The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/mlock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  *      linux/mm/mlock.c
    3  *
    4  *  (C) Copyright 1995 Linus Torvalds
    5  *  (C) Copyright 2002 Christoph Hellwig
    6  */
    7 
    8 #include <linux/capability.h>
    9 #include <linux/mman.h>
   10 #include <linux/mm.h>
   11 #include <linux/swap.h>
   12 #include <linux/swapops.h>
   13 #include <linux/pagemap.h>
   14 #include <linux/mempolicy.h>
   15 #include <linux/syscalls.h>
   16 #include <linux/sched.h>
   17 #include <linux/export.h>
   18 #include <linux/rmap.h>
   19 #include <linux/mmzone.h>
   20 #include <linux/hugetlb.h>
   21 
   22 #include "internal.h"
   23 
   24 int can_do_mlock(void)
   25 {
   26         if (capable(CAP_IPC_LOCK))
   27                 return 1;
   28         if (rlimit(RLIMIT_MEMLOCK) != 0)
   29                 return 1;
   30         return 0;
   31 }
   32 EXPORT_SYMBOL(can_do_mlock);
   33 
   34 /*
   35  * Mlocked pages are marked with PageMlocked() flag for efficient testing
   36  * in vmscan and, possibly, the fault path; and to support semi-accurate
   37  * statistics.
   38  *
   39  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
   40  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
   41  * The unevictable list is an LRU sibling list to the [in]active lists.
   42  * PageUnevictable is set to indicate the unevictable state.
   43  *
   44  * When lazy mlocking via vmscan, it is important to ensure that the
   45  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
   46  * may have mlocked a page that is being munlocked. So lazy mlock must take
   47  * the mmap_sem for read, and verify that the vma really is locked
   48  * (see mm/rmap.c).
   49  */
   50 
   51 /*
   52  *  LRU accounting for clear_page_mlock()
   53  */
   54 void clear_page_mlock(struct page *page)
   55 {
   56         if (!TestClearPageMlocked(page))
   57                 return;
   58 
   59         mod_zone_page_state(page_zone(page), NR_MLOCK,
   60                             -hpage_nr_pages(page));
   61         count_vm_event(UNEVICTABLE_PGCLEARED);
   62         if (!isolate_lru_page(page)) {
   63                 putback_lru_page(page);
   64         } else {
   65                 /*
   66                  * We lost the race. the page already moved to evictable list.
   67                  */
   68                 if (PageUnevictable(page))
   69                         count_vm_event(UNEVICTABLE_PGSTRANDED);
   70         }
   71 }
   72 
   73 /*
   74  * Mark page as mlocked if not already.
   75  * If page on LRU, isolate and putback to move to unevictable list.
   76  */
   77 void mlock_vma_page(struct page *page)
   78 {
   79         BUG_ON(!PageLocked(page));
   80 
   81         if (!TestSetPageMlocked(page)) {
   82                 mod_zone_page_state(page_zone(page), NR_MLOCK,
   83                                     hpage_nr_pages(page));
   84                 count_vm_event(UNEVICTABLE_PGMLOCKED);
   85                 if (!isolate_lru_page(page))
   86                         putback_lru_page(page);
   87         }
   88 }
   89 
   90 /**
   91  * munlock_vma_page - munlock a vma page
   92  * @page - page to be unlocked
   93  *
   94  * called from munlock()/munmap() path with page supposedly on the LRU.
   95  * When we munlock a page, because the vma where we found the page is being
   96  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
   97  * page locked so that we can leave it on the unevictable lru list and not
   98  * bother vmscan with it.  However, to walk the page's rmap list in
   99  * try_to_munlock() we must isolate the page from the LRU.  If some other
  100  * task has removed the page from the LRU, we won't be able to do that.
  101  * So we clear the PageMlocked as we might not get another chance.  If we
  102  * can't isolate the page, we leave it for putback_lru_page() and vmscan
  103  * [page_referenced()/try_to_unmap()] to deal with.
  104  */
  105 void munlock_vma_page(struct page *page)
  106 {
  107         BUG_ON(!PageLocked(page));
  108 
  109         if (TestClearPageMlocked(page)) {
  110                 mod_zone_page_state(page_zone(page), NR_MLOCK,
  111                                     -hpage_nr_pages(page));
  112                 if (!isolate_lru_page(page)) {
  113                         int ret = SWAP_AGAIN;
  114 
  115                         /*
  116                          * Optimization: if the page was mapped just once,
  117                          * that's our mapping and we don't need to check all the
  118                          * other vmas.
  119                          */
  120                         if (page_mapcount(page) > 1)
  121                                 ret = try_to_munlock(page);
  122                         /*
  123                          * did try_to_unlock() succeed or punt?
  124                          */
  125                         if (ret != SWAP_MLOCK)
  126                                 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  127 
  128                         putback_lru_page(page);
  129                 } else {
  130                         /*
  131                          * Some other task has removed the page from the LRU.
  132                          * putback_lru_page() will take care of removing the
  133                          * page from the unevictable list, if necessary.
  134                          * vmscan [page_referenced()] will move the page back
  135                          * to the unevictable list if some other vma has it
  136                          * mlocked.
  137                          */
  138                         if (PageUnevictable(page))
  139                                 count_vm_event(UNEVICTABLE_PGSTRANDED);
  140                         else
  141                                 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  142                 }
  143         }
  144 }
  145 
  146 /**
  147  * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
  148  * @vma:   target vma
  149  * @start: start address
  150  * @end:   end address
  151  *
  152  * This takes care of making the pages present too.
  153  *
  154  * return 0 on success, negative error code on error.
  155  *
  156  * vma->vm_mm->mmap_sem must be held for at least read.
  157  */
  158 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
  159                                     unsigned long start, unsigned long end,
  160                                     int *nonblocking)
  161 {
  162         struct mm_struct *mm = vma->vm_mm;
  163         unsigned long addr = start;
  164         int nr_pages = (end - start) / PAGE_SIZE;
  165         int gup_flags;
  166 
  167         VM_BUG_ON(start & ~PAGE_MASK);
  168         VM_BUG_ON(end   & ~PAGE_MASK);
  169         VM_BUG_ON(start < vma->vm_start);
  170         VM_BUG_ON(end   > vma->vm_end);
  171         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
  172 
  173         gup_flags = FOLL_TOUCH | FOLL_MLOCK;
  174         /*
  175          * We want to touch writable mappings with a write fault in order
  176          * to break COW, except for shared mappings because these don't COW
  177          * and we would not want to dirty them for nothing.
  178          */
  179         if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
  180                 gup_flags |= FOLL_WRITE;
  181 
  182         /*
  183          * We want mlock to succeed for regions that have any permissions
  184          * other than PROT_NONE.
  185          */
  186         if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
  187                 gup_flags |= FOLL_FORCE;
  188 
  189         return __get_user_pages(current, mm, addr, nr_pages, gup_flags,
  190                                 NULL, NULL, nonblocking);
  191 }
  192 
  193 /*
  194  * convert get_user_pages() return value to posix mlock() error
  195  */
  196 static int __mlock_posix_error_return(long retval)
  197 {
  198         if (retval == -EFAULT)
  199                 retval = -ENOMEM;
  200         else if (retval == -ENOMEM)
  201                 retval = -EAGAIN;
  202         return retval;
  203 }
  204 
  205 /**
  206  * mlock_vma_pages_range() - mlock pages in specified vma range.
  207  * @vma - the vma containing the specfied address range
  208  * @start - starting address in @vma to mlock
  209  * @end   - end address [+1] in @vma to mlock
  210  *
  211  * For mmap()/mremap()/expansion of mlocked vma.
  212  *
  213  * return 0 on success for "normal" vmas.
  214  *
  215  * return number of pages [> 0] to be removed from locked_vm on success
  216  * of "special" vmas.
  217  */
  218 long mlock_vma_pages_range(struct vm_area_struct *vma,
  219                         unsigned long start, unsigned long end)
  220 {
  221         int nr_pages = (end - start) / PAGE_SIZE;
  222         BUG_ON(!(vma->vm_flags & VM_LOCKED));
  223 
  224         /*
  225          * filter unlockable vmas
  226          */
  227         if (vma->vm_flags & (VM_IO | VM_PFNMAP))
  228                 goto no_mlock;
  229 
  230         if (!((vma->vm_flags & VM_DONTEXPAND) ||
  231                         is_vm_hugetlb_page(vma) ||
  232                         vma == get_gate_vma(current->mm))) {
  233 
  234                 __mlock_vma_pages_range(vma, start, end, NULL);
  235 
  236                 /* Hide errors from mmap() and other callers */
  237                 return 0;
  238         }
  239 
  240         /*
  241          * User mapped kernel pages or huge pages:
  242          * make these pages present to populate the ptes, but
  243          * fall thru' to reset VM_LOCKED--no need to unlock, and
  244          * return nr_pages so these don't get counted against task's
  245          * locked limit.  huge pages are already counted against
  246          * locked vm limit.
  247          */
  248         make_pages_present(start, end);
  249 
  250 no_mlock:
  251         vma->vm_flags &= ~VM_LOCKED;    /* and don't come back! */
  252         return nr_pages;                /* error or pages NOT mlocked */
  253 }
  254 
  255 /*
  256  * munlock_vma_pages_range() - munlock all pages in the vma range.'
  257  * @vma - vma containing range to be munlock()ed.
  258  * @start - start address in @vma of the range
  259  * @end - end of range in @vma.
  260  *
  261  *  For mremap(), munmap() and exit().
  262  *
  263  * Called with @vma VM_LOCKED.
  264  *
  265  * Returns with VM_LOCKED cleared.  Callers must be prepared to
  266  * deal with this.
  267  *
  268  * We don't save and restore VM_LOCKED here because pages are
  269  * still on lru.  In unmap path, pages might be scanned by reclaim
  270  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
  271  * free them.  This will result in freeing mlocked pages.
  272  */
  273 void munlock_vma_pages_range(struct vm_area_struct *vma,
  274                              unsigned long start, unsigned long end)
  275 {
  276         unsigned long addr;
  277 
  278         lru_add_drain();
  279         vma->vm_flags &= ~VM_LOCKED;
  280 
  281         for (addr = start; addr < end; addr += PAGE_SIZE) {
  282                 struct page *page;
  283                 /*
  284                  * Although FOLL_DUMP is intended for get_dump_page(),
  285                  * it just so happens that its special treatment of the
  286                  * ZERO_PAGE (returning an error instead of doing get_page)
  287                  * suits munlock very well (and if somehow an abnormal page
  288                  * has sneaked into the range, we won't oops here: great).
  289                  */
  290                 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
  291                 if (page && !IS_ERR(page)) {
  292                         lock_page(page);
  293                         munlock_vma_page(page);
  294                         unlock_page(page);
  295                         put_page(page);
  296                 }
  297                 cond_resched();
  298         }
  299 }
  300 
  301 /*
  302  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
  303  *
  304  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
  305  * munlock is a no-op.  However, for some special vmas, we go ahead and
  306  * populate the ptes via make_pages_present().
  307  *
  308  * For vmas that pass the filters, merge/split as appropriate.
  309  */
  310 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
  311         unsigned long start, unsigned long end, vm_flags_t newflags)
  312 {
  313         struct mm_struct *mm = vma->vm_mm;
  314         pgoff_t pgoff;
  315         int nr_pages;
  316         int ret = 0;
  317         int lock = !!(newflags & VM_LOCKED);
  318 
  319         if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
  320             is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
  321                 goto out;       /* don't set VM_LOCKED,  don't count */
  322 
  323         pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  324         *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
  325                           vma->vm_file, pgoff, vma_policy(vma));
  326         if (*prev) {
  327                 vma = *prev;
  328                 goto success;
  329         }
  330 
  331         if (start != vma->vm_start) {
  332                 ret = split_vma(mm, vma, start, 1);
  333                 if (ret)
  334                         goto out;
  335         }
  336 
  337         if (end != vma->vm_end) {
  338                 ret = split_vma(mm, vma, end, 0);
  339                 if (ret)
  340                         goto out;
  341         }
  342 
  343 success:
  344         /*
  345          * Keep track of amount of locked VM.
  346          */
  347         nr_pages = (end - start) >> PAGE_SHIFT;
  348         if (!lock)
  349                 nr_pages = -nr_pages;
  350         mm->locked_vm += nr_pages;
  351 
  352         /*
  353          * vm_flags is protected by the mmap_sem held in write mode.
  354          * It's okay if try_to_unmap_one unmaps a page just after we
  355          * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
  356          */
  357 
  358         if (lock)
  359                 vma->vm_flags = newflags;
  360         else
  361                 munlock_vma_pages_range(vma, start, end);
  362 
  363 out:
  364         *prev = vma;
  365         return ret;
  366 }
  367 
  368 static int do_mlock(unsigned long start, size_t len, int on)
  369 {
  370         unsigned long nstart, end, tmp;
  371         struct vm_area_struct * vma, * prev;
  372         int error;
  373 
  374         VM_BUG_ON(start & ~PAGE_MASK);
  375         VM_BUG_ON(len != PAGE_ALIGN(len));
  376         end = start + len;
  377         if (end < start)
  378                 return -EINVAL;
  379         if (end == start)
  380                 return 0;
  381         vma = find_vma(current->mm, start);
  382         if (!vma || vma->vm_start > start)
  383                 return -ENOMEM;
  384 
  385         prev = vma->vm_prev;
  386         if (start > vma->vm_start)
  387                 prev = vma;
  388 
  389         for (nstart = start ; ; ) {
  390                 vm_flags_t newflags;
  391 
  392                 /* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
  393 
  394                 newflags = vma->vm_flags | VM_LOCKED;
  395                 if (!on)
  396                         newflags &= ~VM_LOCKED;
  397 
  398                 tmp = vma->vm_end;
  399                 if (tmp > end)
  400                         tmp = end;
  401                 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
  402                 if (error)
  403                         break;
  404                 nstart = tmp;
  405                 if (nstart < prev->vm_end)
  406                         nstart = prev->vm_end;
  407                 if (nstart >= end)
  408                         break;
  409 
  410                 vma = prev->vm_next;
  411                 if (!vma || vma->vm_start != nstart) {
  412                         error = -ENOMEM;
  413                         break;
  414                 }
  415         }
  416         return error;
  417 }
  418 
  419 static int do_mlock_pages(unsigned long start, size_t len, int ignore_errors)
  420 {
  421         struct mm_struct *mm = current->mm;
  422         unsigned long end, nstart, nend;
  423         struct vm_area_struct *vma = NULL;
  424         int locked = 0;
  425         int ret = 0;
  426 
  427         VM_BUG_ON(start & ~PAGE_MASK);
  428         VM_BUG_ON(len != PAGE_ALIGN(len));
  429         end = start + len;
  430 
  431         for (nstart = start; nstart < end; nstart = nend) {
  432                 /*
  433                  * We want to fault in pages for [nstart; end) address range.
  434                  * Find first corresponding VMA.
  435                  */
  436                 if (!locked) {
  437                         locked = 1;
  438                         down_read(&mm->mmap_sem);
  439                         vma = find_vma(mm, nstart);
  440                 } else if (nstart >= vma->vm_end)
  441                         vma = vma->vm_next;
  442                 if (!vma || vma->vm_start >= end)
  443                         break;
  444                 /*
  445                  * Set [nstart; nend) to intersection of desired address
  446                  * range with the first VMA. Also, skip undesirable VMA types.
  447                  */
  448                 nend = min(end, vma->vm_end);
  449                 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
  450                         continue;
  451                 if (nstart < vma->vm_start)
  452                         nstart = vma->vm_start;
  453                 /*
  454                  * Now fault in a range of pages. __mlock_vma_pages_range()
  455                  * double checks the vma flags, so that it won't mlock pages
  456                  * if the vma was already munlocked.
  457                  */
  458                 ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
  459                 if (ret < 0) {
  460                         if (ignore_errors) {
  461                                 ret = 0;
  462                                 continue;       /* continue at next VMA */
  463                         }
  464                         ret = __mlock_posix_error_return(ret);
  465                         break;
  466                 }
  467                 nend = nstart + ret * PAGE_SIZE;
  468                 ret = 0;
  469         }
  470         if (locked)
  471                 up_read(&mm->mmap_sem);
  472         return ret;     /* 0 or negative error code */
  473 }
  474 
  475 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
  476 {
  477         unsigned long locked;
  478         unsigned long lock_limit;
  479         int error = -ENOMEM;
  480 
  481         if (!can_do_mlock())
  482                 return -EPERM;
  483 
  484         lru_add_drain_all();    /* flush pagevec */
  485 
  486         down_write(&current->mm->mmap_sem);
  487         len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  488         start &= PAGE_MASK;
  489 
  490         locked = len >> PAGE_SHIFT;
  491         locked += current->mm->locked_vm;
  492 
  493         lock_limit = rlimit(RLIMIT_MEMLOCK);
  494         lock_limit >>= PAGE_SHIFT;
  495 
  496         /* check against resource limits */
  497         if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
  498                 error = do_mlock(start, len, 1);
  499         up_write(&current->mm->mmap_sem);
  500         if (!error)
  501                 error = do_mlock_pages(start, len, 0);
  502         return error;
  503 }
  504 
  505 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
  506 {
  507         int ret;
  508 
  509         down_write(&current->mm->mmap_sem);
  510         len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  511         start &= PAGE_MASK;
  512         ret = do_mlock(start, len, 0);
  513         up_write(&current->mm->mmap_sem);
  514         return ret;
  515 }
  516 
  517 static int do_mlockall(int flags)
  518 {
  519         struct vm_area_struct * vma, * prev = NULL;
  520         unsigned int def_flags = 0;
  521 
  522         if (flags & MCL_FUTURE)
  523                 def_flags = VM_LOCKED;
  524         current->mm->def_flags = def_flags;
  525         if (flags == MCL_FUTURE)
  526                 goto out;
  527 
  528         for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
  529                 vm_flags_t newflags;
  530 
  531                 newflags = vma->vm_flags | VM_LOCKED;
  532                 if (!(flags & MCL_CURRENT))
  533                         newflags &= ~VM_LOCKED;
  534 
  535                 /* Ignore errors */
  536                 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
  537         }
  538 out:
  539         return 0;
  540 }
  541 
  542 SYSCALL_DEFINE1(mlockall, int, flags)
  543 {
  544         unsigned long lock_limit;
  545         int ret = -EINVAL;
  546 
  547         if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
  548                 goto out;
  549 
  550         ret = -EPERM;
  551         if (!can_do_mlock())
  552                 goto out;
  553 
  554         if (flags & MCL_CURRENT)
  555                 lru_add_drain_all();    /* flush pagevec */
  556 
  557         down_write(&current->mm->mmap_sem);
  558 
  559         lock_limit = rlimit(RLIMIT_MEMLOCK);
  560         lock_limit >>= PAGE_SHIFT;
  561 
  562         ret = -ENOMEM;
  563         if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
  564             capable(CAP_IPC_LOCK))
  565                 ret = do_mlockall(flags);
  566         up_write(&current->mm->mmap_sem);
  567         if (!ret && (flags & MCL_CURRENT)) {
  568                 /* Ignore errors */
  569                 do_mlock_pages(0, TASK_SIZE, 1);
  570         }
  571 out:
  572         return ret;
  573 }
  574 
  575 SYSCALL_DEFINE0(munlockall)
  576 {
  577         int ret;
  578 
  579         down_write(&current->mm->mmap_sem);
  580         ret = do_mlockall(0);
  581         up_write(&current->mm->mmap_sem);
  582         return ret;
  583 }
  584 
  585 /*
  586  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
  587  * shm segments) get accounted against the user_struct instead.
  588  */
  589 static DEFINE_SPINLOCK(shmlock_user_lock);
  590 
  591 int user_shm_lock(size_t size, struct user_struct *user)
  592 {
  593         unsigned long lock_limit, locked;
  594         int allowed = 0;
  595 
  596         locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  597         lock_limit = rlimit(RLIMIT_MEMLOCK);
  598         if (lock_limit == RLIM_INFINITY)
  599                 allowed = 1;
  600         lock_limit >>= PAGE_SHIFT;
  601         spin_lock(&shmlock_user_lock);
  602         if (!allowed &&
  603             locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
  604                 goto out;
  605         get_uid(user);
  606         user->locked_shm += locked;
  607         allowed = 1;
  608 out:
  609         spin_unlock(&shmlock_user_lock);
  610         return allowed;
  611 }
  612 
  613 void user_shm_unlock(size_t size, struct user_struct *user)
  614 {
  615         spin_lock(&shmlock_user_lock);
  616         user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  617         spin_unlock(&shmlock_user_lock);
  618         free_uid(user);
  619 }

Cache object: 24d885148fe9b68055e1155b42c2e630


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.