The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/readahead.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * mm/readahead.c - address_space-level file readahead.
    3  *
    4  * Copyright (C) 2002, Linus Torvalds
    5  *
    6  * 09Apr2002    Andrew Morton
    7  *              Initial version.
    8  */
    9 
   10 #include <linux/kernel.h>
   11 #include <linux/fs.h>
   12 #include <linux/gfp.h>
   13 #include <linux/mm.h>
   14 #include <linux/export.h>
   15 #include <linux/blkdev.h>
   16 #include <linux/backing-dev.h>
   17 #include <linux/task_io_accounting_ops.h>
   18 #include <linux/pagevec.h>
   19 #include <linux/pagemap.h>
   20 #include <linux/syscalls.h>
   21 #include <linux/file.h>
   22 
   23 /*
   24  * Initialise a struct file's readahead state.  Assumes that the caller has
   25  * memset *ra to zero.
   26  */
   27 void
   28 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
   29 {
   30         ra->ra_pages = mapping->backing_dev_info->ra_pages;
   31         ra->prev_pos = -1;
   32 }
   33 EXPORT_SYMBOL_GPL(file_ra_state_init);
   34 
   35 #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
   36 
   37 /*
   38  * see if a page needs releasing upon read_cache_pages() failure
   39  * - the caller of read_cache_pages() may have set PG_private or PG_fscache
   40  *   before calling, such as the NFS fs marking pages that are cached locally
   41  *   on disk, thus we need to give the fs a chance to clean up in the event of
   42  *   an error
   43  */
   44 static void read_cache_pages_invalidate_page(struct address_space *mapping,
   45                                              struct page *page)
   46 {
   47         if (page_has_private(page)) {
   48                 if (!trylock_page(page))
   49                         BUG();
   50                 page->mapping = mapping;
   51                 do_invalidatepage(page, 0);
   52                 page->mapping = NULL;
   53                 unlock_page(page);
   54         }
   55         page_cache_release(page);
   56 }
   57 
   58 /*
   59  * release a list of pages, invalidating them first if need be
   60  */
   61 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
   62                                               struct list_head *pages)
   63 {
   64         struct page *victim;
   65 
   66         while (!list_empty(pages)) {
   67                 victim = list_to_page(pages);
   68                 list_del(&victim->lru);
   69                 read_cache_pages_invalidate_page(mapping, victim);
   70         }
   71 }
   72 
   73 /**
   74  * read_cache_pages - populate an address space with some pages & start reads against them
   75  * @mapping: the address_space
   76  * @pages: The address of a list_head which contains the target pages.  These
   77  *   pages have their ->index populated and are otherwise uninitialised.
   78  * @filler: callback routine for filling a single page.
   79  * @data: private data for the callback routine.
   80  *
   81  * Hides the details of the LRU cache etc from the filesystems.
   82  */
   83 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
   84                         int (*filler)(void *, struct page *), void *data)
   85 {
   86         struct page *page;
   87         int ret = 0;
   88 
   89         while (!list_empty(pages)) {
   90                 page = list_to_page(pages);
   91                 list_del(&page->lru);
   92                 if (add_to_page_cache_lru(page, mapping,
   93                                         page->index, GFP_KERNEL)) {
   94                         read_cache_pages_invalidate_page(mapping, page);
   95                         continue;
   96                 }
   97                 page_cache_release(page);
   98 
   99                 ret = filler(data, page);
  100                 if (unlikely(ret)) {
  101                         read_cache_pages_invalidate_pages(mapping, pages);
  102                         break;
  103                 }
  104                 task_io_account_read(PAGE_CACHE_SIZE);
  105         }
  106         return ret;
  107 }
  108 
  109 EXPORT_SYMBOL(read_cache_pages);
  110 
  111 static int read_pages(struct address_space *mapping, struct file *filp,
  112                 struct list_head *pages, unsigned nr_pages)
  113 {
  114         struct blk_plug plug;
  115         unsigned page_idx;
  116         int ret;
  117 
  118         blk_start_plug(&plug);
  119 
  120         if (mapping->a_ops->readpages) {
  121                 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
  122                 /* Clean up the remaining pages */
  123                 put_pages_list(pages);
  124                 goto out;
  125         }
  126 
  127         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
  128                 struct page *page = list_to_page(pages);
  129                 list_del(&page->lru);
  130                 if (!add_to_page_cache_lru(page, mapping,
  131                                         page->index, GFP_KERNEL)) {
  132                         mapping->a_ops->readpage(filp, page);
  133                 }
  134                 page_cache_release(page);
  135         }
  136         ret = 0;
  137 
  138 out:
  139         blk_finish_plug(&plug);
  140 
  141         return ret;
  142 }
  143 
  144 /*
  145  * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
  146  * the pages first, then submits them all for I/O. This avoids the very bad
  147  * behaviour which would occur if page allocations are causing VM writeback.
  148  * We really don't want to intermingle reads and writes like that.
  149  *
  150  * Returns the number of pages requested, or the maximum amount of I/O allowed.
  151  */
  152 static int
  153 __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
  154                         pgoff_t offset, unsigned long nr_to_read,
  155                         unsigned long lookahead_size)
  156 {
  157         struct inode *inode = mapping->host;
  158         struct page *page;
  159         unsigned long end_index;        /* The last page we want to read */
  160         LIST_HEAD(page_pool);
  161         int page_idx;
  162         int ret = 0;
  163         loff_t isize = i_size_read(inode);
  164 
  165         if (isize == 0)
  166                 goto out;
  167 
  168         end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
  169 
  170         /*
  171          * Preallocate as many pages as we will need.
  172          */
  173         for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
  174                 pgoff_t page_offset = offset + page_idx;
  175 
  176                 if (page_offset > end_index)
  177                         break;
  178 
  179                 rcu_read_lock();
  180                 page = radix_tree_lookup(&mapping->page_tree, page_offset);
  181                 rcu_read_unlock();
  182                 if (page)
  183                         continue;
  184 
  185                 page = page_cache_alloc_readahead(mapping);
  186                 if (!page)
  187                         break;
  188                 page->index = page_offset;
  189                 list_add(&page->lru, &page_pool);
  190                 if (page_idx == nr_to_read - lookahead_size)
  191                         SetPageReadahead(page);
  192                 ret++;
  193         }
  194 
  195         /*
  196          * Now start the IO.  We ignore I/O errors - if the page is not
  197          * uptodate then the caller will launch readpage again, and
  198          * will then handle the error.
  199          */
  200         if (ret)
  201                 read_pages(mapping, filp, &page_pool, ret);
  202         BUG_ON(!list_empty(&page_pool));
  203 out:
  204         return ret;
  205 }
  206 
  207 /*
  208  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
  209  * memory at once.
  210  */
  211 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  212                 pgoff_t offset, unsigned long nr_to_read)
  213 {
  214         int ret = 0;
  215 
  216         if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
  217                 return -EINVAL;
  218 
  219         nr_to_read = max_sane_readahead(nr_to_read);
  220         while (nr_to_read) {
  221                 int err;
  222 
  223                 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
  224 
  225                 if (this_chunk > nr_to_read)
  226                         this_chunk = nr_to_read;
  227                 err = __do_page_cache_readahead(mapping, filp,
  228                                                 offset, this_chunk, 0);
  229                 if (err < 0) {
  230                         ret = err;
  231                         break;
  232                 }
  233                 ret += err;
  234                 offset += this_chunk;
  235                 nr_to_read -= this_chunk;
  236         }
  237         return ret;
  238 }
  239 
  240 /*
  241  * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
  242  * sensible upper limit.
  243  */
  244 unsigned long max_sane_readahead(unsigned long nr)
  245 {
  246         return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
  247                 + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
  248 }
  249 
  250 /*
  251  * Submit IO for the read-ahead request in file_ra_state.
  252  */
  253 unsigned long ra_submit(struct file_ra_state *ra,
  254                        struct address_space *mapping, struct file *filp)
  255 {
  256         int actual;
  257 
  258         actual = __do_page_cache_readahead(mapping, filp,
  259                                         ra->start, ra->size, ra->async_size);
  260 
  261         return actual;
  262 }
  263 
  264 /*
  265  * Set the initial window size, round to next power of 2 and square
  266  * for small size, x 4 for medium, and x 2 for large
  267  * for 128k (32 page) max ra
  268  * 1-8 page = 32k initial, > 8 page = 128k initial
  269  */
  270 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
  271 {
  272         unsigned long newsize = roundup_pow_of_two(size);
  273 
  274         if (newsize <= max / 32)
  275                 newsize = newsize * 4;
  276         else if (newsize <= max / 4)
  277                 newsize = newsize * 2;
  278         else
  279                 newsize = max;
  280 
  281         return newsize;
  282 }
  283 
  284 /*
  285  *  Get the previous window size, ramp it up, and
  286  *  return it as the new window size.
  287  */
  288 static unsigned long get_next_ra_size(struct file_ra_state *ra,
  289                                                 unsigned long max)
  290 {
  291         unsigned long cur = ra->size;
  292         unsigned long newsize;
  293 
  294         if (cur < max / 16)
  295                 newsize = 4 * cur;
  296         else
  297                 newsize = 2 * cur;
  298 
  299         return min(newsize, max);
  300 }
  301 
  302 /*
  303  * On-demand readahead design.
  304  *
  305  * The fields in struct file_ra_state represent the most-recently-executed
  306  * readahead attempt:
  307  *
  308  *                        |<----- async_size ---------|
  309  *     |------------------- size -------------------->|
  310  *     |==================#===========================|
  311  *     ^start             ^page marked with PG_readahead
  312  *
  313  * To overlap application thinking time and disk I/O time, we do
  314  * `readahead pipelining': Do not wait until the application consumed all
  315  * readahead pages and stalled on the missing page at readahead_index;
  316  * Instead, submit an asynchronous readahead I/O as soon as there are
  317  * only async_size pages left in the readahead window. Normally async_size
  318  * will be equal to size, for maximum pipelining.
  319  *
  320  * In interleaved sequential reads, concurrent streams on the same fd can
  321  * be invalidating each other's readahead state. So we flag the new readahead
  322  * page at (start+size-async_size) with PG_readahead, and use it as readahead
  323  * indicator. The flag won't be set on already cached pages, to avoid the
  324  * readahead-for-nothing fuss, saving pointless page cache lookups.
  325  *
  326  * prev_pos tracks the last visited byte in the _previous_ read request.
  327  * It should be maintained by the caller, and will be used for detecting
  328  * small random reads. Note that the readahead algorithm checks loosely
  329  * for sequential patterns. Hence interleaved reads might be served as
  330  * sequential ones.
  331  *
  332  * There is a special-case: if the first page which the application tries to
  333  * read happens to be the first page of the file, it is assumed that a linear
  334  * read is about to happen and the window is immediately set to the initial size
  335  * based on I/O request size and the max_readahead.
  336  *
  337  * The code ramps up the readahead size aggressively at first, but slow down as
  338  * it approaches max_readhead.
  339  */
  340 
  341 /*
  342  * Count contiguously cached pages from @offset-1 to @offset-@max,
  343  * this count is a conservative estimation of
  344  *      - length of the sequential read sequence, or
  345  *      - thrashing threshold in memory tight systems
  346  */
  347 static pgoff_t count_history_pages(struct address_space *mapping,
  348                                    struct file_ra_state *ra,
  349                                    pgoff_t offset, unsigned long max)
  350 {
  351         pgoff_t head;
  352 
  353         rcu_read_lock();
  354         head = radix_tree_prev_hole(&mapping->page_tree, offset - 1, max);
  355         rcu_read_unlock();
  356 
  357         return offset - 1 - head;
  358 }
  359 
  360 /*
  361  * page cache context based read-ahead
  362  */
  363 static int try_context_readahead(struct address_space *mapping,
  364                                  struct file_ra_state *ra,
  365                                  pgoff_t offset,
  366                                  unsigned long req_size,
  367                                  unsigned long max)
  368 {
  369         pgoff_t size;
  370 
  371         size = count_history_pages(mapping, ra, offset, max);
  372 
  373         /*
  374          * no history pages:
  375          * it could be a random read
  376          */
  377         if (!size)
  378                 return 0;
  379 
  380         /*
  381          * starts from beginning of file:
  382          * it is a strong indication of long-run stream (or whole-file-read)
  383          */
  384         if (size >= offset)
  385                 size *= 2;
  386 
  387         ra->start = offset;
  388         ra->size = get_init_ra_size(size + req_size, max);
  389         ra->async_size = ra->size;
  390 
  391         return 1;
  392 }
  393 
  394 /*
  395  * A minimal readahead algorithm for trivial sequential/random reads.
  396  */
  397 static unsigned long
  398 ondemand_readahead(struct address_space *mapping,
  399                    struct file_ra_state *ra, struct file *filp,
  400                    bool hit_readahead_marker, pgoff_t offset,
  401                    unsigned long req_size)
  402 {
  403         unsigned long max = max_sane_readahead(ra->ra_pages);
  404 
  405         /*
  406          * start of file
  407          */
  408         if (!offset)
  409                 goto initial_readahead;
  410 
  411         /*
  412          * It's the expected callback offset, assume sequential access.
  413          * Ramp up sizes, and push forward the readahead window.
  414          */
  415         if ((offset == (ra->start + ra->size - ra->async_size) ||
  416              offset == (ra->start + ra->size))) {
  417                 ra->start += ra->size;
  418                 ra->size = get_next_ra_size(ra, max);
  419                 ra->async_size = ra->size;
  420                 goto readit;
  421         }
  422 
  423         /*
  424          * Hit a marked page without valid readahead state.
  425          * E.g. interleaved reads.
  426          * Query the pagecache for async_size, which normally equals to
  427          * readahead size. Ramp it up and use it as the new readahead size.
  428          */
  429         if (hit_readahead_marker) {
  430                 pgoff_t start;
  431 
  432                 rcu_read_lock();
  433                 start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
  434                 rcu_read_unlock();
  435 
  436                 if (!start || start - offset > max)
  437                         return 0;
  438 
  439                 ra->start = start;
  440                 ra->size = start - offset;      /* old async_size */
  441                 ra->size += req_size;
  442                 ra->size = get_next_ra_size(ra, max);
  443                 ra->async_size = ra->size;
  444                 goto readit;
  445         }
  446 
  447         /*
  448          * oversize read
  449          */
  450         if (req_size > max)
  451                 goto initial_readahead;
  452 
  453         /*
  454          * sequential cache miss
  455          */
  456         if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
  457                 goto initial_readahead;
  458 
  459         /*
  460          * Query the page cache and look for the traces(cached history pages)
  461          * that a sequential stream would leave behind.
  462          */
  463         if (try_context_readahead(mapping, ra, offset, req_size, max))
  464                 goto readit;
  465 
  466         /*
  467          * standalone, small random read
  468          * Read as is, and do not pollute the readahead state.
  469          */
  470         return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
  471 
  472 initial_readahead:
  473         ra->start = offset;
  474         ra->size = get_init_ra_size(req_size, max);
  475         ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
  476 
  477 readit:
  478         /*
  479          * Will this read hit the readahead marker made by itself?
  480          * If so, trigger the readahead marker hit now, and merge
  481          * the resulted next readahead window into the current one.
  482          */
  483         if (offset == ra->start && ra->size == ra->async_size) {
  484                 ra->async_size = get_next_ra_size(ra, max);
  485                 ra->size += ra->async_size;
  486         }
  487 
  488         return ra_submit(ra, mapping, filp);
  489 }
  490 
  491 /**
  492  * page_cache_sync_readahead - generic file readahead
  493  * @mapping: address_space which holds the pagecache and I/O vectors
  494  * @ra: file_ra_state which holds the readahead state
  495  * @filp: passed on to ->readpage() and ->readpages()
  496  * @offset: start offset into @mapping, in pagecache page-sized units
  497  * @req_size: hint: total size of the read which the caller is performing in
  498  *            pagecache pages
  499  *
  500  * page_cache_sync_readahead() should be called when a cache miss happened:
  501  * it will submit the read.  The readahead logic may decide to piggyback more
  502  * pages onto the read request if access patterns suggest it will improve
  503  * performance.
  504  */
  505 void page_cache_sync_readahead(struct address_space *mapping,
  506                                struct file_ra_state *ra, struct file *filp,
  507                                pgoff_t offset, unsigned long req_size)
  508 {
  509         /* no read-ahead */
  510         if (!ra->ra_pages)
  511                 return;
  512 
  513         /* be dumb */
  514         if (filp && (filp->f_mode & FMODE_RANDOM)) {
  515                 force_page_cache_readahead(mapping, filp, offset, req_size);
  516                 return;
  517         }
  518 
  519         /* do read-ahead */
  520         ondemand_readahead(mapping, ra, filp, false, offset, req_size);
  521 }
  522 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
  523 
  524 /**
  525  * page_cache_async_readahead - file readahead for marked pages
  526  * @mapping: address_space which holds the pagecache and I/O vectors
  527  * @ra: file_ra_state which holds the readahead state
  528  * @filp: passed on to ->readpage() and ->readpages()
  529  * @page: the page at @offset which has the PG_readahead flag set
  530  * @offset: start offset into @mapping, in pagecache page-sized units
  531  * @req_size: hint: total size of the read which the caller is performing in
  532  *            pagecache pages
  533  *
  534  * page_cache_async_readahead() should be called when a page is used which
  535  * has the PG_readahead flag; this is a marker to suggest that the application
  536  * has used up enough of the readahead window that we should start pulling in
  537  * more pages.
  538  */
  539 void
  540 page_cache_async_readahead(struct address_space *mapping,
  541                            struct file_ra_state *ra, struct file *filp,
  542                            struct page *page, pgoff_t offset,
  543                            unsigned long req_size)
  544 {
  545         /* no read-ahead */
  546         if (!ra->ra_pages)
  547                 return;
  548 
  549         /*
  550          * Same bit is used for PG_readahead and PG_reclaim.
  551          */
  552         if (PageWriteback(page))
  553                 return;
  554 
  555         ClearPageReadahead(page);
  556 
  557         /*
  558          * Defer asynchronous read-ahead on IO congestion.
  559          */
  560         if (bdi_read_congested(mapping->backing_dev_info))
  561                 return;
  562 
  563         /* do read-ahead */
  564         ondemand_readahead(mapping, ra, filp, true, offset, req_size);
  565 }
  566 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
  567 
  568 static ssize_t
  569 do_readahead(struct address_space *mapping, struct file *filp,
  570              pgoff_t index, unsigned long nr)
  571 {
  572         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
  573                 return -EINVAL;
  574 
  575         force_page_cache_readahead(mapping, filp, index, nr);
  576         return 0;
  577 }
  578 
  579 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
  580 {
  581         ssize_t ret;
  582         struct fd f;
  583 
  584         ret = -EBADF;
  585         f = fdget(fd);
  586         if (f.file) {
  587                 if (f.file->f_mode & FMODE_READ) {
  588                         struct address_space *mapping = f.file->f_mapping;
  589                         pgoff_t start = offset >> PAGE_CACHE_SHIFT;
  590                         pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
  591                         unsigned long len = end - start + 1;
  592                         ret = do_readahead(mapping, f.file, start, len);
  593                 }
  594                 fdput(f);
  595         }
  596         return ret;
  597 }
  598 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
  599 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
  600 {
  601         return SYSC_readahead((int) fd, offset, (size_t) count);
  602 }
  603 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
  604 #endif

Cache object: b9720296433751c7fdc02a5584b5e4d7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.