The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/mmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * mm/mmap.c
    3  *
    4  * Written by obz.
    5  *
    6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
    7  */
    8 
    9 #include <linux/slab.h>
   10 #include <linux/backing-dev.h>
   11 #include <linux/mm.h>
   12 #include <linux/shm.h>
   13 #include <linux/mman.h>
   14 #include <linux/pagemap.h>
   15 #include <linux/swap.h>
   16 #include <linux/syscalls.h>
   17 #include <linux/capability.h>
   18 #include <linux/init.h>
   19 #include <linux/file.h>
   20 #include <linux/fs.h>
   21 #include <linux/personality.h>
   22 #include <linux/security.h>
   23 #include <linux/hugetlb.h>
   24 #include <linux/profile.h>
   25 #include <linux/export.h>
   26 #include <linux/mount.h>
   27 #include <linux/mempolicy.h>
   28 #include <linux/rmap.h>
   29 #include <linux/mmu_notifier.h>
   30 #include <linux/perf_event.h>
   31 #include <linux/audit.h>
   32 #include <linux/khugepaged.h>
   33 #include <linux/uprobes.h>
   34 #include <linux/rbtree_augmented.h>
   35 
   36 #include <asm/uaccess.h>
   37 #include <asm/cacheflush.h>
   38 #include <asm/tlb.h>
   39 #include <asm/mmu_context.h>
   40 
   41 #include "internal.h"
   42 
   43 #ifndef arch_mmap_check
   44 #define arch_mmap_check(addr, len, flags)       (0)
   45 #endif
   46 
   47 #ifndef arch_rebalance_pgtables
   48 #define arch_rebalance_pgtables(addr, len)              (addr)
   49 #endif
   50 
   51 static void unmap_region(struct mm_struct *mm,
   52                 struct vm_area_struct *vma, struct vm_area_struct *prev,
   53                 unsigned long start, unsigned long end);
   54 
   55 /* description of effects of mapping type and prot in current implementation.
   56  * this is due to the limited x86 page protection hardware.  The expected
   57  * behavior is in parens:
   58  *
   59  * map_type     prot
   60  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
   61  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
   62  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
   63  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
   64  *              
   65  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
   66  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
   67  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
   68  *
   69  */
   70 pgprot_t protection_map[16] = {
   71         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
   72         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
   73 };
   74 
   75 pgprot_t vm_get_page_prot(unsigned long vm_flags)
   76 {
   77         return __pgprot(pgprot_val(protection_map[vm_flags &
   78                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
   79                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
   80 }
   81 EXPORT_SYMBOL(vm_get_page_prot);
   82 
   83 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
   84 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
   85 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
   86 /*
   87  * Make sure vm_committed_as in one cacheline and not cacheline shared with
   88  * other variables. It can be updated by several CPUs frequently.
   89  */
   90 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
   91 
   92 /*
   93  * The global memory commitment made in the system can be a metric
   94  * that can be used to drive ballooning decisions when Linux is hosted
   95  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
   96  * balancing memory across competing virtual machines that are hosted.
   97  * Several metrics drive this policy engine including the guest reported
   98  * memory commitment.
   99  */
  100 unsigned long vm_memory_committed(void)
  101 {
  102         return percpu_counter_read_positive(&vm_committed_as);
  103 }
  104 EXPORT_SYMBOL_GPL(vm_memory_committed);
  105 
  106 /*
  107  * Check that a process has enough memory to allocate a new virtual
  108  * mapping. 0 means there is enough memory for the allocation to
  109  * succeed and -ENOMEM implies there is not.
  110  *
  111  * We currently support three overcommit policies, which are set via the
  112  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
  113  *
  114  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
  115  * Additional code 2002 Jul 20 by Robert Love.
  116  *
  117  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
  118  *
  119  * Note this is a helper function intended to be used by LSMs which
  120  * wish to use this logic.
  121  */
  122 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
  123 {
  124         unsigned long free, allowed;
  125 
  126         vm_acct_memory(pages);
  127 
  128         /*
  129          * Sometimes we want to use more memory than we have
  130          */
  131         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
  132                 return 0;
  133 
  134         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
  135                 free = global_page_state(NR_FREE_PAGES);
  136                 free += global_page_state(NR_FILE_PAGES);
  137 
  138                 /*
  139                  * shmem pages shouldn't be counted as free in this
  140                  * case, they can't be purged, only swapped out, and
  141                  * that won't affect the overall amount of available
  142                  * memory in the system.
  143                  */
  144                 free -= global_page_state(NR_SHMEM);
  145 
  146                 free += nr_swap_pages;
  147 
  148                 /*
  149                  * Any slabs which are created with the
  150                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
  151                  * which are reclaimable, under pressure.  The dentry
  152                  * cache and most inode caches should fall into this
  153                  */
  154                 free += global_page_state(NR_SLAB_RECLAIMABLE);
  155 
  156                 /*
  157                  * Leave reserved pages. The pages are not for anonymous pages.
  158                  */
  159                 if (free <= totalreserve_pages)
  160                         goto error;
  161                 else
  162                         free -= totalreserve_pages;
  163 
  164                 /*
  165                  * Leave the last 3% for root
  166                  */
  167                 if (!cap_sys_admin)
  168                         free -= free / 32;
  169 
  170                 if (free > pages)
  171                         return 0;
  172 
  173                 goto error;
  174         }
  175 
  176         allowed = (totalram_pages - hugetlb_total_pages())
  177                 * sysctl_overcommit_ratio / 100;
  178         /*
  179          * Leave the last 3% for root
  180          */
  181         if (!cap_sys_admin)
  182                 allowed -= allowed / 32;
  183         allowed += total_swap_pages;
  184 
  185         /* Don't let a single process grow too big:
  186            leave 3% of the size of this process for other processes */
  187         if (mm)
  188                 allowed -= mm->total_vm / 32;
  189 
  190         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
  191                 return 0;
  192 error:
  193         vm_unacct_memory(pages);
  194 
  195         return -ENOMEM;
  196 }
  197 
  198 /*
  199  * Requires inode->i_mapping->i_mmap_mutex
  200  */
  201 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
  202                 struct file *file, struct address_space *mapping)
  203 {
  204         if (vma->vm_flags & VM_DENYWRITE)
  205                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
  206         if (vma->vm_flags & VM_SHARED)
  207                 mapping->i_mmap_writable--;
  208 
  209         flush_dcache_mmap_lock(mapping);
  210         if (unlikely(vma->vm_flags & VM_NONLINEAR))
  211                 list_del_init(&vma->shared.nonlinear);
  212         else
  213                 vma_interval_tree_remove(vma, &mapping->i_mmap);
  214         flush_dcache_mmap_unlock(mapping);
  215 }
  216 
  217 /*
  218  * Unlink a file-based vm structure from its interval tree, to hide
  219  * vma from rmap and vmtruncate before freeing its page tables.
  220  */
  221 void unlink_file_vma(struct vm_area_struct *vma)
  222 {
  223         struct file *file = vma->vm_file;
  224 
  225         if (file) {
  226                 struct address_space *mapping = file->f_mapping;
  227                 mutex_lock(&mapping->i_mmap_mutex);
  228                 __remove_shared_vm_struct(vma, file, mapping);
  229                 mutex_unlock(&mapping->i_mmap_mutex);
  230         }
  231 }
  232 
  233 /*
  234  * Close a vm structure and free it, returning the next.
  235  */
  236 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
  237 {
  238         struct vm_area_struct *next = vma->vm_next;
  239 
  240         might_sleep();
  241         if (vma->vm_ops && vma->vm_ops->close)
  242                 vma->vm_ops->close(vma);
  243         if (vma->vm_file)
  244                 fput(vma->vm_file);
  245         mpol_put(vma_policy(vma));
  246         kmem_cache_free(vm_area_cachep, vma);
  247         return next;
  248 }
  249 
  250 static unsigned long do_brk(unsigned long addr, unsigned long len);
  251 
  252 SYSCALL_DEFINE1(brk, unsigned long, brk)
  253 {
  254         unsigned long rlim, retval;
  255         unsigned long newbrk, oldbrk;
  256         struct mm_struct *mm = current->mm;
  257         unsigned long min_brk;
  258 
  259         down_write(&mm->mmap_sem);
  260 
  261 #ifdef CONFIG_COMPAT_BRK
  262         /*
  263          * CONFIG_COMPAT_BRK can still be overridden by setting
  264          * randomize_va_space to 2, which will still cause mm->start_brk
  265          * to be arbitrarily shifted
  266          */
  267         if (current->brk_randomized)
  268                 min_brk = mm->start_brk;
  269         else
  270                 min_brk = mm->end_data;
  271 #else
  272         min_brk = mm->start_brk;
  273 #endif
  274         if (brk < min_brk)
  275                 goto out;
  276 
  277         /*
  278          * Check against rlimit here. If this check is done later after the test
  279          * of oldbrk with newbrk then it can escape the test and let the data
  280          * segment grow beyond its set limit the in case where the limit is
  281          * not page aligned -Ram Gupta
  282          */
  283         rlim = rlimit(RLIMIT_DATA);
  284         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
  285                         (mm->end_data - mm->start_data) > rlim)
  286                 goto out;
  287 
  288         newbrk = PAGE_ALIGN(brk);
  289         oldbrk = PAGE_ALIGN(mm->brk);
  290         if (oldbrk == newbrk)
  291                 goto set_brk;
  292 
  293         /* Always allow shrinking brk. */
  294         if (brk <= mm->brk) {
  295                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
  296                         goto set_brk;
  297                 goto out;
  298         }
  299 
  300         /* Check against existing mmap mappings. */
  301         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
  302                 goto out;
  303 
  304         /* Ok, looks good - let it rip. */
  305         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
  306                 goto out;
  307 set_brk:
  308         mm->brk = brk;
  309 out:
  310         retval = mm->brk;
  311         up_write(&mm->mmap_sem);
  312         return retval;
  313 }
  314 
  315 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
  316 {
  317         unsigned long max, subtree_gap;
  318         max = vma->vm_start;
  319         if (vma->vm_prev)
  320                 max -= vma->vm_prev->vm_end;
  321         if (vma->vm_rb.rb_left) {
  322                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
  323                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
  324                 if (subtree_gap > max)
  325                         max = subtree_gap;
  326         }
  327         if (vma->vm_rb.rb_right) {
  328                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
  329                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
  330                 if (subtree_gap > max)
  331                         max = subtree_gap;
  332         }
  333         return max;
  334 }
  335 
  336 #ifdef CONFIG_DEBUG_VM_RB
  337 static int browse_rb(struct rb_root *root)
  338 {
  339         int i = 0, j, bug = 0;
  340         struct rb_node *nd, *pn = NULL;
  341         unsigned long prev = 0, pend = 0;
  342 
  343         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
  344                 struct vm_area_struct *vma;
  345                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
  346                 if (vma->vm_start < prev) {
  347                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
  348                         bug = 1;
  349                 }
  350                 if (vma->vm_start < pend) {
  351                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
  352                         bug = 1;
  353                 }
  354                 if (vma->vm_start > vma->vm_end) {
  355                         printk("vm_end %lx < vm_start %lx\n",
  356                                 vma->vm_end, vma->vm_start);
  357                         bug = 1;
  358                 }
  359                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
  360                         printk("free gap %lx, correct %lx\n",
  361                                vma->rb_subtree_gap,
  362                                vma_compute_subtree_gap(vma));
  363                         bug = 1;
  364                 }
  365                 i++;
  366                 pn = nd;
  367                 prev = vma->vm_start;
  368                 pend = vma->vm_end;
  369         }
  370         j = 0;
  371         for (nd = pn; nd; nd = rb_prev(nd))
  372                 j++;
  373         if (i != j) {
  374                 printk("backwards %d, forwards %d\n", j, i);
  375                 bug = 1;
  376         }
  377         return bug ? -1 : i;
  378 }
  379 
  380 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
  381 {
  382         struct rb_node *nd;
  383 
  384         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
  385                 struct vm_area_struct *vma;
  386                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
  387                 BUG_ON(vma != ignore &&
  388                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
  389         }
  390 }
  391 
  392 void validate_mm(struct mm_struct *mm)
  393 {
  394         int bug = 0;
  395         int i = 0;
  396         unsigned long highest_address = 0;
  397         struct vm_area_struct *vma = mm->mmap;
  398         while (vma) {
  399                 struct anon_vma_chain *avc;
  400                 vma_lock_anon_vma(vma);
  401                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
  402                         anon_vma_interval_tree_verify(avc);
  403                 vma_unlock_anon_vma(vma);
  404                 highest_address = vma->vm_end;
  405                 vma = vma->vm_next;
  406                 i++;
  407         }
  408         if (i != mm->map_count) {
  409                 printk("map_count %d vm_next %d\n", mm->map_count, i);
  410                 bug = 1;
  411         }
  412         if (highest_address != mm->highest_vm_end) {
  413                 printk("mm->highest_vm_end %lx, found %lx\n",
  414                        mm->highest_vm_end, highest_address);
  415                 bug = 1;
  416         }
  417         i = browse_rb(&mm->mm_rb);
  418         if (i != mm->map_count) {
  419                 printk("map_count %d rb %d\n", mm->map_count, i);
  420                 bug = 1;
  421         }
  422         BUG_ON(bug);
  423 }
  424 #else
  425 #define validate_mm_rb(root, ignore) do { } while (0)
  426 #define validate_mm(mm) do { } while (0)
  427 #endif
  428 
  429 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
  430                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
  431 
  432 /*
  433  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
  434  * vma->vm_prev->vm_end values changed, without modifying the vma's position
  435  * in the rbtree.
  436  */
  437 static void vma_gap_update(struct vm_area_struct *vma)
  438 {
  439         /*
  440          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
  441          * function that does exacltly what we want.
  442          */
  443         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
  444 }
  445 
  446 static inline void vma_rb_insert(struct vm_area_struct *vma,
  447                                  struct rb_root *root)
  448 {
  449         /* All rb_subtree_gap values must be consistent prior to insertion */
  450         validate_mm_rb(root, NULL);
  451 
  452         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
  453 }
  454 
  455 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
  456 {
  457         /*
  458          * All rb_subtree_gap values must be consistent prior to erase,
  459          * with the possible exception of the vma being erased.
  460          */
  461         validate_mm_rb(root, vma);
  462 
  463         /*
  464          * Note rb_erase_augmented is a fairly large inline function,
  465          * so make sure we instantiate it only once with our desired
  466          * augmented rbtree callbacks.
  467          */
  468         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
  469 }
  470 
  471 /*
  472  * vma has some anon_vma assigned, and is already inserted on that
  473  * anon_vma's interval trees.
  474  *
  475  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
  476  * vma must be removed from the anon_vma's interval trees using
  477  * anon_vma_interval_tree_pre_update_vma().
  478  *
  479  * After the update, the vma will be reinserted using
  480  * anon_vma_interval_tree_post_update_vma().
  481  *
  482  * The entire update must be protected by exclusive mmap_sem and by
  483  * the root anon_vma's mutex.
  484  */
  485 static inline void
  486 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
  487 {
  488         struct anon_vma_chain *avc;
  489 
  490         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
  491                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
  492 }
  493 
  494 static inline void
  495 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
  496 {
  497         struct anon_vma_chain *avc;
  498 
  499         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
  500                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
  501 }
  502 
  503 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
  504                 unsigned long end, struct vm_area_struct **pprev,
  505                 struct rb_node ***rb_link, struct rb_node **rb_parent)
  506 {
  507         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
  508 
  509         __rb_link = &mm->mm_rb.rb_node;
  510         rb_prev = __rb_parent = NULL;
  511 
  512         while (*__rb_link) {
  513                 struct vm_area_struct *vma_tmp;
  514 
  515                 __rb_parent = *__rb_link;
  516                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
  517 
  518                 if (vma_tmp->vm_end > addr) {
  519                         /* Fail if an existing vma overlaps the area */
  520                         if (vma_tmp->vm_start < end)
  521                                 return -ENOMEM;
  522                         __rb_link = &__rb_parent->rb_left;
  523                 } else {
  524                         rb_prev = __rb_parent;
  525                         __rb_link = &__rb_parent->rb_right;
  526                 }
  527         }
  528 
  529         *pprev = NULL;
  530         if (rb_prev)
  531                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
  532         *rb_link = __rb_link;
  533         *rb_parent = __rb_parent;
  534         return 0;
  535 }
  536 
  537 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
  538                 struct rb_node **rb_link, struct rb_node *rb_parent)
  539 {
  540         /* Update tracking information for the gap following the new vma. */
  541         if (vma->vm_next)
  542                 vma_gap_update(vma->vm_next);
  543         else
  544                 mm->highest_vm_end = vma->vm_end;
  545 
  546         /*
  547          * vma->vm_prev wasn't known when we followed the rbtree to find the
  548          * correct insertion point for that vma. As a result, we could not
  549          * update the vma vm_rb parents rb_subtree_gap values on the way down.
  550          * So, we first insert the vma with a zero rb_subtree_gap value
  551          * (to be consistent with what we did on the way down), and then
  552          * immediately update the gap to the correct value. Finally we
  553          * rebalance the rbtree after all augmented values have been set.
  554          */
  555         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
  556         vma->rb_subtree_gap = 0;
  557         vma_gap_update(vma);
  558         vma_rb_insert(vma, &mm->mm_rb);
  559 }
  560 
  561 static void __vma_link_file(struct vm_area_struct *vma)
  562 {
  563         struct file *file;
  564 
  565         file = vma->vm_file;
  566         if (file) {
  567                 struct address_space *mapping = file->f_mapping;
  568 
  569                 if (vma->vm_flags & VM_DENYWRITE)
  570                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
  571                 if (vma->vm_flags & VM_SHARED)
  572                         mapping->i_mmap_writable++;
  573 
  574                 flush_dcache_mmap_lock(mapping);
  575                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
  576                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
  577                 else
  578                         vma_interval_tree_insert(vma, &mapping->i_mmap);
  579                 flush_dcache_mmap_unlock(mapping);
  580         }
  581 }
  582 
  583 static void
  584 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
  585         struct vm_area_struct *prev, struct rb_node **rb_link,
  586         struct rb_node *rb_parent)
  587 {
  588         __vma_link_list(mm, vma, prev, rb_parent);
  589         __vma_link_rb(mm, vma, rb_link, rb_parent);
  590 }
  591 
  592 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
  593                         struct vm_area_struct *prev, struct rb_node **rb_link,
  594                         struct rb_node *rb_parent)
  595 {
  596         struct address_space *mapping = NULL;
  597 
  598         if (vma->vm_file)
  599                 mapping = vma->vm_file->f_mapping;
  600 
  601         if (mapping)
  602                 mutex_lock(&mapping->i_mmap_mutex);
  603 
  604         __vma_link(mm, vma, prev, rb_link, rb_parent);
  605         __vma_link_file(vma);
  606 
  607         if (mapping)
  608                 mutex_unlock(&mapping->i_mmap_mutex);
  609 
  610         mm->map_count++;
  611         validate_mm(mm);
  612 }
  613 
  614 /*
  615  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
  616  * mm's list and rbtree.  It has already been inserted into the interval tree.
  617  */
  618 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
  619 {
  620         struct vm_area_struct *prev;
  621         struct rb_node **rb_link, *rb_parent;
  622 
  623         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
  624                            &prev, &rb_link, &rb_parent))
  625                 BUG();
  626         __vma_link(mm, vma, prev, rb_link, rb_parent);
  627         mm->map_count++;
  628 }
  629 
  630 static inline void
  631 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
  632                 struct vm_area_struct *prev)
  633 {
  634         struct vm_area_struct *next;
  635 
  636         vma_rb_erase(vma, &mm->mm_rb);
  637         prev->vm_next = next = vma->vm_next;
  638         if (next)
  639                 next->vm_prev = prev;
  640         if (mm->mmap_cache == vma)
  641                 mm->mmap_cache = prev;
  642 }
  643 
  644 /*
  645  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
  646  * is already present in an i_mmap tree without adjusting the tree.
  647  * The following helper function should be used when such adjustments
  648  * are necessary.  The "insert" vma (if any) is to be inserted
  649  * before we drop the necessary locks.
  650  */
  651 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  652         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
  653 {
  654         struct mm_struct *mm = vma->vm_mm;
  655         struct vm_area_struct *next = vma->vm_next;
  656         struct vm_area_struct *importer = NULL;
  657         struct address_space *mapping = NULL;
  658         struct rb_root *root = NULL;
  659         struct anon_vma *anon_vma = NULL;
  660         struct file *file = vma->vm_file;
  661         bool start_changed = false, end_changed = false;
  662         long adjust_next = 0;
  663         int remove_next = 0;
  664 
  665         if (next && !insert) {
  666                 struct vm_area_struct *exporter = NULL;
  667 
  668                 if (end >= next->vm_end) {
  669                         /*
  670                          * vma expands, overlapping all the next, and
  671                          * perhaps the one after too (mprotect case 6).
  672                          */
  673 again:                  remove_next = 1 + (end > next->vm_end);
  674                         end = next->vm_end;
  675                         exporter = next;
  676                         importer = vma;
  677                 } else if (end > next->vm_start) {
  678                         /*
  679                          * vma expands, overlapping part of the next:
  680                          * mprotect case 5 shifting the boundary up.
  681                          */
  682                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
  683                         exporter = next;
  684                         importer = vma;
  685                 } else if (end < vma->vm_end) {
  686                         /*
  687                          * vma shrinks, and !insert tells it's not
  688                          * split_vma inserting another: so it must be
  689                          * mprotect case 4 shifting the boundary down.
  690                          */
  691                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
  692                         exporter = vma;
  693                         importer = next;
  694                 }
  695 
  696                 /*
  697                  * Easily overlooked: when mprotect shifts the boundary,
  698                  * make sure the expanding vma has anon_vma set if the
  699                  * shrinking vma had, to cover any anon pages imported.
  700                  */
  701                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
  702                         if (anon_vma_clone(importer, exporter))
  703                                 return -ENOMEM;
  704                         importer->anon_vma = exporter->anon_vma;
  705                 }
  706         }
  707 
  708         if (file) {
  709                 mapping = file->f_mapping;
  710                 if (!(vma->vm_flags & VM_NONLINEAR)) {
  711                         root = &mapping->i_mmap;
  712                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
  713 
  714                         if (adjust_next)
  715                                 uprobe_munmap(next, next->vm_start,
  716                                                         next->vm_end);
  717                 }
  718 
  719                 mutex_lock(&mapping->i_mmap_mutex);
  720                 if (insert) {
  721                         /*
  722                          * Put into interval tree now, so instantiated pages
  723                          * are visible to arm/parisc __flush_dcache_page
  724                          * throughout; but we cannot insert into address
  725                          * space until vma start or end is updated.
  726                          */
  727                         __vma_link_file(insert);
  728                 }
  729         }
  730 
  731         vma_adjust_trans_huge(vma, start, end, adjust_next);
  732 
  733         anon_vma = vma->anon_vma;
  734         if (!anon_vma && adjust_next)
  735                 anon_vma = next->anon_vma;
  736         if (anon_vma) {
  737                 VM_BUG_ON(adjust_next && next->anon_vma &&
  738                           anon_vma != next->anon_vma);
  739                 anon_vma_lock_write(anon_vma);
  740                 anon_vma_interval_tree_pre_update_vma(vma);
  741                 if (adjust_next)
  742                         anon_vma_interval_tree_pre_update_vma(next);
  743         }
  744 
  745         if (root) {
  746                 flush_dcache_mmap_lock(mapping);
  747                 vma_interval_tree_remove(vma, root);
  748                 if (adjust_next)
  749                         vma_interval_tree_remove(next, root);
  750         }
  751 
  752         if (start != vma->vm_start) {
  753                 vma->vm_start = start;
  754                 start_changed = true;
  755         }
  756         if (end != vma->vm_end) {
  757                 vma->vm_end = end;
  758                 end_changed = true;
  759         }
  760         vma->vm_pgoff = pgoff;
  761         if (adjust_next) {
  762                 next->vm_start += adjust_next << PAGE_SHIFT;
  763                 next->vm_pgoff += adjust_next;
  764         }
  765 
  766         if (root) {
  767                 if (adjust_next)
  768                         vma_interval_tree_insert(next, root);
  769                 vma_interval_tree_insert(vma, root);
  770                 flush_dcache_mmap_unlock(mapping);
  771         }
  772 
  773         if (remove_next) {
  774                 /*
  775                  * vma_merge has merged next into vma, and needs
  776                  * us to remove next before dropping the locks.
  777                  */
  778                 __vma_unlink(mm, next, vma);
  779                 if (file)
  780                         __remove_shared_vm_struct(next, file, mapping);
  781         } else if (insert) {
  782                 /*
  783                  * split_vma has split insert from vma, and needs
  784                  * us to insert it before dropping the locks
  785                  * (it may either follow vma or precede it).
  786                  */
  787                 __insert_vm_struct(mm, insert);
  788         } else {
  789                 if (start_changed)
  790                         vma_gap_update(vma);
  791                 if (end_changed) {
  792                         if (!next)
  793                                 mm->highest_vm_end = end;
  794                         else if (!adjust_next)
  795                                 vma_gap_update(next);
  796                 }
  797         }
  798 
  799         if (anon_vma) {
  800                 anon_vma_interval_tree_post_update_vma(vma);
  801                 if (adjust_next)
  802                         anon_vma_interval_tree_post_update_vma(next);
  803                 anon_vma_unlock(anon_vma);
  804         }
  805         if (mapping)
  806                 mutex_unlock(&mapping->i_mmap_mutex);
  807 
  808         if (root) {
  809                 uprobe_mmap(vma);
  810 
  811                 if (adjust_next)
  812                         uprobe_mmap(next);
  813         }
  814 
  815         if (remove_next) {
  816                 if (file) {
  817                         uprobe_munmap(next, next->vm_start, next->vm_end);
  818                         fput(file);
  819                 }
  820                 if (next->anon_vma)
  821                         anon_vma_merge(vma, next);
  822                 mm->map_count--;
  823                 mpol_put(vma_policy(next));
  824                 kmem_cache_free(vm_area_cachep, next);
  825                 /*
  826                  * In mprotect's case 6 (see comments on vma_merge),
  827                  * we must remove another next too. It would clutter
  828                  * up the code too much to do both in one go.
  829                  */
  830                 next = vma->vm_next;
  831                 if (remove_next == 2)
  832                         goto again;
  833                 else if (next)
  834                         vma_gap_update(next);
  835                 else
  836                         mm->highest_vm_end = end;
  837         }
  838         if (insert && file)
  839                 uprobe_mmap(insert);
  840 
  841         validate_mm(mm);
  842 
  843         return 0;
  844 }
  845 
  846 /*
  847  * If the vma has a ->close operation then the driver probably needs to release
  848  * per-vma resources, so we don't attempt to merge those.
  849  */
  850 static inline int is_mergeable_vma(struct vm_area_struct *vma,
  851                         struct file *file, unsigned long vm_flags)
  852 {
  853         if (vma->vm_flags ^ vm_flags)
  854                 return 0;
  855         if (vma->vm_file != file)
  856                 return 0;
  857         if (vma->vm_ops && vma->vm_ops->close)
  858                 return 0;
  859         return 1;
  860 }
  861 
  862 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
  863                                         struct anon_vma *anon_vma2,
  864                                         struct vm_area_struct *vma)
  865 {
  866         /*
  867          * The list_is_singular() test is to avoid merging VMA cloned from
  868          * parents. This can improve scalability caused by anon_vma lock.
  869          */
  870         if ((!anon_vma1 || !anon_vma2) && (!vma ||
  871                 list_is_singular(&vma->anon_vma_chain)))
  872                 return 1;
  873         return anon_vma1 == anon_vma2;
  874 }
  875 
  876 /*
  877  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
  878  * in front of (at a lower virtual address and file offset than) the vma.
  879  *
  880  * We cannot merge two vmas if they have differently assigned (non-NULL)
  881  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
  882  *
  883  * We don't check here for the merged mmap wrapping around the end of pagecache
  884  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
  885  * wrap, nor mmaps which cover the final page at index -1UL.
  886  */
  887 static int
  888 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
  889         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
  890 {
  891         if (is_mergeable_vma(vma, file, vm_flags) &&
  892             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
  893                 if (vma->vm_pgoff == vm_pgoff)
  894                         return 1;
  895         }
  896         return 0;
  897 }
  898 
  899 /*
  900  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
  901  * beyond (at a higher virtual address and file offset than) the vma.
  902  *
  903  * We cannot merge two vmas if they have differently assigned (non-NULL)
  904  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
  905  */
  906 static int
  907 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
  908         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
  909 {
  910         if (is_mergeable_vma(vma, file, vm_flags) &&
  911             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
  912                 pgoff_t vm_pglen;
  913                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  914                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
  915                         return 1;
  916         }
  917         return 0;
  918 }
  919 
  920 /*
  921  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
  922  * whether that can be merged with its predecessor or its successor.
  923  * Or both (it neatly fills a hole).
  924  *
  925  * In most cases - when called for mmap, brk or mremap - [addr,end) is
  926  * certain not to be mapped by the time vma_merge is called; but when
  927  * called for mprotect, it is certain to be already mapped (either at
  928  * an offset within prev, or at the start of next), and the flags of
  929  * this area are about to be changed to vm_flags - and the no-change
  930  * case has already been eliminated.
  931  *
  932  * The following mprotect cases have to be considered, where AAAA is
  933  * the area passed down from mprotect_fixup, never extending beyond one
  934  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
  935  *
  936  *     AAAA             AAAA                AAAA          AAAA
  937  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
  938  *    cannot merge    might become    might become    might become
  939  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
  940  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
  941  *    mremap move:                                    PPPPNNNNNNNN 8
  942  *        AAAA
  943  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
  944  *    might become    case 1 below    case 2 below    case 3 below
  945  *
  946  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
  947  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
  948  */
  949 struct vm_area_struct *vma_merge(struct mm_struct *mm,
  950                         struct vm_area_struct *prev, unsigned long addr,
  951                         unsigned long end, unsigned long vm_flags,
  952                         struct anon_vma *anon_vma, struct file *file,
  953                         pgoff_t pgoff, struct mempolicy *policy)
  954 {
  955         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
  956         struct vm_area_struct *area, *next;
  957         int err;
  958 
  959         /*
  960          * We later require that vma->vm_flags == vm_flags,
  961          * so this tests vma->vm_flags & VM_SPECIAL, too.
  962          */
  963         if (vm_flags & VM_SPECIAL)
  964                 return NULL;
  965 
  966         if (prev)
  967                 next = prev->vm_next;
  968         else
  969                 next = mm->mmap;
  970         area = next;
  971         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
  972                 next = next->vm_next;
  973 
  974         /*
  975          * Can it merge with the predecessor?
  976          */
  977         if (prev && prev->vm_end == addr &&
  978                         mpol_equal(vma_policy(prev), policy) &&
  979                         can_vma_merge_after(prev, vm_flags,
  980                                                 anon_vma, file, pgoff)) {
  981                 /*
  982                  * OK, it can.  Can we now merge in the successor as well?
  983                  */
  984                 if (next && end == next->vm_start &&
  985                                 mpol_equal(policy, vma_policy(next)) &&
  986                                 can_vma_merge_before(next, vm_flags,
  987                                         anon_vma, file, pgoff+pglen) &&
  988                                 is_mergeable_anon_vma(prev->anon_vma,
  989                                                       next->anon_vma, NULL)) {
  990                                                         /* cases 1, 6 */
  991                         err = vma_adjust(prev, prev->vm_start,
  992                                 next->vm_end, prev->vm_pgoff, NULL);
  993                 } else                                  /* cases 2, 5, 7 */
  994                         err = vma_adjust(prev, prev->vm_start,
  995                                 end, prev->vm_pgoff, NULL);
  996                 if (err)
  997                         return NULL;
  998                 khugepaged_enter_vma_merge(prev);
  999                 return prev;
 1000         }
 1001 
 1002         /*
 1003          * Can this new request be merged in front of next?
 1004          */
 1005         if (next && end == next->vm_start &&
 1006                         mpol_equal(policy, vma_policy(next)) &&
 1007                         can_vma_merge_before(next, vm_flags,
 1008                                         anon_vma, file, pgoff+pglen)) {
 1009                 if (prev && addr < prev->vm_end)        /* case 4 */
 1010                         err = vma_adjust(prev, prev->vm_start,
 1011                                 addr, prev->vm_pgoff, NULL);
 1012                 else                                    /* cases 3, 8 */
 1013                         err = vma_adjust(area, addr, next->vm_end,
 1014                                 next->vm_pgoff - pglen, NULL);
 1015                 if (err)
 1016                         return NULL;
 1017                 khugepaged_enter_vma_merge(area);
 1018                 return area;
 1019         }
 1020 
 1021         return NULL;
 1022 }
 1023 
 1024 /*
 1025  * Rough compatbility check to quickly see if it's even worth looking
 1026  * at sharing an anon_vma.
 1027  *
 1028  * They need to have the same vm_file, and the flags can only differ
 1029  * in things that mprotect may change.
 1030  *
 1031  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
 1032  * we can merge the two vma's. For example, we refuse to merge a vma if
 1033  * there is a vm_ops->close() function, because that indicates that the
 1034  * driver is doing some kind of reference counting. But that doesn't
 1035  * really matter for the anon_vma sharing case.
 1036  */
 1037 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
 1038 {
 1039         return a->vm_end == b->vm_start &&
 1040                 mpol_equal(vma_policy(a), vma_policy(b)) &&
 1041                 a->vm_file == b->vm_file &&
 1042                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
 1043                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
 1044 }
 1045 
 1046 /*
 1047  * Do some basic sanity checking to see if we can re-use the anon_vma
 1048  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
 1049  * the same as 'old', the other will be the new one that is trying
 1050  * to share the anon_vma.
 1051  *
 1052  * NOTE! This runs with mm_sem held for reading, so it is possible that
 1053  * the anon_vma of 'old' is concurrently in the process of being set up
 1054  * by another page fault trying to merge _that_. But that's ok: if it
 1055  * is being set up, that automatically means that it will be a singleton
 1056  * acceptable for merging, so we can do all of this optimistically. But
 1057  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
 1058  *
 1059  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
 1060  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
 1061  * is to return an anon_vma that is "complex" due to having gone through
 1062  * a fork).
 1063  *
 1064  * We also make sure that the two vma's are compatible (adjacent,
 1065  * and with the same memory policies). That's all stable, even with just
 1066  * a read lock on the mm_sem.
 1067  */
 1068 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
 1069 {
 1070         if (anon_vma_compatible(a, b)) {
 1071                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
 1072 
 1073                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
 1074                         return anon_vma;
 1075         }
 1076         return NULL;
 1077 }
 1078 
 1079 /*
 1080  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
 1081  * neighbouring vmas for a suitable anon_vma, before it goes off
 1082  * to allocate a new anon_vma.  It checks because a repetitive
 1083  * sequence of mprotects and faults may otherwise lead to distinct
 1084  * anon_vmas being allocated, preventing vma merge in subsequent
 1085  * mprotect.
 1086  */
 1087 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
 1088 {
 1089         struct anon_vma *anon_vma;
 1090         struct vm_area_struct *near;
 1091 
 1092         near = vma->vm_next;
 1093         if (!near)
 1094                 goto try_prev;
 1095 
 1096         anon_vma = reusable_anon_vma(near, vma, near);
 1097         if (anon_vma)
 1098                 return anon_vma;
 1099 try_prev:
 1100         near = vma->vm_prev;
 1101         if (!near)
 1102                 goto none;
 1103 
 1104         anon_vma = reusable_anon_vma(near, near, vma);
 1105         if (anon_vma)
 1106                 return anon_vma;
 1107 none:
 1108         /*
 1109          * There's no absolute need to look only at touching neighbours:
 1110          * we could search further afield for "compatible" anon_vmas.
 1111          * But it would probably just be a waste of time searching,
 1112          * or lead to too many vmas hanging off the same anon_vma.
 1113          * We're trying to allow mprotect remerging later on,
 1114          * not trying to minimize memory used for anon_vmas.
 1115          */
 1116         return NULL;
 1117 }
 1118 
 1119 #ifdef CONFIG_PROC_FS
 1120 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
 1121                                                 struct file *file, long pages)
 1122 {
 1123         const unsigned long stack_flags
 1124                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
 1125 
 1126         mm->total_vm += pages;
 1127 
 1128         if (file) {
 1129                 mm->shared_vm += pages;
 1130                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
 1131                         mm->exec_vm += pages;
 1132         } else if (flags & stack_flags)
 1133                 mm->stack_vm += pages;
 1134 }
 1135 #endif /* CONFIG_PROC_FS */
 1136 
 1137 /*
 1138  * If a hint addr is less than mmap_min_addr change hint to be as
 1139  * low as possible but still greater than mmap_min_addr
 1140  */
 1141 static inline unsigned long round_hint_to_min(unsigned long hint)
 1142 {
 1143         hint &= PAGE_MASK;
 1144         if (((void *)hint != NULL) &&
 1145             (hint < mmap_min_addr))
 1146                 return PAGE_ALIGN(mmap_min_addr);
 1147         return hint;
 1148 }
 1149 
 1150 /*
 1151  * The caller must hold down_write(&current->mm->mmap_sem).
 1152  */
 1153 
 1154 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
 1155                         unsigned long len, unsigned long prot,
 1156                         unsigned long flags, unsigned long pgoff)
 1157 {
 1158         struct mm_struct * mm = current->mm;
 1159         struct inode *inode;
 1160         vm_flags_t vm_flags;
 1161 
 1162         /*
 1163          * Does the application expect PROT_READ to imply PROT_EXEC?
 1164          *
 1165          * (the exception is when the underlying filesystem is noexec
 1166          *  mounted, in which case we dont add PROT_EXEC.)
 1167          */
 1168         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
 1169                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
 1170                         prot |= PROT_EXEC;
 1171 
 1172         if (!len)
 1173                 return -EINVAL;
 1174 
 1175         if (!(flags & MAP_FIXED))
 1176                 addr = round_hint_to_min(addr);
 1177 
 1178         /* Careful about overflows.. */
 1179         len = PAGE_ALIGN(len);
 1180         if (!len)
 1181                 return -ENOMEM;
 1182 
 1183         /* offset overflow? */
 1184         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
 1185                return -EOVERFLOW;
 1186 
 1187         /* Too many mappings? */
 1188         if (mm->map_count > sysctl_max_map_count)
 1189                 return -ENOMEM;
 1190 
 1191         /* Obtain the address to map to. we verify (or select) it and ensure
 1192          * that it represents a valid section of the address space.
 1193          */
 1194         addr = get_unmapped_area(file, addr, len, pgoff, flags);
 1195         if (addr & ~PAGE_MASK)
 1196                 return addr;
 1197 
 1198         /* Do simple checking here so the lower-level routines won't have
 1199          * to. we assume access permissions have been handled by the open
 1200          * of the memory object, so we don't do any here.
 1201          */
 1202         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
 1203                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
 1204 
 1205         if (flags & MAP_LOCKED)
 1206                 if (!can_do_mlock())
 1207                         return -EPERM;
 1208 
 1209         /* mlock MCL_FUTURE? */
 1210         if (vm_flags & VM_LOCKED) {
 1211                 unsigned long locked, lock_limit;
 1212                 locked = len >> PAGE_SHIFT;
 1213                 locked += mm->locked_vm;
 1214                 lock_limit = rlimit(RLIMIT_MEMLOCK);
 1215                 lock_limit >>= PAGE_SHIFT;
 1216                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
 1217                         return -EAGAIN;
 1218         }
 1219 
 1220         inode = file ? file->f_path.dentry->d_inode : NULL;
 1221 
 1222         if (file) {
 1223                 switch (flags & MAP_TYPE) {
 1224                 case MAP_SHARED:
 1225                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
 1226                                 return -EACCES;
 1227 
 1228                         /*
 1229                          * Make sure we don't allow writing to an append-only
 1230                          * file..
 1231                          */
 1232                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
 1233                                 return -EACCES;
 1234 
 1235                         /*
 1236                          * Make sure there are no mandatory locks on the file.
 1237                          */
 1238                         if (locks_verify_locked(inode))
 1239                                 return -EAGAIN;
 1240 
 1241                         vm_flags |= VM_SHARED | VM_MAYSHARE;
 1242                         if (!(file->f_mode & FMODE_WRITE))
 1243                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
 1244 
 1245                         /* fall through */
 1246                 case MAP_PRIVATE:
 1247                         if (!(file->f_mode & FMODE_READ))
 1248                                 return -EACCES;
 1249                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
 1250                                 if (vm_flags & VM_EXEC)
 1251                                         return -EPERM;
 1252                                 vm_flags &= ~VM_MAYEXEC;
 1253                         }
 1254 
 1255                         if (!file->f_op || !file->f_op->mmap)
 1256                                 return -ENODEV;
 1257                         break;
 1258 
 1259                 default:
 1260                         return -EINVAL;
 1261                 }
 1262         } else {
 1263                 switch (flags & MAP_TYPE) {
 1264                 case MAP_SHARED:
 1265                         /*
 1266                          * Ignore pgoff.
 1267                          */
 1268                         pgoff = 0;
 1269                         vm_flags |= VM_SHARED | VM_MAYSHARE;
 1270                         break;
 1271                 case MAP_PRIVATE:
 1272                         /*
 1273                          * Set pgoff according to addr for anon_vma.
 1274                          */
 1275                         pgoff = addr >> PAGE_SHIFT;
 1276                         break;
 1277                 default:
 1278                         return -EINVAL;
 1279                 }
 1280         }
 1281 
 1282         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
 1283 }
 1284 
 1285 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
 1286                 unsigned long, prot, unsigned long, flags,
 1287                 unsigned long, fd, unsigned long, pgoff)
 1288 {
 1289         struct file *file = NULL;
 1290         unsigned long retval = -EBADF;
 1291 
 1292         if (!(flags & MAP_ANONYMOUS)) {
 1293                 audit_mmap_fd(fd, flags);
 1294                 if (unlikely(flags & MAP_HUGETLB))
 1295                         return -EINVAL;
 1296                 file = fget(fd);
 1297                 if (!file)
 1298                         goto out;
 1299         } else if (flags & MAP_HUGETLB) {
 1300                 struct user_struct *user = NULL;
 1301                 /*
 1302                  * VM_NORESERVE is used because the reservations will be
 1303                  * taken when vm_ops->mmap() is called
 1304                  * A dummy user value is used because we are not locking
 1305                  * memory so no accounting is necessary
 1306                  */
 1307                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
 1308                                 VM_NORESERVE,
 1309                                 &user, HUGETLB_ANONHUGE_INODE,
 1310                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
 1311                 if (IS_ERR(file))
 1312                         return PTR_ERR(file);
 1313         }
 1314 
 1315         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
 1316 
 1317         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
 1318         if (file)
 1319                 fput(file);
 1320 out:
 1321         return retval;
 1322 }
 1323 
 1324 #ifdef __ARCH_WANT_SYS_OLD_MMAP
 1325 struct mmap_arg_struct {
 1326         unsigned long addr;
 1327         unsigned long len;
 1328         unsigned long prot;
 1329         unsigned long flags;
 1330         unsigned long fd;
 1331         unsigned long offset;
 1332 };
 1333 
 1334 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
 1335 {
 1336         struct mmap_arg_struct a;
 1337 
 1338         if (copy_from_user(&a, arg, sizeof(a)))
 1339                 return -EFAULT;
 1340         if (a.offset & ~PAGE_MASK)
 1341                 return -EINVAL;
 1342 
 1343         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
 1344                               a.offset >> PAGE_SHIFT);
 1345 }
 1346 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
 1347 
 1348 /*
 1349  * Some shared mappigns will want the pages marked read-only
 1350  * to track write events. If so, we'll downgrade vm_page_prot
 1351  * to the private version (using protection_map[] without the
 1352  * VM_SHARED bit).
 1353  */
 1354 int vma_wants_writenotify(struct vm_area_struct *vma)
 1355 {
 1356         vm_flags_t vm_flags = vma->vm_flags;
 1357 
 1358         /* If it was private or non-writable, the write bit is already clear */
 1359         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
 1360                 return 0;
 1361 
 1362         /* The backer wishes to know when pages are first written to? */
 1363         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
 1364                 return 1;
 1365 
 1366         /* The open routine did something to the protections already? */
 1367         if (pgprot_val(vma->vm_page_prot) !=
 1368             pgprot_val(vm_get_page_prot(vm_flags)))
 1369                 return 0;
 1370 
 1371         /* Specialty mapping? */
 1372         if (vm_flags & VM_PFNMAP)
 1373                 return 0;
 1374 
 1375         /* Can the mapping track the dirty pages? */
 1376         return vma->vm_file && vma->vm_file->f_mapping &&
 1377                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
 1378 }
 1379 
 1380 /*
 1381  * We account for memory if it's a private writeable mapping,
 1382  * not hugepages and VM_NORESERVE wasn't set.
 1383  */
 1384 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
 1385 {
 1386         /*
 1387          * hugetlb has its own accounting separate from the core VM
 1388          * VM_HUGETLB may not be set yet so we cannot check for that flag.
 1389          */
 1390         if (file && is_file_hugepages(file))
 1391                 return 0;
 1392 
 1393         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
 1394 }
 1395 
 1396 unsigned long mmap_region(struct file *file, unsigned long addr,
 1397                           unsigned long len, unsigned long flags,
 1398                           vm_flags_t vm_flags, unsigned long pgoff)
 1399 {
 1400         struct mm_struct *mm = current->mm;
 1401         struct vm_area_struct *vma, *prev;
 1402         int correct_wcount = 0;
 1403         int error;
 1404         struct rb_node **rb_link, *rb_parent;
 1405         unsigned long charged = 0;
 1406         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
 1407 
 1408         /* Clear old maps */
 1409         error = -ENOMEM;
 1410 munmap_back:
 1411         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
 1412                 if (do_munmap(mm, addr, len))
 1413                         return -ENOMEM;
 1414                 goto munmap_back;
 1415         }
 1416 
 1417         /* Check against address space limit. */
 1418         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
 1419                 return -ENOMEM;
 1420 
 1421         /*
 1422          * Set 'VM_NORESERVE' if we should not account for the
 1423          * memory use of this mapping.
 1424          */
 1425         if ((flags & MAP_NORESERVE)) {
 1426                 /* We honor MAP_NORESERVE if allowed to overcommit */
 1427                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
 1428                         vm_flags |= VM_NORESERVE;
 1429 
 1430                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
 1431                 if (file && is_file_hugepages(file))
 1432                         vm_flags |= VM_NORESERVE;
 1433         }
 1434 
 1435         /*
 1436          * Private writable mapping: check memory availability
 1437          */
 1438         if (accountable_mapping(file, vm_flags)) {
 1439                 charged = len >> PAGE_SHIFT;
 1440                 if (security_vm_enough_memory_mm(mm, charged))
 1441                         return -ENOMEM;
 1442                 vm_flags |= VM_ACCOUNT;
 1443         }
 1444 
 1445         /*
 1446          * Can we just expand an old mapping?
 1447          */
 1448         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
 1449         if (vma)
 1450                 goto out;
 1451 
 1452         /*
 1453          * Determine the object being mapped and call the appropriate
 1454          * specific mapper. the address has already been validated, but
 1455          * not unmapped, but the maps are removed from the list.
 1456          */
 1457         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 1458         if (!vma) {
 1459                 error = -ENOMEM;
 1460                 goto unacct_error;
 1461         }
 1462 
 1463         vma->vm_mm = mm;
 1464         vma->vm_start = addr;
 1465         vma->vm_end = addr + len;
 1466         vma->vm_flags = vm_flags;
 1467         vma->vm_page_prot = vm_get_page_prot(vm_flags);
 1468         vma->vm_pgoff = pgoff;
 1469         INIT_LIST_HEAD(&vma->anon_vma_chain);
 1470 
 1471         error = -EINVAL;        /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
 1472 
 1473         if (file) {
 1474                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
 1475                         goto free_vma;
 1476                 if (vm_flags & VM_DENYWRITE) {
 1477                         error = deny_write_access(file);
 1478                         if (error)
 1479                                 goto free_vma;
 1480                         correct_wcount = 1;
 1481                 }
 1482                 vma->vm_file = get_file(file);
 1483                 error = file->f_op->mmap(file, vma);
 1484                 if (error)
 1485                         goto unmap_and_free_vma;
 1486 
 1487                 /* Can addr have changed??
 1488                  *
 1489                  * Answer: Yes, several device drivers can do it in their
 1490                  *         f_op->mmap method. -DaveM
 1491                  * Bug: If addr is changed, prev, rb_link, rb_parent should
 1492                  *      be updated for vma_link()
 1493                  */
 1494                 WARN_ON_ONCE(addr != vma->vm_start);
 1495 
 1496                 addr = vma->vm_start;
 1497                 pgoff = vma->vm_pgoff;
 1498                 vm_flags = vma->vm_flags;
 1499         } else if (vm_flags & VM_SHARED) {
 1500                 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
 1501                         goto free_vma;
 1502                 error = shmem_zero_setup(vma);
 1503                 if (error)
 1504                         goto free_vma;
 1505         }
 1506 
 1507         if (vma_wants_writenotify(vma)) {
 1508                 pgprot_t pprot = vma->vm_page_prot;
 1509 
 1510                 /* Can vma->vm_page_prot have changed??
 1511                  *
 1512                  * Answer: Yes, drivers may have changed it in their
 1513                  *         f_op->mmap method.
 1514                  *
 1515                  * Ensures that vmas marked as uncached stay that way.
 1516                  */
 1517                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
 1518                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
 1519                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 1520         }
 1521 
 1522         vma_link(mm, vma, prev, rb_link, rb_parent);
 1523         file = vma->vm_file;
 1524 
 1525         /* Once vma denies write, undo our temporary denial count */
 1526         if (correct_wcount)
 1527                 atomic_inc(&inode->i_writecount);
 1528 out:
 1529         perf_event_mmap(vma);
 1530 
 1531         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
 1532         if (vm_flags & VM_LOCKED) {
 1533                 if (!mlock_vma_pages_range(vma, addr, addr + len))
 1534                         mm->locked_vm += (len >> PAGE_SHIFT);
 1535         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
 1536                 make_pages_present(addr, addr + len);
 1537 
 1538         if (file)
 1539                 uprobe_mmap(vma);
 1540 
 1541         return addr;
 1542 
 1543 unmap_and_free_vma:
 1544         if (correct_wcount)
 1545                 atomic_inc(&inode->i_writecount);
 1546         vma->vm_file = NULL;
 1547         fput(file);
 1548 
 1549         /* Undo any partial mapping done by a device driver. */
 1550         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
 1551         charged = 0;
 1552 free_vma:
 1553         kmem_cache_free(vm_area_cachep, vma);
 1554 unacct_error:
 1555         if (charged)
 1556                 vm_unacct_memory(charged);
 1557         return error;
 1558 }
 1559 
 1560 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
 1561 {
 1562         /*
 1563          * We implement the search by looking for an rbtree node that
 1564          * immediately follows a suitable gap. That is,
 1565          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
 1566          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
 1567          * - gap_end - gap_start >= length
 1568          */
 1569 
 1570         struct mm_struct *mm = current->mm;
 1571         struct vm_area_struct *vma;
 1572         unsigned long length, low_limit, high_limit, gap_start, gap_end;
 1573 
 1574         /* Adjust search length to account for worst case alignment overhead */
 1575         length = info->length + info->align_mask;
 1576         if (length < info->length)
 1577                 return -ENOMEM;
 1578 
 1579         /* Adjust search limits by the desired length */
 1580         if (info->high_limit < length)
 1581                 return -ENOMEM;
 1582         high_limit = info->high_limit - length;
 1583 
 1584         if (info->low_limit > high_limit)
 1585                 return -ENOMEM;
 1586         low_limit = info->low_limit + length;
 1587 
 1588         /* Check if rbtree root looks promising */
 1589         if (RB_EMPTY_ROOT(&mm->mm_rb))
 1590                 goto check_highest;
 1591         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
 1592         if (vma->rb_subtree_gap < length)
 1593                 goto check_highest;
 1594 
 1595         while (true) {
 1596                 /* Visit left subtree if it looks promising */
 1597                 gap_end = vma->vm_start;
 1598                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
 1599                         struct vm_area_struct *left =
 1600                                 rb_entry(vma->vm_rb.rb_left,
 1601                                          struct vm_area_struct, vm_rb);
 1602                         if (left->rb_subtree_gap >= length) {
 1603                                 vma = left;
 1604                                 continue;
 1605                         }
 1606                 }
 1607 
 1608                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
 1609 check_current:
 1610                 /* Check if current node has a suitable gap */
 1611                 if (gap_start > high_limit)
 1612                         return -ENOMEM;
 1613                 if (gap_end >= low_limit && gap_end - gap_start >= length)
 1614                         goto found;
 1615 
 1616                 /* Visit right subtree if it looks promising */
 1617                 if (vma->vm_rb.rb_right) {
 1618                         struct vm_area_struct *right =
 1619                                 rb_entry(vma->vm_rb.rb_right,
 1620                                          struct vm_area_struct, vm_rb);
 1621                         if (right->rb_subtree_gap >= length) {
 1622                                 vma = right;
 1623                                 continue;
 1624                         }
 1625                 }
 1626 
 1627                 /* Go back up the rbtree to find next candidate node */
 1628                 while (true) {
 1629                         struct rb_node *prev = &vma->vm_rb;
 1630                         if (!rb_parent(prev))
 1631                                 goto check_highest;
 1632                         vma = rb_entry(rb_parent(prev),
 1633                                        struct vm_area_struct, vm_rb);
 1634                         if (prev == vma->vm_rb.rb_left) {
 1635                                 gap_start = vma->vm_prev->vm_end;
 1636                                 gap_end = vma->vm_start;
 1637                                 goto check_current;
 1638                         }
 1639                 }
 1640         }
 1641 
 1642 check_highest:
 1643         /* Check highest gap, which does not precede any rbtree node */
 1644         gap_start = mm->highest_vm_end;
 1645         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
 1646         if (gap_start > high_limit)
 1647                 return -ENOMEM;
 1648 
 1649 found:
 1650         /* We found a suitable gap. Clip it with the original low_limit. */
 1651         if (gap_start < info->low_limit)
 1652                 gap_start = info->low_limit;
 1653 
 1654         /* Adjust gap address to the desired alignment */
 1655         gap_start += (info->align_offset - gap_start) & info->align_mask;
 1656 
 1657         VM_BUG_ON(gap_start + info->length > info->high_limit);
 1658         VM_BUG_ON(gap_start + info->length > gap_end);
 1659         return gap_start;
 1660 }
 1661 
 1662 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
 1663 {
 1664         struct mm_struct *mm = current->mm;
 1665         struct vm_area_struct *vma;
 1666         unsigned long length, low_limit, high_limit, gap_start, gap_end;
 1667 
 1668         /* Adjust search length to account for worst case alignment overhead */
 1669         length = info->length + info->align_mask;
 1670         if (length < info->length)
 1671                 return -ENOMEM;
 1672 
 1673         /*
 1674          * Adjust search limits by the desired length.
 1675          * See implementation comment at top of unmapped_area().
 1676          */
 1677         gap_end = info->high_limit;
 1678         if (gap_end < length)
 1679                 return -ENOMEM;
 1680         high_limit = gap_end - length;
 1681 
 1682         if (info->low_limit > high_limit)
 1683                 return -ENOMEM;
 1684         low_limit = info->low_limit + length;
 1685 
 1686         /* Check highest gap, which does not precede any rbtree node */
 1687         gap_start = mm->highest_vm_end;
 1688         if (gap_start <= high_limit)
 1689                 goto found_highest;
 1690 
 1691         /* Check if rbtree root looks promising */
 1692         if (RB_EMPTY_ROOT(&mm->mm_rb))
 1693                 return -ENOMEM;
 1694         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
 1695         if (vma->rb_subtree_gap < length)
 1696                 return -ENOMEM;
 1697 
 1698         while (true) {
 1699                 /* Visit right subtree if it looks promising */
 1700                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
 1701                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
 1702                         struct vm_area_struct *right =
 1703                                 rb_entry(vma->vm_rb.rb_right,
 1704                                          struct vm_area_struct, vm_rb);
 1705                         if (right->rb_subtree_gap >= length) {
 1706                                 vma = right;
 1707                                 continue;
 1708                         }
 1709                 }
 1710 
 1711 check_current:
 1712                 /* Check if current node has a suitable gap */
 1713                 gap_end = vma->vm_start;
 1714                 if (gap_end < low_limit)
 1715                         return -ENOMEM;
 1716                 if (gap_start <= high_limit && gap_end - gap_start >= length)
 1717                         goto found;
 1718 
 1719                 /* Visit left subtree if it looks promising */
 1720                 if (vma->vm_rb.rb_left) {
 1721                         struct vm_area_struct *left =
 1722                                 rb_entry(vma->vm_rb.rb_left,
 1723                                          struct vm_area_struct, vm_rb);
 1724                         if (left->rb_subtree_gap >= length) {
 1725                                 vma = left;
 1726                                 continue;
 1727                         }
 1728                 }
 1729 
 1730                 /* Go back up the rbtree to find next candidate node */
 1731                 while (true) {
 1732                         struct rb_node *prev = &vma->vm_rb;
 1733                         if (!rb_parent(prev))
 1734                                 return -ENOMEM;
 1735                         vma = rb_entry(rb_parent(prev),
 1736                                        struct vm_area_struct, vm_rb);
 1737                         if (prev == vma->vm_rb.rb_right) {
 1738                                 gap_start = vma->vm_prev ?
 1739                                         vma->vm_prev->vm_end : 0;
 1740                                 goto check_current;
 1741                         }
 1742                 }
 1743         }
 1744 
 1745 found:
 1746         /* We found a suitable gap. Clip it with the original high_limit. */
 1747         if (gap_end > info->high_limit)
 1748                 gap_end = info->high_limit;
 1749 
 1750 found_highest:
 1751         /* Compute highest gap address at the desired alignment */
 1752         gap_end -= info->length;
 1753         gap_end -= (gap_end - info->align_offset) & info->align_mask;
 1754 
 1755         VM_BUG_ON(gap_end < info->low_limit);
 1756         VM_BUG_ON(gap_end < gap_start);
 1757         return gap_end;
 1758 }
 1759 
 1760 /* Get an address range which is currently unmapped.
 1761  * For shmat() with addr=0.
 1762  *
 1763  * Ugly calling convention alert:
 1764  * Return value with the low bits set means error value,
 1765  * ie
 1766  *      if (ret & ~PAGE_MASK)
 1767  *              error = ret;
 1768  *
 1769  * This function "knows" that -ENOMEM has the bits set.
 1770  */
 1771 #ifndef HAVE_ARCH_UNMAPPED_AREA
 1772 unsigned long
 1773 arch_get_unmapped_area(struct file *filp, unsigned long addr,
 1774                 unsigned long len, unsigned long pgoff, unsigned long flags)
 1775 {
 1776         struct mm_struct *mm = current->mm;
 1777         struct vm_area_struct *vma;
 1778         struct vm_unmapped_area_info info;
 1779 
 1780         if (len > TASK_SIZE)
 1781                 return -ENOMEM;
 1782 
 1783         if (flags & MAP_FIXED)
 1784                 return addr;
 1785 
 1786         if (addr) {
 1787                 addr = PAGE_ALIGN(addr);
 1788                 vma = find_vma(mm, addr);
 1789                 if (TASK_SIZE - len >= addr &&
 1790                     (!vma || addr + len <= vma->vm_start))
 1791                         return addr;
 1792         }
 1793 
 1794         info.flags = 0;
 1795         info.length = len;
 1796         info.low_limit = TASK_UNMAPPED_BASE;
 1797         info.high_limit = TASK_SIZE;
 1798         info.align_mask = 0;
 1799         return vm_unmapped_area(&info);
 1800 }
 1801 #endif  
 1802 
 1803 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
 1804 {
 1805         /*
 1806          * Is this a new hole at the lowest possible address?
 1807          */
 1808         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
 1809                 mm->free_area_cache = addr;
 1810 }
 1811 
 1812 /*
 1813  * This mmap-allocator allocates new areas top-down from below the
 1814  * stack's low limit (the base):
 1815  */
 1816 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
 1817 unsigned long
 1818 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
 1819                           const unsigned long len, const unsigned long pgoff,
 1820                           const unsigned long flags)
 1821 {
 1822         struct vm_area_struct *vma;
 1823         struct mm_struct *mm = current->mm;
 1824         unsigned long addr = addr0;
 1825         struct vm_unmapped_area_info info;
 1826 
 1827         /* requested length too big for entire address space */
 1828         if (len > TASK_SIZE)
 1829                 return -ENOMEM;
 1830 
 1831         if (flags & MAP_FIXED)
 1832                 return addr;
 1833 
 1834         /* requesting a specific address */
 1835         if (addr) {
 1836                 addr = PAGE_ALIGN(addr);
 1837                 vma = find_vma(mm, addr);
 1838                 if (TASK_SIZE - len >= addr &&
 1839                                 (!vma || addr + len <= vma->vm_start))
 1840                         return addr;
 1841         }
 1842 
 1843         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
 1844         info.length = len;
 1845         info.low_limit = PAGE_SIZE;
 1846         info.high_limit = mm->mmap_base;
 1847         info.align_mask = 0;
 1848         addr = vm_unmapped_area(&info);
 1849 
 1850         /*
 1851          * A failed mmap() very likely causes application failure,
 1852          * so fall back to the bottom-up function here. This scenario
 1853          * can happen with large stack limits and large mmap()
 1854          * allocations.
 1855          */
 1856         if (addr & ~PAGE_MASK) {
 1857                 VM_BUG_ON(addr != -ENOMEM);
 1858                 info.flags = 0;
 1859                 info.low_limit = TASK_UNMAPPED_BASE;
 1860                 info.high_limit = TASK_SIZE;
 1861                 addr = vm_unmapped_area(&info);
 1862         }
 1863 
 1864         return addr;
 1865 }
 1866 #endif
 1867 
 1868 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
 1869 {
 1870         /*
 1871          * Is this a new hole at the highest possible address?
 1872          */
 1873         if (addr > mm->free_area_cache)
 1874                 mm->free_area_cache = addr;
 1875 
 1876         /* dont allow allocations above current base */
 1877         if (mm->free_area_cache > mm->mmap_base)
 1878                 mm->free_area_cache = mm->mmap_base;
 1879 }
 1880 
 1881 unsigned long
 1882 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
 1883                 unsigned long pgoff, unsigned long flags)
 1884 {
 1885         unsigned long (*get_area)(struct file *, unsigned long,
 1886                                   unsigned long, unsigned long, unsigned long);
 1887 
 1888         unsigned long error = arch_mmap_check(addr, len, flags);
 1889         if (error)
 1890                 return error;
 1891 
 1892         /* Careful about overflows.. */
 1893         if (len > TASK_SIZE)
 1894                 return -ENOMEM;
 1895 
 1896         get_area = current->mm->get_unmapped_area;
 1897         if (file && file->f_op && file->f_op->get_unmapped_area)
 1898                 get_area = file->f_op->get_unmapped_area;
 1899         addr = get_area(file, addr, len, pgoff, flags);
 1900         if (IS_ERR_VALUE(addr))
 1901                 return addr;
 1902 
 1903         if (addr > TASK_SIZE - len)
 1904                 return -ENOMEM;
 1905         if (addr & ~PAGE_MASK)
 1906                 return -EINVAL;
 1907 
 1908         addr = arch_rebalance_pgtables(addr, len);
 1909         error = security_mmap_addr(addr);
 1910         return error ? error : addr;
 1911 }
 1912 
 1913 EXPORT_SYMBOL(get_unmapped_area);
 1914 
 1915 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
 1916 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 1917 {
 1918         struct vm_area_struct *vma = NULL;
 1919 
 1920         if (WARN_ON_ONCE(!mm))          /* Remove this in linux-3.6 */
 1921                 return NULL;
 1922 
 1923         /* Check the cache first. */
 1924         /* (Cache hit rate is typically around 35%.) */
 1925         vma = mm->mmap_cache;
 1926         if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
 1927                 struct rb_node *rb_node;
 1928 
 1929                 rb_node = mm->mm_rb.rb_node;
 1930                 vma = NULL;
 1931 
 1932                 while (rb_node) {
 1933                         struct vm_area_struct *vma_tmp;
 1934 
 1935                         vma_tmp = rb_entry(rb_node,
 1936                                            struct vm_area_struct, vm_rb);
 1937 
 1938                         if (vma_tmp->vm_end > addr) {
 1939                                 vma = vma_tmp;
 1940                                 if (vma_tmp->vm_start <= addr)
 1941                                         break;
 1942                                 rb_node = rb_node->rb_left;
 1943                         } else
 1944                                 rb_node = rb_node->rb_right;
 1945                 }
 1946                 if (vma)
 1947                         mm->mmap_cache = vma;
 1948         }
 1949         return vma;
 1950 }
 1951 
 1952 EXPORT_SYMBOL(find_vma);
 1953 
 1954 /*
 1955  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
 1956  */
 1957 struct vm_area_struct *
 1958 find_vma_prev(struct mm_struct *mm, unsigned long addr,
 1959                         struct vm_area_struct **pprev)
 1960 {
 1961         struct vm_area_struct *vma;
 1962 
 1963         vma = find_vma(mm, addr);
 1964         if (vma) {
 1965                 *pprev = vma->vm_prev;
 1966         } else {
 1967                 struct rb_node *rb_node = mm->mm_rb.rb_node;
 1968                 *pprev = NULL;
 1969                 while (rb_node) {
 1970                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
 1971                         rb_node = rb_node->rb_right;
 1972                 }
 1973         }
 1974         return vma;
 1975 }
 1976 
 1977 /*
 1978  * Verify that the stack growth is acceptable and
 1979  * update accounting. This is shared with both the
 1980  * grow-up and grow-down cases.
 1981  */
 1982 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
 1983 {
 1984         struct mm_struct *mm = vma->vm_mm;
 1985         struct rlimit *rlim = current->signal->rlim;
 1986         unsigned long new_start;
 1987 
 1988         /* address space limit tests */
 1989         if (!may_expand_vm(mm, grow))
 1990                 return -ENOMEM;
 1991 
 1992         /* Stack limit test */
 1993         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
 1994                 return -ENOMEM;
 1995 
 1996         /* mlock limit tests */
 1997         if (vma->vm_flags & VM_LOCKED) {
 1998                 unsigned long locked;
 1999                 unsigned long limit;
 2000                 locked = mm->locked_vm + grow;
 2001                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
 2002                 limit >>= PAGE_SHIFT;
 2003                 if (locked > limit && !capable(CAP_IPC_LOCK))
 2004                         return -ENOMEM;
 2005         }
 2006 
 2007         /* Check to ensure the stack will not grow into a hugetlb-only region */
 2008         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
 2009                         vma->vm_end - size;
 2010         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
 2011                 return -EFAULT;
 2012 
 2013         /*
 2014          * Overcommit..  This must be the final test, as it will
 2015          * update security statistics.
 2016          */
 2017         if (security_vm_enough_memory_mm(mm, grow))
 2018                 return -ENOMEM;
 2019 
 2020         /* Ok, everything looks good - let it rip */
 2021         if (vma->vm_flags & VM_LOCKED)
 2022                 mm->locked_vm += grow;
 2023         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
 2024         return 0;
 2025 }
 2026 
 2027 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
 2028 /*
 2029  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
 2030  * vma is the last one with address > vma->vm_end.  Have to extend vma.
 2031  */
 2032 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
 2033 {
 2034         int error;
 2035 
 2036         if (!(vma->vm_flags & VM_GROWSUP))
 2037                 return -EFAULT;
 2038 
 2039         /*
 2040          * We must make sure the anon_vma is allocated
 2041          * so that the anon_vma locking is not a noop.
 2042          */
 2043         if (unlikely(anon_vma_prepare(vma)))
 2044                 return -ENOMEM;
 2045         vma_lock_anon_vma(vma);
 2046 
 2047         /*
 2048          * vma->vm_start/vm_end cannot change under us because the caller
 2049          * is required to hold the mmap_sem in read mode.  We need the
 2050          * anon_vma lock to serialize against concurrent expand_stacks.
 2051          * Also guard against wrapping around to address 0.
 2052          */
 2053         if (address < PAGE_ALIGN(address+4))
 2054                 address = PAGE_ALIGN(address+4);
 2055         else {
 2056                 vma_unlock_anon_vma(vma);
 2057                 return -ENOMEM;
 2058         }
 2059         error = 0;
 2060 
 2061         /* Somebody else might have raced and expanded it already */
 2062         if (address > vma->vm_end) {
 2063                 unsigned long size, grow;
 2064 
 2065                 size = address - vma->vm_start;
 2066                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
 2067 
 2068                 error = -ENOMEM;
 2069                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
 2070                         error = acct_stack_growth(vma, size, grow);
 2071                         if (!error) {
 2072                                 /*
 2073                                  * vma_gap_update() doesn't support concurrent
 2074                                  * updates, but we only hold a shared mmap_sem
 2075                                  * lock here, so we need to protect against
 2076                                  * concurrent vma expansions.
 2077                                  * vma_lock_anon_vma() doesn't help here, as
 2078                                  * we don't guarantee that all growable vmas
 2079                                  * in a mm share the same root anon vma.
 2080                                  * So, we reuse mm->page_table_lock to guard
 2081                                  * against concurrent vma expansions.
 2082                                  */
 2083                                 spin_lock(&vma->vm_mm->page_table_lock);
 2084                                 anon_vma_interval_tree_pre_update_vma(vma);
 2085                                 vma->vm_end = address;
 2086                                 anon_vma_interval_tree_post_update_vma(vma);
 2087                                 if (vma->vm_next)
 2088                                         vma_gap_update(vma->vm_next);
 2089                                 else
 2090                                         vma->vm_mm->highest_vm_end = address;
 2091                                 spin_unlock(&vma->vm_mm->page_table_lock);
 2092 
 2093                                 perf_event_mmap(vma);
 2094                         }
 2095                 }
 2096         }
 2097         vma_unlock_anon_vma(vma);
 2098         khugepaged_enter_vma_merge(vma);
 2099         validate_mm(vma->vm_mm);
 2100         return error;
 2101 }
 2102 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
 2103 
 2104 /*
 2105  * vma is the first one with address < vma->vm_start.  Have to extend vma.
 2106  */
 2107 int expand_downwards(struct vm_area_struct *vma,
 2108                                    unsigned long address)
 2109 {
 2110         int error;
 2111 
 2112         /*
 2113          * We must make sure the anon_vma is allocated
 2114          * so that the anon_vma locking is not a noop.
 2115          */
 2116         if (unlikely(anon_vma_prepare(vma)))
 2117                 return -ENOMEM;
 2118 
 2119         address &= PAGE_MASK;
 2120         error = security_mmap_addr(address);
 2121         if (error)
 2122                 return error;
 2123 
 2124         vma_lock_anon_vma(vma);
 2125 
 2126         /*
 2127          * vma->vm_start/vm_end cannot change under us because the caller
 2128          * is required to hold the mmap_sem in read mode.  We need the
 2129          * anon_vma lock to serialize against concurrent expand_stacks.
 2130          */
 2131 
 2132         /* Somebody else might have raced and expanded it already */
 2133         if (address < vma->vm_start) {
 2134                 unsigned long size, grow;
 2135 
 2136                 size = vma->vm_end - address;
 2137                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
 2138 
 2139                 error = -ENOMEM;
 2140                 if (grow <= vma->vm_pgoff) {
 2141                         error = acct_stack_growth(vma, size, grow);
 2142                         if (!error) {
 2143                                 /*
 2144                                  * vma_gap_update() doesn't support concurrent
 2145                                  * updates, but we only hold a shared mmap_sem
 2146                                  * lock here, so we need to protect against
 2147                                  * concurrent vma expansions.
 2148                                  * vma_lock_anon_vma() doesn't help here, as
 2149                                  * we don't guarantee that all growable vmas
 2150                                  * in a mm share the same root anon vma.
 2151                                  * So, we reuse mm->page_table_lock to guard
 2152                                  * against concurrent vma expansions.
 2153                                  */
 2154                                 spin_lock(&vma->vm_mm->page_table_lock);
 2155                                 anon_vma_interval_tree_pre_update_vma(vma);
 2156                                 vma->vm_start = address;
 2157                                 vma->vm_pgoff -= grow;
 2158                                 anon_vma_interval_tree_post_update_vma(vma);
 2159                                 vma_gap_update(vma);
 2160                                 spin_unlock(&vma->vm_mm->page_table_lock);
 2161 
 2162                                 perf_event_mmap(vma);
 2163                         }
 2164                 }
 2165         }
 2166         vma_unlock_anon_vma(vma);
 2167         khugepaged_enter_vma_merge(vma);
 2168         validate_mm(vma->vm_mm);
 2169         return error;
 2170 }
 2171 
 2172 #ifdef CONFIG_STACK_GROWSUP
 2173 int expand_stack(struct vm_area_struct *vma, unsigned long address)
 2174 {
 2175         return expand_upwards(vma, address);
 2176 }
 2177 
 2178 struct vm_area_struct *
 2179 find_extend_vma(struct mm_struct *mm, unsigned long addr)
 2180 {
 2181         struct vm_area_struct *vma, *prev;
 2182 
 2183         addr &= PAGE_MASK;
 2184         vma = find_vma_prev(mm, addr, &prev);
 2185         if (vma && (vma->vm_start <= addr))
 2186                 return vma;
 2187         if (!prev || expand_stack(prev, addr))
 2188                 return NULL;
 2189         if (prev->vm_flags & VM_LOCKED) {
 2190                 mlock_vma_pages_range(prev, addr, prev->vm_end);
 2191         }
 2192         return prev;
 2193 }
 2194 #else
 2195 int expand_stack(struct vm_area_struct *vma, unsigned long address)
 2196 {
 2197         return expand_downwards(vma, address);
 2198 }
 2199 
 2200 struct vm_area_struct *
 2201 find_extend_vma(struct mm_struct * mm, unsigned long addr)
 2202 {
 2203         struct vm_area_struct * vma;
 2204         unsigned long start;
 2205 
 2206         addr &= PAGE_MASK;
 2207         vma = find_vma(mm,addr);
 2208         if (!vma)
 2209                 return NULL;
 2210         if (vma->vm_start <= addr)
 2211                 return vma;
 2212         if (!(vma->vm_flags & VM_GROWSDOWN))
 2213                 return NULL;
 2214         start = vma->vm_start;
 2215         if (expand_stack(vma, addr))
 2216                 return NULL;
 2217         if (vma->vm_flags & VM_LOCKED) {
 2218                 mlock_vma_pages_range(vma, addr, start);
 2219         }
 2220         return vma;
 2221 }
 2222 #endif
 2223 
 2224 /*
 2225  * Ok - we have the memory areas we should free on the vma list,
 2226  * so release them, and do the vma updates.
 2227  *
 2228  * Called with the mm semaphore held.
 2229  */
 2230 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
 2231 {
 2232         unsigned long nr_accounted = 0;
 2233 
 2234         /* Update high watermark before we lower total_vm */
 2235         update_hiwater_vm(mm);
 2236         do {
 2237                 long nrpages = vma_pages(vma);
 2238 
 2239                 if (vma->vm_flags & VM_ACCOUNT)
 2240                         nr_accounted += nrpages;
 2241                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
 2242                 vma = remove_vma(vma);
 2243         } while (vma);
 2244         vm_unacct_memory(nr_accounted);
 2245         validate_mm(mm);
 2246 }
 2247 
 2248 /*
 2249  * Get rid of page table information in the indicated region.
 2250  *
 2251  * Called with the mm semaphore held.
 2252  */
 2253 static void unmap_region(struct mm_struct *mm,
 2254                 struct vm_area_struct *vma, struct vm_area_struct *prev,
 2255                 unsigned long start, unsigned long end)
 2256 {
 2257         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
 2258         struct mmu_gather tlb;
 2259 
 2260         lru_add_drain();
 2261         tlb_gather_mmu(&tlb, mm, 0);
 2262         update_hiwater_rss(mm);
 2263         unmap_vmas(&tlb, vma, start, end);
 2264         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
 2265                                  next ? next->vm_start : 0);
 2266         tlb_finish_mmu(&tlb, start, end);
 2267 }
 2268 
 2269 /*
 2270  * Create a list of vma's touched by the unmap, removing them from the mm's
 2271  * vma list as we go..
 2272  */
 2273 static void
 2274 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
 2275         struct vm_area_struct *prev, unsigned long end)
 2276 {
 2277         struct vm_area_struct **insertion_point;
 2278         struct vm_area_struct *tail_vma = NULL;
 2279         unsigned long addr;
 2280 
 2281         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
 2282         vma->vm_prev = NULL;
 2283         do {
 2284                 vma_rb_erase(vma, &mm->mm_rb);
 2285                 mm->map_count--;
 2286                 tail_vma = vma;
 2287                 vma = vma->vm_next;
 2288         } while (vma && vma->vm_start < end);
 2289         *insertion_point = vma;
 2290         if (vma) {
 2291                 vma->vm_prev = prev;
 2292                 vma_gap_update(vma);
 2293         } else
 2294                 mm->highest_vm_end = prev ? prev->vm_end : 0;
 2295         tail_vma->vm_next = NULL;
 2296         if (mm->unmap_area == arch_unmap_area)
 2297                 addr = prev ? prev->vm_end : mm->mmap_base;
 2298         else
 2299                 addr = vma ?  vma->vm_start : mm->mmap_base;
 2300         mm->unmap_area(mm, addr);
 2301         mm->mmap_cache = NULL;          /* Kill the cache. */
 2302 }
 2303 
 2304 /*
 2305  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
 2306  * munmap path where it doesn't make sense to fail.
 2307  */
 2308 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
 2309               unsigned long addr, int new_below)
 2310 {
 2311         struct mempolicy *pol;
 2312         struct vm_area_struct *new;
 2313         int err = -ENOMEM;
 2314 
 2315         if (is_vm_hugetlb_page(vma) && (addr &
 2316                                         ~(huge_page_mask(hstate_vma(vma)))))
 2317                 return -EINVAL;
 2318 
 2319         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 2320         if (!new)
 2321                 goto out_err;
 2322 
 2323         /* most fields are the same, copy all, and then fixup */
 2324         *new = *vma;
 2325 
 2326         INIT_LIST_HEAD(&new->anon_vma_chain);
 2327 
 2328         if (new_below)
 2329                 new->vm_end = addr;
 2330         else {
 2331                 new->vm_start = addr;
 2332                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
 2333         }
 2334 
 2335         pol = mpol_dup(vma_policy(vma));
 2336         if (IS_ERR(pol)) {
 2337                 err = PTR_ERR(pol);
 2338                 goto out_free_vma;
 2339         }
 2340         vma_set_policy(new, pol);
 2341 
 2342         if (anon_vma_clone(new, vma))
 2343                 goto out_free_mpol;
 2344 
 2345         if (new->vm_file)
 2346                 get_file(new->vm_file);
 2347 
 2348         if (new->vm_ops && new->vm_ops->open)
 2349                 new->vm_ops->open(new);
 2350 
 2351         if (new_below)
 2352                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
 2353                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
 2354         else
 2355                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
 2356 
 2357         /* Success. */
 2358         if (!err)
 2359                 return 0;
 2360 
 2361         /* Clean everything up if vma_adjust failed. */
 2362         if (new->vm_ops && new->vm_ops->close)
 2363                 new->vm_ops->close(new);
 2364         if (new->vm_file)
 2365                 fput(new->vm_file);
 2366         unlink_anon_vmas(new);
 2367  out_free_mpol:
 2368         mpol_put(pol);
 2369  out_free_vma:
 2370         kmem_cache_free(vm_area_cachep, new);
 2371  out_err:
 2372         return err;
 2373 }
 2374 
 2375 /*
 2376  * Split a vma into two pieces at address 'addr', a new vma is allocated
 2377  * either for the first part or the tail.
 2378  */
 2379 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
 2380               unsigned long addr, int new_below)
 2381 {
 2382         if (mm->map_count >= sysctl_max_map_count)
 2383                 return -ENOMEM;
 2384 
 2385         return __split_vma(mm, vma, addr, new_below);
 2386 }
 2387 
 2388 /* Munmap is split into 2 main parts -- this part which finds
 2389  * what needs doing, and the areas themselves, which do the
 2390  * work.  This now handles partial unmappings.
 2391  * Jeremy Fitzhardinge <jeremy@goop.org>
 2392  */
 2393 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
 2394 {
 2395         unsigned long end;
 2396         struct vm_area_struct *vma, *prev, *last;
 2397 
 2398         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
 2399                 return -EINVAL;
 2400 
 2401         if ((len = PAGE_ALIGN(len)) == 0)
 2402                 return -EINVAL;
 2403 
 2404         /* Find the first overlapping VMA */
 2405         vma = find_vma(mm, start);
 2406         if (!vma)
 2407                 return 0;
 2408         prev = vma->vm_prev;
 2409         /* we have  start < vma->vm_end  */
 2410 
 2411         /* if it doesn't overlap, we have nothing.. */
 2412         end = start + len;
 2413         if (vma->vm_start >= end)
 2414                 return 0;
 2415 
 2416         /*
 2417          * If we need to split any vma, do it now to save pain later.
 2418          *
 2419          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
 2420          * unmapped vm_area_struct will remain in use: so lower split_vma
 2421          * places tmp vma above, and higher split_vma places tmp vma below.
 2422          */
 2423         if (start > vma->vm_start) {
 2424                 int error;
 2425 
 2426                 /*
 2427                  * Make sure that map_count on return from munmap() will
 2428                  * not exceed its limit; but let map_count go just above
 2429                  * its limit temporarily, to help free resources as expected.
 2430                  */
 2431                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
 2432                         return -ENOMEM;
 2433 
 2434                 error = __split_vma(mm, vma, start, 0);
 2435                 if (error)
 2436                         return error;
 2437                 prev = vma;
 2438         }
 2439 
 2440         /* Does it split the last one? */
 2441         last = find_vma(mm, end);
 2442         if (last && end > last->vm_start) {
 2443                 int error = __split_vma(mm, last, end, 1);
 2444                 if (error)
 2445                         return error;
 2446         }
 2447         vma = prev? prev->vm_next: mm->mmap;
 2448 
 2449         /*
 2450          * unlock any mlock()ed ranges before detaching vmas
 2451          */
 2452         if (mm->locked_vm) {
 2453                 struct vm_area_struct *tmp = vma;
 2454                 while (tmp && tmp->vm_start < end) {
 2455                         if (tmp->vm_flags & VM_LOCKED) {
 2456                                 mm->locked_vm -= vma_pages(tmp);
 2457                                 munlock_vma_pages_all(tmp);
 2458                         }
 2459                         tmp = tmp->vm_next;
 2460                 }
 2461         }
 2462 
 2463         /*
 2464          * Remove the vma's, and unmap the actual pages
 2465          */
 2466         detach_vmas_to_be_unmapped(mm, vma, prev, end);
 2467         unmap_region(mm, vma, prev, start, end);
 2468 
 2469         /* Fix up all other VM information */
 2470         remove_vma_list(mm, vma);
 2471 
 2472         return 0;
 2473 }
 2474 
 2475 int vm_munmap(unsigned long start, size_t len)
 2476 {
 2477         int ret;
 2478         struct mm_struct *mm = current->mm;
 2479 
 2480         down_write(&mm->mmap_sem);
 2481         ret = do_munmap(mm, start, len);
 2482         up_write(&mm->mmap_sem);
 2483         return ret;
 2484 }
 2485 EXPORT_SYMBOL(vm_munmap);
 2486 
 2487 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
 2488 {
 2489         profile_munmap(addr);
 2490         return vm_munmap(addr, len);
 2491 }
 2492 
 2493 static inline void verify_mm_writelocked(struct mm_struct *mm)
 2494 {
 2495 #ifdef CONFIG_DEBUG_VM
 2496         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
 2497                 WARN_ON(1);
 2498                 up_read(&mm->mmap_sem);
 2499         }
 2500 #endif
 2501 }
 2502 
 2503 /*
 2504  *  this is really a simplified "do_mmap".  it only handles
 2505  *  anonymous maps.  eventually we may be able to do some
 2506  *  brk-specific accounting here.
 2507  */
 2508 static unsigned long do_brk(unsigned long addr, unsigned long len)
 2509 {
 2510         struct mm_struct * mm = current->mm;
 2511         struct vm_area_struct * vma, * prev;
 2512         unsigned long flags;
 2513         struct rb_node ** rb_link, * rb_parent;
 2514         pgoff_t pgoff = addr >> PAGE_SHIFT;
 2515         int error;
 2516 
 2517         len = PAGE_ALIGN(len);
 2518         if (!len)
 2519                 return addr;
 2520 
 2521         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
 2522 
 2523         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
 2524         if (error & ~PAGE_MASK)
 2525                 return error;
 2526 
 2527         /*
 2528          * mlock MCL_FUTURE?
 2529          */
 2530         if (mm->def_flags & VM_LOCKED) {
 2531                 unsigned long locked, lock_limit;
 2532                 locked = len >> PAGE_SHIFT;
 2533                 locked += mm->locked_vm;
 2534                 lock_limit = rlimit(RLIMIT_MEMLOCK);
 2535                 lock_limit >>= PAGE_SHIFT;
 2536                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
 2537                         return -EAGAIN;
 2538         }
 2539 
 2540         /*
 2541          * mm->mmap_sem is required to protect against another thread
 2542          * changing the mappings in case we sleep.
 2543          */
 2544         verify_mm_writelocked(mm);
 2545 
 2546         /*
 2547          * Clear old maps.  this also does some error checking for us
 2548          */
 2549  munmap_back:
 2550         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
 2551                 if (do_munmap(mm, addr, len))
 2552                         return -ENOMEM;
 2553                 goto munmap_back;
 2554         }
 2555 
 2556         /* Check against address space limits *after* clearing old maps... */
 2557         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
 2558                 return -ENOMEM;
 2559 
 2560         if (mm->map_count > sysctl_max_map_count)
 2561                 return -ENOMEM;
 2562 
 2563         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
 2564                 return -ENOMEM;
 2565 
 2566         /* Can we just expand an old private anonymous mapping? */
 2567         vma = vma_merge(mm, prev, addr, addr + len, flags,
 2568                                         NULL, NULL, pgoff, NULL);
 2569         if (vma)
 2570                 goto out;
 2571 
 2572         /*
 2573          * create a vma struct for an anonymous mapping
 2574          */
 2575         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 2576         if (!vma) {
 2577                 vm_unacct_memory(len >> PAGE_SHIFT);
 2578                 return -ENOMEM;
 2579         }
 2580 
 2581         INIT_LIST_HEAD(&vma->anon_vma_chain);
 2582         vma->vm_mm = mm;
 2583         vma->vm_start = addr;
 2584         vma->vm_end = addr + len;
 2585         vma->vm_pgoff = pgoff;
 2586         vma->vm_flags = flags;
 2587         vma->vm_page_prot = vm_get_page_prot(flags);
 2588         vma_link(mm, vma, prev, rb_link, rb_parent);
 2589 out:
 2590         perf_event_mmap(vma);
 2591         mm->total_vm += len >> PAGE_SHIFT;
 2592         if (flags & VM_LOCKED) {
 2593                 if (!mlock_vma_pages_range(vma, addr, addr + len))
 2594                         mm->locked_vm += (len >> PAGE_SHIFT);
 2595         }
 2596         return addr;
 2597 }
 2598 
 2599 unsigned long vm_brk(unsigned long addr, unsigned long len)
 2600 {
 2601         struct mm_struct *mm = current->mm;
 2602         unsigned long ret;
 2603 
 2604         down_write(&mm->mmap_sem);
 2605         ret = do_brk(addr, len);
 2606         up_write(&mm->mmap_sem);
 2607         return ret;
 2608 }
 2609 EXPORT_SYMBOL(vm_brk);
 2610 
 2611 /* Release all mmaps. */
 2612 void exit_mmap(struct mm_struct *mm)
 2613 {
 2614         struct mmu_gather tlb;
 2615         struct vm_area_struct *vma;
 2616         unsigned long nr_accounted = 0;
 2617 
 2618         /* mm's last user has gone, and its about to be pulled down */
 2619         mmu_notifier_release(mm);
 2620 
 2621         if (mm->locked_vm) {
 2622                 vma = mm->mmap;
 2623                 while (vma) {
 2624                         if (vma->vm_flags & VM_LOCKED)
 2625                                 munlock_vma_pages_all(vma);
 2626                         vma = vma->vm_next;
 2627                 }
 2628         }
 2629 
 2630         arch_exit_mmap(mm);
 2631 
 2632         vma = mm->mmap;
 2633         if (!vma)       /* Can happen if dup_mmap() received an OOM */
 2634                 return;
 2635 
 2636         lru_add_drain();
 2637         flush_cache_mm(mm);
 2638         tlb_gather_mmu(&tlb, mm, 1);
 2639         /* update_hiwater_rss(mm) here? but nobody should be looking */
 2640         /* Use -1 here to ensure all VMAs in the mm are unmapped */
 2641         unmap_vmas(&tlb, vma, 0, -1);
 2642 
 2643         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
 2644         tlb_finish_mmu(&tlb, 0, -1);
 2645 
 2646         /*
 2647          * Walk the list again, actually closing and freeing it,
 2648          * with preemption enabled, without holding any MM locks.
 2649          */
 2650         while (vma) {
 2651                 if (vma->vm_flags & VM_ACCOUNT)
 2652                         nr_accounted += vma_pages(vma);
 2653                 vma = remove_vma(vma);
 2654         }
 2655         vm_unacct_memory(nr_accounted);
 2656 
 2657         WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
 2658 }
 2659 
 2660 /* Insert vm structure into process list sorted by address
 2661  * and into the inode's i_mmap tree.  If vm_file is non-NULL
 2662  * then i_mmap_mutex is taken here.
 2663  */
 2664 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 2665 {
 2666         struct vm_area_struct *prev;
 2667         struct rb_node **rb_link, *rb_parent;
 2668 
 2669         /*
 2670          * The vm_pgoff of a purely anonymous vma should be irrelevant
 2671          * until its first write fault, when page's anon_vma and index
 2672          * are set.  But now set the vm_pgoff it will almost certainly
 2673          * end up with (unless mremap moves it elsewhere before that
 2674          * first wfault), so /proc/pid/maps tells a consistent story.
 2675          *
 2676          * By setting it to reflect the virtual start address of the
 2677          * vma, merges and splits can happen in a seamless way, just
 2678          * using the existing file pgoff checks and manipulations.
 2679          * Similarly in do_mmap_pgoff and in do_brk.
 2680          */
 2681         if (!vma->vm_file) {
 2682                 BUG_ON(vma->anon_vma);
 2683                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
 2684         }
 2685         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 2686                            &prev, &rb_link, &rb_parent))
 2687                 return -ENOMEM;
 2688         if ((vma->vm_flags & VM_ACCOUNT) &&
 2689              security_vm_enough_memory_mm(mm, vma_pages(vma)))
 2690                 return -ENOMEM;
 2691 
 2692         vma_link(mm, vma, prev, rb_link, rb_parent);
 2693         return 0;
 2694 }
 2695 
 2696 /*
 2697  * Copy the vma structure to a new location in the same mm,
 2698  * prior to moving page table entries, to effect an mremap move.
 2699  */
 2700 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
 2701         unsigned long addr, unsigned long len, pgoff_t pgoff,
 2702         bool *need_rmap_locks)
 2703 {
 2704         struct vm_area_struct *vma = *vmap;
 2705         unsigned long vma_start = vma->vm_start;
 2706         struct mm_struct *mm = vma->vm_mm;
 2707         struct vm_area_struct *new_vma, *prev;
 2708         struct rb_node **rb_link, *rb_parent;
 2709         struct mempolicy *pol;
 2710         bool faulted_in_anon_vma = true;
 2711 
 2712         /*
 2713          * If anonymous vma has not yet been faulted, update new pgoff
 2714          * to match new location, to increase its chance of merging.
 2715          */
 2716         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
 2717                 pgoff = addr >> PAGE_SHIFT;
 2718                 faulted_in_anon_vma = false;
 2719         }
 2720 
 2721         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
 2722                 return NULL;    /* should never get here */
 2723         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
 2724                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
 2725         if (new_vma) {
 2726                 /*
 2727                  * Source vma may have been merged into new_vma
 2728                  */
 2729                 if (unlikely(vma_start >= new_vma->vm_start &&
 2730                              vma_start < new_vma->vm_end)) {
 2731                         /*
 2732                          * The only way we can get a vma_merge with
 2733                          * self during an mremap is if the vma hasn't
 2734                          * been faulted in yet and we were allowed to
 2735                          * reset the dst vma->vm_pgoff to the
 2736                          * destination address of the mremap to allow
 2737                          * the merge to happen. mremap must change the
 2738                          * vm_pgoff linearity between src and dst vmas
 2739                          * (in turn preventing a vma_merge) to be
 2740                          * safe. It is only safe to keep the vm_pgoff
 2741                          * linear if there are no pages mapped yet.
 2742                          */
 2743                         VM_BUG_ON(faulted_in_anon_vma);
 2744                         *vmap = vma = new_vma;
 2745                 }
 2746                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
 2747         } else {
 2748                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 2749                 if (new_vma) {
 2750                         *new_vma = *vma;
 2751                         new_vma->vm_start = addr;
 2752                         new_vma->vm_end = addr + len;
 2753                         new_vma->vm_pgoff = pgoff;
 2754                         pol = mpol_dup(vma_policy(vma));
 2755                         if (IS_ERR(pol))
 2756                                 goto out_free_vma;
 2757                         vma_set_policy(new_vma, pol);
 2758                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
 2759                         if (anon_vma_clone(new_vma, vma))
 2760                                 goto out_free_mempol;
 2761                         if (new_vma->vm_file)
 2762                                 get_file(new_vma->vm_file);
 2763                         if (new_vma->vm_ops && new_vma->vm_ops->open)
 2764                                 new_vma->vm_ops->open(new_vma);
 2765                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
 2766                         *need_rmap_locks = false;
 2767                 }
 2768         }
 2769         return new_vma;
 2770 
 2771  out_free_mempol:
 2772         mpol_put(pol);
 2773  out_free_vma:
 2774         kmem_cache_free(vm_area_cachep, new_vma);
 2775         return NULL;
 2776 }
 2777 
 2778 /*
 2779  * Return true if the calling process may expand its vm space by the passed
 2780  * number of pages
 2781  */
 2782 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
 2783 {
 2784         unsigned long cur = mm->total_vm;       /* pages */
 2785         unsigned long lim;
 2786 
 2787         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
 2788 
 2789         if (cur + npages > lim)
 2790                 return 0;
 2791         return 1;
 2792 }
 2793 
 2794 
 2795 static int special_mapping_fault(struct vm_area_struct *vma,
 2796                                 struct vm_fault *vmf)
 2797 {
 2798         pgoff_t pgoff;
 2799         struct page **pages;
 2800 
 2801         /*
 2802          * special mappings have no vm_file, and in that case, the mm
 2803          * uses vm_pgoff internally. So we have to subtract it from here.
 2804          * We are allowed to do this because we are the mm; do not copy
 2805          * this code into drivers!
 2806          */
 2807         pgoff = vmf->pgoff - vma->vm_pgoff;
 2808 
 2809         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
 2810                 pgoff--;
 2811 
 2812         if (*pages) {
 2813                 struct page *page = *pages;
 2814                 get_page(page);
 2815                 vmf->page = page;
 2816                 return 0;
 2817         }
 2818 
 2819         return VM_FAULT_SIGBUS;
 2820 }
 2821 
 2822 /*
 2823  * Having a close hook prevents vma merging regardless of flags.
 2824  */
 2825 static void special_mapping_close(struct vm_area_struct *vma)
 2826 {
 2827 }
 2828 
 2829 static const struct vm_operations_struct special_mapping_vmops = {
 2830         .close = special_mapping_close,
 2831         .fault = special_mapping_fault,
 2832 };
 2833 
 2834 /*
 2835  * Called with mm->mmap_sem held for writing.
 2836  * Insert a new vma covering the given region, with the given flags.
 2837  * Its pages are supplied by the given array of struct page *.
 2838  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
 2839  * The region past the last page supplied will always produce SIGBUS.
 2840  * The array pointer and the pages it points to are assumed to stay alive
 2841  * for as long as this mapping might exist.
 2842  */
 2843 int install_special_mapping(struct mm_struct *mm,
 2844                             unsigned long addr, unsigned long len,
 2845                             unsigned long vm_flags, struct page **pages)
 2846 {
 2847         int ret;
 2848         struct vm_area_struct *vma;
 2849 
 2850         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 2851         if (unlikely(vma == NULL))
 2852                 return -ENOMEM;
 2853 
 2854         INIT_LIST_HEAD(&vma->anon_vma_chain);
 2855         vma->vm_mm = mm;
 2856         vma->vm_start = addr;
 2857         vma->vm_end = addr + len;
 2858 
 2859         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
 2860         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 2861 
 2862         vma->vm_ops = &special_mapping_vmops;
 2863         vma->vm_private_data = pages;
 2864 
 2865         ret = insert_vm_struct(mm, vma);
 2866         if (ret)
 2867                 goto out;
 2868 
 2869         mm->total_vm += len >> PAGE_SHIFT;
 2870 
 2871         perf_event_mmap(vma);
 2872 
 2873         return 0;
 2874 
 2875 out:
 2876         kmem_cache_free(vm_area_cachep, vma);
 2877         return ret;
 2878 }
 2879 
 2880 static DEFINE_MUTEX(mm_all_locks_mutex);
 2881 
 2882 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
 2883 {
 2884         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
 2885                 /*
 2886                  * The LSB of head.next can't change from under us
 2887                  * because we hold the mm_all_locks_mutex.
 2888                  */
 2889                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
 2890                 /*
 2891                  * We can safely modify head.next after taking the
 2892                  * anon_vma->root->rwsem. If some other vma in this mm shares
 2893                  * the same anon_vma we won't take it again.
 2894                  *
 2895                  * No need of atomic instructions here, head.next
 2896                  * can't change from under us thanks to the
 2897                  * anon_vma->root->rwsem.
 2898                  */
 2899                 if (__test_and_set_bit(0, (unsigned long *)
 2900                                        &anon_vma->root->rb_root.rb_node))
 2901                         BUG();
 2902         }
 2903 }
 2904 
 2905 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
 2906 {
 2907         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
 2908                 /*
 2909                  * AS_MM_ALL_LOCKS can't change from under us because
 2910                  * we hold the mm_all_locks_mutex.
 2911                  *
 2912                  * Operations on ->flags have to be atomic because
 2913                  * even if AS_MM_ALL_LOCKS is stable thanks to the
 2914                  * mm_all_locks_mutex, there may be other cpus
 2915                  * changing other bitflags in parallel to us.
 2916                  */
 2917                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
 2918                         BUG();
 2919                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
 2920         }
 2921 }
 2922 
 2923 /*
 2924  * This operation locks against the VM for all pte/vma/mm related
 2925  * operations that could ever happen on a certain mm. This includes
 2926  * vmtruncate, try_to_unmap, and all page faults.
 2927  *
 2928  * The caller must take the mmap_sem in write mode before calling
 2929  * mm_take_all_locks(). The caller isn't allowed to release the
 2930  * mmap_sem until mm_drop_all_locks() returns.
 2931  *
 2932  * mmap_sem in write mode is required in order to block all operations
 2933  * that could modify pagetables and free pages without need of
 2934  * altering the vma layout (for example populate_range() with
 2935  * nonlinear vmas). It's also needed in write mode to avoid new
 2936  * anon_vmas to be associated with existing vmas.
 2937  *
 2938  * A single task can't take more than one mm_take_all_locks() in a row
 2939  * or it would deadlock.
 2940  *
 2941  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
 2942  * mapping->flags avoid to take the same lock twice, if more than one
 2943  * vma in this mm is backed by the same anon_vma or address_space.
 2944  *
 2945  * We can take all the locks in random order because the VM code
 2946  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
 2947  * takes more than one of them in a row. Secondly we're protected
 2948  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
 2949  *
 2950  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
 2951  * that may have to take thousand of locks.
 2952  *
 2953  * mm_take_all_locks() can fail if it's interrupted by signals.
 2954  */
 2955 int mm_take_all_locks(struct mm_struct *mm)
 2956 {
 2957         struct vm_area_struct *vma;
 2958         struct anon_vma_chain *avc;
 2959 
 2960         BUG_ON(down_read_trylock(&mm->mmap_sem));
 2961 
 2962         mutex_lock(&mm_all_locks_mutex);
 2963 
 2964         for (vma = mm->mmap; vma; vma = vma->vm_next) {
 2965                 if (signal_pending(current))
 2966                         goto out_unlock;
 2967                 if (vma->vm_file && vma->vm_file->f_mapping)
 2968                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
 2969         }
 2970 
 2971         for (vma = mm->mmap; vma; vma = vma->vm_next) {
 2972                 if (signal_pending(current))
 2973                         goto out_unlock;
 2974                 if (vma->anon_vma)
 2975                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 2976                                 vm_lock_anon_vma(mm, avc->anon_vma);
 2977         }
 2978 
 2979         return 0;
 2980 
 2981 out_unlock:
 2982         mm_drop_all_locks(mm);
 2983         return -EINTR;
 2984 }
 2985 
 2986 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
 2987 {
 2988         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
 2989                 /*
 2990                  * The LSB of head.next can't change to 0 from under
 2991                  * us because we hold the mm_all_locks_mutex.
 2992                  *
 2993                  * We must however clear the bitflag before unlocking
 2994                  * the vma so the users using the anon_vma->rb_root will
 2995                  * never see our bitflag.
 2996                  *
 2997                  * No need of atomic instructions here, head.next
 2998                  * can't change from under us until we release the
 2999                  * anon_vma->root->rwsem.
 3000                  */
 3001                 if (!__test_and_clear_bit(0, (unsigned long *)
 3002                                           &anon_vma->root->rb_root.rb_node))
 3003                         BUG();
 3004                 anon_vma_unlock(anon_vma);
 3005         }
 3006 }
 3007 
 3008 static void vm_unlock_mapping(struct address_space *mapping)
 3009 {
 3010         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
 3011                 /*
 3012                  * AS_MM_ALL_LOCKS can't change to 0 from under us
 3013                  * because we hold the mm_all_locks_mutex.
 3014                  */
 3015                 mutex_unlock(&mapping->i_mmap_mutex);
 3016                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
 3017                                         &mapping->flags))
 3018                         BUG();
 3019         }
 3020 }
 3021 
 3022 /*
 3023  * The mmap_sem cannot be released by the caller until
 3024  * mm_drop_all_locks() returns.
 3025  */
 3026 void mm_drop_all_locks(struct mm_struct *mm)
 3027 {
 3028         struct vm_area_struct *vma;
 3029         struct anon_vma_chain *avc;
 3030 
 3031         BUG_ON(down_read_trylock(&mm->mmap_sem));
 3032         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
 3033 
 3034         for (vma = mm->mmap; vma; vma = vma->vm_next) {
 3035                 if (vma->anon_vma)
 3036                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 3037                                 vm_unlock_anon_vma(avc->anon_vma);
 3038                 if (vma->vm_file && vma->vm_file->f_mapping)
 3039                         vm_unlock_mapping(vma->vm_file->f_mapping);
 3040         }
 3041 
 3042         mutex_unlock(&mm_all_locks_mutex);
 3043 }
 3044 
 3045 /*
 3046  * initialise the VMA slab
 3047  */
 3048 void __init mmap_init(void)
 3049 {
 3050         int ret;
 3051 
 3052         ret = percpu_counter_init(&vm_committed_as, 0);
 3053         VM_BUG_ON(ret);
 3054 }

Cache object: 9cd07c3c83d57537e2e7f12afa04420a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.