGE_SIZE, addr != end);
 2246         arch_leave_lazy_mmu_mode();
 2247         pte_unmap_unlock(pte - 1, ptl);
 2248         return 0;
 2249 }
 2250 
 2251 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
 2252                         unsigned long addr, unsigned long end,
 2253                         unsigned long pfn, pgprot_t prot)
 2254 {
 2255         pmd_t *pmd;
 2256         unsigned long next;
 2257 
 2258         pfn -= addr >> PAGE_SHIFT;
 2259         pmd = pmd_alloc(mm, pud, addr);
 2260         if (!pmd)
 2261                 return -ENOMEM;
 2262         VM_BUG_ON(pmd_trans_huge(*pmd));
 2263         do {
 2264                 next = pmd_addr_end(addr, end);
 2265                 if (remap_pte_range(mm, pmd, addr, next,
 2266                                 pfn + (addr >> PAGE_SHIFT), prot))
 2267                         return -ENOMEM;
 2268         } while (pmd++, addr = next, addr != end);
 2269         return 0;
 2270 }
 2271 
 2272 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
 2273                         unsigned long addr, unsigned long end,
 2274                         unsigned long pfn, pgprot_t prot)
 2275 {
 2276         pud_t *pud;
 2277         unsigned long next;
 2278 
 2279         pfn -= addr >> PAGE_SHIFT;
 2280         pud = pud_alloc(mm, pgd, addr);
 2281         if (!pud)
 2282                 return -ENOMEM;
 2283         do {
 2284                 next = pud_addr_end(addr, end);
 2285                 if (remap_pmd_range(mm, pud, addr, next,
 2286                                 pfn + (addr >> PAGE_SHIFT), prot))
 2287                         return -ENOMEM;
 2288         } while (pud++, addr = next, addr != end);
 2289         return 0;
 2290 }
 2291 
 2292 /**
 2293  * remap_pfn_range - remap kernel memory to userspace
 2294  * @vma: user vma to map to
 2295  * @addr: target user address to start at
 2296  * @pfn: physical address of kernel memory
 2297  * @size: size of map area
 2298  * @prot: page protection flags for this mapping
 2299  *
 2300  *  Note: this is only safe if the mm semaphore is held when called.
 2301  */
 2302 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
 2303                     unsigned long pfn, unsigned long size, pgprot_t prot)
 2304 {
 2305         pgd_t *pgd;
 2306         unsigned long next;
 2307         unsigned long end = addr + PAGE_ALIGN(size);
 2308         struct mm_struct *mm = vma->vm_mm;
 2309         int err;
 2310 
 2311         /*
 2312          * Physically remapped pages are special. Tell the
 2313          * rest of the world about it:
 2314          *   VM_IO tells people not to look at these pages
 2315          *      (accesses can have side effects).
 2316          *   VM_PFNMAP tells the core MM that the base pages are just
 2317          *      raw PFN mappings, and do not have a "struct page" associated
 2318          *      with them.
 2319          *   VM_DONTEXPAND
 2320          *      Disable vma merging and expanding with mremap().
 2321          *   VM_DONTDUMP
 2322          *      Omit vma from core dump, even when VM_IO turned off.
 2323          *
 2324          * There's a horrible special case to handle copy-on-write
 2325          * behaviour that some programs depend on. We mark the "original"
 2326          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
 2327          * See vm_normal_page() for details.
 2328          */
 2329         if (is_cow_mapping(vma->vm_flags)) {
 2330                 if (addr != vma->vm_start || end != vma->vm_end)
 2331                         return -EINVAL;
 2332                 vma->vm_pgoff = pfn;
 2333         }
 2334 
 2335         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
 2336         if (err)
 2337                 return -EINVAL;
 2338 
 2339         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
 2340 
 2341         BUG_ON(addr >= end);
 2342         pfn -= addr >> PAGE_SHIFT;
 2343         pgd = pgd_offset(mm, addr);
 2344         flush_cache_range(vma, addr, end);
 2345         do {
 2346                 next = pgd_addr_end(addr, end);
 2347                 err = remap_pud_range(mm, pgd, addr, next,
 2348                                 pfn + (addr >> PAGE_SHIFT), prot);
 2349                 if (err)
 2350                         break;
 2351         } while (pgd++, addr = next, addr != end);
 2352 
 2353         if (err)
 2354                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
 2355 
 2356         return err;
 2357 }
 2358 EXPORT_SYMBOL(remap_pfn_range);
 2359 
 2360 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
 2361                                      unsigned long addr, unsigned long end,
 2362                                      pte_fn_t fn, void *data)
 2363 {
 2364         pte_t *pte;
 2365         int err;
 2366         pgtable_t token;
 2367         spinlock_t *uninitialized_var(ptl);
 2368 
 2369         pte = (mm == &init_mm) ?
 2370                 pte_alloc_kernel(pmd, addr) :
 2371                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
 2372         if (!pte)
 2373                 return -ENOMEM;
 2374 
 2375         BUG_ON(pmd_huge(*pmd));
 2376 
 2377         arch_enter_lazy_mmu_mode();
 2378 
 2379         token = pmd_pgtable(*pmd);
 2380 
 2381         do {
 2382                 err = fn(pte++, token, addr, data);
 2383                 if (err)
 2384                         break;
 2385         } while (addr += PAGE_SIZE, addr != end);
 2386 
 2387         arch_leave_lazy_mmu_mode();
 2388 
 2389         if (mm != &init_mm)
 2390                 pte_unmap_unlock(pte-1, ptl);
 2391         return err;
 2392 }
 2393 
 2394 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
 2395                                      unsigned long addr, unsigned long end,
 2396                                      pte_fn_t fn, void *data)
 2397 {
 2398         pmd_t *pmd;
 2399         unsigned long next;
 2400         int err;
 2401 
 2402         BUG_ON(pud_huge(*pud));
 2403 
 2404         pmd = pmd_alloc(mm, pud, addr);
 2405         if (!pmd)
 2406                 return -ENOMEM;
 2407         do {
 2408                 next = pmd_addr_end(addr, end);
 2409                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
 2410                 if (err)
 2411                         break;
 2412         } while (pmd++, addr = next, addr != end);
 2413         return err;
 2414 }
 2415 
 2416 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
 2417                                      unsigned long addr, unsigned long end,
 2418                                      pte_fn_t fn, void *data)
 2419 {
 2420         pud_t *pud;
 2421         unsigned long next;
 2422         int err;
 2423 
 2424         pud = pud_alloc(mm, pgd, addr);
 2425         if (!pud)
 2426                 return -ENOMEM;
 2427         do {
 2428                 next = pud_addr_end(addr, end);
 2429                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
 2430                 if (err)
 2431                         break;
 2432         } while (pud++, addr = next, addr != end);
 2433         return err;
 2434 }
 2435 
 2436 /*
 2437  * Scan a region of virtual memory, filling in page tables as necessary
 2438  * and calling a provided function on each leaf page table.
 2439  */
 2440 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
 2441                         unsigned long size, pte_fn_t fn, void *data)
 2442 {
 2443         pgd_t *pgd;
 2444         unsigned long next;
 2445         unsigned long end = addr + size;
 2446         int err;
 2447 
 2448         BUG_ON(addr >= end);
 2449         pgd = pgd_offset(mm, addr);
 2450         do {
 2451                 next = pgd_addr_end(addr, end);
 2452                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
 2453                 if (err)
 2454                         break;
 2455         } while (pgd++, addr = next, addr != end);
 2456 
 2457         return err;
 2458 }
 2459 EXPORT_SYMBOL_GPL(apply_to_page_range);
 2460 
 2461 /*
 2462  * handle_pte_fault chooses page fault handler according to an entry
 2463  * which was read non-atomically.  Before making any commitment, on
 2464  * those architectures or configurations (e.g. i386 with PAE) which
 2465  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
 2466  * must check under lock before unmapping the pte and proceeding
 2467  * (but do_wp_page is only called after already making such a check;
 2468  * and do_anonymous_page can safely check later on).
 2469  */
 2470 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
 2471                                 pte_t *page_table, pte_t orig_pte)
 2472 {
 2473         int same = 1;
 2474 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
 2475         if (sizeof(pte_t) > sizeof(unsigned long)) {
 2476                 spinlock_t *ptl = pte_lockptr(mm, pmd);
 2477                 spin_lock(ptl);
 2478                 same = pte_same(*page_table, orig_pte);
 2479                 spin_unlock(ptl);
 2480         }
 2481 #endif
 2482         pte_unmap(page_table);
 2483         return same;
 2484 }
 2485 
 2486 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
 2487 {
 2488         /*
 2489          * If the source page was a PFN mapping, we don't have
 2490          * a "struct page" for it. We do a best-effort copy by
 2491          * just copying from the original user address. If that
 2492          * fails, we just zero-fill it. Live with it.
 2493          */
 2494         if (unlikely(!src)) {
 2495                 void *kaddr = kmap_atomic(dst);
 2496                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
 2497 
 2498                 /*
 2499                  * This really shouldn't fail, because the page is there
 2500                  * in the page tables. But it might just be unreadable,
 2501                  * in which case we just give up and fill the result with
 2502                  * zeroes.
 2503                  */
 2504                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
 2505                         clear_page(kaddr);
 2506                 kunmap_atomic(kaddr);
 2507                 flush_dcache_page(dst);
 2508         } else
 2509                 copy_user_highpage(dst, src, va, vma);
 2510 }
 2511 
 2512 /*
 2513  * This routine handles present pages, when users try to write
 2514  * to a shared page. It is done by copying the page to a new address
 2515  * and decrementing the shared-page counter for the old page.
 2516  *
 2517  * Note that this routine assumes that the protection checks have been
 2518  * done by the caller (the low-level page fault routine in most cases).
 2519  * Thus we can safely just mark it writable once we've done any necessary
 2520  * COW.
 2521  *
 2522  * We also mark the page dirty at this point even though the page will
 2523  * change only once the write actually happens. This avoids a few races,
 2524  * and potentially makes it more efficient.
 2525  *
 2526  * We enter with non-exclusive mmap_sem (to exclude vma changes,
 2527  * but allow concurrent faults), with pte both mapped and locked.
 2528  * We return with mmap_sem still held, but pte unmapped and unlocked.
 2529  */
 2530 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
 2531                 unsigned long address, pte_t *page_table, pmd_t *pmd,
 2532                 spinlock_t *ptl, pte_t orig_pte)
 2533         __releases(ptl)
 2534 {
 2535         struct page *old_page, *new_page = NULL;
 2536         pte_t entry;
 2537         int ret = 0;
 2538         int page_mkwrite = 0;
 2539         struct page *dirty_page = NULL;
 2540         unsigned long mmun_start = 0;   /* For mmu_notifiers */
 2541         unsigned long mmun_end = 0;     /* For mmu_notifiers */
 2542 
 2543         old_page = vm_normal_page(vma, address, orig_pte);
 2544         if (!old_page) {
 2545                 /*
 2546                  * VM_MIXEDMAP !pfn_valid() case
 2547                  *
 2548                  * We should not cow pages in a shared writeable mapping.
 2549                  * Just mark the pages writable as we can't do any dirty
 2550                  * accounting on raw pfn maps.
 2551                  */
 2552                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
 2553                                      (VM_WRITE|VM_SHARED))
 2554                         goto reuse;
 2555                 goto gotten;
 2556         }
 2557 
 2558         /*
 2559          * Take out anonymous pages first, anonymous shared vmas are
 2560          * not dirty accountable.
 2561          */
 2562         if (PageAnon(old_page) && !PageKsm(old_page)) {
 2563                 if (!trylock_page(old_page)) {
 2564                         page_cache_get(old_page);
 2565                         pte_unmap_unlock(page_table, ptl);
 2566                         lock_page(old_page);
 2567                         page_table = pte_offset_map_lock(mm, pmd, address,
 2568                                                          &ptl);
 2569                         if (!pte_same(*page_table, orig_pte)) {
 2570                                 unlock_page(old_page);
 2571                                 goto unlock;
 2572                         }
 2573                         page_cache_release(old_page);
 2574                 }
 2575                 if (reuse_swap_page(old_page)) {
 2576                         /*
 2577                          * The page is all ours.  Move it to our anon_vma so
 2578                          * the rmap code will not search our parent or siblings.
 2579                          * Protected against the rmap code by the page lock.
 2580                          */
 2581                         page_move_anon_rmap(old_page, vma, address);
 2582                         unlock_page(old_page);
 2583                         goto reuse;
 2584                 }
 2585                 unlock_page(old_page);
 2586         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
 2587                                         (VM_WRITE|VM_SHARED))) {
 2588                 /*
 2589                  * Only catch write-faults on shared writable pages,
 2590                  * read-only shared pages can get COWed by
 2591                  * get_user_pages(.write=1, .force=1).
 2592                  */
 2593                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
 2594                         struct vm_fault vmf;
 2595                         int tmp;
 2596 
 2597                         vmf.virtual_address = (void __user *)(address &
 2598                                                                 PAGE_MASK);
 2599                         vmf.pgoff = old_page->index;
 2600                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
 2601                         vmf.page = old_page;
 2602 
 2603                         /*
 2604                          * Notify the address space that the page is about to
 2605                          * become writable so that it can prohibit this or wait
 2606                          * for the page to get into an appropriate state.
 2607                          *
 2608                          * We do this without the lock held, so that it can
 2609                          * sleep if it needs to.
 2610                          */
 2611                         page_cache_get(old_page);
 2612                         pte_unmap_unlock(page_table, ptl);
 2613 
 2614                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
 2615                         if (unlikely(tmp &
 2616                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
 2617                                 ret = tmp;
 2618                                 goto unwritable_page;
 2619                         }
 2620                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
 2621                                 lock_page(old_page);
 2622                                 if (!old_page->mapping) {
 2623                                         ret = 0; /* retry the fault */
 2624                                         unlock_page(old_page);
 2625                                         goto unwritable_page;
 2626                                 }
 2627                         } else
 2628                                 VM_BUG_ON(!PageLocked(old_page));
 2629 
 2630                         /*
 2631                          * Since we dropped the lock we need to revalidate
 2632                          * the PTE as someone else may have changed it.  If
 2633                          * they did, we just return, as we can count on the
 2634                          * MMU to tell us if they didn't also make it writable.
 2635                          */
 2636                         page_table = pte_offset_map_lock(mm, pmd, address,
 2637                                                          &ptl);
 2638                         if (!pte_same(*page_table, orig_pte)) {
 2639                                 unlock_page(old_page);
 2640                                 goto unlock;
 2641                         }
 2642 
 2643                         page_mkwrite = 1;
 2644                 }
 2645                 dirty_page = old_page;
 2646                 get_page(dirty_page);
 2647 
 2648 reuse:
 2649                 flush_cache_page(vma, address, pte_pfn(orig_pte));
 2650                 entry = pte_mkyoung(orig_pte);
 2651                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 2652                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
 2653                         update_mmu_cache(vma, address, page_table);
 2654                 pte_unmap_unlock(page_table, ptl);
 2655                 ret |= VM_FAULT_WRITE;
 2656 
 2657                 if (!dirty_page)
 2658                         return ret;
 2659 
 2660                 /*
 2661                  * Yes, Virginia, this is actually required to prevent a race
 2662                  * with clear_page_dirty_for_io() from clearing the page dirty
 2663                  * bit after it clear all dirty ptes, but before a racing
 2664                  * do_wp_page installs a dirty pte.
 2665                  *
 2666                  * __do_fault is protected similarly.
 2667                  */
 2668                 if (!page_mkwrite) {
 2669                         wait_on_page_locked(dirty_page);
 2670                         set_page_dirty_balance(dirty_page, page_mkwrite);
 2671                         /* file_update_time outside page_lock */
 2672                         if (vma->vm_file)
 2673                                 file_update_time(vma->vm_file);
 2674                 }
 2675                 put_page(dirty_page);
 2676                 if (page_mkwrite) {
 2677                         struct address_space *mapping = dirty_page->mapping;
 2678 
 2679                         set_page_dirty(dirty_page);
 2680                         unlock_page(dirty_page);
 2681                         page_cache_release(dirty_page);
 2682                         if (mapping)    {
 2683                                 /*
 2684                                  * Some device drivers do not set page.mapping
 2685                                  * but still dirty their pages
 2686                                  */
 2687                                 balance_dirty_pages_ratelimited(mapping);
 2688                         }
 2689                 }
 2690 
 2691                 return ret;
 2692         }
 2693 
 2694         /*
 2695          * Ok, we need to copy. Oh, well..
 2696          */
 2697         page_cache_get(old_page);
 2698 gotten:
 2699         pte_unmap_unlock(page_table, ptl);
 2700 
 2701         if (unlikely(anon_vma_prepare(vma)))
 2702                 goto oom;
 2703 
 2704         if (is_zero_pfn(pte_pfn(orig_pte))) {
 2705                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
 2706                 if (!new_page)
 2707                         goto oom;
 2708         } else {
 2709                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 2710                 if (!new_page)
 2711                         goto oom;
 2712                 cow_user_page(new_page, old_page, address, vma);
 2713         }
 2714         __SetPageUptodate(new_page);
 2715 
 2716         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
 2717                 goto oom_free_new;
 2718 
 2719         mmun_start  = address & PAGE_MASK;
 2720         mmun_end    = mmun_start + PAGE_SIZE;
 2721         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 2722 
 2723         /*
 2724          * Re-check the pte - we dropped the lock
 2725          */
 2726         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
 2727         if (likely(pte_same(*page_table, orig_pte))) {
 2728                 if (old_page) {
 2729                         if (!PageAnon(old_page)) {
 2730                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
 2731                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
 2732                         }
 2733                 } else
 2734                         inc_mm_counter_fast(mm, MM_ANONPAGES);
 2735                 flush_cache_page(vma, address, pte_pfn(orig_pte));
 2736                 entry = mk_pte(new_page, vma->vm_page_prot);
 2737                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 2738                 /*
 2739                  * Clear the pte entry and flush it first, before updating the
 2740                  * pte with the new entry. This will avoid a race condition
 2741                  * seen in the presence of one thread doing SMC and another
 2742                  * thread doing COW.
 2743                  */
 2744                 ptep_clear_flush(vma, address, page_table);
 2745                 page_add_new_anon_rmap(new_page, vma, address);
 2746                 /*
 2747                  * We call the notify macro here because, when using secondary
 2748                  * mmu page tables (such as kvm shadow page tables), we want the
 2749                  * new page to be mapped directly into the secondary page table.
 2750                  */
 2751                 set_pte_at_notify(mm, address, page_table, entry);
 2752                 update_mmu_cache(vma, address, page_table);
 2753                 if (old_page) {
 2754                         /*
 2755                          * Only after switching the pte to the new page may
 2756                          * we remove the mapcount here. Otherwise another
 2757                          * process may come and find the rmap count decremented
 2758                          * before the pte is switched to the new page, and
 2759                          * "reuse" the old page writing into it while our pte
 2760                          * here still points into it and can be read by other
 2761                          * threads.
 2762                          *
 2763                          * The critical issue is to order this
 2764                          * page_remove_rmap with the ptp_clear_flush above.
 2765                          * Those stores are ordered by (if nothing else,)
 2766                          * the barrier present in the atomic_add_negative
 2767                          * in page_remove_rmap.
 2768                          *
 2769                          * Then the TLB flush in ptep_clear_flush ensures that
 2770                          * no process can access the old page before the
 2771                          * decremented mapcount is visible. And the old page
 2772                          * cannot be reused until after the decremented
 2773                          * mapcount is visible. So transitively, TLBs to
 2774                          * old page will be flushed before it can be reused.
 2775                          */
 2776                         page_remove_rmap(old_page);
 2777                 }
 2778 
 2779                 /* Free the old page.. */
 2780                 new_page = old_page;
 2781                 ret |= VM_FAULT_WRITE;
 2782         } else
 2783                 mem_cgroup_uncharge_page(new_page);
 2784 
 2785         if (new_page)
 2786                 page_cache_release(new_page);
 2787 unlock:
 2788         pte_unmap_unlock(page_table, ptl);
 2789         if (mmun_end > mmun_start)
 2790                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 2791         if (old_page) {
 2792                 /*
 2793                  * Don't let another task, with possibly unlocked vma,
 2794                  * keep the mlocked page.
 2795                  */
 2796                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
 2797                         lock_page(old_page);    /* LRU manipulation */
 2798                         munlock_vma_page(old_page);
 2799                         unlock_page(old_page);
 2800                 }
 2801                 page_cache_release(old_page);
 2802         }
 2803         return ret;
 2804 oom_free_new:
 2805         page_cache_release(new_page);
 2806 oom:
 2807         if (old_page)
 2808                 page_cache_release(old_page);
 2809         return VM_FAULT_OOM;
 2810 
 2811 unwritable_page:
 2812         page_cache_release(old_page);
 2813         return ret;
 2814 }
 2815 
 2816 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
 2817                 unsigned long start_addr, unsigned long end_addr,
 2818                 struct zap_details *details)
 2819 {
 2820         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
 2821 }
 2822 
 2823 static inline void unmap_mapping_range_tree(struct rb_root *root,
 2824                                             struct zap_details *details)
 2825 {
 2826         struct vm_area_struct *vma;
 2827         pgoff_t vba, vea, zba, zea;
 2828 
 2829         vma_interval_tree_foreach(vma, root,
 2830                         details->first_index, details->last_index) {
 2831 
 2832                 vba = vma->vm_pgoff;
 2833                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
 2834                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
 2835                 zba = details->first_index;
 2836                 if (zba < vba)
 2837                         zba = vba;
 2838                 zea = details->last_index;
 2839                 if (zea > vea)
 2840                         zea = vea;
 2841 
 2842                 unmap_mapping_range_vma(vma,
 2843                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
 2844                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
 2845                                 details);
 2846         }
 2847 }
 2848 
 2849 static inline void unmap_mapping_range_list(struct list_head *head,
 2850                                             struct zap_details *details)
 2851 {
 2852         struct vm_area_struct *vma;
 2853 
 2854         /*
 2855          * In nonlinear VMAs there is no correspondence between virtual address
 2856          * offset and file offset.  So we must perform an exhaustive search
 2857          * across *all* the pages in each nonlinear VMA, not just the pages
 2858          * whose virtual address lies outside the file truncation point.
 2859          */
 2860         list_for_each_entry(vma, head, shared.nonlinear) {
 2861                 details->nonlinear_vma = vma;
 2862                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
 2863         }
 2864 }
 2865 
 2866 /**
 2867  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
 2868  * @mapping: the address space containing mmaps to be unmapped.
 2869  * @holebegin: byte in first page to unmap, relative to the start of
 2870  * the underlying file.  This will be rounded down to a PAGE_SIZE
 2871  * boundary.  Note that this is different from truncate_pagecache(), which
 2872  * must keep the partial page.  In contrast, we must get rid of
 2873  * partial pages.
 2874  * @holelen: size of prospective hole in bytes.  This will be rounded
 2875  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
 2876  * end of the file.
 2877  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
 2878  * but 0 when invalidating pagecache, don't throw away private data.
 2879  */
 2880 void unmap_mapping_range(struct address_space *mapping,
 2881                 loff_t const holebegin, loff_t const holelen, int even_cows)
 2882 {
 2883         struct zap_details details;
 2884         pgoff_t hba = holebegin >> PAGE_SHIFT;
 2885         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
 2886 
 2887         /* Check for overflow. */
 2888         if (sizeof(holelen) > sizeof(hlen)) {
 2889                 long long holeend =
 2890                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
 2891                 if (holeend & ~(long long)ULONG_MAX)
 2892                         hlen = ULONG_MAX - hba + 1;
 2893         }
 2894 
 2895         details.check_mapping = even_cows? NULL: mapping;
 2896         details.nonlinear_vma = NULL;
 2897         details.first_index = hba;
 2898         details.last_index = hba + hlen - 1;
 2899         if (details.last_index < details.first_index)
 2900                 details.last_index = ULONG_MAX;
 2901 
 2902 
 2903         mutex_lock(&mapping->i_mmap_mutex);
 2904         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
 2905                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
 2906         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
 2907                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
 2908         mutex_unlock(&mapping->i_mmap_mutex);
 2909 }
 2910 EXPORT_SYMBOL(unmap_mapping_range);
 2911 
 2912 /*
 2913  * We enter with non-exclusive mmap_sem (to exclude vma changes,
 2914  * but allow concurrent faults), and pte mapped but not yet locked.
 2915  * We return with mmap_sem still held, but pte unmapped and unlocked.
 2916  */
 2917 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
 2918                 unsigned long address, pte_t *page_table, pmd_t *pmd,
 2919                 unsigned int flags, pte_t orig_pte)
 2920 {
 2921         spinlock_t *ptl;
 2922         struct page *page, *swapcache = NULL;
 2923         swp_entry_t entry;
 2924         pte_t pte;
 2925         int locked;
 2926         struct mem_cgroup *ptr;
 2927         int exclusive = 0;
 2928         int ret = 0;
 2929 
 2930         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
 2931                 goto out;
 2932 
 2933         entry = pte_to_swp_entry(orig_pte);
 2934         if (unlikely(non_swap_entry(entry))) {
 2935                 if (is_migration_entry(entry)) {
 2936                         migration_entry_wait(mm, pmd, address);
 2937                 } else if (is_hwpoison_entry(entry)) {
 2938                         ret = VM_FAULT_HWPOISON;
 2939                 } else {
 2940                         print_bad_pte(vma, address, orig_pte, NULL);
 2941                         ret = VM_FAULT_SIGBUS;
 2942                 }
 2943                 goto out;
 2944         }
 2945         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
 2946         page = lookup_swap_cache(entry);
 2947         if (!page) {
 2948                 page = swapin_readahead(entry,
 2949                                         GFP_HIGHUSER_MOVABLE, vma, address);
 2950                 if (!page) {
 2951                         /*
 2952                          * Back out if somebody else faulted in this pte
 2953                          * while we released the pte lock.
 2954                          */
 2955                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
 2956                         if (likely(pte_same(*page_table, orig_pte)))
 2957                                 ret = VM_FAULT_OOM;
 2958                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
 2959                         goto unlock;
 2960                 }
 2961 
 2962                 /* Had to read the page from swap area: Major fault */
 2963                 ret = VM_FAULT_MAJOR;
 2964                 count_vm_event(PGMAJFAULT);
 2965                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
 2966         } else if (PageHWPoison(page)) {
 2967                 /*
 2968                  * hwpoisoned dirty swapcache pages are kept for killing
 2969                  * owner processes (which may be unknown at hwpoison time)
 2970                  */
 2971                 ret = VM_FAULT_HWPOISON;
 2972                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
 2973                 goto out_release;
 2974         }
 2975 
 2976         locked = lock_page_or_retry(page, mm, flags);
 2977 
 2978         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
 2979         if (!locked) {
 2980                 ret |= VM_FAULT_RETRY;
 2981                 goto out_release;
 2982         }
 2983 
 2984         /*
 2985          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
 2986          * release the swapcache from under us.  The page pin, and pte_same
 2987          * test below, are not enough to exclude that.  Even if it is still
 2988          * swapcache, we need to check that the page's swap has not changed.
 2989          */
 2990         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
 2991                 goto out_page;
 2992 
 2993         if (ksm_might_need_to_copy(page, vma, address)) {
 2994                 swapcache = page;
 2995                 page = ksm_does_need_to_copy(page, vma, address);
 2996 
 2997                 if (unlikely(!page)) {
 2998                         ret = VM_FAULT_OOM;
 2999                         page = swapcache;
 3000                         swapcache = NULL;
 3001                         goto out_page;
 3002                 }
 3003         }
 3004 
 3005         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
 3006                 ret = VM_FAULT_OOM;
 3007                 goto out_page;
 3008         }
 3009 
 3010         /*
 3011          * Back out if somebody else already faulted in this pte.
 3012          */
 3013         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
 3014         if (unlikely(!pte_same(*page_table, orig_pte)))
 3015                 goto out_nomap;
 3016 
 3017         if (unlikely(!PageUptodate(page))) {
 3018                 ret = VM_FAULT_SIGBUS;
 3019                 goto out_nomap;
 3020         }
 3021 
 3022         /*
 3023          * The page isn't present yet, go ahead with the fault.
 3024          *
 3025          * Be careful about the sequence of operations here.
 3026          * To get its accounting right, reuse_swap_page() must be called
 3027          * while the page is counted on swap but not yet in mapcount i.e.
 3028          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
 3029          * must be called after the swap_free(), or it will never succeed.
 3030          * Because delete_from_swap_page() may be called by reuse_swap_page(),
 3031          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
 3032          * in page->private. In this case, a record in swap_cgroup  is silently
 3033          * discarded at swap_free().
 3034          */
 3035 
 3036         inc_mm_counter_fast(mm, MM_ANONPAGES);
 3037         dec_mm_counter_fast(mm, MM_SWAPENTS);
 3038         pte = mk_pte(page, vma->vm_page_prot);
 3039         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
 3040                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
 3041                 flags &= ~FAULT_FLAG_WRITE;
 3042                 ret |= VM_FAULT_WRITE;
 3043                 exclusive = 1;
 3044         }
 3045         flush_icache_page(vma, page);
 3046         set_pte_at(mm, address, page_table, pte);
 3047         do_page_add_anon_rmap(page, vma, address, exclusive);
 3048         /* It's better to call commit-charge after rmap is established */
 3049         mem_cgroup_commit_charge_swapin(page, ptr);
 3050 
 3051         swap_free(entry);
 3052         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
 3053                 try_to_free_swap(page);
 3054         unlock_page(page);
 3055         if (swapcache) {
 3056                 /*
 3057                  * Hold the lock to avoid the swap entry to be reused
 3058                  * until we take the PT lock for the pte_same() check
 3059                  * (to avoid false positives from pte_same). For
 3060                  * further safety release the lock after the swap_free
 3061                  * so that the swap count won't change under a
 3062                  * parallel locked swapcache.
 3063                  */
 3064                 unlock_page(swapcache);
 3065                 page_cache_release(swapcache);
 3066         }
 3067 
 3068         if (flags & FAULT_FLAG_WRITE) {
 3069                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
 3070                 if (ret & VM_FAULT_ERROR)
 3071                         ret &= VM_FAULT_ERROR;
 3072                 goto out;
 3073         }
 3074 
 3075         /* No need to invalidate - it was non-present before */
 3076         update_mmu_cache(vma, address, page_table);
 3077 unlock:
 3078         pte_unmap_unlock(page_table, ptl);
 3079 out:
 3080         return ret;
 3081 out_nomap:
 3082         mem_cgroup_cancel_charge_swapin(ptr);
 3083         pte_unmap_unlock(page_table, ptl);
 3084 out_page:
 3085         unlock_page(page);
 3086 out_release:
 3087         page_cache_release(page);
 3088         if (swapcache) {
 3089                 unlock_page(swapcache);
 3090                 page_cache_release(swapcache);
 3091         }
 3092         return ret;
 3093 }
 3094 
 3095 /*
 3096  * This is like a special single-page "expand_{down|up}wards()",
 3097  * except we must first make sure that 'address{-|+}PAGE_SIZE'
 3098  * doesn't hit another vma.
 3099  */
 3100 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
 3101 {
 3102         address &= PAGE_MASK;
 3103         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
 3104                 struct vm_area_struct *prev = vma->vm_prev;
 3105 
 3106                 /*
 3107                  * Is there a mapping abutting this one below?
 3108                  *
 3109                  * That's only ok if it's the same stack mapping
 3110                  * that has gotten split..
 3111                  */
 3112                 if (prev && prev->vm_end == address)
 3113                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
 3114 
 3115                 expand_downwards(vma, address - PAGE_SIZE);
 3116         }
 3117         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
 3118                 struct vm_area_struct *next = vma->vm_next;
 3119 
 3120                 /* As VM_GROWSDOWN but s/below/above/ */
 3121                 if (next && next->vm_start == address + PAGE_SIZE)
 3122                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
 3123 
 3124                 expand_upwards(vma, address + PAGE_SIZE);
 3125         }
 3126         return 0;
 3127 }
 3128 
 3129 /*
 3130  * We enter with non-exclusive mmap_sem (to exclude vma changes,
 3131  * but allow concurrent faults), and pte mapped but not yet locked.
 3132  * We return with mmap_sem still held, but pte unmapped and unlocked.
 3133  */
 3134 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 3135                 unsigned long address, pte_t *page_table, pmd_t *pmd,
 3136                 unsigned int flags)
 3137 {
 3138         struct page *page;
 3139         spinlock_t *ptl;
 3140         pte_t entry;
 3141 
 3142         pte_unmap(page_table);
 3143 
 3144         /* Check if we need to add a guard page to the stack */
 3145         if (check_stack_guard_page(vma, address) < 0)
 3146                 return VM_FAULT_SIGBUS;
 3147 
 3148         /* Use the zero-page for reads */
 3149         if (!(flags & FAULT_FLAG_WRITE)) {
 3150                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
 3151                                                 vma->vm_page_prot));
 3152                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
 3153                 if (!pte_none(*page_table))
 3154                         goto unlock;
 3155                 goto setpte;
 3156         }
 3157 
 3158         /* Allocate our own private page. */
 3159         if (unlikely(anon_vma_prepare(vma)))
 3160                 goto oom;
 3161         page = alloc_zeroed_user_highpage_movable(vma, address);
 3162         if (!page)
 3163                 goto oom;
 3164         __SetPageUptodate(page);
 3165 
 3166         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
 3167                 goto oom_free_page;
 3168 
 3169         entry = mk_pte(page, vma->vm_page_prot);
 3170         if (vma->vm_flags & VM_WRITE)
 3171                 entry = pte_mkwrite(pte_mkdirty(entry));
 3172 
 3173         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
 3174         if (!pte_none(*page_table))
 3175                 goto release;
 3176 
 3177         inc_mm_counter_fast(mm, MM_ANONPAGES);
 3178         page_add_new_anon_rmap(page, vma, address);
 3179 setpte:
 3180         set_pte_at(mm, address, page_table, entry);
 3181 
 3182         /* No need to invalidate - it was non-present before */
 3183         update_mmu_cache(vma, address, page_table);
 3184 unlock:
 3185         pte_unmap_unlock(page_table, ptl);
 3186         return 0;
 3187 release:
 3188         mem_cgroup_uncharge_page(page);
 3189         page_cache_release(page);
 3190         goto unlock;
 3191 oom_free_page:
 3192         page_cache_release(page);
 3193 oom:
 3194         return VM_FAULT_OOM;
 3195 }
 3196 
 3197 /*
 3198  * __do_fault() tries to create a new page mapping. It aggressively
 3199  * tries to share with existing pages, but makes a separate copy if
 3200  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
 3201  * the next page fault.
 3202  *
 3203  * As this is called only for pages that do not currently exist, we
 3204  * do not need to flush old virtual caches or the TLB.
 3205  *
 3206  * We enter with non-exclusive mmap_sem (to exclude vma changes,
 3207  * but allow concurrent faults), and pte neither mapped nor locked.
 3208  * We return with mmap_sem still held, but pte unmapped and unlocked.
 3209  */
 3210 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
 3211                 unsigned long address, pmd_t *pmd,
 3212                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
 3213 {
 3214         pte_t *page_table;
 3215         spinlock_t *ptl;
 3216         struct page *page;
 3217         struct page *cow_page;
 3218         pte_t entry;
 3219         int anon = 0;
 3220         struct page *dirty_page = NULL;
 3221         struct vm_fault vmf;
 3222         int ret;
 3223         int page_mkwrite = 0;
 3224 
 3225         /*
 3226          * If we do COW later, allocate page befor taking lock_page()
 3227          * on the file cache page. This will reduce lock holding time.
 3228          */
 3229         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
 3230 
 3231                 if (unlikely(anon_vma_prepare(vma)))
 3232                         return VM_FAULT_OOM;
 3233 
 3234                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 3235                 if (!cow_page)
 3236                         return VM_FAULT_OOM;
 3237 
 3238                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
 3239                         page_cache_release(cow_page);
 3240                         return VM_FAULT_OOM;
 3241                 }
 3242         } else
 3243                 cow_page = NULL;
 3244 
 3245         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
 3246         vmf.pgoff = pgoff;
 3247         vmf.flags = flags;
 3248         vmf.page = NULL;
 3249 
 3250         ret = vma->vm_ops->fault(vma, &vmf);
 3251         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
 3252                             VM_FAULT_RETRY)))
 3253                 goto uncharge_out;
 3254 
 3255         if (unlikely(PageHWPoison(vmf.page))) {
 3256                 if (ret & VM_FAULT_LOCKED)
 3257                         unlock_page(vmf.page);
 3258                 ret = VM_FAULT_HWPOISON;
 3259                 goto uncharge_out;
 3260         }
 3261 
 3262         /*
 3263          * For consistency in subsequent calls, make the faulted page always
 3264          * locked.
 3265          */
 3266         if (unlikely(!(ret & VM_FAULT_LOCKED)))
 3267                 lock_page(vmf.page);
 3268         else
 3269                 VM_BUG_ON(!PageLocked(vmf.page));
 3270 
 3271         /*
 3272          * Should we do an early C-O-W break?
 3273          */
 3274         page = vmf.page;
 3275         if (flags & FAULT_FLAG_WRITE) {
 3276                 if (!(vma->vm_flags & VM_SHARED)) {
 3277                         page = cow_page;
 3278                         anon = 1;
 3279                         copy_user_highpage(page, vmf.page, address, vma);
 3280                         __SetPageUptodate(page);
 3281                 } else {
 3282                         /*
 3283                          * If the page will be shareable, see if the backing
 3284                          * address space wants to know that the page is about
 3285                          * to become writable
 3286                          */
 3287                         if (vma->vm_ops->page_mkwrite) {
 3288                                 int tmp;
 3289 
 3290                                 unlock_page(page);
 3291                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
 3292                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
 3293                                 if (unlikely(tmp &
 3294                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
 3295                                         ret = tmp;
 3296                                         goto unwritable_page;
 3297                                 }
 3298                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
 3299                                         lock_page(page);
 3300                                         if (!page->mapping) {
 3301                                                 ret = 0; /* retry the fault */
 3302                                                 unlock_page(page);
 3303                                                 goto unwritable_page;
 3304                                         }
 3305                                 } else
 3306                                         VM_BUG_ON(!PageLocked(page));
 3307                                 page_mkwrite = 1;
 3308                         }
 3309                 }
 3310 
 3311         }
 3312 
 3313         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
 3314 
 3315         /*
 3316          * This silly early PAGE_DIRTY setting removes a race
 3317          * due to the bad i386 page protection. But it's valid
 3318          * for other architectures too.
 3319          *
 3320          * Note that if FAULT_FLAG_WRITE is set, we either now have
 3321          * an exclusive copy of the page, or this is a shared mapping,
 3322          * so we can make it writable and dirty to avoid having to
 3323          * handle that later.
 3324          */
 3325         /* Only go through if we didn't race with anybody else... */
 3326         if (likely(pte_same(*page_table, orig_pte))) {
 3327                 flush_icache_page(vma, page);
 3328                 entry = mk_pte(page, vma->vm_page_prot);
 3329                 if (flags & FAULT_FLAG_WRITE)
 3330                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 3331                 if (anon) {
 3332                         inc_mm_counter_fast(mm, MM_ANONPAGES);
 3333                         page_add_new_anon_rmap(page, vma, address);
 3334                 } else {
 3335                         inc_mm_counter_fast(mm, MM_FILEPAGES);
 3336                         page_add_file_rmap(page);
 3337                         if (flags & FAULT_FLAG_WRITE) {
 3338                                 dirty_page = page;
 3339                                 get_page(dirty_page);
 3340                         }
 3341                 }
 3342                 set_pte_at(mm, address, page_table, entry);
 3343 
 3344                 /* no need to invalidate: a not-present page won't be cached */
 3345                 update_mmu_cache(vma, address, page_table);
 3346         } else {
 3347                 if (cow_page)
 3348                         mem_cgroup_uncharge_page(cow_page);
 3349                 if (anon)
 3350                         page_cache_release(page);
 3351                 else
 3352                         anon = 1; /* no anon but release faulted_page */
 3353         }
 3354 
 3355         pte_unmap_unlock(page_table, ptl);
 3356 
 3357         if (dirty_page) {
 3358                 struct address_space *mapping = page->mapping;
 3359                 int dirtied = 0;
 3360 
 3361                 if (set_page_dirty(dirty_page))
 3362                         dirtied = 1;
 3363                 unlock_page(dirty_page);
 3364                 put_page(dirty_page);
 3365                 if ((dirtied || page_mkwrite) && mapping) {
 3366                         /*
 3367                          * Some device drivers do not set page.mapping but still
 3368                          * dirty their pages
 3369                          */
 3370                         balance_dirty_pages_ratelimited(mapping);
 3371                 }
 3372 
 3373                 /* file_update_time outside page_lock */
 3374                 if (vma->vm_file && !page_mkwrite)
 3375                         file_update_time(vma->vm_file);
 3376         } else {
 3377                 unlock_page(vmf.page);
 3378                 if (anon)
 3379                         page_cache_release(vmf.page);
 3380         }
 3381 
 3382         return ret;
 3383 
 3384 unwritable_page:
 3385         page_cache_release(page);
 3386         return ret;
 3387 uncharge_out:
 3388         /* fs's fault handler get error */
 3389         if (cow_page) {
 3390                 mem_cgroup_uncharge_page(cow_page);
 3391                 page_cache_release(cow_page);
 3392         }
 3393         return ret;
 3394 }
 3395 
 3396 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
 3397                 unsigned long address, pte_t *page_table, pmd_t *pmd,
 3398                 unsigned int flags, pte_t orig_pte)
 3399 {
 3400         pgoff_t pgoff = (((address & PAGE_MASK)
 3401                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
 3402 
 3403         pte_unmap(page_table);
 3404         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
 3405 }
 3406 
 3407 /*
 3408  * Fault of a previously existing named mapping. Repopulate the pte
 3409  * from the encoded file_pte if possible. This enables swappable
 3410  * nonlinear vmas.
 3411  *
 3412  * We enter with non-exclusive mmap_sem (to exclude vma changes,
 3413  * but allow concurrent faults), and pte mapped but not yet locked.
 3414  * We return with mmap_sem still held, but pte unmapped and unlocked.
 3415  */
 3416 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
 3417                 unsigned long address, pte_t *page_table, pmd_t *pmd,
 3418                 unsigned int flags, pte_t orig_pte)
 3419 {
 3420         pgoff_t pgoff;
 3421 
 3422         flags |= FAULT_FLAG_NONLINEAR;
 3423 
 3424         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
 3425                 return 0;
 3426 
 3427         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
 3428                 /*
 3429                  * Page table corrupted: show pte and kill process.
 3430                  */
 3431                 print_bad_pte(vma, address, orig_pte, NULL);
 3432                 return VM_FAULT_SIGBUS;
 3433         }
 3434 
 3435         pgoff = pte_to_pgoff(orig_pte);
 3436         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
 3437 }
 3438 
 3439 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
 3440                                 unsigned long addr, int current_nid)
 3441 {
 3442         get_page(page);
 3443 
 3444         count_vm_numa_event(NUMA_HINT_FAULTS);
 3445         if (current_nid == numa_node_id())
 3446                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
 3447 
 3448         return mpol_misplaced(page, vma, addr);
 3449 }
 3450 
 3451 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
 3452                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
 3453 {
 3454         struct page *page = NULL;
 3455         spinlock_t *ptl;
 3456         int current_nid = -1;
 3457         int target_nid;
 3458         bool migrated = false;
 3459 
 3460         /*
 3461         * The "pte" at this point cannot be used safely without
 3462         * validation through pte_unmap_same(). It's of NUMA type but
 3463         * the pfn may be screwed if the read is non atomic.
 3464         *
 3465         * ptep_modify_prot_start is not called as this is clearing
 3466         * the _PAGE_NUMA bit and it is not really expected that there
 3467         * would be concurrent hardware modifications to the PTE.
 3468         */
 3469         ptl = pte_lockptr(mm, pmd);
 3470         spin_lock(ptl);
 3471         if (unlikely(!pte_same(*ptep, pte))) {
 3472                 pte_unmap_unlock(ptep, ptl);
 3473                 goto out;
 3474         }
 3475 
 3476         pte = pte_mknonnuma(pte);
 3477         set_pte_at(mm, addr, ptep, pte);
 3478         update_mmu_cache(vma, addr, ptep);
 3479 
 3480         page = vm_normal_page(vma, addr, pte);
 3481         if (!page) {
 3482                 pte_unmap_unlock(ptep, ptl);
 3483                 return 0;
 3484         }
 3485 
 3486         current_nid = page_to_nid(page);
 3487         target_nid = numa_migrate_prep(page, vma, addr, current_nid);
 3488         pte_unmap_unlock(ptep, ptl);
 3489         if (target_nid == -1) {
 3490                 /*
 3491                  * Account for the fault against the current node if it not
 3492                  * being replaced regardless of where the page is located.
 3493                  */
 3494                 current_nid = numa_node_id();
 3495                 put_page(page);
 3496                 goto out;
 3497         }
 3498 
 3499         /* Migrate to the requested node */
 3500         migrated = migrate_misplaced_page(page, target_nid);
 3501         if (migrated)
 3502                 current_nid = target_nid;
 3503 
 3504 out:
 3505         if (current_nid != -1)
 3506                 task_numa_fault(current_nid, 1, migrated);
 3507         return 0;
 3508 }
 3509 
 3510 /* NUMA hinting page fault entry point for regular pmds */
 3511 #ifdef CONFIG_NUMA_BALANCING
 3512 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
 3513                      unsigned long addr, pmd_t *pmdp)
 3514 {
 3515         pmd_t pmd;
 3516         pte_t *pte, *orig_pte;
 3517         unsigned long _addr = addr & PMD_MASK;
 3518         unsigned long offset;
 3519         spinlock_t *ptl;
 3520         bool numa = false;
 3521         int local_nid = numa_node_id();
 3522 
 3523         spin_lock(&mm->page_table_lock);
 3524         pmd = *pmdp;
 3525         if (pmd_numa(pmd)) {
 3526                 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
 3527                 numa = true;
 3528         }
 3529         spin_unlock(&mm->page_table_lock);
 3530 
 3531         if (!numa)
 3532                 return 0;
 3533 
 3534         /* we're in a page fault so some vma must be in the range */
 3535         BUG_ON(!vma);
 3536         BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
 3537         offset = max(_addr, vma->vm_start) & ~PMD_MASK;
 3538         VM_BUG_ON(offset >= PMD_SIZE);
 3539         orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
 3540         pte += offset >> PAGE_SHIFT;
 3541         for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
 3542                 pte_t pteval = *pte;
 3543                 struct page *page;
 3544                 int curr_nid = local_nid;
 3545                 int target_nid;
 3546                 bool migrated;
 3547                 if (!pte_present(pteval))
 3548                         continue;
 3549                 if (!pte_numa(pteval))
 3550                         continue;
 3551                 if (addr >= vma->vm_end) {
 3552                         vma = find_vma(mm, addr);
 3553                         /* there's a pte present so there must be a vma */
 3554                         BUG_ON(!vma);
 3555                         BUG_ON(addr < vma->vm_start);
 3556                 }
 3557                 if (pte_numa(pteval)) {
 3558                         pteval = pte_mknonnuma(pteval);
 3559                         set_pte_at(mm, addr, pte, pteval);
 3560                 }
 3561                 page = vm_normal_page(vma, addr, pteval);
 3562                 if (unlikely(!page))
 3563                         continue;
 3564                 /* only check non-shared pages */
 3565                 if (unlikely(page_mapcount(page) != 1))
 3566                         continue;
 3567 
 3568                 /*
 3569                  * Note that the NUMA fault is later accounted to either
 3570                  * the node that is currently running or where the page is
 3571                  * migrated to.
 3572                  */
 3573                 curr_nid = local_nid;
 3574                 target_nid = numa_migrate_prep(page, vma, addr,
 3575                                                page_to_nid(page));
 3576                 if (target_nid == -1) {
 3577                         put_page(page);
 3578                         continue;
 3579                 }
 3580 
 3581                 /* Migrate to the requested node */
 3582                 pte_unmap_unlock(pte, ptl);
 3583                 migrated = migrate_misplaced_page(page, target_nid);
 3584                 if (migrated)
 3585                         curr_nid = target_nid;
 3586                 task_numa_fault(curr_nid, 1, migrated);
 3587 
 3588                 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
 3589         }
 3590         pte_unmap_unlock(orig_pte, ptl);
 3591 
 3592         return 0;
 3593 }
 3594 #else
 3595 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
 3596                      unsigned long addr, pmd_t *pmdp)
 3597 {
 3598         BUG();
 3599         return 0;
 3600 }
 3601 #endif /* CONFIG_NUMA_BALANCING */
 3602 
 3603 /*
 3604  * These routines also need to handle stuff like marking pages dirty
 3605  * and/or accessed for architectures that don't do it in hardware (most
 3606  * RISC architectures).  The early dirtying is also good on the i386.
 3607  *
 3608  * There is also a hook called "update_mmu_cache()" that architectures
 3609  * with external mmu caches can use to update those (ie the Sparc or
 3610  * PowerPC hashed page tables that act as extended TLBs).
 3611  *
 3612  * We enter with non-exclusive mmap_sem (to exclude vma changes,
 3613  * but allow concurrent faults), and pte mapped but not yet locked.
 3614  * We return with mmap_sem still held, but pte unmapped and unlocked.
 3615  */
 3616 int handle_pte_fault(struct mm_struct *mm,
 3617                      struct vm_area_struct *vma, unsigned long address,
 3618                      pte_t *pte, pmd_t *pmd, unsigned int flags)
 3619 {
 3620         pte_t entry;
 3621         spinlock_t *ptl;
 3622 
 3623         entry = *pte;
 3624         if (!pte_present(entry)) {
 3625                 if (pte_none(entry)) {
 3626                         if (vma->vm_ops) {
 3627                                 if (likely(vma->vm_ops->fault))
 3628                                         return do_linear_fault(mm, vma, address,
 3629                                                 pte, pmd, flags, entry);
 3630                         }
 3631                         return do_anonymous_page(mm, vma, address,
 3632                                                  pte, pmd, flags);
 3633                 }
 3634                 if (pte_file(entry))
 3635                         return do_nonlinear_fault(mm, vma, address,
 3636                                         pte, pmd, flags, entry);
 3637                 return do_swap_page(mm, vma, address,
 3638                                         pte, pmd, flags, entry);
 3639         }
 3640 
 3641         if (pte_numa(entry))
 3642                 return do_numa_page(mm, vma, address, entry, pte, pmd);
 3643 
 3644         ptl = pte_lockptr(mm, pmd);
 3645         spin_lock(ptl);
 3646         if (unlikely(!pte_same(*pte, entry)))
 3647                 goto unlock;
 3648         if (flags & FAULT_FLAG_WRITE) {
 3649                 if (!pte_write(entry))
 3650                         return do_wp_page(mm, vma, address,
 3651                                         pte, pmd, ptl, entry);
 3652                 entry = pte_mkdirty(entry);
 3653         }
 3654         entry = pte_mkyoung(entry);
 3655         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
 3656                 update_mmu_cache(vma, address, pte);
 3657         } else {
 3658                 /*
 3659                  * This is needed only for protection faults but the arch code
 3660                  * is not yet telling us if this is a protection fault or not.
 3661                  * This still avoids useless tlb flushes for .text page faults
 3662                  * with threads.
 3663                  */
 3664                 if (flags & FAULT_FLAG_WRITE)
 3665                         flush_tlb_fix_spurious_fault(vma, address);
 3666         }
 3667 unlock:
 3668         pte_unmap_unlock(pte, ptl);
 3669         return 0;
 3670 }
 3671 
 3672 /*
 3673  * By the time we get here, we already hold the mm semaphore
 3674  */
 3675 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
 3676                 unsigned long address, unsigned int flags)
 3677 {
 3678         pgd_t *pgd;
 3679         pud_t *pud;
 3680         pmd_t *pmd;
 3681         pte_t *pte;
 3682 
 3683         __set_current_state(TASK_RUNNING);
 3684 
 3685         count_vm_event(PGFAULT);
 3686         mem_cgroup_count_vm_event(mm, PGFAULT);
 3687 
 3688         /* do counter updates before entering really critical section. */
 3689         check_sync_rss_stat(current);
 3690 
 3691         if (unlikely(is_vm_hugetlb_page(vma)))
 3692                 return hugetlb_fault(mm, vma, address, flags);
 3693 
 3694 retry:
 3695         pgd = pgd_offset(mm, address);
 3696         pud = pud_alloc(mm, pgd, address);
 3697         if (!pud)
 3698                 return VM_FAULT_OOM;
 3699         pmd = pmd_alloc(mm, pud, address);
 3700         if (!pmd)
 3701                 return VM_FAULT_OOM;
 3702         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
 3703                 if (!vma->vm_ops)
 3704                         return do_huge_pmd_anonymous_page(mm, vma, address,
 3705                                                           pmd, flags);
 3706         } else {
 3707                 pmd_t orig_pmd = *pmd;
 3708                 int ret;
 3709 
 3710                 barrier();
 3711                 if (pmd_trans_huge(orig_pmd)) {
 3712                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
 3713 
 3714                         /*
 3715                          * If the pmd is splitting, return and retry the
 3716                          * the fault.  Alternative: wait until the split
 3717                          * is done, and goto retry.
 3718                          */
 3719                         if (pmd_trans_splitting(orig_pmd))
 3720                                 return 0;
 3721 
 3722                         if (pmd_numa(orig_pmd))
 3723                                 return do_huge_pmd_numa_page(mm, vma, address,
 3724                                                              orig_pmd, pmd);
 3725 
 3726                         if (dirty && !pmd_write(orig_pmd)) {
 3727                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
 3728                                                           orig_pmd);
 3729                                 /*
 3730                                  * If COW results in an oom, the huge pmd will
 3731                                  * have been split, so retry the fault on the
 3732                                  * pte for a smaller charge.
 3733                                  */
 3734                                 if (unlikely(ret & VM_FAULT_OOM))
 3735                                         goto retry;
 3736                                 return ret;
 3737                         } else {
 3738                                 huge_pmd_set_accessed(mm, vma, address, pmd,
 3739                                                       orig_pmd, dirty);
 3740                         }
 3741 
 3742                         return 0;
 3743                 }
 3744         }
 3745 
 3746         if (pmd_numa(*pmd))
 3747                 return do_pmd_numa_page(mm, vma, address, pmd);
 3748 
 3749         /*
 3750          * Use __pte_alloc instead of pte_alloc_map, because we can't
 3751          * run pte_offset_map on the pmd, if an huge pmd could
 3752          * materialize from under us from a different thread.
 3753          */
 3754         if (unlikely(pmd_none(*pmd)) &&
 3755             unlikely(__pte_alloc(mm, vma, pmd, address)))
 3756                 return VM_FAULT_OOM;
 3757         /* if an huge pmd materialized from under us just retry later */
 3758         if (unlikely(pmd_trans_huge(*pmd)))
 3759                 return 0;
 3760         /*
 3761          * A regular pmd is established and it can't morph into a huge pmd
 3762          * from under us anymore at this point because we hold the mmap_sem
 3763          * read mode and khugepaged takes it in write mode. So now it's
 3764          * safe to run pte_offset_map().
 3765          */
 3766         pte = pte_offset_map(pmd, address);
 3767 
 3768         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
 3769 }
 3770 
 3771 #ifndef __PAGETABLE_PUD_FOLDED
 3772 /*
 3773  * Allocate page upper directory.
 3774  * We've already handled the fast-path in-line.
 3775  */
 3776 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
 3777 {
 3778         pud_t *new = pud_alloc_one(mm, address);
 3779         if (!new)
 3780                 return -ENOMEM;
 3781 
 3782         smp_wmb(); /* See comment in __pte_alloc */
 3783 
 3784         spin_lock(&mm->page_table_lock);
 3785         if (pgd_present(*pgd))          /* Another has populated it */
 3786                 pud_free(mm, new);
 3787         else
 3788                 pgd_populate(mm, pgd, new);
 3789         spin_unlock(&mm->page_table_lock);
 3790         return 0;
 3791 }
 3792 #endif /* __PAGETABLE_PUD_FOLDED */
 3793 
 3794 #ifndef __PAGETABLE_PMD_FOLDED
 3795 /*
 3796  * Allocate page middle directory.
 3797  * We've already handled the fast-path in-line.
 3798  */
 3799 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
 3800 {
 3801         pmd_t *new = pmd_alloc_one(mm, address);
 3802         if (!new)
 3803                 return -ENOMEM;
 3804 
 3805         smp_wmb(); /* See comment in __pte_alloc */
 3806 
 3807         spin_lock(&mm->page_table_lock);
 3808 #ifndef __ARCH_HAS_4LEVEL_HACK
 3809         if (pud_present(*pud))          /* Another has populated it */
 3810                 pmd_free(mm, new);
 3811         else
 3812                 pud_populate(mm, pud, new);
 3813 #else
 3814         if (pgd_present(*pud))          /* Another has populated it */
 3815                 pmd_free(mm, new);
 3816         else
 3817                 pgd_populate(mm, pud, new);
 3818 #endif /* __ARCH_HAS_4LEVEL_HACK */
 3819         spin_unlock(&mm->page_table_lock);
 3820         return 0;
 3821 }
 3822 #endif /* __PAGETABLE_PMD_FOLDED */
 3823 
 3824 int make_pages_present(unsigned long addr, unsigned long end)
 3825 {
 3826         int ret, len, write;
 3827         struct vm_area_struct * vma;
 3828 
 3829         vma = find_vma(current->mm, addr);
 3830         if (!vma)
 3831                 return -ENOMEM;
 3832         /*
 3833          * We want to touch writable mappings with a write fault in order
 3834          * to break COW, except for shared mappings because these don't COW
 3835          * and we would not want to dirty them for nothing.
 3836          */
 3837         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
 3838         BUG_ON(addr >= end);
 3839         BUG_ON(end > vma->vm_end);
 3840         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
 3841         ret = get_user_pages(current, current->mm, addr,
 3842                         len, write, 0, NULL, NULL);
 3843         if (ret < 0)
 3844                 return ret;
 3845         return ret == len ? 0 : -EFAULT;
 3846 }
 3847 
 3848 #if !defined(__HAVE_ARCH_GATE_AREA)
 3849 
 3850 #if defined(AT_SYSINFO_EHDR)
 3851 static struct vm_area_struct gate_vma;
 3852 
 3853 static int __init gate_vma_init(void)
 3854 {
 3855         gate_vma.vm_mm = NULL;
 3856         gate_vma.vm_start = FIXADDR_USER_START;
 3857         gate_vma.vm_end = FIXADDR_USER_END;
 3858         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
 3859         gate_vma.vm_page_prot = __P101;
 3860 
 3861         return 0;
 3862 }
 3863 __initcall(gate_vma_init);
 3864 #endif
 3865 
 3866 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
 3867 {
 3868 #ifdef AT_SYSINFO_EHDR
 3869         return &gate_vma;
 3870 #else
 3871         return NULL;
 3872 #endif
 3873 }
 3874 
 3875 int in_gate_area_no_mm(unsigned long addr)
 3876 {
 3877 #ifdef AT_SYSINFO_EHDR
 3878         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
 3879                 return 1;
 3880 #endif
 3881         return 0;
 3882 }
 3883 
 3884 #endif  /* __HAVE_ARCH_GATE_AREA */
 3885 
 3886 static int __follow_pte(struct mm_struct *mm, unsigned long address,
 3887                 pte_t **ptepp, spinlock_t **ptlp)
 3888 {
 3889         pgd_t *pgd;
 3890         pud_t *pud;
 3891         pmd_t *pmd;
 3892         pte_t *ptep;
 3893 
 3894         pgd = pgd_offset(mm, address);
 3895         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
 3896                 goto out;
 3897 
 3898         pud = pud_offset(pgd, address);
 3899         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
 3900                 goto out;
 3901 
 3902         pmd = pmd_offset(pud, address);
 3903         VM_BUG_ON(pmd_trans_huge(*pmd));
 3904         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
 3905                 goto out;
 3906 
 3907         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
 3908         if (pmd_huge(*pmd))
 3909                 goto out;
 3910 
 3911         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
 3912         if (!ptep)
 3913                 goto out;
 3914         if (!pte_present(*ptep))
 3915                 goto unlock;
 3916         *ptepp = ptep;
 3917         return 0;
 3918 unlock:
 3919         pte_unmap_unlock(ptep, *ptlp);
 3920 out:
 3921         return -EINVAL;
 3922 }
 3923 
 3924 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
 3925                              pte_t **ptepp, spinlock_t **ptlp)
 3926 {
 3927         int res;
 3928 
 3929         /* (void) is needed to make gcc happy */
 3930         (void) __cond_lock(*ptlp,
 3931                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
 3932         return res;
 3933 }
 3934 
 3935 /**
 3936  * follow_pfn - look up PFN at a user virtual address
 3937  * @vma: memory mapping
 3938  * @address: user virtual address
 3939  * @pfn: location to store found PFN
 3940  *
 3941  * Only IO mappings and raw PFN mappings are allowed.
 3942  *
 3943  * Returns zero and the pfn at @pfn on success, -ve otherwise.
 3944  */
 3945 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
 3946         unsigned long *pfn)
 3947 {
 3948         int ret = -EINVAL;
 3949         spinlock_t *ptl;
 3950         pte_t *ptep;
 3951 
 3952         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
 3953                 return ret;
 3954 
 3955         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
 3956         if (ret)
 3957                 return ret;
 3958         *pfn = pte_pfn(*ptep);
 3959         pte_unmap_unlock(ptep, ptl);
 3960         return 0;
 3961 }
 3962 EXPORT_SYMBOL(follow_pfn);
 3963 
 3964 #ifdef CONFIG_HAVE_IOREMAP_PROT
 3965 int follow_phys(struct vm_area_struct *vma,
 3966                 unsigned long address, unsigned int flags,
 3967                 unsigned long *prot, resource_size_t *phys)
 3968 {
 3969         int ret = -EINVAL;
 3970         pte_t *ptep, pte;
 3971         spinlock_t *ptl;
 3972 
 3973         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
 3974                 goto out;
 3975 
 3976         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
 3977                 goto out;
 3978         pte = *ptep;
 3979 
 3980         if ((flags & FOLL_WRITE) && !pte_write(pte))
 3981                 goto unlock;
 3982 
 3983         *prot = pgprot_val(pte_pgprot(pte));
 3984         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
 3985 
 3986         ret = 0;
 3987 unlock:
 3988         pte_unmap_unlock(ptep, ptl);
 3989 out:
 3990         return ret;
 3991 }
 3992 
 3993 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
 3994                         void *buf, int len, int write)
 3995 {
 3996         resource_size_t phys_addr;
 3997         unsigned long prot = 0;
 3998         void __iomem *maddr;
 3999         int offset = addr & (PAGE_SIZE-1);
 4000 
 4001         if (follow_phys(vma, addr, write, &prot, &phys_addr))
 4002                 return -EINVAL;
 4003 
 4004         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
 4005         if (write)
 4006                 memcpy_toio(maddr + offset, buf, len);
 4007         else
 4008                 memcpy_fromio(buf, maddr + offset, len);
 4009         iounmap(maddr);
 4010 
 4011         return len;
 4012 }
 4013 #endif
 4014 
 4015 /*
 4016  * Access another process' address space as given in mm.  If non-NULL, use the
 4017  * given task for page fault accounting.
 4018  */
 4019 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
 4020                 unsigned long addr, void *buf, int len, int write)
 4021 {
 4022         struct vm_area_struct *vma;
 4023         void *old_buf = buf;
 4024 
 4025         down_read(&mm->mmap_sem);
 4026         /* ignore errors, just check how much was successfully transferred */
 4027         while (len) {
 4028                 int bytes, ret, offset;
 4029                 void *maddr;
 4030                 struct page *page = NULL;
 4031 
 4032                 ret = get_user_pages(tsk, mm, addr, 1,
 4033                                 write, 1, &page, &vma);
 4034                 if (ret <= 0) {
 4035                         /*
 4036                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
 4037                          * we can access using slightly different code.
 4038                          */
 4039 #ifdef CONFIG_HAVE_IOREMAP_PROT
 4040                         vma = find_vma(mm, addr);
 4041                         if (!vma || vma->vm_start > addr)
 4042                                 break;
 4043                         if (vma->vm_ops && vma->vm_ops->access)
 4044                                 ret = vma->vm_ops->access(vma, addr, buf,
 4045                                                           len, write);
 4046                         if (ret <= 0)
 4047 #endif
 4048                                 break;
 4049                         bytes = ret;
 4050                 } else {
 4051                         bytes = len;
 4052                         offset = addr & (PAGE_SIZE-1);
 4053                         if (bytes > PAGE_SIZE-offset)
 4054                                 bytes = PAGE_SIZE-offset;
 4055 
 4056                         maddr = kmap(page);
 4057                         if (write) {
 4058                                 copy_to_user_page(vma, page, addr,
 4059                                                   maddr + offset, buf, bytes);
 4060                                 set_page_dirty_lock(page);
 4061                         } else {
 4062                                 copy_from_user_page(vma, page, addr,
 4063                                                     buf, maddr + offset, bytes);
 4064                         }
 4065                         kunmap(page);
 4066                         page_cache_release(page);
 4067                 }
 4068                 len -= bytes;
 4069                 buf += bytes;
 4070                 addr += bytes;
 4071         }
 4072         up_read(&mm->mmap_sem);
 4073 
 4074         return buf - old_buf;
 4075 }
 4076 
 4077 /**
 4078  * access_remote_vm - access another process' address space
 4079  * @mm:         the mm_struct of the target address space
 4080  * @addr:       start address to access
 4081  * @buf:        source or destination buffer
 4082  * @len:        number of bytes to transfer
 4083  * @write:      whether the access is a write
 4084  *
 4085  * The caller must hold a reference on @mm.
 4086  */
 4087 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
 4088                 void *buf, int len, int write)
 4089 {
 4090         return __access_remote_vm(NULL, mm, addr, buf, len, write);
 4091 }
 4092 
 4093 /*
 4094  * Access another process' address space.
 4095  * Source/target buffer must be kernel space,
 4096  * Do not walk the page table directly, use get_user_pages
 4097  */
 4098 int access_process_vm(struct task_struct *tsk, unsigned long addr,
 4099                 void *buf, int len, int write)
 4100 {
 4101         struct mm_struct *mm;
 4102         int ret;
 4103 
 4104         mm = get_task_mm(tsk);
 4105         if (!mm)
 4106                 return 0;
 4107 
 4108         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
 4109         mmput(mm);
 4110 
 4111         return ret;
 4112 }
 4113 
 4114 /*
 4115  * Print the name of a VMA.
 4116  */
 4117 void print_vma_addr(char *prefix, unsigned long ip)
 4118 {
 4119         struct mm_struct *mm = current->mm;
 4120         struct vm_area_struct *vma;
 4121 
 4122         /*
 4123          * Do not print if we are in atomic
 4124          * contexts (in exception stacks, etc.):
 4125          */
 4126         if (preempt_count())
 4127                 return;
 4128 
 4129         down_read(&mm->mmap_sem);
 4130         vma = find_vma(mm, ip);
 4131         if (vma && vma->vm_file) {
 4132                 struct file *f = vma->vm_file;
 4133                 char *buf = (char *)__get_free_page(GFP_KERNEL);
 4134                 if (buf) {
 4135                         char *p;
 4136 
 4137                         p = d_path(&f->f_path, buf, PAGE_SIZE);
 4138                         if (IS_ERR(p))
 4139                                 p = "?";
 4140                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
 4141                                         vma->vm_start,
 4142                                         vma->vm_end - vma->vm_start);
 4143                         free_page((unsigned long)buf);
 4144                 }
 4145         }
 4146         up_read(&mm->mmap_sem);
 4147 }
 4148 
 4149 #ifdef CONFIG_PROVE_LOCKING
 4150 void might_fault(void)
 4151 {
 4152         /*
 4153          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
 4154          * holding the mmap_sem, this is safe because kernel memory doesn't
 4155          * get paged out, therefore we'll never actually fault, and the
 4156          * below annotations will generate false positives.
 4157          */
 4158         if (segment_eq(get_fs(), KERNEL_DS))
 4159                 return;
 4160 
 4161         might_sleep();
 4162         /*
 4163          * it would be nicer only to annotate paths which are not under
 4164          * pagefault_disable, however that requires a larger audit and
 4165          * providing helpers like get_user_atomic.
 4166          */
 4167         if (!in_atomic() && current->mm)
 4168                 might_lock_read(&current->mm->mmap_sem);
 4169 }
 4170 EXPORT_SYMBOL(might_fault);
 4171 #endif
 4172 
 4173 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
 4174 static void clear_gigantic_page(struct page *page,
 4175                                 unsigned long addr,
 4176                                 unsigned int pages_per_huge_page)
 4177 {
 4178         int i;
 4179         struct page *p = page;
 4180 
 4181         might_sleep();
 4182         for (i = 0; i < pages_per_huge_page;
 4183              i++, p = mem_map_next(p, page, i)) {
 4184                 cond_resched();
 4185                 clear_user_highpage(p, addr + i * PAGE_SIZE);
 4186         }
 4187 }
 4188 void clear_huge_page(struct page *page,
 4189                      unsigned long addr, unsigned int pages_per_huge_page)
 4190 {
 4191         int i;
 4192 
 4193         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
 4194                 clear_gigantic_page(page, addr, pages_per_huge_page);
 4195                 return;
 4196         }
 4197 
 4198         might_sleep();
 4199         for (i = 0; i < pages_per_huge_page; i++) {
 4200                 cond_resched();
 4201                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
 4202         }
 4203 }
 4204 
 4205 static void copy_user_gigantic_page(struct page *dst, struct page *src,
 4206                                     unsigned long addr,
 4207                                     struct vm_area_struct *vma,
 4208                                     unsigned int pages_per_huge_page)
 4209 {
 4210         int i;
 4211         struct page *dst_base = dst;
 4212         struct page *src_base = src;
 4213 
 4214         for (i = 0; i < pages_per_huge_page; ) {
 4215                 cond_resched();
 4216                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
 4217 
 4218                 i++;
 4219                 dst = mem_map_next(dst, dst_base, i);
 4220                 src = mem_map_next(src, src_base, i);
 4221         }
 4222 }
 4223 
 4224 void copy_user_huge_page(struct page *dst, struct page *src,
 4225                          unsigned long addr, struct vm_area_struct *vma,
 4226                          unsigned int pages_per_huge_page)
 4227 {
 4228         int i;
 4229 
 4230         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
 4231                 copy_user_gigantic_page(dst, src, addr, vma,
 4232                                         pages_per_huge_page);
 4233                 return;
 4234         }
 4235 
 4236         might_sleep();
 4237         for (i = 0; i < pages_per_huge_page; i++) {
 4238                 cond_resched();
 4239                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
 4240         }
 4241 }
 4242 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */

Cache object: 05169cc59ad2fdd2d14086e32456fcba


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.