The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/percpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * mm/percpu.c - percpu memory allocator
    3  *
    4  * Copyright (C) 2009           SUSE Linux Products GmbH
    5  * Copyright (C) 2009           Tejun Heo <tj@kernel.org>
    6  *
    7  * This file is released under the GPLv2.
    8  *
    9  * This is percpu allocator which can handle both static and dynamic
   10  * areas.  Percpu areas are allocated in chunks.  Each chunk is
   11  * consisted of boot-time determined number of units and the first
   12  * chunk is used for static percpu variables in the kernel image
   13  * (special boot time alloc/init handling necessary as these areas
   14  * need to be brought up before allocation services are running).
   15  * Unit grows as necessary and all units grow or shrink in unison.
   16  * When a chunk is filled up, another chunk is allocated.
   17  *
   18  *  c0                           c1                         c2
   19  *  -------------------          -------------------        ------------
   20  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
   21  *  -------------------  ......  -------------------  ....  ------------
   22  *
   23  * Allocation is done in offset-size areas of single unit space.  Ie,
   24  * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
   25  * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
   26  * cpus.  On NUMA, the mapping can be non-linear and even sparse.
   27  * Percpu access can be done by configuring percpu base registers
   28  * according to cpu to unit mapping and pcpu_unit_size.
   29  *
   30  * There are usually many small percpu allocations many of them being
   31  * as small as 4 bytes.  The allocator organizes chunks into lists
   32  * according to free size and tries to allocate from the fullest one.
   33  * Each chunk keeps the maximum contiguous area size hint which is
   34  * guaranteed to be equal to or larger than the maximum contiguous
   35  * area in the chunk.  This helps the allocator not to iterate the
   36  * chunk maps unnecessarily.
   37  *
   38  * Allocation state in each chunk is kept using an array of integers
   39  * on chunk->map.  A positive value in the map represents a free
   40  * region and negative allocated.  Allocation inside a chunk is done
   41  * by scanning this map sequentially and serving the first matching
   42  * entry.  This is mostly copied from the percpu_modalloc() allocator.
   43  * Chunks can be determined from the address using the index field
   44  * in the page struct. The index field contains a pointer to the chunk.
   45  *
   46  * To use this allocator, arch code should do the followings.
   47  *
   48  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
   49  *   regular address to percpu pointer and back if they need to be
   50  *   different from the default
   51  *
   52  * - use pcpu_setup_first_chunk() during percpu area initialization to
   53  *   setup the first chunk containing the kernel static percpu area
   54  */
   55 
   56 #include <linux/bitmap.h>
   57 #include <linux/bootmem.h>
   58 #include <linux/err.h>
   59 #include <linux/list.h>
   60 #include <linux/log2.h>
   61 #include <linux/mm.h>
   62 #include <linux/module.h>
   63 #include <linux/mutex.h>
   64 #include <linux/percpu.h>
   65 #include <linux/pfn.h>
   66 #include <linux/slab.h>
   67 #include <linux/spinlock.h>
   68 #include <linux/vmalloc.h>
   69 #include <linux/workqueue.h>
   70 #include <linux/kmemleak.h>
   71 
   72 #include <asm/cacheflush.h>
   73 #include <asm/sections.h>
   74 #include <asm/tlbflush.h>
   75 #include <asm/io.h>
   76 
   77 #define PCPU_SLOT_BASE_SHIFT            5       /* 1-31 shares the same slot */
   78 #define PCPU_DFL_MAP_ALLOC              16      /* start a map with 16 ents */
   79 
   80 #ifdef CONFIG_SMP
   81 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
   82 #ifndef __addr_to_pcpu_ptr
   83 #define __addr_to_pcpu_ptr(addr)                                        \
   84         (void __percpu *)((unsigned long)(addr) -                       \
   85                           (unsigned long)pcpu_base_addr +               \
   86                           (unsigned long)__per_cpu_start)
   87 #endif
   88 #ifndef __pcpu_ptr_to_addr
   89 #define __pcpu_ptr_to_addr(ptr)                                         \
   90         (void __force *)((unsigned long)(ptr) +                         \
   91                          (unsigned long)pcpu_base_addr -                \
   92                          (unsigned long)__per_cpu_start)
   93 #endif
   94 #else   /* CONFIG_SMP */
   95 /* on UP, it's always identity mapped */
   96 #define __addr_to_pcpu_ptr(addr)        (void __percpu *)(addr)
   97 #define __pcpu_ptr_to_addr(ptr)         (void __force *)(ptr)
   98 #endif  /* CONFIG_SMP */
   99 
  100 struct pcpu_chunk {
  101         struct list_head        list;           /* linked to pcpu_slot lists */
  102         int                     free_size;      /* free bytes in the chunk */
  103         int                     contig_hint;    /* max contiguous size hint */
  104         void                    *base_addr;     /* base address of this chunk */
  105         int                     map_used;       /* # of map entries used */
  106         int                     map_alloc;      /* # of map entries allocated */
  107         int                     *map;           /* allocation map */
  108         void                    *data;          /* chunk data */
  109         bool                    immutable;      /* no [de]population allowed */
  110         unsigned long           populated[];    /* populated bitmap */
  111 };
  112 
  113 static int pcpu_unit_pages __read_mostly;
  114 static int pcpu_unit_size __read_mostly;
  115 static int pcpu_nr_units __read_mostly;
  116 static int pcpu_atom_size __read_mostly;
  117 static int pcpu_nr_slots __read_mostly;
  118 static size_t pcpu_chunk_struct_size __read_mostly;
  119 
  120 /* cpus with the lowest and highest unit addresses */
  121 static unsigned int pcpu_low_unit_cpu __read_mostly;
  122 static unsigned int pcpu_high_unit_cpu __read_mostly;
  123 
  124 /* the address of the first chunk which starts with the kernel static area */
  125 void *pcpu_base_addr __read_mostly;
  126 EXPORT_SYMBOL_GPL(pcpu_base_addr);
  127 
  128 static const int *pcpu_unit_map __read_mostly;          /* cpu -> unit */
  129 const unsigned long *pcpu_unit_offsets __read_mostly;   /* cpu -> unit offset */
  130 
  131 /* group information, used for vm allocation */
  132 static int pcpu_nr_groups __read_mostly;
  133 static const unsigned long *pcpu_group_offsets __read_mostly;
  134 static const size_t *pcpu_group_sizes __read_mostly;
  135 
  136 /*
  137  * The first chunk which always exists.  Note that unlike other
  138  * chunks, this one can be allocated and mapped in several different
  139  * ways and thus often doesn't live in the vmalloc area.
  140  */
  141 static struct pcpu_chunk *pcpu_first_chunk;
  142 
  143 /*
  144  * Optional reserved chunk.  This chunk reserves part of the first
  145  * chunk and serves it for reserved allocations.  The amount of
  146  * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
  147  * area doesn't exist, the following variables contain NULL and 0
  148  * respectively.
  149  */
  150 static struct pcpu_chunk *pcpu_reserved_chunk;
  151 static int pcpu_reserved_chunk_limit;
  152 
  153 /*
  154  * Synchronization rules.
  155  *
  156  * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
  157  * protects allocation/reclaim paths, chunks, populated bitmap and
  158  * vmalloc mapping.  The latter is a spinlock and protects the index
  159  * data structures - chunk slots, chunks and area maps in chunks.
  160  *
  161  * During allocation, pcpu_alloc_mutex is kept locked all the time and
  162  * pcpu_lock is grabbed and released as necessary.  All actual memory
  163  * allocations are done using GFP_KERNEL with pcpu_lock released.  In
  164  * general, percpu memory can't be allocated with irq off but
  165  * irqsave/restore are still used in alloc path so that it can be used
  166  * from early init path - sched_init() specifically.
  167  *
  168  * Free path accesses and alters only the index data structures, so it
  169  * can be safely called from atomic context.  When memory needs to be
  170  * returned to the system, free path schedules reclaim_work which
  171  * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
  172  * reclaimed, release both locks and frees the chunks.  Note that it's
  173  * necessary to grab both locks to remove a chunk from circulation as
  174  * allocation path might be referencing the chunk with only
  175  * pcpu_alloc_mutex locked.
  176  */
  177 static DEFINE_MUTEX(pcpu_alloc_mutex);  /* protects whole alloc and reclaim */
  178 static DEFINE_SPINLOCK(pcpu_lock);      /* protects index data structures */
  179 
  180 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
  181 
  182 /* reclaim work to release fully free chunks, scheduled from free path */
  183 static void pcpu_reclaim(struct work_struct *work);
  184 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
  185 
  186 static bool pcpu_addr_in_first_chunk(void *addr)
  187 {
  188         void *first_start = pcpu_first_chunk->base_addr;
  189 
  190         return addr >= first_start && addr < first_start + pcpu_unit_size;
  191 }
  192 
  193 static bool pcpu_addr_in_reserved_chunk(void *addr)
  194 {
  195         void *first_start = pcpu_first_chunk->base_addr;
  196 
  197         return addr >= first_start &&
  198                 addr < first_start + pcpu_reserved_chunk_limit;
  199 }
  200 
  201 static int __pcpu_size_to_slot(int size)
  202 {
  203         int highbit = fls(size);        /* size is in bytes */
  204         return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
  205 }
  206 
  207 static int pcpu_size_to_slot(int size)
  208 {
  209         if (size == pcpu_unit_size)
  210                 return pcpu_nr_slots - 1;
  211         return __pcpu_size_to_slot(size);
  212 }
  213 
  214 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
  215 {
  216         if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
  217                 return 0;
  218 
  219         return pcpu_size_to_slot(chunk->free_size);
  220 }
  221 
  222 /* set the pointer to a chunk in a page struct */
  223 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
  224 {
  225         page->index = (unsigned long)pcpu;
  226 }
  227 
  228 /* obtain pointer to a chunk from a page struct */
  229 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
  230 {
  231         return (struct pcpu_chunk *)page->index;
  232 }
  233 
  234 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
  235 {
  236         return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
  237 }
  238 
  239 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
  240                                      unsigned int cpu, int page_idx)
  241 {
  242         return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
  243                 (page_idx << PAGE_SHIFT);
  244 }
  245 
  246 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
  247                                            int *rs, int *re, int end)
  248 {
  249         *rs = find_next_zero_bit(chunk->populated, end, *rs);
  250         *re = find_next_bit(chunk->populated, end, *rs + 1);
  251 }
  252 
  253 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
  254                                          int *rs, int *re, int end)
  255 {
  256         *rs = find_next_bit(chunk->populated, end, *rs);
  257         *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
  258 }
  259 
  260 /*
  261  * (Un)populated page region iterators.  Iterate over (un)populated
  262  * page regions between @start and @end in @chunk.  @rs and @re should
  263  * be integer variables and will be set to start and end page index of
  264  * the current region.
  265  */
  266 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end)               \
  267         for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
  268              (rs) < (re);                                                   \
  269              (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
  270 
  271 #define pcpu_for_each_pop_region(chunk, rs, re, start, end)                 \
  272         for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
  273              (rs) < (re);                                                   \
  274              (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
  275 
  276 /**
  277  * pcpu_mem_zalloc - allocate memory
  278  * @size: bytes to allocate
  279  *
  280  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
  281  * kzalloc() is used; otherwise, vzalloc() is used.  The returned
  282  * memory is always zeroed.
  283  *
  284  * CONTEXT:
  285  * Does GFP_KERNEL allocation.
  286  *
  287  * RETURNS:
  288  * Pointer to the allocated area on success, NULL on failure.
  289  */
  290 static void *pcpu_mem_zalloc(size_t size)
  291 {
  292         if (WARN_ON_ONCE(!slab_is_available()))
  293                 return NULL;
  294 
  295         if (size <= PAGE_SIZE)
  296                 return kzalloc(size, GFP_KERNEL);
  297         else
  298                 return vzalloc(size);
  299 }
  300 
  301 /**
  302  * pcpu_mem_free - free memory
  303  * @ptr: memory to free
  304  * @size: size of the area
  305  *
  306  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
  307  */
  308 static void pcpu_mem_free(void *ptr, size_t size)
  309 {
  310         if (size <= PAGE_SIZE)
  311                 kfree(ptr);
  312         else
  313                 vfree(ptr);
  314 }
  315 
  316 /**
  317  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
  318  * @chunk: chunk of interest
  319  * @oslot: the previous slot it was on
  320  *
  321  * This function is called after an allocation or free changed @chunk.
  322  * New slot according to the changed state is determined and @chunk is
  323  * moved to the slot.  Note that the reserved chunk is never put on
  324  * chunk slots.
  325  *
  326  * CONTEXT:
  327  * pcpu_lock.
  328  */
  329 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
  330 {
  331         int nslot = pcpu_chunk_slot(chunk);
  332 
  333         if (chunk != pcpu_reserved_chunk && oslot != nslot) {
  334                 if (oslot < nslot)
  335                         list_move(&chunk->list, &pcpu_slot[nslot]);
  336                 else
  337                         list_move_tail(&chunk->list, &pcpu_slot[nslot]);
  338         }
  339 }
  340 
  341 /**
  342  * pcpu_need_to_extend - determine whether chunk area map needs to be extended
  343  * @chunk: chunk of interest
  344  *
  345  * Determine whether area map of @chunk needs to be extended to
  346  * accommodate a new allocation.
  347  *
  348  * CONTEXT:
  349  * pcpu_lock.
  350  *
  351  * RETURNS:
  352  * New target map allocation length if extension is necessary, 0
  353  * otherwise.
  354  */
  355 static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
  356 {
  357         int new_alloc;
  358 
  359         if (chunk->map_alloc >= chunk->map_used + 2)
  360                 return 0;
  361 
  362         new_alloc = PCPU_DFL_MAP_ALLOC;
  363         while (new_alloc < chunk->map_used + 2)
  364                 new_alloc *= 2;
  365 
  366         return new_alloc;
  367 }
  368 
  369 /**
  370  * pcpu_extend_area_map - extend area map of a chunk
  371  * @chunk: chunk of interest
  372  * @new_alloc: new target allocation length of the area map
  373  *
  374  * Extend area map of @chunk to have @new_alloc entries.
  375  *
  376  * CONTEXT:
  377  * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
  378  *
  379  * RETURNS:
  380  * 0 on success, -errno on failure.
  381  */
  382 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
  383 {
  384         int *old = NULL, *new = NULL;
  385         size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
  386         unsigned long flags;
  387 
  388         new = pcpu_mem_zalloc(new_size);
  389         if (!new)
  390                 return -ENOMEM;
  391 
  392         /* acquire pcpu_lock and switch to new area map */
  393         spin_lock_irqsave(&pcpu_lock, flags);
  394 
  395         if (new_alloc <= chunk->map_alloc)
  396                 goto out_unlock;
  397 
  398         old_size = chunk->map_alloc * sizeof(chunk->map[0]);
  399         old = chunk->map;
  400 
  401         memcpy(new, old, old_size);
  402 
  403         chunk->map_alloc = new_alloc;
  404         chunk->map = new;
  405         new = NULL;
  406 
  407 out_unlock:
  408         spin_unlock_irqrestore(&pcpu_lock, flags);
  409 
  410         /*
  411          * pcpu_mem_free() might end up calling vfree() which uses
  412          * IRQ-unsafe lock and thus can't be called under pcpu_lock.
  413          */
  414         pcpu_mem_free(old, old_size);
  415         pcpu_mem_free(new, new_size);
  416 
  417         return 0;
  418 }
  419 
  420 /**
  421  * pcpu_split_block - split a map block
  422  * @chunk: chunk of interest
  423  * @i: index of map block to split
  424  * @head: head size in bytes (can be 0)
  425  * @tail: tail size in bytes (can be 0)
  426  *
  427  * Split the @i'th map block into two or three blocks.  If @head is
  428  * non-zero, @head bytes block is inserted before block @i moving it
  429  * to @i+1 and reducing its size by @head bytes.
  430  *
  431  * If @tail is non-zero, the target block, which can be @i or @i+1
  432  * depending on @head, is reduced by @tail bytes and @tail byte block
  433  * is inserted after the target block.
  434  *
  435  * @chunk->map must have enough free slots to accommodate the split.
  436  *
  437  * CONTEXT:
  438  * pcpu_lock.
  439  */
  440 static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
  441                              int head, int tail)
  442 {
  443         int nr_extra = !!head + !!tail;
  444 
  445         BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
  446 
  447         /* insert new subblocks */
  448         memmove(&chunk->map[i + nr_extra], &chunk->map[i],
  449                 sizeof(chunk->map[0]) * (chunk->map_used - i));
  450         chunk->map_used += nr_extra;
  451 
  452         if (head) {
  453                 chunk->map[i + 1] = chunk->map[i] - head;
  454                 chunk->map[i++] = head;
  455         }
  456         if (tail) {
  457                 chunk->map[i++] -= tail;
  458                 chunk->map[i] = tail;
  459         }
  460 }
  461 
  462 /**
  463  * pcpu_alloc_area - allocate area from a pcpu_chunk
  464  * @chunk: chunk of interest
  465  * @size: wanted size in bytes
  466  * @align: wanted align
  467  *
  468  * Try to allocate @size bytes area aligned at @align from @chunk.
  469  * Note that this function only allocates the offset.  It doesn't
  470  * populate or map the area.
  471  *
  472  * @chunk->map must have at least two free slots.
  473  *
  474  * CONTEXT:
  475  * pcpu_lock.
  476  *
  477  * RETURNS:
  478  * Allocated offset in @chunk on success, -1 if no matching area is
  479  * found.
  480  */
  481 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
  482 {
  483         int oslot = pcpu_chunk_slot(chunk);
  484         int max_contig = 0;
  485         int i, off;
  486 
  487         for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
  488                 bool is_last = i + 1 == chunk->map_used;
  489                 int head, tail;
  490 
  491                 /* extra for alignment requirement */
  492                 head = ALIGN(off, align) - off;
  493                 BUG_ON(i == 0 && head != 0);
  494 
  495                 if (chunk->map[i] < 0)
  496                         continue;
  497                 if (chunk->map[i] < head + size) {
  498                         max_contig = max(chunk->map[i], max_contig);
  499                         continue;
  500                 }
  501 
  502                 /*
  503                  * If head is small or the previous block is free,
  504                  * merge'em.  Note that 'small' is defined as smaller
  505                  * than sizeof(int), which is very small but isn't too
  506                  * uncommon for percpu allocations.
  507                  */
  508                 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
  509                         if (chunk->map[i - 1] > 0)
  510                                 chunk->map[i - 1] += head;
  511                         else {
  512                                 chunk->map[i - 1] -= head;
  513                                 chunk->free_size -= head;
  514                         }
  515                         chunk->map[i] -= head;
  516                         off += head;
  517                         head = 0;
  518                 }
  519 
  520                 /* if tail is small, just keep it around */
  521                 tail = chunk->map[i] - head - size;
  522                 if (tail < sizeof(int))
  523                         tail = 0;
  524 
  525                 /* split if warranted */
  526                 if (head || tail) {
  527                         pcpu_split_block(chunk, i, head, tail);
  528                         if (head) {
  529                                 i++;
  530                                 off += head;
  531                                 max_contig = max(chunk->map[i - 1], max_contig);
  532                         }
  533                         if (tail)
  534                                 max_contig = max(chunk->map[i + 1], max_contig);
  535                 }
  536 
  537                 /* update hint and mark allocated */
  538                 if (is_last)
  539                         chunk->contig_hint = max_contig; /* fully scanned */
  540                 else
  541                         chunk->contig_hint = max(chunk->contig_hint,
  542                                                  max_contig);
  543 
  544                 chunk->free_size -= chunk->map[i];
  545                 chunk->map[i] = -chunk->map[i];
  546 
  547                 pcpu_chunk_relocate(chunk, oslot);
  548                 return off;
  549         }
  550 
  551         chunk->contig_hint = max_contig;        /* fully scanned */
  552         pcpu_chunk_relocate(chunk, oslot);
  553 
  554         /* tell the upper layer that this chunk has no matching area */
  555         return -1;
  556 }
  557 
  558 /**
  559  * pcpu_free_area - free area to a pcpu_chunk
  560  * @chunk: chunk of interest
  561  * @freeme: offset of area to free
  562  *
  563  * Free area starting from @freeme to @chunk.  Note that this function
  564  * only modifies the allocation map.  It doesn't depopulate or unmap
  565  * the area.
  566  *
  567  * CONTEXT:
  568  * pcpu_lock.
  569  */
  570 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
  571 {
  572         int oslot = pcpu_chunk_slot(chunk);
  573         int i, off;
  574 
  575         for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
  576                 if (off == freeme)
  577                         break;
  578         BUG_ON(off != freeme);
  579         BUG_ON(chunk->map[i] > 0);
  580 
  581         chunk->map[i] = -chunk->map[i];
  582         chunk->free_size += chunk->map[i];
  583 
  584         /* merge with previous? */
  585         if (i > 0 && chunk->map[i - 1] >= 0) {
  586                 chunk->map[i - 1] += chunk->map[i];
  587                 chunk->map_used--;
  588                 memmove(&chunk->map[i], &chunk->map[i + 1],
  589                         (chunk->map_used - i) * sizeof(chunk->map[0]));
  590                 i--;
  591         }
  592         /* merge with next? */
  593         if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
  594                 chunk->map[i] += chunk->map[i + 1];
  595                 chunk->map_used--;
  596                 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
  597                         (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
  598         }
  599 
  600         chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
  601         pcpu_chunk_relocate(chunk, oslot);
  602 }
  603 
  604 static struct pcpu_chunk *pcpu_alloc_chunk(void)
  605 {
  606         struct pcpu_chunk *chunk;
  607 
  608         chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
  609         if (!chunk)
  610                 return NULL;
  611 
  612         chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
  613                                                 sizeof(chunk->map[0]));
  614         if (!chunk->map) {
  615                 kfree(chunk);
  616                 return NULL;
  617         }
  618 
  619         chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
  620         chunk->map[chunk->map_used++] = pcpu_unit_size;
  621 
  622         INIT_LIST_HEAD(&chunk->list);
  623         chunk->free_size = pcpu_unit_size;
  624         chunk->contig_hint = pcpu_unit_size;
  625 
  626         return chunk;
  627 }
  628 
  629 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
  630 {
  631         if (!chunk)
  632                 return;
  633         pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
  634         pcpu_mem_free(chunk, pcpu_chunk_struct_size);
  635 }
  636 
  637 /*
  638  * Chunk management implementation.
  639  *
  640  * To allow different implementations, chunk alloc/free and
  641  * [de]population are implemented in a separate file which is pulled
  642  * into this file and compiled together.  The following functions
  643  * should be implemented.
  644  *
  645  * pcpu_populate_chunk          - populate the specified range of a chunk
  646  * pcpu_depopulate_chunk        - depopulate the specified range of a chunk
  647  * pcpu_create_chunk            - create a new chunk
  648  * pcpu_destroy_chunk           - destroy a chunk, always preceded by full depop
  649  * pcpu_addr_to_page            - translate address to physical address
  650  * pcpu_verify_alloc_info       - check alloc_info is acceptable during init
  651  */
  652 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
  653 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
  654 static struct pcpu_chunk *pcpu_create_chunk(void);
  655 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
  656 static struct page *pcpu_addr_to_page(void *addr);
  657 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
  658 
  659 #ifdef CONFIG_NEED_PER_CPU_KM
  660 #include "percpu-km.c"
  661 #else
  662 #include "percpu-vm.c"
  663 #endif
  664 
  665 /**
  666  * pcpu_chunk_addr_search - determine chunk containing specified address
  667  * @addr: address for which the chunk needs to be determined.
  668  *
  669  * RETURNS:
  670  * The address of the found chunk.
  671  */
  672 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
  673 {
  674         /* is it in the first chunk? */
  675         if (pcpu_addr_in_first_chunk(addr)) {
  676                 /* is it in the reserved area? */
  677                 if (pcpu_addr_in_reserved_chunk(addr))
  678                         return pcpu_reserved_chunk;
  679                 return pcpu_first_chunk;
  680         }
  681 
  682         /*
  683          * The address is relative to unit0 which might be unused and
  684          * thus unmapped.  Offset the address to the unit space of the
  685          * current processor before looking it up in the vmalloc
  686          * space.  Note that any possible cpu id can be used here, so
  687          * there's no need to worry about preemption or cpu hotplug.
  688          */
  689         addr += pcpu_unit_offsets[raw_smp_processor_id()];
  690         return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
  691 }
  692 
  693 /**
  694  * pcpu_alloc - the percpu allocator
  695  * @size: size of area to allocate in bytes
  696  * @align: alignment of area (max PAGE_SIZE)
  697  * @reserved: allocate from the reserved chunk if available
  698  *
  699  * Allocate percpu area of @size bytes aligned at @align.
  700  *
  701  * CONTEXT:
  702  * Does GFP_KERNEL allocation.
  703  *
  704  * RETURNS:
  705  * Percpu pointer to the allocated area on success, NULL on failure.
  706  */
  707 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
  708 {
  709         static int warn_limit = 10;
  710         struct pcpu_chunk *chunk;
  711         const char *err;
  712         int slot, off, new_alloc;
  713         unsigned long flags;
  714         void __percpu *ptr;
  715 
  716         if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
  717                 WARN(true, "illegal size (%zu) or align (%zu) for "
  718                      "percpu allocation\n", size, align);
  719                 return NULL;
  720         }
  721 
  722         mutex_lock(&pcpu_alloc_mutex);
  723         spin_lock_irqsave(&pcpu_lock, flags);
  724 
  725         /* serve reserved allocations from the reserved chunk if available */
  726         if (reserved && pcpu_reserved_chunk) {
  727                 chunk = pcpu_reserved_chunk;
  728 
  729                 if (size > chunk->contig_hint) {
  730                         err = "alloc from reserved chunk failed";
  731                         goto fail_unlock;
  732                 }
  733 
  734                 while ((new_alloc = pcpu_need_to_extend(chunk))) {
  735                         spin_unlock_irqrestore(&pcpu_lock, flags);
  736                         if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
  737                                 err = "failed to extend area map of reserved chunk";
  738                                 goto fail_unlock_mutex;
  739                         }
  740                         spin_lock_irqsave(&pcpu_lock, flags);
  741                 }
  742 
  743                 off = pcpu_alloc_area(chunk, size, align);
  744                 if (off >= 0)
  745                         goto area_found;
  746 
  747                 err = "alloc from reserved chunk failed";
  748                 goto fail_unlock;
  749         }
  750 
  751 restart:
  752         /* search through normal chunks */
  753         for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
  754                 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
  755                         if (size > chunk->contig_hint)
  756                                 continue;
  757 
  758                         new_alloc = pcpu_need_to_extend(chunk);
  759                         if (new_alloc) {
  760                                 spin_unlock_irqrestore(&pcpu_lock, flags);
  761                                 if (pcpu_extend_area_map(chunk,
  762                                                          new_alloc) < 0) {
  763                                         err = "failed to extend area map";
  764                                         goto fail_unlock_mutex;
  765                                 }
  766                                 spin_lock_irqsave(&pcpu_lock, flags);
  767                                 /*
  768                                  * pcpu_lock has been dropped, need to
  769                                  * restart cpu_slot list walking.
  770                                  */
  771                                 goto restart;
  772                         }
  773 
  774                         off = pcpu_alloc_area(chunk, size, align);
  775                         if (off >= 0)
  776                                 goto area_found;
  777                 }
  778         }
  779 
  780         /* hmmm... no space left, create a new chunk */
  781         spin_unlock_irqrestore(&pcpu_lock, flags);
  782 
  783         chunk = pcpu_create_chunk();
  784         if (!chunk) {
  785                 err = "failed to allocate new chunk";
  786                 goto fail_unlock_mutex;
  787         }
  788 
  789         spin_lock_irqsave(&pcpu_lock, flags);
  790         pcpu_chunk_relocate(chunk, -1);
  791         goto restart;
  792 
  793 area_found:
  794         spin_unlock_irqrestore(&pcpu_lock, flags);
  795 
  796         /* populate, map and clear the area */
  797         if (pcpu_populate_chunk(chunk, off, size)) {
  798                 spin_lock_irqsave(&pcpu_lock, flags);
  799                 pcpu_free_area(chunk, off);
  800                 err = "failed to populate";
  801                 goto fail_unlock;
  802         }
  803 
  804         mutex_unlock(&pcpu_alloc_mutex);
  805 
  806         /* return address relative to base address */
  807         ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
  808         kmemleak_alloc_percpu(ptr, size);
  809         return ptr;
  810 
  811 fail_unlock:
  812         spin_unlock_irqrestore(&pcpu_lock, flags);
  813 fail_unlock_mutex:
  814         mutex_unlock(&pcpu_alloc_mutex);
  815         if (warn_limit) {
  816                 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
  817                            "%s\n", size, align, err);
  818                 dump_stack();
  819                 if (!--warn_limit)
  820                         pr_info("PERCPU: limit reached, disable warning\n");
  821         }
  822         return NULL;
  823 }
  824 
  825 /**
  826  * __alloc_percpu - allocate dynamic percpu area
  827  * @size: size of area to allocate in bytes
  828  * @align: alignment of area (max PAGE_SIZE)
  829  *
  830  * Allocate zero-filled percpu area of @size bytes aligned at @align.
  831  * Might sleep.  Might trigger writeouts.
  832  *
  833  * CONTEXT:
  834  * Does GFP_KERNEL allocation.
  835  *
  836  * RETURNS:
  837  * Percpu pointer to the allocated area on success, NULL on failure.
  838  */
  839 void __percpu *__alloc_percpu(size_t size, size_t align)
  840 {
  841         return pcpu_alloc(size, align, false);
  842 }
  843 EXPORT_SYMBOL_GPL(__alloc_percpu);
  844 
  845 /**
  846  * __alloc_reserved_percpu - allocate reserved percpu area
  847  * @size: size of area to allocate in bytes
  848  * @align: alignment of area (max PAGE_SIZE)
  849  *
  850  * Allocate zero-filled percpu area of @size bytes aligned at @align
  851  * from reserved percpu area if arch has set it up; otherwise,
  852  * allocation is served from the same dynamic area.  Might sleep.
  853  * Might trigger writeouts.
  854  *
  855  * CONTEXT:
  856  * Does GFP_KERNEL allocation.
  857  *
  858  * RETURNS:
  859  * Percpu pointer to the allocated area on success, NULL on failure.
  860  */
  861 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
  862 {
  863         return pcpu_alloc(size, align, true);
  864 }
  865 
  866 /**
  867  * pcpu_reclaim - reclaim fully free chunks, workqueue function
  868  * @work: unused
  869  *
  870  * Reclaim all fully free chunks except for the first one.
  871  *
  872  * CONTEXT:
  873  * workqueue context.
  874  */
  875 static void pcpu_reclaim(struct work_struct *work)
  876 {
  877         LIST_HEAD(todo);
  878         struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
  879         struct pcpu_chunk *chunk, *next;
  880 
  881         mutex_lock(&pcpu_alloc_mutex);
  882         spin_lock_irq(&pcpu_lock);
  883 
  884         list_for_each_entry_safe(chunk, next, head, list) {
  885                 WARN_ON(chunk->immutable);
  886 
  887                 /* spare the first one */
  888                 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
  889                         continue;
  890 
  891                 list_move(&chunk->list, &todo);
  892         }
  893 
  894         spin_unlock_irq(&pcpu_lock);
  895 
  896         list_for_each_entry_safe(chunk, next, &todo, list) {
  897                 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
  898                 pcpu_destroy_chunk(chunk);
  899         }
  900 
  901         mutex_unlock(&pcpu_alloc_mutex);
  902 }
  903 
  904 /**
  905  * free_percpu - free percpu area
  906  * @ptr: pointer to area to free
  907  *
  908  * Free percpu area @ptr.
  909  *
  910  * CONTEXT:
  911  * Can be called from atomic context.
  912  */
  913 void free_percpu(void __percpu *ptr)
  914 {
  915         void *addr;
  916         struct pcpu_chunk *chunk;
  917         unsigned long flags;
  918         int off;
  919 
  920         if (!ptr)
  921                 return;
  922 
  923         kmemleak_free_percpu(ptr);
  924 
  925         addr = __pcpu_ptr_to_addr(ptr);
  926 
  927         spin_lock_irqsave(&pcpu_lock, flags);
  928 
  929         chunk = pcpu_chunk_addr_search(addr);
  930         off = addr - chunk->base_addr;
  931 
  932         pcpu_free_area(chunk, off);
  933 
  934         /* if there are more than one fully free chunks, wake up grim reaper */
  935         if (chunk->free_size == pcpu_unit_size) {
  936                 struct pcpu_chunk *pos;
  937 
  938                 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
  939                         if (pos != chunk) {
  940                                 schedule_work(&pcpu_reclaim_work);
  941                                 break;
  942                         }
  943         }
  944 
  945         spin_unlock_irqrestore(&pcpu_lock, flags);
  946 }
  947 EXPORT_SYMBOL_GPL(free_percpu);
  948 
  949 /**
  950  * is_kernel_percpu_address - test whether address is from static percpu area
  951  * @addr: address to test
  952  *
  953  * Test whether @addr belongs to in-kernel static percpu area.  Module
  954  * static percpu areas are not considered.  For those, use
  955  * is_module_percpu_address().
  956  *
  957  * RETURNS:
  958  * %true if @addr is from in-kernel static percpu area, %false otherwise.
  959  */
  960 bool is_kernel_percpu_address(unsigned long addr)
  961 {
  962 #ifdef CONFIG_SMP
  963         const size_t static_size = __per_cpu_end - __per_cpu_start;
  964         void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
  965         unsigned int cpu;
  966 
  967         for_each_possible_cpu(cpu) {
  968                 void *start = per_cpu_ptr(base, cpu);
  969 
  970                 if ((void *)addr >= start && (void *)addr < start + static_size)
  971                         return true;
  972         }
  973 #endif
  974         /* on UP, can't distinguish from other static vars, always false */
  975         return false;
  976 }
  977 
  978 /**
  979  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
  980  * @addr: the address to be converted to physical address
  981  *
  982  * Given @addr which is dereferenceable address obtained via one of
  983  * percpu access macros, this function translates it into its physical
  984  * address.  The caller is responsible for ensuring @addr stays valid
  985  * until this function finishes.
  986  *
  987  * percpu allocator has special setup for the first chunk, which currently
  988  * supports either embedding in linear address space or vmalloc mapping,
  989  * and, from the second one, the backing allocator (currently either vm or
  990  * km) provides translation.
  991  *
  992  * The addr can be tranlated simply without checking if it falls into the
  993  * first chunk. But the current code reflects better how percpu allocator
  994  * actually works, and the verification can discover both bugs in percpu
  995  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
  996  * code.
  997  *
  998  * RETURNS:
  999  * The physical address for @addr.
 1000  */
 1001 phys_addr_t per_cpu_ptr_to_phys(void *addr)
 1002 {
 1003         void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
 1004         bool in_first_chunk = false;
 1005         unsigned long first_low, first_high;
 1006         unsigned int cpu;
 1007 
 1008         /*
 1009          * The following test on unit_low/high isn't strictly
 1010          * necessary but will speed up lookups of addresses which
 1011          * aren't in the first chunk.
 1012          */
 1013         first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
 1014         first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
 1015                                      pcpu_unit_pages);
 1016         if ((unsigned long)addr >= first_low &&
 1017             (unsigned long)addr < first_high) {
 1018                 for_each_possible_cpu(cpu) {
 1019                         void *start = per_cpu_ptr(base, cpu);
 1020 
 1021                         if (addr >= start && addr < start + pcpu_unit_size) {
 1022                                 in_first_chunk = true;
 1023                                 break;
 1024                         }
 1025                 }
 1026         }
 1027 
 1028         if (in_first_chunk) {
 1029                 if (!is_vmalloc_addr(addr))
 1030                         return __pa(addr);
 1031                 else
 1032                         return page_to_phys(vmalloc_to_page(addr)) +
 1033                                offset_in_page(addr);
 1034         } else
 1035                 return page_to_phys(pcpu_addr_to_page(addr)) +
 1036                        offset_in_page(addr);
 1037 }
 1038 
 1039 /**
 1040  * pcpu_alloc_alloc_info - allocate percpu allocation info
 1041  * @nr_groups: the number of groups
 1042  * @nr_units: the number of units
 1043  *
 1044  * Allocate ai which is large enough for @nr_groups groups containing
 1045  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
 1046  * cpu_map array which is long enough for @nr_units and filled with
 1047  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
 1048  * pointer of other groups.
 1049  *
 1050  * RETURNS:
 1051  * Pointer to the allocated pcpu_alloc_info on success, NULL on
 1052  * failure.
 1053  */
 1054 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
 1055                                                       int nr_units)
 1056 {
 1057         struct pcpu_alloc_info *ai;
 1058         size_t base_size, ai_size;
 1059         void *ptr;
 1060         int unit;
 1061 
 1062         base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
 1063                           __alignof__(ai->groups[0].cpu_map[0]));
 1064         ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
 1065 
 1066         ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
 1067         if (!ptr)
 1068                 return NULL;
 1069         ai = ptr;
 1070         ptr += base_size;
 1071 
 1072         ai->groups[0].cpu_map = ptr;
 1073 
 1074         for (unit = 0; unit < nr_units; unit++)
 1075                 ai->groups[0].cpu_map[unit] = NR_CPUS;
 1076 
 1077         ai->nr_groups = nr_groups;
 1078         ai->__ai_size = PFN_ALIGN(ai_size);
 1079 
 1080         return ai;
 1081 }
 1082 
 1083 /**
 1084  * pcpu_free_alloc_info - free percpu allocation info
 1085  * @ai: pcpu_alloc_info to free
 1086  *
 1087  * Free @ai which was allocated by pcpu_alloc_alloc_info().
 1088  */
 1089 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
 1090 {
 1091         free_bootmem(__pa(ai), ai->__ai_size);
 1092 }
 1093 
 1094 /**
 1095  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
 1096  * @lvl: loglevel
 1097  * @ai: allocation info to dump
 1098  *
 1099  * Print out information about @ai using loglevel @lvl.
 1100  */
 1101 static void pcpu_dump_alloc_info(const char *lvl,
 1102                                  const struct pcpu_alloc_info *ai)
 1103 {
 1104         int group_width = 1, cpu_width = 1, width;
 1105         char empty_str[] = "--------";
 1106         int alloc = 0, alloc_end = 0;
 1107         int group, v;
 1108         int upa, apl;   /* units per alloc, allocs per line */
 1109 
 1110         v = ai->nr_groups;
 1111         while (v /= 10)
 1112                 group_width++;
 1113 
 1114         v = num_possible_cpus();
 1115         while (v /= 10)
 1116                 cpu_width++;
 1117         empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
 1118 
 1119         upa = ai->alloc_size / ai->unit_size;
 1120         width = upa * (cpu_width + 1) + group_width + 3;
 1121         apl = rounddown_pow_of_two(max(60 / width, 1));
 1122 
 1123         printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
 1124                lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
 1125                ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
 1126 
 1127         for (group = 0; group < ai->nr_groups; group++) {
 1128                 const struct pcpu_group_info *gi = &ai->groups[group];
 1129                 int unit = 0, unit_end = 0;
 1130 
 1131                 BUG_ON(gi->nr_units % upa);
 1132                 for (alloc_end += gi->nr_units / upa;
 1133                      alloc < alloc_end; alloc++) {
 1134                         if (!(alloc % apl)) {
 1135                                 printk(KERN_CONT "\n");
 1136                                 printk("%spcpu-alloc: ", lvl);
 1137                         }
 1138                         printk(KERN_CONT "[%0*d] ", group_width, group);
 1139 
 1140                         for (unit_end += upa; unit < unit_end; unit++)
 1141                                 if (gi->cpu_map[unit] != NR_CPUS)
 1142                                         printk(KERN_CONT "%0*d ", cpu_width,
 1143                                                gi->cpu_map[unit]);
 1144                                 else
 1145                                         printk(KERN_CONT "%s ", empty_str);
 1146                 }
 1147         }
 1148         printk(KERN_CONT "\n");
 1149 }
 1150 
 1151 /**
 1152  * pcpu_setup_first_chunk - initialize the first percpu chunk
 1153  * @ai: pcpu_alloc_info describing how to percpu area is shaped
 1154  * @base_addr: mapped address
 1155  *
 1156  * Initialize the first percpu chunk which contains the kernel static
 1157  * perpcu area.  This function is to be called from arch percpu area
 1158  * setup path.
 1159  *
 1160  * @ai contains all information necessary to initialize the first
 1161  * chunk and prime the dynamic percpu allocator.
 1162  *
 1163  * @ai->static_size is the size of static percpu area.
 1164  *
 1165  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
 1166  * reserve after the static area in the first chunk.  This reserves
 1167  * the first chunk such that it's available only through reserved
 1168  * percpu allocation.  This is primarily used to serve module percpu
 1169  * static areas on architectures where the addressing model has
 1170  * limited offset range for symbol relocations to guarantee module
 1171  * percpu symbols fall inside the relocatable range.
 1172  *
 1173  * @ai->dyn_size determines the number of bytes available for dynamic
 1174  * allocation in the first chunk.  The area between @ai->static_size +
 1175  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
 1176  *
 1177  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
 1178  * and equal to or larger than @ai->static_size + @ai->reserved_size +
 1179  * @ai->dyn_size.
 1180  *
 1181  * @ai->atom_size is the allocation atom size and used as alignment
 1182  * for vm areas.
 1183  *
 1184  * @ai->alloc_size is the allocation size and always multiple of
 1185  * @ai->atom_size.  This is larger than @ai->atom_size if
 1186  * @ai->unit_size is larger than @ai->atom_size.
 1187  *
 1188  * @ai->nr_groups and @ai->groups describe virtual memory layout of
 1189  * percpu areas.  Units which should be colocated are put into the
 1190  * same group.  Dynamic VM areas will be allocated according to these
 1191  * groupings.  If @ai->nr_groups is zero, a single group containing
 1192  * all units is assumed.
 1193  *
 1194  * The caller should have mapped the first chunk at @base_addr and
 1195  * copied static data to each unit.
 1196  *
 1197  * If the first chunk ends up with both reserved and dynamic areas, it
 1198  * is served by two chunks - one to serve the core static and reserved
 1199  * areas and the other for the dynamic area.  They share the same vm
 1200  * and page map but uses different area allocation map to stay away
 1201  * from each other.  The latter chunk is circulated in the chunk slots
 1202  * and available for dynamic allocation like any other chunks.
 1203  *
 1204  * RETURNS:
 1205  * 0 on success, -errno on failure.
 1206  */
 1207 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
 1208                                   void *base_addr)
 1209 {
 1210         static char cpus_buf[4096] __initdata;
 1211         static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
 1212         static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
 1213         size_t dyn_size = ai->dyn_size;
 1214         size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
 1215         struct pcpu_chunk *schunk, *dchunk = NULL;
 1216         unsigned long *group_offsets;
 1217         size_t *group_sizes;
 1218         unsigned long *unit_off;
 1219         unsigned int cpu;
 1220         int *unit_map;
 1221         int group, unit, i;
 1222 
 1223         cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
 1224 
 1225 #define PCPU_SETUP_BUG_ON(cond) do {                                    \
 1226         if (unlikely(cond)) {                                           \
 1227                 pr_emerg("PERCPU: failed to initialize, %s", #cond);    \
 1228                 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);   \
 1229                 pcpu_dump_alloc_info(KERN_EMERG, ai);                   \
 1230                 BUG();                                                  \
 1231         }                                                               \
 1232 } while (0)
 1233 
 1234         /* sanity checks */
 1235         PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
 1236 #ifdef CONFIG_SMP
 1237         PCPU_SETUP_BUG_ON(!ai->static_size);
 1238         PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
 1239 #endif
 1240         PCPU_SETUP_BUG_ON(!base_addr);
 1241         PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
 1242         PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
 1243         PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
 1244         PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
 1245         PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
 1246         PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
 1247 
 1248         /* process group information and build config tables accordingly */
 1249         group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
 1250         group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
 1251         unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
 1252         unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
 1253 
 1254         for (cpu = 0; cpu < nr_cpu_ids; cpu++)
 1255                 unit_map[cpu] = UINT_MAX;
 1256 
 1257         pcpu_low_unit_cpu = NR_CPUS;
 1258         pcpu_high_unit_cpu = NR_CPUS;
 1259 
 1260         for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
 1261                 const struct pcpu_group_info *gi = &ai->groups[group];
 1262 
 1263                 group_offsets[group] = gi->base_offset;
 1264                 group_sizes[group] = gi->nr_units * ai->unit_size;
 1265 
 1266                 for (i = 0; i < gi->nr_units; i++) {
 1267                         cpu = gi->cpu_map[i];
 1268                         if (cpu == NR_CPUS)
 1269                                 continue;
 1270 
 1271                         PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
 1272                         PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
 1273                         PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
 1274 
 1275                         unit_map[cpu] = unit + i;
 1276                         unit_off[cpu] = gi->base_offset + i * ai->unit_size;
 1277 
 1278                         /* determine low/high unit_cpu */
 1279                         if (pcpu_low_unit_cpu == NR_CPUS ||
 1280                             unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
 1281                                 pcpu_low_unit_cpu = cpu;
 1282                         if (pcpu_high_unit_cpu == NR_CPUS ||
 1283                             unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
 1284                                 pcpu_high_unit_cpu = cpu;
 1285                 }
 1286         }
 1287         pcpu_nr_units = unit;
 1288 
 1289         for_each_possible_cpu(cpu)
 1290                 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
 1291 
 1292         /* we're done parsing the input, undefine BUG macro and dump config */
 1293 #undef PCPU_SETUP_BUG_ON
 1294         pcpu_dump_alloc_info(KERN_DEBUG, ai);
 1295 
 1296         pcpu_nr_groups = ai->nr_groups;
 1297         pcpu_group_offsets = group_offsets;
 1298         pcpu_group_sizes = group_sizes;
 1299         pcpu_unit_map = unit_map;
 1300         pcpu_unit_offsets = unit_off;
 1301 
 1302         /* determine basic parameters */
 1303         pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
 1304         pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
 1305         pcpu_atom_size = ai->atom_size;
 1306         pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
 1307                 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
 1308 
 1309         /*
 1310          * Allocate chunk slots.  The additional last slot is for
 1311          * empty chunks.
 1312          */
 1313         pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
 1314         pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
 1315         for (i = 0; i < pcpu_nr_slots; i++)
 1316                 INIT_LIST_HEAD(&pcpu_slot[i]);
 1317 
 1318         /*
 1319          * Initialize static chunk.  If reserved_size is zero, the
 1320          * static chunk covers static area + dynamic allocation area
 1321          * in the first chunk.  If reserved_size is not zero, it
 1322          * covers static area + reserved area (mostly used for module
 1323          * static percpu allocation).
 1324          */
 1325         schunk = alloc_bootmem(pcpu_chunk_struct_size);
 1326         INIT_LIST_HEAD(&schunk->list);
 1327         schunk->base_addr = base_addr;
 1328         schunk->map = smap;
 1329         schunk->map_alloc = ARRAY_SIZE(smap);
 1330         schunk->immutable = true;
 1331         bitmap_fill(schunk->populated, pcpu_unit_pages);
 1332 
 1333         if (ai->reserved_size) {
 1334                 schunk->free_size = ai->reserved_size;
 1335                 pcpu_reserved_chunk = schunk;
 1336                 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
 1337         } else {
 1338                 schunk->free_size = dyn_size;
 1339                 dyn_size = 0;                   /* dynamic area covered */
 1340         }
 1341         schunk->contig_hint = schunk->free_size;
 1342 
 1343         schunk->map[schunk->map_used++] = -ai->static_size;
 1344         if (schunk->free_size)
 1345                 schunk->map[schunk->map_used++] = schunk->free_size;
 1346 
 1347         /* init dynamic chunk if necessary */
 1348         if (dyn_size) {
 1349                 dchunk = alloc_bootmem(pcpu_chunk_struct_size);
 1350                 INIT_LIST_HEAD(&dchunk->list);
 1351                 dchunk->base_addr = base_addr;
 1352                 dchunk->map = dmap;
 1353                 dchunk->map_alloc = ARRAY_SIZE(dmap);
 1354                 dchunk->immutable = true;
 1355                 bitmap_fill(dchunk->populated, pcpu_unit_pages);
 1356 
 1357                 dchunk->contig_hint = dchunk->free_size = dyn_size;
 1358                 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
 1359                 dchunk->map[dchunk->map_used++] = dchunk->free_size;
 1360         }
 1361 
 1362         /* link the first chunk in */
 1363         pcpu_first_chunk = dchunk ?: schunk;
 1364         pcpu_chunk_relocate(pcpu_first_chunk, -1);
 1365 
 1366         /* we're done */
 1367         pcpu_base_addr = base_addr;
 1368         return 0;
 1369 }
 1370 
 1371 #ifdef CONFIG_SMP
 1372 
 1373 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
 1374         [PCPU_FC_AUTO]  = "auto",
 1375         [PCPU_FC_EMBED] = "embed",
 1376         [PCPU_FC_PAGE]  = "page",
 1377 };
 1378 
 1379 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
 1380 
 1381 static int __init percpu_alloc_setup(char *str)
 1382 {
 1383         if (!str)
 1384                 return -EINVAL;
 1385 
 1386         if (0)
 1387                 /* nada */;
 1388 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
 1389         else if (!strcmp(str, "embed"))
 1390                 pcpu_chosen_fc = PCPU_FC_EMBED;
 1391 #endif
 1392 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
 1393         else if (!strcmp(str, "page"))
 1394                 pcpu_chosen_fc = PCPU_FC_PAGE;
 1395 #endif
 1396         else
 1397                 pr_warning("PERCPU: unknown allocator %s specified\n", str);
 1398 
 1399         return 0;
 1400 }
 1401 early_param("percpu_alloc", percpu_alloc_setup);
 1402 
 1403 /*
 1404  * pcpu_embed_first_chunk() is used by the generic percpu setup.
 1405  * Build it if needed by the arch config or the generic setup is going
 1406  * to be used.
 1407  */
 1408 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
 1409         !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
 1410 #define BUILD_EMBED_FIRST_CHUNK
 1411 #endif
 1412 
 1413 /* build pcpu_page_first_chunk() iff needed by the arch config */
 1414 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
 1415 #define BUILD_PAGE_FIRST_CHUNK
 1416 #endif
 1417 
 1418 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
 1419 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
 1420 /**
 1421  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
 1422  * @reserved_size: the size of reserved percpu area in bytes
 1423  * @dyn_size: minimum free size for dynamic allocation in bytes
 1424  * @atom_size: allocation atom size
 1425  * @cpu_distance_fn: callback to determine distance between cpus, optional
 1426  *
 1427  * This function determines grouping of units, their mappings to cpus
 1428  * and other parameters considering needed percpu size, allocation
 1429  * atom size and distances between CPUs.
 1430  *
 1431  * Groups are always mutliples of atom size and CPUs which are of
 1432  * LOCAL_DISTANCE both ways are grouped together and share space for
 1433  * units in the same group.  The returned configuration is guaranteed
 1434  * to have CPUs on different nodes on different groups and >=75% usage
 1435  * of allocated virtual address space.
 1436  *
 1437  * RETURNS:
 1438  * On success, pointer to the new allocation_info is returned.  On
 1439  * failure, ERR_PTR value is returned.
 1440  */
 1441 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
 1442                                 size_t reserved_size, size_t dyn_size,
 1443                                 size_t atom_size,
 1444                                 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
 1445 {
 1446         static int group_map[NR_CPUS] __initdata;
 1447         static int group_cnt[NR_CPUS] __initdata;
 1448         const size_t static_size = __per_cpu_end - __per_cpu_start;
 1449         int nr_groups = 1, nr_units = 0;
 1450         size_t size_sum, min_unit_size, alloc_size;
 1451         int upa, max_upa, uninitialized_var(best_upa);  /* units_per_alloc */
 1452         int last_allocs, group, unit;
 1453         unsigned int cpu, tcpu;
 1454         struct pcpu_alloc_info *ai;
 1455         unsigned int *cpu_map;
 1456 
 1457         /* this function may be called multiple times */
 1458         memset(group_map, 0, sizeof(group_map));
 1459         memset(group_cnt, 0, sizeof(group_cnt));
 1460 
 1461         /* calculate size_sum and ensure dyn_size is enough for early alloc */
 1462         size_sum = PFN_ALIGN(static_size + reserved_size +
 1463                             max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
 1464         dyn_size = size_sum - static_size - reserved_size;
 1465 
 1466         /*
 1467          * Determine min_unit_size, alloc_size and max_upa such that
 1468          * alloc_size is multiple of atom_size and is the smallest
 1469          * which can accommodate 4k aligned segments which are equal to
 1470          * or larger than min_unit_size.
 1471          */
 1472         min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
 1473 
 1474         alloc_size = roundup(min_unit_size, atom_size);
 1475         upa = alloc_size / min_unit_size;
 1476         while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
 1477                 upa--;
 1478         max_upa = upa;
 1479 
 1480         /* group cpus according to their proximity */
 1481         for_each_possible_cpu(cpu) {
 1482                 group = 0;
 1483         next_group:
 1484                 for_each_possible_cpu(tcpu) {
 1485                         if (cpu == tcpu)
 1486                                 break;
 1487                         if (group_map[tcpu] == group && cpu_distance_fn &&
 1488                             (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
 1489                              cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
 1490                                 group++;
 1491                                 nr_groups = max(nr_groups, group + 1);
 1492                                 goto next_group;
 1493                         }
 1494                 }
 1495                 group_map[cpu] = group;
 1496                 group_cnt[group]++;
 1497         }
 1498 
 1499         /*
 1500          * Expand unit size until address space usage goes over 75%
 1501          * and then as much as possible without using more address
 1502          * space.
 1503          */
 1504         last_allocs = INT_MAX;
 1505         for (upa = max_upa; upa; upa--) {
 1506                 int allocs = 0, wasted = 0;
 1507 
 1508                 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
 1509                         continue;
 1510 
 1511                 for (group = 0; group < nr_groups; group++) {
 1512                         int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
 1513                         allocs += this_allocs;
 1514                         wasted += this_allocs * upa - group_cnt[group];
 1515                 }
 1516 
 1517                 /*
 1518                  * Don't accept if wastage is over 1/3.  The
 1519                  * greater-than comparison ensures upa==1 always
 1520                  * passes the following check.
 1521                  */
 1522                 if (wasted > num_possible_cpus() / 3)
 1523                         continue;
 1524 
 1525                 /* and then don't consume more memory */
 1526                 if (allocs > last_allocs)
 1527                         break;
 1528                 last_allocs = allocs;
 1529                 best_upa = upa;
 1530         }
 1531         upa = best_upa;
 1532 
 1533         /* allocate and fill alloc_info */
 1534         for (group = 0; group < nr_groups; group++)
 1535                 nr_units += roundup(group_cnt[group], upa);
 1536 
 1537         ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
 1538         if (!ai)
 1539                 return ERR_PTR(-ENOMEM);
 1540         cpu_map = ai->groups[0].cpu_map;
 1541 
 1542         for (group = 0; group < nr_groups; group++) {
 1543                 ai->groups[group].cpu_map = cpu_map;
 1544                 cpu_map += roundup(group_cnt[group], upa);
 1545         }
 1546 
 1547         ai->static_size = static_size;
 1548         ai->reserved_size = reserved_size;
 1549         ai->dyn_size = dyn_size;
 1550         ai->unit_size = alloc_size / upa;
 1551         ai->atom_size = atom_size;
 1552         ai->alloc_size = alloc_size;
 1553 
 1554         for (group = 0, unit = 0; group_cnt[group]; group++) {
 1555                 struct pcpu_group_info *gi = &ai->groups[group];
 1556 
 1557                 /*
 1558                  * Initialize base_offset as if all groups are located
 1559                  * back-to-back.  The caller should update this to
 1560                  * reflect actual allocation.
 1561                  */
 1562                 gi->base_offset = unit * ai->unit_size;
 1563 
 1564                 for_each_possible_cpu(cpu)
 1565                         if (group_map[cpu] == group)
 1566                                 gi->cpu_map[gi->nr_units++] = cpu;
 1567                 gi->nr_units = roundup(gi->nr_units, upa);
 1568                 unit += gi->nr_units;
 1569         }
 1570         BUG_ON(unit != nr_units);
 1571 
 1572         return ai;
 1573 }
 1574 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
 1575 
 1576 #if defined(BUILD_EMBED_FIRST_CHUNK)
 1577 /**
 1578  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 1579  * @reserved_size: the size of reserved percpu area in bytes
 1580  * @dyn_size: minimum free size for dynamic allocation in bytes
 1581  * @atom_size: allocation atom size
 1582  * @cpu_distance_fn: callback to determine distance between cpus, optional
 1583  * @alloc_fn: function to allocate percpu page
 1584  * @free_fn: function to free percpu page
 1585  *
 1586  * This is a helper to ease setting up embedded first percpu chunk and
 1587  * can be called where pcpu_setup_first_chunk() is expected.
 1588  *
 1589  * If this function is used to setup the first chunk, it is allocated
 1590  * by calling @alloc_fn and used as-is without being mapped into
 1591  * vmalloc area.  Allocations are always whole multiples of @atom_size
 1592  * aligned to @atom_size.
 1593  *
 1594  * This enables the first chunk to piggy back on the linear physical
 1595  * mapping which often uses larger page size.  Please note that this
 1596  * can result in very sparse cpu->unit mapping on NUMA machines thus
 1597  * requiring large vmalloc address space.  Don't use this allocator if
 1598  * vmalloc space is not orders of magnitude larger than distances
 1599  * between node memory addresses (ie. 32bit NUMA machines).
 1600  *
 1601  * @dyn_size specifies the minimum dynamic area size.
 1602  *
 1603  * If the needed size is smaller than the minimum or specified unit
 1604  * size, the leftover is returned using @free_fn.
 1605  *
 1606  * RETURNS:
 1607  * 0 on success, -errno on failure.
 1608  */
 1609 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
 1610                                   size_t atom_size,
 1611                                   pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
 1612                                   pcpu_fc_alloc_fn_t alloc_fn,
 1613                                   pcpu_fc_free_fn_t free_fn)
 1614 {
 1615         void *base = (void *)ULONG_MAX;
 1616         void **areas = NULL;
 1617         struct pcpu_alloc_info *ai;
 1618         size_t size_sum, areas_size, max_distance;
 1619         int group, i, rc;
 1620 
 1621         ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
 1622                                    cpu_distance_fn);
 1623         if (IS_ERR(ai))
 1624                 return PTR_ERR(ai);
 1625 
 1626         size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
 1627         areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
 1628 
 1629         areas = alloc_bootmem_nopanic(areas_size);
 1630         if (!areas) {
 1631                 rc = -ENOMEM;
 1632                 goto out_free;
 1633         }
 1634 
 1635         /* allocate, copy and determine base address */
 1636         for (group = 0; group < ai->nr_groups; group++) {
 1637                 struct pcpu_group_info *gi = &ai->groups[group];
 1638                 unsigned int cpu = NR_CPUS;
 1639                 void *ptr;
 1640 
 1641                 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
 1642                         cpu = gi->cpu_map[i];
 1643                 BUG_ON(cpu == NR_CPUS);
 1644 
 1645                 /* allocate space for the whole group */
 1646                 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
 1647                 if (!ptr) {
 1648                         rc = -ENOMEM;
 1649                         goto out_free_areas;
 1650                 }
 1651                 /* kmemleak tracks the percpu allocations separately */
 1652                 kmemleak_free(ptr);
 1653                 areas[group] = ptr;
 1654 
 1655                 base = min(ptr, base);
 1656         }
 1657 
 1658         /*
 1659          * Copy data and free unused parts.  This should happen after all
 1660          * allocations are complete; otherwise, we may end up with
 1661          * overlapping groups.
 1662          */
 1663         for (group = 0; group < ai->nr_groups; group++) {
 1664                 struct pcpu_group_info *gi = &ai->groups[group];
 1665                 void *ptr = areas[group];
 1666 
 1667                 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
 1668                         if (gi->cpu_map[i] == NR_CPUS) {
 1669                                 /* unused unit, free whole */
 1670                                 free_fn(ptr, ai->unit_size);
 1671                                 continue;
 1672                         }
 1673                         /* copy and return the unused part */
 1674                         memcpy(ptr, __per_cpu_load, ai->static_size);
 1675                         free_fn(ptr + size_sum, ai->unit_size - size_sum);
 1676                 }
 1677         }
 1678 
 1679         /* base address is now known, determine group base offsets */
 1680         max_distance = 0;
 1681         for (group = 0; group < ai->nr_groups; group++) {
 1682                 ai->groups[group].base_offset = areas[group] - base;
 1683                 max_distance = max_t(size_t, max_distance,
 1684                                      ai->groups[group].base_offset);
 1685         }
 1686         max_distance += ai->unit_size;
 1687 
 1688         /* warn if maximum distance is further than 75% of vmalloc space */
 1689         if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
 1690                 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
 1691                            "space 0x%lx\n", max_distance,
 1692                            (unsigned long)(VMALLOC_END - VMALLOC_START));
 1693 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
 1694                 /* and fail if we have fallback */
 1695                 rc = -EINVAL;
 1696                 goto out_free;
 1697 #endif
 1698         }
 1699 
 1700         pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
 1701                 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
 1702                 ai->dyn_size, ai->unit_size);
 1703 
 1704         rc = pcpu_setup_first_chunk(ai, base);
 1705         goto out_free;
 1706 
 1707 out_free_areas:
 1708         for (group = 0; group < ai->nr_groups; group++)
 1709                 free_fn(areas[group],
 1710                         ai->groups[group].nr_units * ai->unit_size);
 1711 out_free:
 1712         pcpu_free_alloc_info(ai);
 1713         if (areas)
 1714                 free_bootmem(__pa(areas), areas_size);
 1715         return rc;
 1716 }
 1717 #endif /* BUILD_EMBED_FIRST_CHUNK */
 1718 
 1719 #ifdef BUILD_PAGE_FIRST_CHUNK
 1720 /**
 1721  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
 1722  * @reserved_size: the size of reserved percpu area in bytes
 1723  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
 1724  * @free_fn: function to free percpu page, always called with PAGE_SIZE
 1725  * @populate_pte_fn: function to populate pte
 1726  *
 1727  * This is a helper to ease setting up page-remapped first percpu
 1728  * chunk and can be called where pcpu_setup_first_chunk() is expected.
 1729  *
 1730  * This is the basic allocator.  Static percpu area is allocated
 1731  * page-by-page into vmalloc area.
 1732  *
 1733  * RETURNS:
 1734  * 0 on success, -errno on failure.
 1735  */
 1736 int __init pcpu_page_first_chunk(size_t reserved_size,
 1737                                  pcpu_fc_alloc_fn_t alloc_fn,
 1738                                  pcpu_fc_free_fn_t free_fn,
 1739                                  pcpu_fc_populate_pte_fn_t populate_pte_fn)
 1740 {
 1741         static struct vm_struct vm;
 1742         struct pcpu_alloc_info *ai;
 1743         char psize_str[16];
 1744         int unit_pages;
 1745         size_t pages_size;
 1746         struct page **pages;
 1747         int unit, i, j, rc;
 1748 
 1749         snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
 1750 
 1751         ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
 1752         if (IS_ERR(ai))
 1753                 return PTR_ERR(ai);
 1754         BUG_ON(ai->nr_groups != 1);
 1755         BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
 1756 
 1757         unit_pages = ai->unit_size >> PAGE_SHIFT;
 1758 
 1759         /* unaligned allocations can't be freed, round up to page size */
 1760         pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
 1761                                sizeof(pages[0]));
 1762         pages = alloc_bootmem(pages_size);
 1763 
 1764         /* allocate pages */
 1765         j = 0;
 1766         for (unit = 0; unit < num_possible_cpus(); unit++)
 1767                 for (i = 0; i < unit_pages; i++) {
 1768                         unsigned int cpu = ai->groups[0].cpu_map[unit];
 1769                         void *ptr;
 1770 
 1771                         ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
 1772                         if (!ptr) {
 1773                                 pr_warning("PERCPU: failed to allocate %s page "
 1774                                            "for cpu%u\n", psize_str, cpu);
 1775                                 goto enomem;
 1776                         }
 1777                         /* kmemleak tracks the percpu allocations separately */
 1778                         kmemleak_free(ptr);
 1779                         pages[j++] = virt_to_page(ptr);
 1780                 }
 1781 
 1782         /* allocate vm area, map the pages and copy static data */
 1783         vm.flags = VM_ALLOC;
 1784         vm.size = num_possible_cpus() * ai->unit_size;
 1785         vm_area_register_early(&vm, PAGE_SIZE);
 1786 
 1787         for (unit = 0; unit < num_possible_cpus(); unit++) {
 1788                 unsigned long unit_addr =
 1789                         (unsigned long)vm.addr + unit * ai->unit_size;
 1790 
 1791                 for (i = 0; i < unit_pages; i++)
 1792                         populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
 1793 
 1794                 /* pte already populated, the following shouldn't fail */
 1795                 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
 1796                                       unit_pages);
 1797                 if (rc < 0)
 1798                         panic("failed to map percpu area, err=%d\n", rc);
 1799 
 1800                 /*
 1801                  * FIXME: Archs with virtual cache should flush local
 1802                  * cache for the linear mapping here - something
 1803                  * equivalent to flush_cache_vmap() on the local cpu.
 1804                  * flush_cache_vmap() can't be used as most supporting
 1805                  * data structures are not set up yet.
 1806                  */
 1807 
 1808                 /* copy static data */
 1809                 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
 1810         }
 1811 
 1812         /* we're ready, commit */
 1813         pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
 1814                 unit_pages, psize_str, vm.addr, ai->static_size,
 1815                 ai->reserved_size, ai->dyn_size);
 1816 
 1817         rc = pcpu_setup_first_chunk(ai, vm.addr);
 1818         goto out_free_ar;
 1819 
 1820 enomem:
 1821         while (--j >= 0)
 1822                 free_fn(page_address(pages[j]), PAGE_SIZE);
 1823         rc = -ENOMEM;
 1824 out_free_ar:
 1825         free_bootmem(__pa(pages), pages_size);
 1826         pcpu_free_alloc_info(ai);
 1827         return rc;
 1828 }
 1829 #endif /* BUILD_PAGE_FIRST_CHUNK */
 1830 
 1831 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
 1832 /*
 1833  * Generic SMP percpu area setup.
 1834  *
 1835  * The embedding helper is used because its behavior closely resembles
 1836  * the original non-dynamic generic percpu area setup.  This is
 1837  * important because many archs have addressing restrictions and might
 1838  * fail if the percpu area is located far away from the previous
 1839  * location.  As an added bonus, in non-NUMA cases, embedding is
 1840  * generally a good idea TLB-wise because percpu area can piggy back
 1841  * on the physical linear memory mapping which uses large page
 1842  * mappings on applicable archs.
 1843  */
 1844 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
 1845 EXPORT_SYMBOL(__per_cpu_offset);
 1846 
 1847 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
 1848                                        size_t align)
 1849 {
 1850         return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
 1851 }
 1852 
 1853 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
 1854 {
 1855         free_bootmem(__pa(ptr), size);
 1856 }
 1857 
 1858 void __init setup_per_cpu_areas(void)
 1859 {
 1860         unsigned long delta;
 1861         unsigned int cpu;
 1862         int rc;
 1863 
 1864         /*
 1865          * Always reserve area for module percpu variables.  That's
 1866          * what the legacy allocator did.
 1867          */
 1868         rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
 1869                                     PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
 1870                                     pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
 1871         if (rc < 0)
 1872                 panic("Failed to initialize percpu areas.");
 1873 
 1874         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
 1875         for_each_possible_cpu(cpu)
 1876                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
 1877 }
 1878 #endif  /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
 1879 
 1880 #else   /* CONFIG_SMP */
 1881 
 1882 /*
 1883  * UP percpu area setup.
 1884  *
 1885  * UP always uses km-based percpu allocator with identity mapping.
 1886  * Static percpu variables are indistinguishable from the usual static
 1887  * variables and don't require any special preparation.
 1888  */
 1889 void __init setup_per_cpu_areas(void)
 1890 {
 1891         const size_t unit_size =
 1892                 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
 1893                                          PERCPU_DYNAMIC_RESERVE));
 1894         struct pcpu_alloc_info *ai;
 1895         void *fc;
 1896 
 1897         ai = pcpu_alloc_alloc_info(1, 1);
 1898         fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
 1899         if (!ai || !fc)
 1900                 panic("Failed to allocate memory for percpu areas.");
 1901         /* kmemleak tracks the percpu allocations separately */
 1902         kmemleak_free(fc);
 1903 
 1904         ai->dyn_size = unit_size;
 1905         ai->unit_size = unit_size;
 1906         ai->atom_size = unit_size;
 1907         ai->alloc_size = unit_size;
 1908         ai->groups[0].nr_units = 1;
 1909         ai->groups[0].cpu_map[0] = 0;
 1910 
 1911         if (pcpu_setup_first_chunk(ai, fc) < 0)
 1912                 panic("Failed to initialize percpu areas.");
 1913 }
 1914 
 1915 #endif  /* CONFIG_SMP */
 1916 
 1917 /*
 1918  * First and reserved chunks are initialized with temporary allocation
 1919  * map in initdata so that they can be used before slab is online.
 1920  * This function is called after slab is brought up and replaces those
 1921  * with properly allocated maps.
 1922  */
 1923 void __init percpu_init_late(void)
 1924 {
 1925         struct pcpu_chunk *target_chunks[] =
 1926                 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
 1927         struct pcpu_chunk *chunk;
 1928         unsigned long flags;
 1929         int i;
 1930 
 1931         for (i = 0; (chunk = target_chunks[i]); i++) {
 1932                 int *map;
 1933                 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
 1934 
 1935                 BUILD_BUG_ON(size > PAGE_SIZE);
 1936 
 1937                 map = pcpu_mem_zalloc(size);
 1938                 BUG_ON(!map);
 1939 
 1940                 spin_lock_irqsave(&pcpu_lock, flags);
 1941                 memcpy(map, chunk->map, size);
 1942                 chunk->map = map;
 1943                 spin_unlock_irqrestore(&pcpu_lock, flags);
 1944         }
 1945 }

Cache object: 331a47752037d2c298c24fd25ce6885b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.