The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/page-writeback.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * mm/page-writeback.c
    3  *
    4  * Copyright (C) 2002, Linus Torvalds.
    5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
    6  *
    7  * Contains functions related to writing back dirty pages at the
    8  * address_space level.
    9  *
   10  * 10Apr2002    Andrew Morton
   11  *              Initial version
   12  */
   13 
   14 #include <linux/kernel.h>
   15 #include <linux/export.h>
   16 #include <linux/spinlock.h>
   17 #include <linux/fs.h>
   18 #include <linux/mm.h>
   19 #include <linux/swap.h>
   20 #include <linux/slab.h>
   21 #include <linux/pagemap.h>
   22 #include <linux/writeback.h>
   23 #include <linux/init.h>
   24 #include <linux/backing-dev.h>
   25 #include <linux/task_io_accounting_ops.h>
   26 #include <linux/blkdev.h>
   27 #include <linux/mpage.h>
   28 #include <linux/rmap.h>
   29 #include <linux/percpu.h>
   30 #include <linux/notifier.h>
   31 #include <linux/smp.h>
   32 #include <linux/sysctl.h>
   33 #include <linux/cpu.h>
   34 #include <linux/syscalls.h>
   35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
   36 #include <linux/pagevec.h>
   37 #include <linux/timer.h>
   38 #include <trace/events/writeback.h>
   39 
   40 /*
   41  * Sleep at most 200ms at a time in balance_dirty_pages().
   42  */
   43 #define MAX_PAUSE               max(HZ/5, 1)
   44 
   45 /*
   46  * Try to keep balance_dirty_pages() call intervals higher than this many pages
   47  * by raising pause time to max_pause when falls below it.
   48  */
   49 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
   50 
   51 /*
   52  * Estimate write bandwidth at 200ms intervals.
   53  */
   54 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
   55 
   56 #define RATELIMIT_CALC_SHIFT    10
   57 
   58 /*
   59  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
   60  * will look to see if it needs to force writeback or throttling.
   61  */
   62 static long ratelimit_pages = 32;
   63 
   64 /* The following parameters are exported via /proc/sys/vm */
   65 
   66 /*
   67  * Start background writeback (via writeback threads) at this percentage
   68  */
   69 int dirty_background_ratio = 10;
   70 
   71 /*
   72  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
   73  * dirty_background_ratio * the amount of dirtyable memory
   74  */
   75 unsigned long dirty_background_bytes;
   76 
   77 /*
   78  * free highmem will not be subtracted from the total free memory
   79  * for calculating free ratios if vm_highmem_is_dirtyable is true
   80  */
   81 int vm_highmem_is_dirtyable;
   82 
   83 /*
   84  * The generator of dirty data starts writeback at this percentage
   85  */
   86 int vm_dirty_ratio = 20;
   87 
   88 /*
   89  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
   90  * vm_dirty_ratio * the amount of dirtyable memory
   91  */
   92 unsigned long vm_dirty_bytes;
   93 
   94 /*
   95  * The interval between `kupdate'-style writebacks
   96  */
   97 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
   98 
   99 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
  100 
  101 /*
  102  * The longest time for which data is allowed to remain dirty
  103  */
  104 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  105 
  106 /*
  107  * Flag that makes the machine dump writes/reads and block dirtyings.
  108  */
  109 int block_dump;
  110 
  111 /*
  112  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  113  * a full sync is triggered after this time elapses without any disk activity.
  114  */
  115 int laptop_mode;
  116 
  117 EXPORT_SYMBOL(laptop_mode);
  118 
  119 /* End of sysctl-exported parameters */
  120 
  121 unsigned long global_dirty_limit;
  122 
  123 /*
  124  * Scale the writeback cache size proportional to the relative writeout speeds.
  125  *
  126  * We do this by keeping a floating proportion between BDIs, based on page
  127  * writeback completions [end_page_writeback()]. Those devices that write out
  128  * pages fastest will get the larger share, while the slower will get a smaller
  129  * share.
  130  *
  131  * We use page writeout completions because we are interested in getting rid of
  132  * dirty pages. Having them written out is the primary goal.
  133  *
  134  * We introduce a concept of time, a period over which we measure these events,
  135  * because demand can/will vary over time. The length of this period itself is
  136  * measured in page writeback completions.
  137  *
  138  */
  139 static struct fprop_global writeout_completions;
  140 
  141 static void writeout_period(unsigned long t);
  142 /* Timer for aging of writeout_completions */
  143 static struct timer_list writeout_period_timer =
  144                 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
  145 static unsigned long writeout_period_time = 0;
  146 
  147 /*
  148  * Length of period for aging writeout fractions of bdis. This is an
  149  * arbitrarily chosen number. The longer the period, the slower fractions will
  150  * reflect changes in current writeout rate.
  151  */
  152 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
  153 
  154 /*
  155  * Work out the current dirty-memory clamping and background writeout
  156  * thresholds.
  157  *
  158  * The main aim here is to lower them aggressively if there is a lot of mapped
  159  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
  160  * pages.  It is better to clamp down on writers than to start swapping, and
  161  * performing lots of scanning.
  162  *
  163  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  164  *
  165  * We don't permit the clamping level to fall below 5% - that is getting rather
  166  * excessive.
  167  *
  168  * We make sure that the background writeout level is below the adjusted
  169  * clamping level.
  170  */
  171 
  172 /*
  173  * In a memory zone, there is a certain amount of pages we consider
  174  * available for the page cache, which is essentially the number of
  175  * free and reclaimable pages, minus some zone reserves to protect
  176  * lowmem and the ability to uphold the zone's watermarks without
  177  * requiring writeback.
  178  *
  179  * This number of dirtyable pages is the base value of which the
  180  * user-configurable dirty ratio is the effictive number of pages that
  181  * are allowed to be actually dirtied.  Per individual zone, or
  182  * globally by using the sum of dirtyable pages over all zones.
  183  *
  184  * Because the user is allowed to specify the dirty limit globally as
  185  * absolute number of bytes, calculating the per-zone dirty limit can
  186  * require translating the configured limit into a percentage of
  187  * global dirtyable memory first.
  188  */
  189 
  190 static unsigned long highmem_dirtyable_memory(unsigned long total)
  191 {
  192 #ifdef CONFIG_HIGHMEM
  193         int node;
  194         unsigned long x = 0;
  195 
  196         for_each_node_state(node, N_HIGH_MEMORY) {
  197                 struct zone *z =
  198                         &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  199 
  200                 x += zone_page_state(z, NR_FREE_PAGES) +
  201                      zone_reclaimable_pages(z) - z->dirty_balance_reserve;
  202         }
  203         /*
  204          * Unreclaimable memory (kernel memory or anonymous memory
  205          * without swap) can bring down the dirtyable pages below
  206          * the zone's dirty balance reserve and the above calculation
  207          * will underflow.  However we still want to add in nodes
  208          * which are below threshold (negative values) to get a more
  209          * accurate calculation but make sure that the total never
  210          * underflows.
  211          */
  212         if ((long)x < 0)
  213                 x = 0;
  214 
  215         /*
  216          * Make sure that the number of highmem pages is never larger
  217          * than the number of the total dirtyable memory. This can only
  218          * occur in very strange VM situations but we want to make sure
  219          * that this does not occur.
  220          */
  221         return min(x, total);
  222 #else
  223         return 0;
  224 #endif
  225 }
  226 
  227 /**
  228  * global_dirtyable_memory - number of globally dirtyable pages
  229  *
  230  * Returns the global number of pages potentially available for dirty
  231  * page cache.  This is the base value for the global dirty limits.
  232  */
  233 static unsigned long global_dirtyable_memory(void)
  234 {
  235         unsigned long x;
  236 
  237         x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
  238         x -= min(x, dirty_balance_reserve);
  239 
  240         if (!vm_highmem_is_dirtyable)
  241                 x -= highmem_dirtyable_memory(x);
  242 
  243         return x + 1;   /* Ensure that we never return 0 */
  244 }
  245 
  246 /*
  247  * global_dirty_limits - background-writeback and dirty-throttling thresholds
  248  *
  249  * Calculate the dirty thresholds based on sysctl parameters
  250  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
  251  * - vm.dirty_ratio             or  vm.dirty_bytes
  252  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  253  * real-time tasks.
  254  */
  255 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  256 {
  257         unsigned long background;
  258         unsigned long dirty;
  259         unsigned long uninitialized_var(available_memory);
  260         struct task_struct *tsk;
  261 
  262         if (!vm_dirty_bytes || !dirty_background_bytes)
  263                 available_memory = global_dirtyable_memory();
  264 
  265         if (vm_dirty_bytes)
  266                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
  267         else
  268                 dirty = (vm_dirty_ratio * available_memory) / 100;
  269 
  270         if (dirty_background_bytes)
  271                 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
  272         else
  273                 background = (dirty_background_ratio * available_memory) / 100;
  274 
  275         if (background >= dirty)
  276                 background = dirty / 2;
  277         tsk = current;
  278         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  279                 background += background / 4;
  280                 dirty += dirty / 4;
  281         }
  282         *pbackground = background;
  283         *pdirty = dirty;
  284         trace_global_dirty_state(background, dirty);
  285 }
  286 
  287 /**
  288  * zone_dirtyable_memory - number of dirtyable pages in a zone
  289  * @zone: the zone
  290  *
  291  * Returns the zone's number of pages potentially available for dirty
  292  * page cache.  This is the base value for the per-zone dirty limits.
  293  */
  294 static unsigned long zone_dirtyable_memory(struct zone *zone)
  295 {
  296         /*
  297          * The effective global number of dirtyable pages may exclude
  298          * highmem as a big-picture measure to keep the ratio between
  299          * dirty memory and lowmem reasonable.
  300          *
  301          * But this function is purely about the individual zone and a
  302          * highmem zone can hold its share of dirty pages, so we don't
  303          * care about vm_highmem_is_dirtyable here.
  304          */
  305         unsigned long nr_pages = zone_page_state(zone, NR_FREE_PAGES) +
  306                 zone_reclaimable_pages(zone);
  307 
  308         /* don't allow this to underflow */
  309         nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
  310         return nr_pages;
  311 }
  312 
  313 /**
  314  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
  315  * @zone: the zone
  316  *
  317  * Returns the maximum number of dirty pages allowed in a zone, based
  318  * on the zone's dirtyable memory.
  319  */
  320 static unsigned long zone_dirty_limit(struct zone *zone)
  321 {
  322         unsigned long zone_memory = zone_dirtyable_memory(zone);
  323         struct task_struct *tsk = current;
  324         unsigned long dirty;
  325 
  326         if (vm_dirty_bytes)
  327                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
  328                         zone_memory / global_dirtyable_memory();
  329         else
  330                 dirty = vm_dirty_ratio * zone_memory / 100;
  331 
  332         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
  333                 dirty += dirty / 4;
  334 
  335         return dirty;
  336 }
  337 
  338 /**
  339  * zone_dirty_ok - tells whether a zone is within its dirty limits
  340  * @zone: the zone to check
  341  *
  342  * Returns %true when the dirty pages in @zone are within the zone's
  343  * dirty limit, %false if the limit is exceeded.
  344  */
  345 bool zone_dirty_ok(struct zone *zone)
  346 {
  347         unsigned long limit = zone_dirty_limit(zone);
  348 
  349         return zone_page_state(zone, NR_FILE_DIRTY) +
  350                zone_page_state(zone, NR_UNSTABLE_NFS) +
  351                zone_page_state(zone, NR_WRITEBACK) <= limit;
  352 }
  353 
  354 int dirty_background_ratio_handler(struct ctl_table *table, int write,
  355                 void __user *buffer, size_t *lenp,
  356                 loff_t *ppos)
  357 {
  358         int ret;
  359 
  360         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  361         if (ret == 0 && write)
  362                 dirty_background_bytes = 0;
  363         return ret;
  364 }
  365 
  366 int dirty_background_bytes_handler(struct ctl_table *table, int write,
  367                 void __user *buffer, size_t *lenp,
  368                 loff_t *ppos)
  369 {
  370         int ret;
  371 
  372         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  373         if (ret == 0 && write)
  374                 dirty_background_ratio = 0;
  375         return ret;
  376 }
  377 
  378 int dirty_ratio_handler(struct ctl_table *table, int write,
  379                 void __user *buffer, size_t *lenp,
  380                 loff_t *ppos)
  381 {
  382         int old_ratio = vm_dirty_ratio;
  383         int ret;
  384 
  385         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  386         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  387                 writeback_set_ratelimit();
  388                 vm_dirty_bytes = 0;
  389         }
  390         return ret;
  391 }
  392 
  393 int dirty_bytes_handler(struct ctl_table *table, int write,
  394                 void __user *buffer, size_t *lenp,
  395                 loff_t *ppos)
  396 {
  397         unsigned long old_bytes = vm_dirty_bytes;
  398         int ret;
  399 
  400         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  401         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  402                 writeback_set_ratelimit();
  403                 vm_dirty_ratio = 0;
  404         }
  405         return ret;
  406 }
  407 
  408 static unsigned long wp_next_time(unsigned long cur_time)
  409 {
  410         cur_time += VM_COMPLETIONS_PERIOD_LEN;
  411         /* 0 has a special meaning... */
  412         if (!cur_time)
  413                 return 1;
  414         return cur_time;
  415 }
  416 
  417 /*
  418  * Increment the BDI's writeout completion count and the global writeout
  419  * completion count. Called from test_clear_page_writeback().
  420  */
  421 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  422 {
  423         __inc_bdi_stat(bdi, BDI_WRITTEN);
  424         __fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
  425                                bdi->max_prop_frac);
  426         /* First event after period switching was turned off? */
  427         if (!unlikely(writeout_period_time)) {
  428                 /*
  429                  * We can race with other __bdi_writeout_inc calls here but
  430                  * it does not cause any harm since the resulting time when
  431                  * timer will fire and what is in writeout_period_time will be
  432                  * roughly the same.
  433                  */
  434                 writeout_period_time = wp_next_time(jiffies);
  435                 mod_timer(&writeout_period_timer, writeout_period_time);
  436         }
  437 }
  438 
  439 void bdi_writeout_inc(struct backing_dev_info *bdi)
  440 {
  441         unsigned long flags;
  442 
  443         local_irq_save(flags);
  444         __bdi_writeout_inc(bdi);
  445         local_irq_restore(flags);
  446 }
  447 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  448 
  449 /*
  450  * Obtain an accurate fraction of the BDI's portion.
  451  */
  452 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  453                 long *numerator, long *denominator)
  454 {
  455         fprop_fraction_percpu(&writeout_completions, &bdi->completions,
  456                                 numerator, denominator);
  457 }
  458 
  459 /*
  460  * On idle system, we can be called long after we scheduled because we use
  461  * deferred timers so count with missed periods.
  462  */
  463 static void writeout_period(unsigned long t)
  464 {
  465         int miss_periods = (jiffies - writeout_period_time) /
  466                                                  VM_COMPLETIONS_PERIOD_LEN;
  467 
  468         if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
  469                 writeout_period_time = wp_next_time(writeout_period_time +
  470                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
  471                 mod_timer(&writeout_period_timer, writeout_period_time);
  472         } else {
  473                 /*
  474                  * Aging has zeroed all fractions. Stop wasting CPU on period
  475                  * updates.
  476                  */
  477                 writeout_period_time = 0;
  478         }
  479 }
  480 
  481 /*
  482  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
  483  * registered backing devices, which, for obvious reasons, can not
  484  * exceed 100%.
  485  */
  486 static unsigned int bdi_min_ratio;
  487 
  488 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  489 {
  490         int ret = 0;
  491 
  492         spin_lock_bh(&bdi_lock);
  493         if (min_ratio > bdi->max_ratio) {
  494                 ret = -EINVAL;
  495         } else {
  496                 min_ratio -= bdi->min_ratio;
  497                 if (bdi_min_ratio + min_ratio < 100) {
  498                         bdi_min_ratio += min_ratio;
  499                         bdi->min_ratio += min_ratio;
  500                 } else {
  501                         ret = -EINVAL;
  502                 }
  503         }
  504         spin_unlock_bh(&bdi_lock);
  505 
  506         return ret;
  507 }
  508 
  509 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  510 {
  511         int ret = 0;
  512 
  513         if (max_ratio > 100)
  514                 return -EINVAL;
  515 
  516         spin_lock_bh(&bdi_lock);
  517         if (bdi->min_ratio > max_ratio) {
  518                 ret = -EINVAL;
  519         } else {
  520                 bdi->max_ratio = max_ratio;
  521                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
  522         }
  523         spin_unlock_bh(&bdi_lock);
  524 
  525         return ret;
  526 }
  527 EXPORT_SYMBOL(bdi_set_max_ratio);
  528 
  529 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  530                                            unsigned long bg_thresh)
  531 {
  532         return (thresh + bg_thresh) / 2;
  533 }
  534 
  535 static unsigned long hard_dirty_limit(unsigned long thresh)
  536 {
  537         return max(thresh, global_dirty_limit);
  538 }
  539 
  540 /**
  541  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
  542  * @bdi: the backing_dev_info to query
  543  * @dirty: global dirty limit in pages
  544  *
  545  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
  546  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  547  *
  548  * Note that balance_dirty_pages() will only seriously take it as a hard limit
  549  * when sleeping max_pause per page is not enough to keep the dirty pages under
  550  * control. For example, when the device is completely stalled due to some error
  551  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
  552  * In the other normal situations, it acts more gently by throttling the tasks
  553  * more (rather than completely block them) when the bdi dirty pages go high.
  554  *
  555  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  556  * - starving fast devices
  557  * - piling up dirty pages (that will take long time to sync) on slow devices
  558  *
  559  * The bdi's share of dirty limit will be adapting to its throughput and
  560  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  561  */
  562 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
  563 {
  564         u64 bdi_dirty;
  565         long numerator, denominator;
  566 
  567         /*
  568          * Calculate this BDI's share of the dirty ratio.
  569          */
  570         bdi_writeout_fraction(bdi, &numerator, &denominator);
  571 
  572         bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  573         bdi_dirty *= numerator;
  574         do_div(bdi_dirty, denominator);
  575 
  576         bdi_dirty += (dirty * bdi->min_ratio) / 100;
  577         if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  578                 bdi_dirty = dirty * bdi->max_ratio / 100;
  579 
  580         return bdi_dirty;
  581 }
  582 
  583 /*
  584  * Dirty position control.
  585  *
  586  * (o) global/bdi setpoints
  587  *
  588  * We want the dirty pages be balanced around the global/bdi setpoints.
  589  * When the number of dirty pages is higher/lower than the setpoint, the
  590  * dirty position control ratio (and hence task dirty ratelimit) will be
  591  * decreased/increased to bring the dirty pages back to the setpoint.
  592  *
  593  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  594  *
  595  *     if (dirty < setpoint) scale up   pos_ratio
  596  *     if (dirty > setpoint) scale down pos_ratio
  597  *
  598  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
  599  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
  600  *
  601  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  602  *
  603  * (o) global control line
  604  *
  605  *     ^ pos_ratio
  606  *     |
  607  *     |            |<===== global dirty control scope ======>|
  608  * 2.0 .............*
  609  *     |            .*
  610  *     |            . *
  611  *     |            .   *
  612  *     |            .     *
  613  *     |            .        *
  614  *     |            .            *
  615  * 1.0 ................................*
  616  *     |            .                  .     *
  617  *     |            .                  .          *
  618  *     |            .                  .              *
  619  *     |            .                  .                 *
  620  *     |            .                  .                    *
  621  *   0 +------------.------------------.----------------------*------------->
  622  *           freerun^          setpoint^                 limit^   dirty pages
  623  *
  624  * (o) bdi control line
  625  *
  626  *     ^ pos_ratio
  627  *     |
  628  *     |            *
  629  *     |              *
  630  *     |                *
  631  *     |                  *
  632  *     |                    * |<=========== span ============>|
  633  * 1.0 .......................*
  634  *     |                      . *
  635  *     |                      .   *
  636  *     |                      .     *
  637  *     |                      .       *
  638  *     |                      .         *
  639  *     |                      .           *
  640  *     |                      .             *
  641  *     |                      .               *
  642  *     |                      .                 *
  643  *     |                      .                   *
  644  *     |                      .                     *
  645  * 1/4 ...............................................* * * * * * * * * * * *
  646  *     |                      .                         .
  647  *     |                      .                           .
  648  *     |                      .                             .
  649  *   0 +----------------------.-------------------------------.------------->
  650  *                bdi_setpoint^                    x_intercept^
  651  *
  652  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
  653  * be smoothly throttled down to normal if it starts high in situations like
  654  * - start writing to a slow SD card and a fast disk at the same time. The SD
  655  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
  656  * - the bdi dirty thresh drops quickly due to change of JBOD workload
  657  */
  658 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
  659                                         unsigned long thresh,
  660                                         unsigned long bg_thresh,
  661                                         unsigned long dirty,
  662                                         unsigned long bdi_thresh,
  663                                         unsigned long bdi_dirty)
  664 {
  665         unsigned long write_bw = bdi->avg_write_bandwidth;
  666         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  667         unsigned long limit = hard_dirty_limit(thresh);
  668         unsigned long x_intercept;
  669         unsigned long setpoint;         /* dirty pages' target balance point */
  670         unsigned long bdi_setpoint;
  671         unsigned long span;
  672         long long pos_ratio;            /* for scaling up/down the rate limit */
  673         long x;
  674 
  675         if (unlikely(dirty >= limit))
  676                 return 0;
  677 
  678         /*
  679          * global setpoint
  680          *
  681          *                           setpoint - dirty 3
  682          *        f(dirty) := 1.0 + (----------------)
  683          *                           limit - setpoint
  684          *
  685          * it's a 3rd order polynomial that subjects to
  686          *
  687          * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
  688          * (2) f(setpoint) = 1.0 => the balance point
  689          * (3) f(limit)    = 0   => the hard limit
  690          * (4) df/dx      <= 0   => negative feedback control
  691          * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  692          *     => fast response on large errors; small oscillation near setpoint
  693          */
  694         setpoint = (freerun + limit) / 2;
  695         x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
  696                     limit - setpoint + 1);
  697         pos_ratio = x;
  698         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  699         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  700         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  701 
  702         /*
  703          * We have computed basic pos_ratio above based on global situation. If
  704          * the bdi is over/under its share of dirty pages, we want to scale
  705          * pos_ratio further down/up. That is done by the following mechanism.
  706          */
  707 
  708         /*
  709          * bdi setpoint
  710          *
  711          *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
  712          *
  713          *                        x_intercept - bdi_dirty
  714          *                     := --------------------------
  715          *                        x_intercept - bdi_setpoint
  716          *
  717          * The main bdi control line is a linear function that subjects to
  718          *
  719          * (1) f(bdi_setpoint) = 1.0
  720          * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
  721          *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
  722          *
  723          * For single bdi case, the dirty pages are observed to fluctuate
  724          * regularly within range
  725          *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
  726          * for various filesystems, where (2) can yield in a reasonable 12.5%
  727          * fluctuation range for pos_ratio.
  728          *
  729          * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
  730          * own size, so move the slope over accordingly and choose a slope that
  731          * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
  732          */
  733         if (unlikely(bdi_thresh > thresh))
  734                 bdi_thresh = thresh;
  735         /*
  736          * It's very possible that bdi_thresh is close to 0 not because the
  737          * device is slow, but that it has remained inactive for long time.
  738          * Honour such devices a reasonable good (hopefully IO efficient)
  739          * threshold, so that the occasional writes won't be blocked and active
  740          * writes can rampup the threshold quickly.
  741          */
  742         bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
  743         /*
  744          * scale global setpoint to bdi's:
  745          *      bdi_setpoint = setpoint * bdi_thresh / thresh
  746          */
  747         x = div_u64((u64)bdi_thresh << 16, thresh + 1);
  748         bdi_setpoint = setpoint * (u64)x >> 16;
  749         /*
  750          * Use span=(8*write_bw) in single bdi case as indicated by
  751          * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
  752          *
  753          *        bdi_thresh                    thresh - bdi_thresh
  754          * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
  755          *          thresh                            thresh
  756          */
  757         span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
  758         x_intercept = bdi_setpoint + span;
  759 
  760         if (bdi_dirty < x_intercept - span / 4) {
  761                 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
  762                                     x_intercept - bdi_setpoint + 1);
  763         } else
  764                 pos_ratio /= 4;
  765 
  766         /*
  767          * bdi reserve area, safeguard against dirty pool underrun and disk idle
  768          * It may push the desired control point of global dirty pages higher
  769          * than setpoint.
  770          */
  771         x_intercept = bdi_thresh / 2;
  772         if (bdi_dirty < x_intercept) {
  773                 if (bdi_dirty > x_intercept / 8)
  774                         pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
  775                 else
  776                         pos_ratio *= 8;
  777         }
  778 
  779         return pos_ratio;
  780 }
  781 
  782 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
  783                                        unsigned long elapsed,
  784                                        unsigned long written)
  785 {
  786         const unsigned long period = roundup_pow_of_two(3 * HZ);
  787         unsigned long avg = bdi->avg_write_bandwidth;
  788         unsigned long old = bdi->write_bandwidth;
  789         u64 bw;
  790 
  791         /*
  792          * bw = written * HZ / elapsed
  793          *
  794          *                   bw * elapsed + write_bandwidth * (period - elapsed)
  795          * write_bandwidth = ---------------------------------------------------
  796          *                                          period
  797          */
  798         bw = written - bdi->written_stamp;
  799         bw *= HZ;
  800         if (unlikely(elapsed > period)) {
  801                 do_div(bw, elapsed);
  802                 avg = bw;
  803                 goto out;
  804         }
  805         bw += (u64)bdi->write_bandwidth * (period - elapsed);
  806         bw >>= ilog2(period);
  807 
  808         /*
  809          * one more level of smoothing, for filtering out sudden spikes
  810          */
  811         if (avg > old && old >= (unsigned long)bw)
  812                 avg -= (avg - old) >> 3;
  813 
  814         if (avg < old && old <= (unsigned long)bw)
  815                 avg += (old - avg) >> 3;
  816 
  817 out:
  818         bdi->write_bandwidth = bw;
  819         bdi->avg_write_bandwidth = avg;
  820 }
  821 
  822 /*
  823  * The global dirtyable memory and dirty threshold could be suddenly knocked
  824  * down by a large amount (eg. on the startup of KVM in a swapless system).
  825  * This may throw the system into deep dirty exceeded state and throttle
  826  * heavy/light dirtiers alike. To retain good responsiveness, maintain
  827  * global_dirty_limit for tracking slowly down to the knocked down dirty
  828  * threshold.
  829  */
  830 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
  831 {
  832         unsigned long limit = global_dirty_limit;
  833 
  834         /*
  835          * Follow up in one step.
  836          */
  837         if (limit < thresh) {
  838                 limit = thresh;
  839                 goto update;
  840         }
  841 
  842         /*
  843          * Follow down slowly. Use the higher one as the target, because thresh
  844          * may drop below dirty. This is exactly the reason to introduce
  845          * global_dirty_limit which is guaranteed to lie above the dirty pages.
  846          */
  847         thresh = max(thresh, dirty);
  848         if (limit > thresh) {
  849                 limit -= (limit - thresh) >> 5;
  850                 goto update;
  851         }
  852         return;
  853 update:
  854         global_dirty_limit = limit;
  855 }
  856 
  857 static void global_update_bandwidth(unsigned long thresh,
  858                                     unsigned long dirty,
  859                                     unsigned long now)
  860 {
  861         static DEFINE_SPINLOCK(dirty_lock);
  862         static unsigned long update_time;
  863 
  864         /*
  865          * check locklessly first to optimize away locking for the most time
  866          */
  867         if (time_before(now, update_time + BANDWIDTH_INTERVAL))
  868                 return;
  869 
  870         spin_lock(&dirty_lock);
  871         if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
  872                 update_dirty_limit(thresh, dirty);
  873                 update_time = now;
  874         }
  875         spin_unlock(&dirty_lock);
  876 }
  877 
  878 /*
  879  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
  880  *
  881  * Normal bdi tasks will be curbed at or below it in long term.
  882  * Obviously it should be around (write_bw / N) when there are N dd tasks.
  883  */
  884 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
  885                                        unsigned long thresh,
  886                                        unsigned long bg_thresh,
  887                                        unsigned long dirty,
  888                                        unsigned long bdi_thresh,
  889                                        unsigned long bdi_dirty,
  890                                        unsigned long dirtied,
  891                                        unsigned long elapsed)
  892 {
  893         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  894         unsigned long limit = hard_dirty_limit(thresh);
  895         unsigned long setpoint = (freerun + limit) / 2;
  896         unsigned long write_bw = bdi->avg_write_bandwidth;
  897         unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
  898         unsigned long dirty_rate;
  899         unsigned long task_ratelimit;
  900         unsigned long balanced_dirty_ratelimit;
  901         unsigned long pos_ratio;
  902         unsigned long step;
  903         unsigned long x;
  904 
  905         /*
  906          * The dirty rate will match the writeout rate in long term, except
  907          * when dirty pages are truncated by userspace or re-dirtied by FS.
  908          */
  909         dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
  910 
  911         pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
  912                                        bdi_thresh, bdi_dirty);
  913         /*
  914          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  915          */
  916         task_ratelimit = (u64)dirty_ratelimit *
  917                                         pos_ratio >> RATELIMIT_CALC_SHIFT;
  918         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  919 
  920         /*
  921          * A linear estimation of the "balanced" throttle rate. The theory is,
  922          * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
  923          * dirty_rate will be measured to be (N * task_ratelimit). So the below
  924          * formula will yield the balanced rate limit (write_bw / N).
  925          *
  926          * Note that the expanded form is not a pure rate feedback:
  927          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
  928          * but also takes pos_ratio into account:
  929          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
  930          *
  931          * (1) is not realistic because pos_ratio also takes part in balancing
  932          * the dirty rate.  Consider the state
  933          *      pos_ratio = 0.5                                              (3)
  934          *      rate = 2 * (write_bw / N)                                    (4)
  935          * If (1) is used, it will stuck in that state! Because each dd will
  936          * be throttled at
  937          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
  938          * yielding
  939          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
  940          * put (6) into (1) we get
  941          *      rate_(i+1) = rate_(i)                                        (7)
  942          *
  943          * So we end up using (2) to always keep
  944          *      rate_(i+1) ~= (write_bw / N)                                 (8)
  945          * regardless of the value of pos_ratio. As long as (8) is satisfied,
  946          * pos_ratio is able to drive itself to 1.0, which is not only where
  947          * the dirty count meet the setpoint, but also where the slope of
  948          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  949          */
  950         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  951                                            dirty_rate | 1);
  952         /*
  953          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
  954          */
  955         if (unlikely(balanced_dirty_ratelimit > write_bw))
  956                 balanced_dirty_ratelimit = write_bw;
  957 
  958         /*
  959          * We could safely do this and return immediately:
  960          *
  961          *      bdi->dirty_ratelimit = balanced_dirty_ratelimit;
  962          *
  963          * However to get a more stable dirty_ratelimit, the below elaborated
  964          * code makes use of task_ratelimit to filter out singular points and
  965          * limit the step size.
  966          *
  967          * The below code essentially only uses the relative value of
  968          *
  969          *      task_ratelimit - dirty_ratelimit
  970          *      = (pos_ratio - 1) * dirty_ratelimit
  971          *
  972          * which reflects the direction and size of dirty position error.
  973          */
  974 
  975         /*
  976          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  977          * task_ratelimit is on the same side of dirty_ratelimit, too.
  978          * For example, when
  979          * - dirty_ratelimit > balanced_dirty_ratelimit
  980          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  981          * lowering dirty_ratelimit will help meet both the position and rate
  982          * control targets. Otherwise, don't update dirty_ratelimit if it will
  983          * only help meet the rate target. After all, what the users ultimately
  984          * feel and care are stable dirty rate and small position error.
  985          *
  986          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  987          * and filter out the singular points of balanced_dirty_ratelimit. Which
  988          * keeps jumping around randomly and can even leap far away at times
  989          * due to the small 200ms estimation period of dirty_rate (we want to
  990          * keep that period small to reduce time lags).
  991          */
  992         step = 0;
  993         if (dirty < setpoint) {
  994                 x = min(bdi->balanced_dirty_ratelimit,
  995                          min(balanced_dirty_ratelimit, task_ratelimit));
  996                 if (dirty_ratelimit < x)
  997                         step = x - dirty_ratelimit;
  998         } else {
  999                 x = max(bdi->balanced_dirty_ratelimit,
 1000                          max(balanced_dirty_ratelimit, task_ratelimit));
 1001                 if (dirty_ratelimit > x)
 1002                         step = dirty_ratelimit - x;
 1003         }
 1004 
 1005         /*
 1006          * Don't pursue 100% rate matching. It's impossible since the balanced
 1007          * rate itself is constantly fluctuating. So decrease the track speed
 1008          * when it gets close to the target. Helps eliminate pointless tremors.
 1009          */
 1010         step >>= dirty_ratelimit / (2 * step + 1);
 1011         /*
 1012          * Limit the tracking speed to avoid overshooting.
 1013          */
 1014         step = (step + 7) / 8;
 1015 
 1016         if (dirty_ratelimit < balanced_dirty_ratelimit)
 1017                 dirty_ratelimit += step;
 1018         else
 1019                 dirty_ratelimit -= step;
 1020 
 1021         bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
 1022         bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
 1023 
 1024         trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
 1025 }
 1026 
 1027 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
 1028                             unsigned long thresh,
 1029                             unsigned long bg_thresh,
 1030                             unsigned long dirty,
 1031                             unsigned long bdi_thresh,
 1032                             unsigned long bdi_dirty,
 1033                             unsigned long start_time)
 1034 {
 1035         unsigned long now = jiffies;
 1036         unsigned long elapsed = now - bdi->bw_time_stamp;
 1037         unsigned long dirtied;
 1038         unsigned long written;
 1039 
 1040         /*
 1041          * rate-limit, only update once every 200ms.
 1042          */
 1043         if (elapsed < BANDWIDTH_INTERVAL)
 1044                 return;
 1045 
 1046         dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
 1047         written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
 1048 
 1049         /*
 1050          * Skip quiet periods when disk bandwidth is under-utilized.
 1051          * (at least 1s idle time between two flusher runs)
 1052          */
 1053         if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
 1054                 goto snapshot;
 1055 
 1056         if (thresh) {
 1057                 global_update_bandwidth(thresh, dirty, now);
 1058                 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
 1059                                            bdi_thresh, bdi_dirty,
 1060                                            dirtied, elapsed);
 1061         }
 1062         bdi_update_write_bandwidth(bdi, elapsed, written);
 1063 
 1064 snapshot:
 1065         bdi->dirtied_stamp = dirtied;
 1066         bdi->written_stamp = written;
 1067         bdi->bw_time_stamp = now;
 1068 }
 1069 
 1070 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
 1071                                  unsigned long thresh,
 1072                                  unsigned long bg_thresh,
 1073                                  unsigned long dirty,
 1074                                  unsigned long bdi_thresh,
 1075                                  unsigned long bdi_dirty,
 1076                                  unsigned long start_time)
 1077 {
 1078         if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
 1079                 return;
 1080         spin_lock(&bdi->wb.list_lock);
 1081         __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
 1082                                bdi_thresh, bdi_dirty, start_time);
 1083         spin_unlock(&bdi->wb.list_lock);
 1084 }
 1085 
 1086 /*
 1087  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
 1088  * will look to see if it needs to start dirty throttling.
 1089  *
 1090  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
 1091  * global_page_state() too often. So scale it near-sqrt to the safety margin
 1092  * (the number of pages we may dirty without exceeding the dirty limits).
 1093  */
 1094 static unsigned long dirty_poll_interval(unsigned long dirty,
 1095                                          unsigned long thresh)
 1096 {
 1097         if (thresh > dirty)
 1098                 return 1UL << (ilog2(thresh - dirty) >> 1);
 1099 
 1100         return 1;
 1101 }
 1102 
 1103 static long bdi_max_pause(struct backing_dev_info *bdi,
 1104                           unsigned long bdi_dirty)
 1105 {
 1106         long bw = bdi->avg_write_bandwidth;
 1107         long t;
 1108 
 1109         /*
 1110          * Limit pause time for small memory systems. If sleeping for too long
 1111          * time, a small pool of dirty/writeback pages may go empty and disk go
 1112          * idle.
 1113          *
 1114          * 8 serves as the safety ratio.
 1115          */
 1116         t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
 1117         t++;
 1118 
 1119         return min_t(long, t, MAX_PAUSE);
 1120 }
 1121 
 1122 static long bdi_min_pause(struct backing_dev_info *bdi,
 1123                           long max_pause,
 1124                           unsigned long task_ratelimit,
 1125                           unsigned long dirty_ratelimit,
 1126                           int *nr_dirtied_pause)
 1127 {
 1128         long hi = ilog2(bdi->avg_write_bandwidth);
 1129         long lo = ilog2(bdi->dirty_ratelimit);
 1130         long t;         /* target pause */
 1131         long pause;     /* estimated next pause */
 1132         int pages;      /* target nr_dirtied_pause */
 1133 
 1134         /* target for 10ms pause on 1-dd case */
 1135         t = max(1, HZ / 100);
 1136 
 1137         /*
 1138          * Scale up pause time for concurrent dirtiers in order to reduce CPU
 1139          * overheads.
 1140          *
 1141          * (N * 10ms) on 2^N concurrent tasks.
 1142          */
 1143         if (hi > lo)
 1144                 t += (hi - lo) * (10 * HZ) / 1024;
 1145 
 1146         /*
 1147          * This is a bit convoluted. We try to base the next nr_dirtied_pause
 1148          * on the much more stable dirty_ratelimit. However the next pause time
 1149          * will be computed based on task_ratelimit and the two rate limits may
 1150          * depart considerably at some time. Especially if task_ratelimit goes
 1151          * below dirty_ratelimit/2 and the target pause is max_pause, the next
 1152          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
 1153          * result task_ratelimit won't be executed faithfully, which could
 1154          * eventually bring down dirty_ratelimit.
 1155          *
 1156          * We apply two rules to fix it up:
 1157          * 1) try to estimate the next pause time and if necessary, use a lower
 1158          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
 1159          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
 1160          * 2) limit the target pause time to max_pause/2, so that the normal
 1161          *    small fluctuations of task_ratelimit won't trigger rule (1) and
 1162          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
 1163          */
 1164         t = min(t, 1 + max_pause / 2);
 1165         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
 1166 
 1167         /*
 1168          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
 1169          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
 1170          * When the 16 consecutive reads are often interrupted by some dirty
 1171          * throttling pause during the async writes, cfq will go into idles
 1172          * (deadline is fine). So push nr_dirtied_pause as high as possible
 1173          * until reaches DIRTY_POLL_THRESH=32 pages.
 1174          */
 1175         if (pages < DIRTY_POLL_THRESH) {
 1176                 t = max_pause;
 1177                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
 1178                 if (pages > DIRTY_POLL_THRESH) {
 1179                         pages = DIRTY_POLL_THRESH;
 1180                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
 1181                 }
 1182         }
 1183 
 1184         pause = HZ * pages / (task_ratelimit + 1);
 1185         if (pause > max_pause) {
 1186                 t = max_pause;
 1187                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
 1188         }
 1189 
 1190         *nr_dirtied_pause = pages;
 1191         /*
 1192          * The minimal pause time will normally be half the target pause time.
 1193          */
 1194         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
 1195 }
 1196 
 1197 /*
 1198  * balance_dirty_pages() must be called by processes which are generating dirty
 1199  * data.  It looks at the number of dirty pages in the machine and will force
 1200  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
 1201  * If we're over `background_thresh' then the writeback threads are woken to
 1202  * perform some writeout.
 1203  */
 1204 static void balance_dirty_pages(struct address_space *mapping,
 1205                                 unsigned long pages_dirtied)
 1206 {
 1207         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
 1208         unsigned long bdi_reclaimable;
 1209         unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
 1210         unsigned long bdi_dirty;
 1211         unsigned long freerun;
 1212         unsigned long background_thresh;
 1213         unsigned long dirty_thresh;
 1214         unsigned long bdi_thresh;
 1215         long period;
 1216         long pause;
 1217         long max_pause;
 1218         long min_pause;
 1219         int nr_dirtied_pause;
 1220         bool dirty_exceeded = false;
 1221         unsigned long task_ratelimit;
 1222         unsigned long dirty_ratelimit;
 1223         unsigned long pos_ratio;
 1224         struct backing_dev_info *bdi = mapping->backing_dev_info;
 1225         unsigned long start_time = jiffies;
 1226 
 1227         for (;;) {
 1228                 unsigned long now = jiffies;
 1229 
 1230                 /*
 1231                  * Unstable writes are a feature of certain networked
 1232                  * filesystems (i.e. NFS) in which data may have been
 1233                  * written to the server's write cache, but has not yet
 1234                  * been flushed to permanent storage.
 1235                  */
 1236                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
 1237                                         global_page_state(NR_UNSTABLE_NFS);
 1238                 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
 1239 
 1240                 global_dirty_limits(&background_thresh, &dirty_thresh);
 1241 
 1242                 /*
 1243                  * Throttle it only when the background writeback cannot
 1244                  * catch-up. This avoids (excessively) small writeouts
 1245                  * when the bdi limits are ramping up.
 1246                  */
 1247                 freerun = dirty_freerun_ceiling(dirty_thresh,
 1248                                                 background_thresh);
 1249                 if (nr_dirty <= freerun) {
 1250                         current->dirty_paused_when = now;
 1251                         current->nr_dirtied = 0;
 1252                         current->nr_dirtied_pause =
 1253                                 dirty_poll_interval(nr_dirty, dirty_thresh);
 1254                         break;
 1255                 }
 1256 
 1257                 if (unlikely(!writeback_in_progress(bdi)))
 1258                         bdi_start_background_writeback(bdi);
 1259 
 1260                 /*
 1261                  * bdi_thresh is not treated as some limiting factor as
 1262                  * dirty_thresh, due to reasons
 1263                  * - in JBOD setup, bdi_thresh can fluctuate a lot
 1264                  * - in a system with HDD and USB key, the USB key may somehow
 1265                  *   go into state (bdi_dirty >> bdi_thresh) either because
 1266                  *   bdi_dirty starts high, or because bdi_thresh drops low.
 1267                  *   In this case we don't want to hard throttle the USB key
 1268                  *   dirtiers for 100 seconds until bdi_dirty drops under
 1269                  *   bdi_thresh. Instead the auxiliary bdi control line in
 1270                  *   bdi_position_ratio() will let the dirtier task progress
 1271                  *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
 1272                  */
 1273                 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
 1274 
 1275                 /*
 1276                  * In order to avoid the stacked BDI deadlock we need
 1277                  * to ensure we accurately count the 'dirty' pages when
 1278                  * the threshold is low.
 1279                  *
 1280                  * Otherwise it would be possible to get thresh+n pages
 1281                  * reported dirty, even though there are thresh-m pages
 1282                  * actually dirty; with m+n sitting in the percpu
 1283                  * deltas.
 1284                  */
 1285                 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
 1286                         bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
 1287                         bdi_dirty = bdi_reclaimable +
 1288                                     bdi_stat_sum(bdi, BDI_WRITEBACK);
 1289                 } else {
 1290                         bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
 1291                         bdi_dirty = bdi_reclaimable +
 1292                                     bdi_stat(bdi, BDI_WRITEBACK);
 1293                 }
 1294 
 1295                 dirty_exceeded = (bdi_dirty > bdi_thresh) &&
 1296                                   (nr_dirty > dirty_thresh);
 1297                 if (dirty_exceeded && !bdi->dirty_exceeded)
 1298                         bdi->dirty_exceeded = 1;
 1299 
 1300                 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
 1301                                      nr_dirty, bdi_thresh, bdi_dirty,
 1302                                      start_time);
 1303 
 1304                 dirty_ratelimit = bdi->dirty_ratelimit;
 1305                 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
 1306                                                background_thresh, nr_dirty,
 1307                                                bdi_thresh, bdi_dirty);
 1308                 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
 1309                                                         RATELIMIT_CALC_SHIFT;
 1310                 max_pause = bdi_max_pause(bdi, bdi_dirty);
 1311                 min_pause = bdi_min_pause(bdi, max_pause,
 1312                                           task_ratelimit, dirty_ratelimit,
 1313                                           &nr_dirtied_pause);
 1314 
 1315                 if (unlikely(task_ratelimit == 0)) {
 1316                         period = max_pause;
 1317                         pause = max_pause;
 1318                         goto pause;
 1319                 }
 1320                 period = HZ * pages_dirtied / task_ratelimit;
 1321                 pause = period;
 1322                 if (current->dirty_paused_when)
 1323                         pause -= now - current->dirty_paused_when;
 1324                 /*
 1325                  * For less than 1s think time (ext3/4 may block the dirtier
 1326                  * for up to 800ms from time to time on 1-HDD; so does xfs,
 1327                  * however at much less frequency), try to compensate it in
 1328                  * future periods by updating the virtual time; otherwise just
 1329                  * do a reset, as it may be a light dirtier.
 1330                  */
 1331                 if (pause < min_pause) {
 1332                         trace_balance_dirty_pages(bdi,
 1333                                                   dirty_thresh,
 1334                                                   background_thresh,
 1335                                                   nr_dirty,
 1336                                                   bdi_thresh,
 1337                                                   bdi_dirty,
 1338                                                   dirty_ratelimit,
 1339                                                   task_ratelimit,
 1340                                                   pages_dirtied,
 1341                                                   period,
 1342                                                   min(pause, 0L),
 1343                                                   start_time);
 1344                         if (pause < -HZ) {
 1345                                 current->dirty_paused_when = now;
 1346                                 current->nr_dirtied = 0;
 1347                         } else if (period) {
 1348                                 current->dirty_paused_when += period;
 1349                                 current->nr_dirtied = 0;
 1350                         } else if (current->nr_dirtied_pause <= pages_dirtied)
 1351                                 current->nr_dirtied_pause += pages_dirtied;
 1352                         break;
 1353                 }
 1354                 if (unlikely(pause > max_pause)) {
 1355                         /* for occasional dropped task_ratelimit */
 1356                         now += min(pause - max_pause, max_pause);
 1357                         pause = max_pause;
 1358                 }
 1359 
 1360 pause:
 1361                 trace_balance_dirty_pages(bdi,
 1362                                           dirty_thresh,
 1363                                           background_thresh,
 1364                                           nr_dirty,
 1365                                           bdi_thresh,
 1366                                           bdi_dirty,
 1367                                           dirty_ratelimit,
 1368                                           task_ratelimit,
 1369                                           pages_dirtied,
 1370                                           period,
 1371                                           pause,
 1372                                           start_time);
 1373                 __set_current_state(TASK_KILLABLE);
 1374                 io_schedule_timeout(pause);
 1375 
 1376                 current->dirty_paused_when = now + pause;
 1377                 current->nr_dirtied = 0;
 1378                 current->nr_dirtied_pause = nr_dirtied_pause;
 1379 
 1380                 /*
 1381                  * This is typically equal to (nr_dirty < dirty_thresh) and can
 1382                  * also keep "1000+ dd on a slow USB stick" under control.
 1383                  */
 1384                 if (task_ratelimit)
 1385                         break;
 1386 
 1387                 /*
 1388                  * In the case of an unresponding NFS server and the NFS dirty
 1389                  * pages exceeds dirty_thresh, give the other good bdi's a pipe
 1390                  * to go through, so that tasks on them still remain responsive.
 1391                  *
 1392                  * In theory 1 page is enough to keep the comsumer-producer
 1393                  * pipe going: the flusher cleans 1 page => the task dirties 1
 1394                  * more page. However bdi_dirty has accounting errors.  So use
 1395                  * the larger and more IO friendly bdi_stat_error.
 1396                  */
 1397                 if (bdi_dirty <= bdi_stat_error(bdi))
 1398                         break;
 1399 
 1400                 if (fatal_signal_pending(current))
 1401                         break;
 1402         }
 1403 
 1404         if (!dirty_exceeded && bdi->dirty_exceeded)
 1405                 bdi->dirty_exceeded = 0;
 1406 
 1407         if (writeback_in_progress(bdi))
 1408                 return;
 1409 
 1410         /*
 1411          * In laptop mode, we wait until hitting the higher threshold before
 1412          * starting background writeout, and then write out all the way down
 1413          * to the lower threshold.  So slow writers cause minimal disk activity.
 1414          *
 1415          * In normal mode, we start background writeout at the lower
 1416          * background_thresh, to keep the amount of dirty memory low.
 1417          */
 1418         if (laptop_mode)
 1419                 return;
 1420 
 1421         if (nr_reclaimable > background_thresh)
 1422                 bdi_start_background_writeback(bdi);
 1423 }
 1424 
 1425 void set_page_dirty_balance(struct page *page, int page_mkwrite)
 1426 {
 1427         if (set_page_dirty(page) || page_mkwrite) {
 1428                 struct address_space *mapping = page_mapping(page);
 1429 
 1430                 if (mapping)
 1431                         balance_dirty_pages_ratelimited(mapping);
 1432         }
 1433 }
 1434 
 1435 static DEFINE_PER_CPU(int, bdp_ratelimits);
 1436 
 1437 /*
 1438  * Normal tasks are throttled by
 1439  *      loop {
 1440  *              dirty tsk->nr_dirtied_pause pages;
 1441  *              take a snap in balance_dirty_pages();
 1442  *      }
 1443  * However there is a worst case. If every task exit immediately when dirtied
 1444  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
 1445  * called to throttle the page dirties. The solution is to save the not yet
 1446  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
 1447  * randomly into the running tasks. This works well for the above worst case,
 1448  * as the new task will pick up and accumulate the old task's leaked dirty
 1449  * count and eventually get throttled.
 1450  */
 1451 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
 1452 
 1453 /**
 1454  * balance_dirty_pages_ratelimited - balance dirty memory state
 1455  * @mapping: address_space which was dirtied
 1456  *
 1457  * Processes which are dirtying memory should call in here once for each page
 1458  * which was newly dirtied.  The function will periodically check the system's
 1459  * dirty state and will initiate writeback if needed.
 1460  *
 1461  * On really big machines, get_writeback_state is expensive, so try to avoid
 1462  * calling it too often (ratelimiting).  But once we're over the dirty memory
 1463  * limit we decrease the ratelimiting by a lot, to prevent individual processes
 1464  * from overshooting the limit by (ratelimit_pages) each.
 1465  */
 1466 void balance_dirty_pages_ratelimited(struct address_space *mapping)
 1467 {
 1468         struct backing_dev_info *bdi = mapping->backing_dev_info;
 1469         int ratelimit;
 1470         int *p;
 1471 
 1472         if (!bdi_cap_account_dirty(bdi))
 1473                 return;
 1474 
 1475         ratelimit = current->nr_dirtied_pause;
 1476         if (bdi->dirty_exceeded)
 1477                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
 1478 
 1479         preempt_disable();
 1480         /*
 1481          * This prevents one CPU to accumulate too many dirtied pages without
 1482          * calling into balance_dirty_pages(), which can happen when there are
 1483          * 1000+ tasks, all of them start dirtying pages at exactly the same
 1484          * time, hence all honoured too large initial task->nr_dirtied_pause.
 1485          */
 1486         p =  &__get_cpu_var(bdp_ratelimits);
 1487         if (unlikely(current->nr_dirtied >= ratelimit))
 1488                 *p = 0;
 1489         else if (unlikely(*p >= ratelimit_pages)) {
 1490                 *p = 0;
 1491                 ratelimit = 0;
 1492         }
 1493         /*
 1494          * Pick up the dirtied pages by the exited tasks. This avoids lots of
 1495          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
 1496          * the dirty throttling and livelock other long-run dirtiers.
 1497          */
 1498         p = &__get_cpu_var(dirty_throttle_leaks);
 1499         if (*p > 0 && current->nr_dirtied < ratelimit) {
 1500                 unsigned long nr_pages_dirtied;
 1501                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
 1502                 *p -= nr_pages_dirtied;
 1503                 current->nr_dirtied += nr_pages_dirtied;
 1504         }
 1505         preempt_enable();
 1506 
 1507         if (unlikely(current->nr_dirtied >= ratelimit))
 1508                 balance_dirty_pages(mapping, current->nr_dirtied);
 1509 }
 1510 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
 1511 
 1512 void throttle_vm_writeout(gfp_t gfp_mask)
 1513 {
 1514         unsigned long background_thresh;
 1515         unsigned long dirty_thresh;
 1516 
 1517         for ( ; ; ) {
 1518                 global_dirty_limits(&background_thresh, &dirty_thresh);
 1519                 dirty_thresh = hard_dirty_limit(dirty_thresh);
 1520 
 1521                 /*
 1522                  * Boost the allowable dirty threshold a bit for page
 1523                  * allocators so they don't get DoS'ed by heavy writers
 1524                  */
 1525                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
 1526 
 1527                 if (global_page_state(NR_UNSTABLE_NFS) +
 1528                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
 1529                                 break;
 1530                 congestion_wait(BLK_RW_ASYNC, HZ/10);
 1531 
 1532                 /*
 1533                  * The caller might hold locks which can prevent IO completion
 1534                  * or progress in the filesystem.  So we cannot just sit here
 1535                  * waiting for IO to complete.
 1536                  */
 1537                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
 1538                         break;
 1539         }
 1540 }
 1541 
 1542 /*
 1543  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 1544  */
 1545 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
 1546         void __user *buffer, size_t *length, loff_t *ppos)
 1547 {
 1548         proc_dointvec(table, write, buffer, length, ppos);
 1549         return 0;
 1550 }
 1551 
 1552 #ifdef CONFIG_BLOCK
 1553 void laptop_mode_timer_fn(unsigned long data)
 1554 {
 1555         struct request_queue *q = (struct request_queue *)data;
 1556         int nr_pages = global_page_state(NR_FILE_DIRTY) +
 1557                 global_page_state(NR_UNSTABLE_NFS);
 1558 
 1559         /*
 1560          * We want to write everything out, not just down to the dirty
 1561          * threshold
 1562          */
 1563         if (bdi_has_dirty_io(&q->backing_dev_info))
 1564                 bdi_start_writeback(&q->backing_dev_info, nr_pages,
 1565                                         WB_REASON_LAPTOP_TIMER);
 1566 }
 1567 
 1568 /*
 1569  * We've spun up the disk and we're in laptop mode: schedule writeback
 1570  * of all dirty data a few seconds from now.  If the flush is already scheduled
 1571  * then push it back - the user is still using the disk.
 1572  */
 1573 void laptop_io_completion(struct backing_dev_info *info)
 1574 {
 1575         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
 1576 }
 1577 
 1578 /*
 1579  * We're in laptop mode and we've just synced. The sync's writes will have
 1580  * caused another writeback to be scheduled by laptop_io_completion.
 1581  * Nothing needs to be written back anymore, so we unschedule the writeback.
 1582  */
 1583 void laptop_sync_completion(void)
 1584 {
 1585         struct backing_dev_info *bdi;
 1586 
 1587         rcu_read_lock();
 1588 
 1589         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
 1590                 del_timer(&bdi->laptop_mode_wb_timer);
 1591 
 1592         rcu_read_unlock();
 1593 }
 1594 #endif
 1595 
 1596 /*
 1597  * If ratelimit_pages is too high then we can get into dirty-data overload
 1598  * if a large number of processes all perform writes at the same time.
 1599  * If it is too low then SMP machines will call the (expensive)
 1600  * get_writeback_state too often.
 1601  *
 1602  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 1603  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
 1604  * thresholds.
 1605  */
 1606 
 1607 void writeback_set_ratelimit(void)
 1608 {
 1609         unsigned long background_thresh;
 1610         unsigned long dirty_thresh;
 1611         global_dirty_limits(&background_thresh, &dirty_thresh);
 1612         global_dirty_limit = dirty_thresh;
 1613         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
 1614         if (ratelimit_pages < 16)
 1615                 ratelimit_pages = 16;
 1616 }
 1617 
 1618 static int __cpuinit
 1619 ratelimit_handler(struct notifier_block *self, unsigned long action,
 1620                   void *hcpu)
 1621 {
 1622 
 1623         switch (action & ~CPU_TASKS_FROZEN) {
 1624         case CPU_ONLINE:
 1625         case CPU_DEAD:
 1626                 writeback_set_ratelimit();
 1627                 return NOTIFY_OK;
 1628         default:
 1629                 return NOTIFY_DONE;
 1630         }
 1631 }
 1632 
 1633 static struct notifier_block __cpuinitdata ratelimit_nb = {
 1634         .notifier_call  = ratelimit_handler,
 1635         .next           = NULL,
 1636 };
 1637 
 1638 /*
 1639  * Called early on to tune the page writeback dirty limits.
 1640  *
 1641  * We used to scale dirty pages according to how total memory
 1642  * related to pages that could be allocated for buffers (by
 1643  * comparing nr_free_buffer_pages() to vm_total_pages.
 1644  *
 1645  * However, that was when we used "dirty_ratio" to scale with
 1646  * all memory, and we don't do that any more. "dirty_ratio"
 1647  * is now applied to total non-HIGHPAGE memory (by subtracting
 1648  * totalhigh_pages from vm_total_pages), and as such we can't
 1649  * get into the old insane situation any more where we had
 1650  * large amounts of dirty pages compared to a small amount of
 1651  * non-HIGHMEM memory.
 1652  *
 1653  * But we might still want to scale the dirty_ratio by how
 1654  * much memory the box has..
 1655  */
 1656 void __init page_writeback_init(void)
 1657 {
 1658         writeback_set_ratelimit();
 1659         register_cpu_notifier(&ratelimit_nb);
 1660 
 1661         fprop_global_init(&writeout_completions);
 1662 }
 1663 
 1664 /**
 1665  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 1666  * @mapping: address space structure to write
 1667  * @start: starting page index
 1668  * @end: ending page index (inclusive)
 1669  *
 1670  * This function scans the page range from @start to @end (inclusive) and tags
 1671  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 1672  * that write_cache_pages (or whoever calls this function) will then use
 1673  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 1674  * used to avoid livelocking of writeback by a process steadily creating new
 1675  * dirty pages in the file (thus it is important for this function to be quick
 1676  * so that it can tag pages faster than a dirtying process can create them).
 1677  */
 1678 /*
 1679  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
 1680  */
 1681 void tag_pages_for_writeback(struct address_space *mapping,
 1682                              pgoff_t start, pgoff_t end)
 1683 {
 1684 #define WRITEBACK_TAG_BATCH 4096
 1685         unsigned long tagged;
 1686 
 1687         do {
 1688                 spin_lock_irq(&mapping->tree_lock);
 1689                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
 1690                                 &start, end, WRITEBACK_TAG_BATCH,
 1691                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
 1692                 spin_unlock_irq(&mapping->tree_lock);
 1693                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
 1694                 cond_resched();
 1695                 /* We check 'start' to handle wrapping when end == ~0UL */
 1696         } while (tagged >= WRITEBACK_TAG_BATCH && start);
 1697 }
 1698 EXPORT_SYMBOL(tag_pages_for_writeback);
 1699 
 1700 /**
 1701  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
 1702  * @mapping: address space structure to write
 1703  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 1704  * @writepage: function called for each page
 1705  * @data: data passed to writepage function
 1706  *
 1707  * If a page is already under I/O, write_cache_pages() skips it, even
 1708  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 1709  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 1710  * and msync() need to guarantee that all the data which was dirty at the time
 1711  * the call was made get new I/O started against them.  If wbc->sync_mode is
 1712  * WB_SYNC_ALL then we were called for data integrity and we must wait for
 1713  * existing IO to complete.
 1714  *
 1715  * To avoid livelocks (when other process dirties new pages), we first tag
 1716  * pages which should be written back with TOWRITE tag and only then start
 1717  * writing them. For data-integrity sync we have to be careful so that we do
 1718  * not miss some pages (e.g., because some other process has cleared TOWRITE
 1719  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 1720  * by the process clearing the DIRTY tag (and submitting the page for IO).
 1721  */
 1722 int write_cache_pages(struct address_space *mapping,
 1723                       struct writeback_control *wbc, writepage_t writepage,
 1724                       void *data)
 1725 {
 1726         int ret = 0;
 1727         int done = 0;
 1728         struct pagevec pvec;
 1729         int nr_pages;
 1730         pgoff_t uninitialized_var(writeback_index);
 1731         pgoff_t index;
 1732         pgoff_t end;            /* Inclusive */
 1733         pgoff_t done_index;
 1734         int cycled;
 1735         int range_whole = 0;
 1736         int tag;
 1737 
 1738         pagevec_init(&pvec, 0);
 1739         if (wbc->range_cyclic) {
 1740                 writeback_index = mapping->writeback_index; /* prev offset */
 1741                 index = writeback_index;
 1742                 if (index == 0)
 1743                         cycled = 1;
 1744                 else
 1745                         cycled = 0;
 1746                 end = -1;
 1747         } else {
 1748                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
 1749                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
 1750                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
 1751                         range_whole = 1;
 1752                 cycled = 1; /* ignore range_cyclic tests */
 1753         }
 1754         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 1755                 tag = PAGECACHE_TAG_TOWRITE;
 1756         else
 1757                 tag = PAGECACHE_TAG_DIRTY;
 1758 retry:
 1759         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 1760                 tag_pages_for_writeback(mapping, index, end);
 1761         done_index = index;
 1762         while (!done && (index <= end)) {
 1763                 int i;
 1764 
 1765                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
 1766                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
 1767                 if (nr_pages == 0)
 1768                         break;
 1769 
 1770                 for (i = 0; i < nr_pages; i++) {
 1771                         struct page *page = pvec.pages[i];
 1772 
 1773                         /*
 1774                          * At this point, the page may be truncated or
 1775                          * invalidated (changing page->mapping to NULL), or
 1776                          * even swizzled back from swapper_space to tmpfs file
 1777                          * mapping. However, page->index will not change
 1778                          * because we have a reference on the page.
 1779                          */
 1780                         if (page->index > end) {
 1781                                 /*
 1782                                  * can't be range_cyclic (1st pass) because
 1783                                  * end == -1 in that case.
 1784                                  */
 1785                                 done = 1;
 1786                                 break;
 1787                         }
 1788 
 1789                         done_index = page->index;
 1790 
 1791                         lock_page(page);
 1792 
 1793                         /*
 1794                          * Page truncated or invalidated. We can freely skip it
 1795                          * then, even for data integrity operations: the page
 1796                          * has disappeared concurrently, so there could be no
 1797                          * real expectation of this data interity operation
 1798                          * even if there is now a new, dirty page at the same
 1799                          * pagecache address.
 1800                          */
 1801                         if (unlikely(page->mapping != mapping)) {
 1802 continue_unlock:
 1803                                 unlock_page(page);
 1804                                 continue;
 1805                         }
 1806 
 1807                         if (!PageDirty(page)) {
 1808                                 /* someone wrote it for us */
 1809                                 goto continue_unlock;
 1810                         }
 1811 
 1812                         if (PageWriteback(page)) {
 1813                                 if (wbc->sync_mode != WB_SYNC_NONE)
 1814                                         wait_on_page_writeback(page);
 1815                                 else
 1816                                         goto continue_unlock;
 1817                         }
 1818 
 1819                         BUG_ON(PageWriteback(page));
 1820                         if (!clear_page_dirty_for_io(page))
 1821                                 goto continue_unlock;
 1822 
 1823                         trace_wbc_writepage(wbc, mapping->backing_dev_info);
 1824                         ret = (*writepage)(page, wbc, data);
 1825                         if (unlikely(ret)) {
 1826                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
 1827                                         unlock_page(page);
 1828                                         ret = 0;
 1829                                 } else {
 1830                                         /*
 1831                                          * done_index is set past this page,
 1832                                          * so media errors will not choke
 1833                                          * background writeout for the entire
 1834                                          * file. This has consequences for
 1835                                          * range_cyclic semantics (ie. it may
 1836                                          * not be suitable for data integrity
 1837                                          * writeout).
 1838                                          */
 1839                                         done_index = page->index + 1;
 1840                                         done = 1;
 1841                                         break;
 1842                                 }
 1843                         }
 1844 
 1845                         /*
 1846                          * We stop writing back only if we are not doing
 1847                          * integrity sync. In case of integrity sync we have to
 1848                          * keep going until we have written all the pages
 1849                          * we tagged for writeback prior to entering this loop.
 1850                          */
 1851                         if (--wbc->nr_to_write <= 0 &&
 1852                             wbc->sync_mode == WB_SYNC_NONE) {
 1853                                 done = 1;
 1854                                 break;
 1855                         }
 1856                 }
 1857                 pagevec_release(&pvec);
 1858                 cond_resched();
 1859         }
 1860         if (!cycled && !done) {
 1861                 /*
 1862                  * range_cyclic:
 1863                  * We hit the last page and there is more work to be done: wrap
 1864                  * back to the start of the file
 1865                  */
 1866                 cycled = 1;
 1867                 index = 0;
 1868                 end = writeback_index - 1;
 1869                 goto retry;
 1870         }
 1871         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
 1872                 mapping->writeback_index = done_index;
 1873 
 1874         return ret;
 1875 }
 1876 EXPORT_SYMBOL(write_cache_pages);
 1877 
 1878 /*
 1879  * Function used by generic_writepages to call the real writepage
 1880  * function and set the mapping flags on error
 1881  */
 1882 static int __writepage(struct page *page, struct writeback_control *wbc,
 1883                        void *data)
 1884 {
 1885         struct address_space *mapping = data;
 1886         int ret = mapping->a_ops->writepage(page, wbc);
 1887         mapping_set_error(mapping, ret);
 1888         return ret;
 1889 }
 1890 
 1891 /**
 1892  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 1893  * @mapping: address space structure to write
 1894  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 1895  *
 1896  * This is a library function, which implements the writepages()
 1897  * address_space_operation.
 1898  */
 1899 int generic_writepages(struct address_space *mapping,
 1900                        struct writeback_control *wbc)
 1901 {
 1902         struct blk_plug plug;
 1903         int ret;
 1904 
 1905         /* deal with chardevs and other special file */
 1906         if (!mapping->a_ops->writepage)
 1907                 return 0;
 1908 
 1909         blk_start_plug(&plug);
 1910         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
 1911         blk_finish_plug(&plug);
 1912         return ret;
 1913 }
 1914 
 1915 EXPORT_SYMBOL(generic_writepages);
 1916 
 1917 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
 1918 {
 1919         int ret;
 1920 
 1921         if (wbc->nr_to_write <= 0)
 1922                 return 0;
 1923         if (mapping->a_ops->writepages)
 1924                 ret = mapping->a_ops->writepages(mapping, wbc);
 1925         else
 1926                 ret = generic_writepages(mapping, wbc);
 1927         return ret;
 1928 }
 1929 
 1930 /**
 1931  * write_one_page - write out a single page and optionally wait on I/O
 1932  * @page: the page to write
 1933  * @wait: if true, wait on writeout
 1934  *
 1935  * The page must be locked by the caller and will be unlocked upon return.
 1936  *
 1937  * write_one_page() returns a negative error code if I/O failed.
 1938  */
 1939 int write_one_page(struct page *page, int wait)
 1940 {
 1941         struct address_space *mapping = page->mapping;
 1942         int ret = 0;
 1943         struct writeback_control wbc = {
 1944                 .sync_mode = WB_SYNC_ALL,
 1945                 .nr_to_write = 1,
 1946         };
 1947 
 1948         BUG_ON(!PageLocked(page));
 1949 
 1950         if (wait)
 1951                 wait_on_page_writeback(page);
 1952 
 1953         if (clear_page_dirty_for_io(page)) {
 1954                 page_cache_get(page);
 1955                 ret = mapping->a_ops->writepage(page, &wbc);
 1956                 if (ret == 0 && wait) {
 1957                         wait_on_page_writeback(page);
 1958                         if (PageError(page))
 1959                                 ret = -EIO;
 1960                 }
 1961                 page_cache_release(page);
 1962         } else {
 1963                 unlock_page(page);
 1964         }
 1965         return ret;
 1966 }
 1967 EXPORT_SYMBOL(write_one_page);
 1968 
 1969 /*
 1970  * For address_spaces which do not use buffers nor write back.
 1971  */
 1972 int __set_page_dirty_no_writeback(struct page *page)
 1973 {
 1974         if (!PageDirty(page))
 1975                 return !TestSetPageDirty(page);
 1976         return 0;
 1977 }
 1978 
 1979 /*
 1980  * Helper function for set_page_dirty family.
 1981  * NOTE: This relies on being atomic wrt interrupts.
 1982  */
 1983 void account_page_dirtied(struct page *page, struct address_space *mapping)
 1984 {
 1985         if (mapping_cap_account_dirty(mapping)) {
 1986                 __inc_zone_page_state(page, NR_FILE_DIRTY);
 1987                 __inc_zone_page_state(page, NR_DIRTIED);
 1988                 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
 1989                 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
 1990                 task_io_account_write(PAGE_CACHE_SIZE);
 1991                 current->nr_dirtied++;
 1992                 this_cpu_inc(bdp_ratelimits);
 1993         }
 1994 }
 1995 EXPORT_SYMBOL(account_page_dirtied);
 1996 
 1997 /*
 1998  * Helper function for set_page_writeback family.
 1999  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
 2000  * wrt interrupts.
 2001  */
 2002 void account_page_writeback(struct page *page)
 2003 {
 2004         inc_zone_page_state(page, NR_WRITEBACK);
 2005 }
 2006 EXPORT_SYMBOL(account_page_writeback);
 2007 
 2008 /*
 2009  * For address_spaces which do not use buffers.  Just tag the page as dirty in
 2010  * its radix tree.
 2011  *
 2012  * This is also used when a single buffer is being dirtied: we want to set the
 2013  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 2014  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 2015  *
 2016  * Most callers have locked the page, which pins the address_space in memory.
 2017  * But zap_pte_range() does not lock the page, however in that case the
 2018  * mapping is pinned by the vma's ->vm_file reference.
 2019  *
 2020  * We take care to handle the case where the page was truncated from the
 2021  * mapping by re-checking page_mapping() inside tree_lock.
 2022  */
 2023 int __set_page_dirty_nobuffers(struct page *page)
 2024 {
 2025         if (!TestSetPageDirty(page)) {
 2026                 struct address_space *mapping = page_mapping(page);
 2027                 struct address_space *mapping2;
 2028 
 2029                 if (!mapping)
 2030                         return 1;
 2031 
 2032                 spin_lock_irq(&mapping->tree_lock);
 2033                 mapping2 = page_mapping(page);
 2034                 if (mapping2) { /* Race with truncate? */
 2035                         BUG_ON(mapping2 != mapping);
 2036                         WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
 2037                         account_page_dirtied(page, mapping);
 2038                         radix_tree_tag_set(&mapping->page_tree,
 2039                                 page_index(page), PAGECACHE_TAG_DIRTY);
 2040                 }
 2041                 spin_unlock_irq(&mapping->tree_lock);
 2042                 if (mapping->host) {
 2043                         /* !PageAnon && !swapper_space */
 2044                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 2045                 }
 2046                 return 1;
 2047         }
 2048         return 0;
 2049 }
 2050 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
 2051 
 2052 /*
 2053  * Call this whenever redirtying a page, to de-account the dirty counters
 2054  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
 2055  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
 2056  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
 2057  * control.
 2058  */
 2059 void account_page_redirty(struct page *page)
 2060 {
 2061         struct address_space *mapping = page->mapping;
 2062         if (mapping && mapping_cap_account_dirty(mapping)) {
 2063                 current->nr_dirtied--;
 2064                 dec_zone_page_state(page, NR_DIRTIED);
 2065                 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
 2066         }
 2067 }
 2068 EXPORT_SYMBOL(account_page_redirty);
 2069 
 2070 /*
 2071  * When a writepage implementation decides that it doesn't want to write this
 2072  * page for some reason, it should redirty the locked page via
 2073  * redirty_page_for_writepage() and it should then unlock the page and return 0
 2074  */
 2075 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
 2076 {
 2077         wbc->pages_skipped++;
 2078         account_page_redirty(page);
 2079         return __set_page_dirty_nobuffers(page);
 2080 }
 2081 EXPORT_SYMBOL(redirty_page_for_writepage);
 2082 
 2083 /*
 2084  * Dirty a page.
 2085  *
 2086  * For pages with a mapping this should be done under the page lock
 2087  * for the benefit of asynchronous memory errors who prefer a consistent
 2088  * dirty state. This rule can be broken in some special cases,
 2089  * but should be better not to.
 2090  *
 2091  * If the mapping doesn't provide a set_page_dirty a_op, then
 2092  * just fall through and assume that it wants buffer_heads.
 2093  */
 2094 int set_page_dirty(struct page *page)
 2095 {
 2096         struct address_space *mapping = page_mapping(page);
 2097 
 2098         if (likely(mapping)) {
 2099                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
 2100                 /*
 2101                  * readahead/lru_deactivate_page could remain
 2102                  * PG_readahead/PG_reclaim due to race with end_page_writeback
 2103                  * About readahead, if the page is written, the flags would be
 2104                  * reset. So no problem.
 2105                  * About lru_deactivate_page, if the page is redirty, the flag
 2106                  * will be reset. So no problem. but if the page is used by readahead
 2107                  * it will confuse readahead and make it restart the size rampup
 2108                  * process. But it's a trivial problem.
 2109                  */
 2110                 ClearPageReclaim(page);
 2111 #ifdef CONFIG_BLOCK
 2112                 if (!spd)
 2113                         spd = __set_page_dirty_buffers;
 2114 #endif
 2115                 return (*spd)(page);
 2116         }
 2117         if (!PageDirty(page)) {
 2118                 if (!TestSetPageDirty(page))
 2119                         return 1;
 2120         }
 2121         return 0;
 2122 }
 2123 EXPORT_SYMBOL(set_page_dirty);
 2124 
 2125 /*
 2126  * set_page_dirty() is racy if the caller has no reference against
 2127  * page->mapping->host, and if the page is unlocked.  This is because another
 2128  * CPU could truncate the page off the mapping and then free the mapping.
 2129  *
 2130  * Usually, the page _is_ locked, or the caller is a user-space process which
 2131  * holds a reference on the inode by having an open file.
 2132  *
 2133  * In other cases, the page should be locked before running set_page_dirty().
 2134  */
 2135 int set_page_dirty_lock(struct page *page)
 2136 {
 2137         int ret;
 2138 
 2139         lock_page(page);
 2140         ret = set_page_dirty(page);
 2141         unlock_page(page);
 2142         return ret;
 2143 }
 2144 EXPORT_SYMBOL(set_page_dirty_lock);
 2145 
 2146 /*
 2147  * Clear a page's dirty flag, while caring for dirty memory accounting.
 2148  * Returns true if the page was previously dirty.
 2149  *
 2150  * This is for preparing to put the page under writeout.  We leave the page
 2151  * tagged as dirty in the radix tree so that a concurrent write-for-sync
 2152  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 2153  * implementation will run either set_page_writeback() or set_page_dirty(),
 2154  * at which stage we bring the page's dirty flag and radix-tree dirty tag
 2155  * back into sync.
 2156  *
 2157  * This incoherency between the page's dirty flag and radix-tree tag is
 2158  * unfortunate, but it only exists while the page is locked.
 2159  */
 2160 int clear_page_dirty_for_io(struct page *page)
 2161 {
 2162         struct address_space *mapping = page_mapping(page);
 2163 
 2164         BUG_ON(!PageLocked(page));
 2165 
 2166         if (mapping && mapping_cap_account_dirty(mapping)) {
 2167                 /*
 2168                  * Yes, Virginia, this is indeed insane.
 2169                  *
 2170                  * We use this sequence to make sure that
 2171                  *  (a) we account for dirty stats properly
 2172                  *  (b) we tell the low-level filesystem to
 2173                  *      mark the whole page dirty if it was
 2174                  *      dirty in a pagetable. Only to then
 2175                  *  (c) clean the page again and return 1 to
 2176                  *      cause the writeback.
 2177                  *
 2178                  * This way we avoid all nasty races with the
 2179                  * dirty bit in multiple places and clearing
 2180                  * them concurrently from different threads.
 2181                  *
 2182                  * Note! Normally the "set_page_dirty(page)"
 2183                  * has no effect on the actual dirty bit - since
 2184                  * that will already usually be set. But we
 2185                  * need the side effects, and it can help us
 2186                  * avoid races.
 2187                  *
 2188                  * We basically use the page "master dirty bit"
 2189                  * as a serialization point for all the different
 2190                  * threads doing their things.
 2191                  */
 2192                 if (page_mkclean(page))
 2193                         set_page_dirty(page);
 2194                 /*
 2195                  * We carefully synchronise fault handlers against
 2196                  * installing a dirty pte and marking the page dirty
 2197                  * at this point. We do this by having them hold the
 2198                  * page lock at some point after installing their
 2199                  * pte, but before marking the page dirty.
 2200                  * Pages are always locked coming in here, so we get
 2201                  * the desired exclusion. See mm/memory.c:do_wp_page()
 2202                  * for more comments.
 2203                  */
 2204                 if (TestClearPageDirty(page)) {
 2205                         dec_zone_page_state(page, NR_FILE_DIRTY);
 2206                         dec_bdi_stat(mapping->backing_dev_info,
 2207                                         BDI_RECLAIMABLE);
 2208                         return 1;
 2209                 }
 2210                 return 0;
 2211         }
 2212         return TestClearPageDirty(page);
 2213 }
 2214 EXPORT_SYMBOL(clear_page_dirty_for_io);
 2215 
 2216 int test_clear_page_writeback(struct page *page)
 2217 {
 2218         struct address_space *mapping = page_mapping(page);
 2219         int ret;
 2220 
 2221         if (mapping) {
 2222                 struct backing_dev_info *bdi = mapping->backing_dev_info;
 2223                 unsigned long flags;
 2224 
 2225                 spin_lock_irqsave(&mapping->tree_lock, flags);
 2226                 ret = TestClearPageWriteback(page);
 2227                 if (ret) {
 2228                         radix_tree_tag_clear(&mapping->page_tree,
 2229                                                 page_index(page),
 2230                                                 PAGECACHE_TAG_WRITEBACK);
 2231                         if (bdi_cap_account_writeback(bdi)) {
 2232                                 __dec_bdi_stat(bdi, BDI_WRITEBACK);
 2233                                 __bdi_writeout_inc(bdi);
 2234                         }
 2235                 }
 2236                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
 2237         } else {
 2238                 ret = TestClearPageWriteback(page);
 2239         }
 2240         if (ret) {
 2241                 dec_zone_page_state(page, NR_WRITEBACK);
 2242                 inc_zone_page_state(page, NR_WRITTEN);
 2243         }
 2244         return ret;
 2245 }
 2246 
 2247 int test_set_page_writeback(struct page *page)
 2248 {
 2249         struct address_space *mapping = page_mapping(page);
 2250         int ret;
 2251 
 2252         if (mapping) {
 2253                 struct backing_dev_info *bdi = mapping->backing_dev_info;
 2254                 unsigned long flags;
 2255 
 2256                 spin_lock_irqsave(&mapping->tree_lock, flags);
 2257                 ret = TestSetPageWriteback(page);
 2258                 if (!ret) {
 2259                         radix_tree_tag_set(&mapping->page_tree,
 2260                                                 page_index(page),
 2261                                                 PAGECACHE_TAG_WRITEBACK);
 2262                         if (bdi_cap_account_writeback(bdi))
 2263                                 __inc_bdi_stat(bdi, BDI_WRITEBACK);
 2264                 }
 2265                 if (!PageDirty(page))
 2266                         radix_tree_tag_clear(&mapping->page_tree,
 2267                                                 page_index(page),
 2268                                                 PAGECACHE_TAG_DIRTY);
 2269                 radix_tree_tag_clear(&mapping->page_tree,
 2270                                      page_index(page),
 2271                                      PAGECACHE_TAG_TOWRITE);
 2272                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
 2273         } else {
 2274                 ret = TestSetPageWriteback(page);
 2275         }
 2276         if (!ret)
 2277                 account_page_writeback(page);
 2278         return ret;
 2279 
 2280 }
 2281 EXPORT_SYMBOL(test_set_page_writeback);
 2282 
 2283 /*
 2284  * Return true if any of the pages in the mapping are marked with the
 2285  * passed tag.
 2286  */
 2287 int mapping_tagged(struct address_space *mapping, int tag)
 2288 {
 2289         return radix_tree_tagged(&mapping->page_tree, tag);
 2290 }
 2291 EXPORT_SYMBOL(mapping_tagged);

Cache object: 14d65e796ab219036be6143862921a73


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.