The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/rmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * mm/rmap.c - physical to virtual reverse mappings
    3  *
    4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
    5  * Released under the General Public License (GPL).
    6  *
    7  * Simple, low overhead reverse mapping scheme.
    8  * Please try to keep this thing as modular as possible.
    9  *
   10  * Provides methods for unmapping each kind of mapped page:
   11  * the anon methods track anonymous pages, and
   12  * the file methods track pages belonging to an inode.
   13  *
   14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
   15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
   16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
   17  * Contributions by Hugh Dickins 2003, 2004
   18  */
   19 
   20 /*
   21  * Lock ordering in mm:
   22  *
   23  * inode->i_mutex       (while writing or truncating, not reading or faulting)
   24  *   mm->mmap_sem
   25  *     page->flags PG_locked (lock_page)
   26  *       mapping->i_mmap_mutex
   27  *         anon_vma->rwsem
   28  *           mm->page_table_lock or pte_lock
   29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
   30  *             swap_lock (in swap_duplicate, swap_info_get)
   31  *               mmlist_lock (in mmput, drain_mmlist and others)
   32  *               mapping->private_lock (in __set_page_dirty_buffers)
   33  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
   34  *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
   35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
   36  *                 mapping->tree_lock (widely used, in set_page_dirty,
   37  *                           in arch-dependent flush_dcache_mmap_lock,
   38  *                           within bdi.wb->list_lock in __sync_single_inode)
   39  *
   40  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
   41  *   ->tasklist_lock
   42  *     pte map lock
   43  */
   44 
   45 #include <linux/mm.h>
   46 #include <linux/pagemap.h>
   47 #include <linux/swap.h>
   48 #include <linux/swapops.h>
   49 #include <linux/slab.h>
   50 #include <linux/init.h>
   51 #include <linux/ksm.h>
   52 #include <linux/rmap.h>
   53 #include <linux/rcupdate.h>
   54 #include <linux/export.h>
   55 #include <linux/memcontrol.h>
   56 #include <linux/mmu_notifier.h>
   57 #include <linux/migrate.h>
   58 #include <linux/hugetlb.h>
   59 #include <linux/backing-dev.h>
   60 
   61 #include <asm/tlbflush.h>
   62 
   63 #include "internal.h"
   64 
   65 static struct kmem_cache *anon_vma_cachep;
   66 static struct kmem_cache *anon_vma_chain_cachep;
   67 
   68 static inline struct anon_vma *anon_vma_alloc(void)
   69 {
   70         struct anon_vma *anon_vma;
   71 
   72         anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
   73         if (anon_vma) {
   74                 atomic_set(&anon_vma->refcount, 1);
   75                 /*
   76                  * Initialise the anon_vma root to point to itself. If called
   77                  * from fork, the root will be reset to the parents anon_vma.
   78                  */
   79                 anon_vma->root = anon_vma;
   80         }
   81 
   82         return anon_vma;
   83 }
   84 
   85 static inline void anon_vma_free(struct anon_vma *anon_vma)
   86 {
   87         VM_BUG_ON(atomic_read(&anon_vma->refcount));
   88 
   89         /*
   90          * Synchronize against page_lock_anon_vma_read() such that
   91          * we can safely hold the lock without the anon_vma getting
   92          * freed.
   93          *
   94          * Relies on the full mb implied by the atomic_dec_and_test() from
   95          * put_anon_vma() against the acquire barrier implied by
   96          * down_read_trylock() from page_lock_anon_vma_read(). This orders:
   97          *
   98          * page_lock_anon_vma_read()    VS      put_anon_vma()
   99          *   down_read_trylock()                  atomic_dec_and_test()
  100          *   LOCK                                 MB
  101          *   atomic_read()                        rwsem_is_locked()
  102          *
  103          * LOCK should suffice since the actual taking of the lock must
  104          * happen _before_ what follows.
  105          */
  106         if (rwsem_is_locked(&anon_vma->root->rwsem)) {
  107                 anon_vma_lock_write(anon_vma);
  108                 anon_vma_unlock(anon_vma);
  109         }
  110 
  111         kmem_cache_free(anon_vma_cachep, anon_vma);
  112 }
  113 
  114 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
  115 {
  116         return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
  117 }
  118 
  119 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  120 {
  121         kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  122 }
  123 
  124 static void anon_vma_chain_link(struct vm_area_struct *vma,
  125                                 struct anon_vma_chain *avc,
  126                                 struct anon_vma *anon_vma)
  127 {
  128         avc->vma = vma;
  129         avc->anon_vma = anon_vma;
  130         list_add(&avc->same_vma, &vma->anon_vma_chain);
  131         anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
  132 }
  133 
  134 /**
  135  * anon_vma_prepare - attach an anon_vma to a memory region
  136  * @vma: the memory region in question
  137  *
  138  * This makes sure the memory mapping described by 'vma' has
  139  * an 'anon_vma' attached to it, so that we can associate the
  140  * anonymous pages mapped into it with that anon_vma.
  141  *
  142  * The common case will be that we already have one, but if
  143  * not we either need to find an adjacent mapping that we
  144  * can re-use the anon_vma from (very common when the only
  145  * reason for splitting a vma has been mprotect()), or we
  146  * allocate a new one.
  147  *
  148  * Anon-vma allocations are very subtle, because we may have
  149  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
  150  * and that may actually touch the spinlock even in the newly
  151  * allocated vma (it depends on RCU to make sure that the
  152  * anon_vma isn't actually destroyed).
  153  *
  154  * As a result, we need to do proper anon_vma locking even
  155  * for the new allocation. At the same time, we do not want
  156  * to do any locking for the common case of already having
  157  * an anon_vma.
  158  *
  159  * This must be called with the mmap_sem held for reading.
  160  */
  161 int anon_vma_prepare(struct vm_area_struct *vma)
  162 {
  163         struct anon_vma *anon_vma = vma->anon_vma;
  164         struct anon_vma_chain *avc;
  165 
  166         might_sleep();
  167         if (unlikely(!anon_vma)) {
  168                 struct mm_struct *mm = vma->vm_mm;
  169                 struct anon_vma *allocated;
  170 
  171                 avc = anon_vma_chain_alloc(GFP_KERNEL);
  172                 if (!avc)
  173                         goto out_enomem;
  174 
  175                 anon_vma = find_mergeable_anon_vma(vma);
  176                 allocated = NULL;
  177                 if (!anon_vma) {
  178                         anon_vma = anon_vma_alloc();
  179                         if (unlikely(!anon_vma))
  180                                 goto out_enomem_free_avc;
  181                         allocated = anon_vma;
  182                 }
  183 
  184                 anon_vma_lock_write(anon_vma);
  185                 /* page_table_lock to protect against threads */
  186                 spin_lock(&mm->page_table_lock);
  187                 if (likely(!vma->anon_vma)) {
  188                         vma->anon_vma = anon_vma;
  189                         anon_vma_chain_link(vma, avc, anon_vma);
  190                         allocated = NULL;
  191                         avc = NULL;
  192                 }
  193                 spin_unlock(&mm->page_table_lock);
  194                 anon_vma_unlock(anon_vma);
  195 
  196                 if (unlikely(allocated))
  197                         put_anon_vma(allocated);
  198                 if (unlikely(avc))
  199                         anon_vma_chain_free(avc);
  200         }
  201         return 0;
  202 
  203  out_enomem_free_avc:
  204         anon_vma_chain_free(avc);
  205  out_enomem:
  206         return -ENOMEM;
  207 }
  208 
  209 /*
  210  * This is a useful helper function for locking the anon_vma root as
  211  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
  212  * have the same vma.
  213  *
  214  * Such anon_vma's should have the same root, so you'd expect to see
  215  * just a single mutex_lock for the whole traversal.
  216  */
  217 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
  218 {
  219         struct anon_vma *new_root = anon_vma->root;
  220         if (new_root != root) {
  221                 if (WARN_ON_ONCE(root))
  222                         up_write(&root->rwsem);
  223                 root = new_root;
  224                 down_write(&root->rwsem);
  225         }
  226         return root;
  227 }
  228 
  229 static inline void unlock_anon_vma_root(struct anon_vma *root)
  230 {
  231         if (root)
  232                 up_write(&root->rwsem);
  233 }
  234 
  235 /*
  236  * Attach the anon_vmas from src to dst.
  237  * Returns 0 on success, -ENOMEM on failure.
  238  */
  239 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  240 {
  241         struct anon_vma_chain *avc, *pavc;
  242         struct anon_vma *root = NULL;
  243 
  244         list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  245                 struct anon_vma *anon_vma;
  246 
  247                 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
  248                 if (unlikely(!avc)) {
  249                         unlock_anon_vma_root(root);
  250                         root = NULL;
  251                         avc = anon_vma_chain_alloc(GFP_KERNEL);
  252                         if (!avc)
  253                                 goto enomem_failure;
  254                 }
  255                 anon_vma = pavc->anon_vma;
  256                 root = lock_anon_vma_root(root, anon_vma);
  257                 anon_vma_chain_link(dst, avc, anon_vma);
  258         }
  259         unlock_anon_vma_root(root);
  260         return 0;
  261 
  262  enomem_failure:
  263         unlink_anon_vmas(dst);
  264         return -ENOMEM;
  265 }
  266 
  267 /*
  268  * Attach vma to its own anon_vma, as well as to the anon_vmas that
  269  * the corresponding VMA in the parent process is attached to.
  270  * Returns 0 on success, non-zero on failure.
  271  */
  272 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  273 {
  274         struct anon_vma_chain *avc;
  275         struct anon_vma *anon_vma;
  276 
  277         /* Don't bother if the parent process has no anon_vma here. */
  278         if (!pvma->anon_vma)
  279                 return 0;
  280 
  281         /*
  282          * First, attach the new VMA to the parent VMA's anon_vmas,
  283          * so rmap can find non-COWed pages in child processes.
  284          */
  285         if (anon_vma_clone(vma, pvma))
  286                 return -ENOMEM;
  287 
  288         /* Then add our own anon_vma. */
  289         anon_vma = anon_vma_alloc();
  290         if (!anon_vma)
  291                 goto out_error;
  292         avc = anon_vma_chain_alloc(GFP_KERNEL);
  293         if (!avc)
  294                 goto out_error_free_anon_vma;
  295 
  296         /*
  297          * The root anon_vma's spinlock is the lock actually used when we
  298          * lock any of the anon_vmas in this anon_vma tree.
  299          */
  300         anon_vma->root = pvma->anon_vma->root;
  301         /*
  302          * With refcounts, an anon_vma can stay around longer than the
  303          * process it belongs to. The root anon_vma needs to be pinned until
  304          * this anon_vma is freed, because the lock lives in the root.
  305          */
  306         get_anon_vma(anon_vma->root);
  307         /* Mark this anon_vma as the one where our new (COWed) pages go. */
  308         vma->anon_vma = anon_vma;
  309         anon_vma_lock_write(anon_vma);
  310         anon_vma_chain_link(vma, avc, anon_vma);
  311         anon_vma_unlock(anon_vma);
  312 
  313         return 0;
  314 
  315  out_error_free_anon_vma:
  316         put_anon_vma(anon_vma);
  317  out_error:
  318         unlink_anon_vmas(vma);
  319         return -ENOMEM;
  320 }
  321 
  322 void unlink_anon_vmas(struct vm_area_struct *vma)
  323 {
  324         struct anon_vma_chain *avc, *next;
  325         struct anon_vma *root = NULL;
  326 
  327         /*
  328          * Unlink each anon_vma chained to the VMA.  This list is ordered
  329          * from newest to oldest, ensuring the root anon_vma gets freed last.
  330          */
  331         list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  332                 struct anon_vma *anon_vma = avc->anon_vma;
  333 
  334                 root = lock_anon_vma_root(root, anon_vma);
  335                 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
  336 
  337                 /*
  338                  * Leave empty anon_vmas on the list - we'll need
  339                  * to free them outside the lock.
  340                  */
  341                 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
  342                         continue;
  343 
  344                 list_del(&avc->same_vma);
  345                 anon_vma_chain_free(avc);
  346         }
  347         unlock_anon_vma_root(root);
  348 
  349         /*
  350          * Iterate the list once more, it now only contains empty and unlinked
  351          * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
  352          * needing to write-acquire the anon_vma->root->rwsem.
  353          */
  354         list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  355                 struct anon_vma *anon_vma = avc->anon_vma;
  356 
  357                 put_anon_vma(anon_vma);
  358 
  359                 list_del(&avc->same_vma);
  360                 anon_vma_chain_free(avc);
  361         }
  362 }
  363 
  364 static void anon_vma_ctor(void *data)
  365 {
  366         struct anon_vma *anon_vma = data;
  367 
  368         init_rwsem(&anon_vma->rwsem);
  369         atomic_set(&anon_vma->refcount, 0);
  370         anon_vma->rb_root = RB_ROOT;
  371 }
  372 
  373 void __init anon_vma_init(void)
  374 {
  375         anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  376                         0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  377         anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  378 }
  379 
  380 /*
  381  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
  382  *
  383  * Since there is no serialization what so ever against page_remove_rmap()
  384  * the best this function can do is return a locked anon_vma that might
  385  * have been relevant to this page.
  386  *
  387  * The page might have been remapped to a different anon_vma or the anon_vma
  388  * returned may already be freed (and even reused).
  389  *
  390  * In case it was remapped to a different anon_vma, the new anon_vma will be a
  391  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
  392  * ensure that any anon_vma obtained from the page will still be valid for as
  393  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
  394  *
  395  * All users of this function must be very careful when walking the anon_vma
  396  * chain and verify that the page in question is indeed mapped in it
  397  * [ something equivalent to page_mapped_in_vma() ].
  398  *
  399  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
  400  * that the anon_vma pointer from page->mapping is valid if there is a
  401  * mapcount, we can dereference the anon_vma after observing those.
  402  */
  403 struct anon_vma *page_get_anon_vma(struct page *page)
  404 {
  405         struct anon_vma *anon_vma = NULL;
  406         unsigned long anon_mapping;
  407 
  408         rcu_read_lock();
  409         anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  410         if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  411                 goto out;
  412         if (!page_mapped(page))
  413                 goto out;
  414 
  415         anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  416         if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  417                 anon_vma = NULL;
  418                 goto out;
  419         }
  420 
  421         /*
  422          * If this page is still mapped, then its anon_vma cannot have been
  423          * freed.  But if it has been unmapped, we have no security against the
  424          * anon_vma structure being freed and reused (for another anon_vma:
  425          * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
  426          * above cannot corrupt).
  427          */
  428         if (!page_mapped(page)) {
  429                 put_anon_vma(anon_vma);
  430                 anon_vma = NULL;
  431         }
  432 out:
  433         rcu_read_unlock();
  434 
  435         return anon_vma;
  436 }
  437 
  438 /*
  439  * Similar to page_get_anon_vma() except it locks the anon_vma.
  440  *
  441  * Its a little more complex as it tries to keep the fast path to a single
  442  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
  443  * reference like with page_get_anon_vma() and then block on the mutex.
  444  */
  445 struct anon_vma *page_lock_anon_vma_read(struct page *page)
  446 {
  447         struct anon_vma *anon_vma = NULL;
  448         struct anon_vma *root_anon_vma;
  449         unsigned long anon_mapping;
  450 
  451         rcu_read_lock();
  452         anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  453         if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  454                 goto out;
  455         if (!page_mapped(page))
  456                 goto out;
  457 
  458         anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  459         root_anon_vma = ACCESS_ONCE(anon_vma->root);
  460         if (down_read_trylock(&root_anon_vma->rwsem)) {
  461                 /*
  462                  * If the page is still mapped, then this anon_vma is still
  463                  * its anon_vma, and holding the mutex ensures that it will
  464                  * not go away, see anon_vma_free().
  465                  */
  466                 if (!page_mapped(page)) {
  467                         up_read(&root_anon_vma->rwsem);
  468                         anon_vma = NULL;
  469                 }
  470                 goto out;
  471         }
  472 
  473         /* trylock failed, we got to sleep */
  474         if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  475                 anon_vma = NULL;
  476                 goto out;
  477         }
  478 
  479         if (!page_mapped(page)) {
  480                 put_anon_vma(anon_vma);
  481                 anon_vma = NULL;
  482                 goto out;
  483         }
  484 
  485         /* we pinned the anon_vma, its safe to sleep */
  486         rcu_read_unlock();
  487         anon_vma_lock_read(anon_vma);
  488 
  489         if (atomic_dec_and_test(&anon_vma->refcount)) {
  490                 /*
  491                  * Oops, we held the last refcount, release the lock
  492                  * and bail -- can't simply use put_anon_vma() because
  493                  * we'll deadlock on the anon_vma_lock_write() recursion.
  494                  */
  495                 anon_vma_unlock_read(anon_vma);
  496                 __put_anon_vma(anon_vma);
  497                 anon_vma = NULL;
  498         }
  499 
  500         return anon_vma;
  501 
  502 out:
  503         rcu_read_unlock();
  504         return anon_vma;
  505 }
  506 
  507 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
  508 {
  509         anon_vma_unlock_read(anon_vma);
  510 }
  511 
  512 /*
  513  * At what user virtual address is page expected in @vma?
  514  */
  515 static inline unsigned long
  516 __vma_address(struct page *page, struct vm_area_struct *vma)
  517 {
  518         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  519 
  520         if (unlikely(is_vm_hugetlb_page(vma)))
  521                 pgoff = page->index << huge_page_order(page_hstate(page));
  522 
  523         return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  524 }
  525 
  526 inline unsigned long
  527 vma_address(struct page *page, struct vm_area_struct *vma)
  528 {
  529         unsigned long address = __vma_address(page, vma);
  530 
  531         /* page should be within @vma mapping range */
  532         VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  533 
  534         return address;
  535 }
  536 
  537 /*
  538  * At what user virtual address is page expected in vma?
  539  * Caller should check the page is actually part of the vma.
  540  */
  541 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  542 {
  543         unsigned long address;
  544         if (PageAnon(page)) {
  545                 struct anon_vma *page__anon_vma = page_anon_vma(page);
  546                 /*
  547                  * Note: swapoff's unuse_vma() is more efficient with this
  548                  * check, and needs it to match anon_vma when KSM is active.
  549                  */
  550                 if (!vma->anon_vma || !page__anon_vma ||
  551                     vma->anon_vma->root != page__anon_vma->root)
  552                         return -EFAULT;
  553         } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  554                 if (!vma->vm_file ||
  555                     vma->vm_file->f_mapping != page->mapping)
  556                         return -EFAULT;
  557         } else
  558                 return -EFAULT;
  559         address = __vma_address(page, vma);
  560         if (unlikely(address < vma->vm_start || address >= vma->vm_end))
  561                 return -EFAULT;
  562         return address;
  563 }
  564 
  565 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
  566 {
  567         pgd_t *pgd;
  568         pud_t *pud;
  569         pmd_t *pmd = NULL;
  570 
  571         pgd = pgd_offset(mm, address);
  572         if (!pgd_present(*pgd))
  573                 goto out;
  574 
  575         pud = pud_offset(pgd, address);
  576         if (!pud_present(*pud))
  577                 goto out;
  578 
  579         pmd = pmd_offset(pud, address);
  580         if (!pmd_present(*pmd))
  581                 pmd = NULL;
  582 out:
  583         return pmd;
  584 }
  585 
  586 /*
  587  * Check that @page is mapped at @address into @mm.
  588  *
  589  * If @sync is false, page_check_address may perform a racy check to avoid
  590  * the page table lock when the pte is not present (helpful when reclaiming
  591  * highly shared pages).
  592  *
  593  * On success returns with pte mapped and locked.
  594  */
  595 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  596                           unsigned long address, spinlock_t **ptlp, int sync)
  597 {
  598         pmd_t *pmd;
  599         pte_t *pte;
  600         spinlock_t *ptl;
  601 
  602         if (unlikely(PageHuge(page))) {
  603                 pte = huge_pte_offset(mm, address);
  604                 ptl = &mm->page_table_lock;
  605                 goto check;
  606         }
  607 
  608         pmd = mm_find_pmd(mm, address);
  609         if (!pmd)
  610                 return NULL;
  611 
  612         if (pmd_trans_huge(*pmd))
  613                 return NULL;
  614 
  615         pte = pte_offset_map(pmd, address);
  616         /* Make a quick check before getting the lock */
  617         if (!sync && !pte_present(*pte)) {
  618                 pte_unmap(pte);
  619                 return NULL;
  620         }
  621 
  622         ptl = pte_lockptr(mm, pmd);
  623 check:
  624         spin_lock(ptl);
  625         if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  626                 *ptlp = ptl;
  627                 return pte;
  628         }
  629         pte_unmap_unlock(pte, ptl);
  630         return NULL;
  631 }
  632 
  633 /**
  634  * page_mapped_in_vma - check whether a page is really mapped in a VMA
  635  * @page: the page to test
  636  * @vma: the VMA to test
  637  *
  638  * Returns 1 if the page is mapped into the page tables of the VMA, 0
  639  * if the page is not mapped into the page tables of this VMA.  Only
  640  * valid for normal file or anonymous VMAs.
  641  */
  642 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  643 {
  644         unsigned long address;
  645         pte_t *pte;
  646         spinlock_t *ptl;
  647 
  648         address = __vma_address(page, vma);
  649         if (unlikely(address < vma->vm_start || address >= vma->vm_end))
  650                 return 0;
  651         pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  652         if (!pte)                       /* the page is not in this mm */
  653                 return 0;
  654         pte_unmap_unlock(pte, ptl);
  655 
  656         return 1;
  657 }
  658 
  659 /*
  660  * Subfunctions of page_referenced: page_referenced_one called
  661  * repeatedly from either page_referenced_anon or page_referenced_file.
  662  */
  663 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  664                         unsigned long address, unsigned int *mapcount,
  665                         unsigned long *vm_flags)
  666 {
  667         struct mm_struct *mm = vma->vm_mm;
  668         int referenced = 0;
  669 
  670         if (unlikely(PageTransHuge(page))) {
  671                 pmd_t *pmd;
  672 
  673                 spin_lock(&mm->page_table_lock);
  674                 /*
  675                  * rmap might return false positives; we must filter
  676                  * these out using page_check_address_pmd().
  677                  */
  678                 pmd = page_check_address_pmd(page, mm, address,
  679                                              PAGE_CHECK_ADDRESS_PMD_FLAG);
  680                 if (!pmd) {
  681                         spin_unlock(&mm->page_table_lock);
  682                         goto out;
  683                 }
  684 
  685                 if (vma->vm_flags & VM_LOCKED) {
  686                         spin_unlock(&mm->page_table_lock);
  687                         *mapcount = 0;  /* break early from loop */
  688                         *vm_flags |= VM_LOCKED;
  689                         goto out;
  690                 }
  691 
  692                 /* go ahead even if the pmd is pmd_trans_splitting() */
  693                 if (pmdp_clear_flush_young_notify(vma, address, pmd))
  694                         referenced++;
  695                 spin_unlock(&mm->page_table_lock);
  696         } else {
  697                 pte_t *pte;
  698                 spinlock_t *ptl;
  699 
  700                 /*
  701                  * rmap might return false positives; we must filter
  702                  * these out using page_check_address().
  703                  */
  704                 pte = page_check_address(page, mm, address, &ptl, 0);
  705                 if (!pte)
  706                         goto out;
  707 
  708                 if (vma->vm_flags & VM_LOCKED) {
  709                         pte_unmap_unlock(pte, ptl);
  710                         *mapcount = 0;  /* break early from loop */
  711                         *vm_flags |= VM_LOCKED;
  712                         goto out;
  713                 }
  714 
  715                 if (ptep_clear_flush_young_notify(vma, address, pte)) {
  716                         /*
  717                          * Don't treat a reference through a sequentially read
  718                          * mapping as such.  If the page has been used in
  719                          * another mapping, we will catch it; if this other
  720                          * mapping is already gone, the unmap path will have
  721                          * set PG_referenced or activated the page.
  722                          */
  723                         if (likely(!VM_SequentialReadHint(vma)))
  724                                 referenced++;
  725                 }
  726                 pte_unmap_unlock(pte, ptl);
  727         }
  728 
  729         (*mapcount)--;
  730 
  731         if (referenced)
  732                 *vm_flags |= vma->vm_flags;
  733 out:
  734         return referenced;
  735 }
  736 
  737 static int page_referenced_anon(struct page *page,
  738                                 struct mem_cgroup *memcg,
  739                                 unsigned long *vm_flags)
  740 {
  741         unsigned int mapcount;
  742         struct anon_vma *anon_vma;
  743         pgoff_t pgoff;
  744         struct anon_vma_chain *avc;
  745         int referenced = 0;
  746 
  747         anon_vma = page_lock_anon_vma_read(page);
  748         if (!anon_vma)
  749                 return referenced;
  750 
  751         mapcount = page_mapcount(page);
  752         pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  753         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  754                 struct vm_area_struct *vma = avc->vma;
  755                 unsigned long address = vma_address(page, vma);
  756                 /*
  757                  * If we are reclaiming on behalf of a cgroup, skip
  758                  * counting on behalf of references from different
  759                  * cgroups
  760                  */
  761                 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
  762                         continue;
  763                 referenced += page_referenced_one(page, vma, address,
  764                                                   &mapcount, vm_flags);
  765                 if (!mapcount)
  766                         break;
  767         }
  768 
  769         page_unlock_anon_vma_read(anon_vma);
  770         return referenced;
  771 }
  772 
  773 /**
  774  * page_referenced_file - referenced check for object-based rmap
  775  * @page: the page we're checking references on.
  776  * @memcg: target memory control group
  777  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  778  *
  779  * For an object-based mapped page, find all the places it is mapped and
  780  * check/clear the referenced flag.  This is done by following the page->mapping
  781  * pointer, then walking the chain of vmas it holds.  It returns the number
  782  * of references it found.
  783  *
  784  * This function is only called from page_referenced for object-based pages.
  785  */
  786 static int page_referenced_file(struct page *page,
  787                                 struct mem_cgroup *memcg,
  788                                 unsigned long *vm_flags)
  789 {
  790         unsigned int mapcount;
  791         struct address_space *mapping = page->mapping;
  792         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  793         struct vm_area_struct *vma;
  794         int referenced = 0;
  795 
  796         /*
  797          * The caller's checks on page->mapping and !PageAnon have made
  798          * sure that this is a file page: the check for page->mapping
  799          * excludes the case just before it gets set on an anon page.
  800          */
  801         BUG_ON(PageAnon(page));
  802 
  803         /*
  804          * The page lock not only makes sure that page->mapping cannot
  805          * suddenly be NULLified by truncation, it makes sure that the
  806          * structure at mapping cannot be freed and reused yet,
  807          * so we can safely take mapping->i_mmap_mutex.
  808          */
  809         BUG_ON(!PageLocked(page));
  810 
  811         mutex_lock(&mapping->i_mmap_mutex);
  812 
  813         /*
  814          * i_mmap_mutex does not stabilize mapcount at all, but mapcount
  815          * is more likely to be accurate if we note it after spinning.
  816          */
  817         mapcount = page_mapcount(page);
  818 
  819         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  820                 unsigned long address = vma_address(page, vma);
  821                 /*
  822                  * If we are reclaiming on behalf of a cgroup, skip
  823                  * counting on behalf of references from different
  824                  * cgroups
  825                  */
  826                 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
  827                         continue;
  828                 referenced += page_referenced_one(page, vma, address,
  829                                                   &mapcount, vm_flags);
  830                 if (!mapcount)
  831                         break;
  832         }
  833 
  834         mutex_unlock(&mapping->i_mmap_mutex);
  835         return referenced;
  836 }
  837 
  838 /**
  839  * page_referenced - test if the page was referenced
  840  * @page: the page to test
  841  * @is_locked: caller holds lock on the page
  842  * @memcg: target memory cgroup
  843  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  844  *
  845  * Quick test_and_clear_referenced for all mappings to a page,
  846  * returns the number of ptes which referenced the page.
  847  */
  848 int page_referenced(struct page *page,
  849                     int is_locked,
  850                     struct mem_cgroup *memcg,
  851                     unsigned long *vm_flags)
  852 {
  853         int referenced = 0;
  854         int we_locked = 0;
  855 
  856         *vm_flags = 0;
  857         if (page_mapped(page) && page_rmapping(page)) {
  858                 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  859                         we_locked = trylock_page(page);
  860                         if (!we_locked) {
  861                                 referenced++;
  862                                 goto out;
  863                         }
  864                 }
  865                 if (unlikely(PageKsm(page)))
  866                         referenced += page_referenced_ksm(page, memcg,
  867                                                                 vm_flags);
  868                 else if (PageAnon(page))
  869                         referenced += page_referenced_anon(page, memcg,
  870                                                                 vm_flags);
  871                 else if (page->mapping)
  872                         referenced += page_referenced_file(page, memcg,
  873                                                                 vm_flags);
  874                 if (we_locked)
  875                         unlock_page(page);
  876 
  877                 if (page_test_and_clear_young(page_to_pfn(page)))
  878                         referenced++;
  879         }
  880 out:
  881         return referenced;
  882 }
  883 
  884 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  885                             unsigned long address)
  886 {
  887         struct mm_struct *mm = vma->vm_mm;
  888         pte_t *pte;
  889         spinlock_t *ptl;
  890         int ret = 0;
  891 
  892         pte = page_check_address(page, mm, address, &ptl, 1);
  893         if (!pte)
  894                 goto out;
  895 
  896         if (pte_dirty(*pte) || pte_write(*pte)) {
  897                 pte_t entry;
  898 
  899                 flush_cache_page(vma, address, pte_pfn(*pte));
  900                 entry = ptep_clear_flush(vma, address, pte);
  901                 entry = pte_wrprotect(entry);
  902                 entry = pte_mkclean(entry);
  903                 set_pte_at(mm, address, pte, entry);
  904                 ret = 1;
  905         }
  906 
  907         pte_unmap_unlock(pte, ptl);
  908 
  909         if (ret)
  910                 mmu_notifier_invalidate_page(mm, address);
  911 out:
  912         return ret;
  913 }
  914 
  915 static int page_mkclean_file(struct address_space *mapping, struct page *page)
  916 {
  917         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  918         struct vm_area_struct *vma;
  919         int ret = 0;
  920 
  921         BUG_ON(PageAnon(page));
  922 
  923         mutex_lock(&mapping->i_mmap_mutex);
  924         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  925                 if (vma->vm_flags & VM_SHARED) {
  926                         unsigned long address = vma_address(page, vma);
  927                         ret += page_mkclean_one(page, vma, address);
  928                 }
  929         }
  930         mutex_unlock(&mapping->i_mmap_mutex);
  931         return ret;
  932 }
  933 
  934 int page_mkclean(struct page *page)
  935 {
  936         int ret = 0;
  937 
  938         BUG_ON(!PageLocked(page));
  939 
  940         if (page_mapped(page)) {
  941                 struct address_space *mapping = page_mapping(page);
  942                 if (mapping)
  943                         ret = page_mkclean_file(mapping, page);
  944         }
  945 
  946         return ret;
  947 }
  948 EXPORT_SYMBOL_GPL(page_mkclean);
  949 
  950 /**
  951  * page_move_anon_rmap - move a page to our anon_vma
  952  * @page:       the page to move to our anon_vma
  953  * @vma:        the vma the page belongs to
  954  * @address:    the user virtual address mapped
  955  *
  956  * When a page belongs exclusively to one process after a COW event,
  957  * that page can be moved into the anon_vma that belongs to just that
  958  * process, so the rmap code will not search the parent or sibling
  959  * processes.
  960  */
  961 void page_move_anon_rmap(struct page *page,
  962         struct vm_area_struct *vma, unsigned long address)
  963 {
  964         struct anon_vma *anon_vma = vma->anon_vma;
  965 
  966         VM_BUG_ON(!PageLocked(page));
  967         VM_BUG_ON(!anon_vma);
  968         VM_BUG_ON(page->index != linear_page_index(vma, address));
  969 
  970         anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  971         page->mapping = (struct address_space *) anon_vma;
  972 }
  973 
  974 /**
  975  * __page_set_anon_rmap - set up new anonymous rmap
  976  * @page:       Page to add to rmap     
  977  * @vma:        VM area to add page to.
  978  * @address:    User virtual address of the mapping     
  979  * @exclusive:  the page is exclusively owned by the current process
  980  */
  981 static void __page_set_anon_rmap(struct page *page,
  982         struct vm_area_struct *vma, unsigned long address, int exclusive)
  983 {
  984         struct anon_vma *anon_vma = vma->anon_vma;
  985 
  986         BUG_ON(!anon_vma);
  987 
  988         if (PageAnon(page))
  989                 return;
  990 
  991         /*
  992          * If the page isn't exclusively mapped into this vma,
  993          * we must use the _oldest_ possible anon_vma for the
  994          * page mapping!
  995          */
  996         if (!exclusive)
  997                 anon_vma = anon_vma->root;
  998 
  999         anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 1000         page->mapping = (struct address_space *) anon_vma;
 1001         page->index = linear_page_index(vma, address);
 1002 }
 1003 
 1004 /**
 1005  * __page_check_anon_rmap - sanity check anonymous rmap addition
 1006  * @page:       the page to add the mapping to
 1007  * @vma:        the vm area in which the mapping is added
 1008  * @address:    the user virtual address mapped
 1009  */
 1010 static void __page_check_anon_rmap(struct page *page,
 1011         struct vm_area_struct *vma, unsigned long address)
 1012 {
 1013 #ifdef CONFIG_DEBUG_VM
 1014         /*
 1015          * The page's anon-rmap details (mapping and index) are guaranteed to
 1016          * be set up correctly at this point.
 1017          *
 1018          * We have exclusion against page_add_anon_rmap because the caller
 1019          * always holds the page locked, except if called from page_dup_rmap,
 1020          * in which case the page is already known to be setup.
 1021          *
 1022          * We have exclusion against page_add_new_anon_rmap because those pages
 1023          * are initially only visible via the pagetables, and the pte is locked
 1024          * over the call to page_add_new_anon_rmap.
 1025          */
 1026         BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
 1027         BUG_ON(page->index != linear_page_index(vma, address));
 1028 #endif
 1029 }
 1030 
 1031 /**
 1032  * page_add_anon_rmap - add pte mapping to an anonymous page
 1033  * @page:       the page to add the mapping to
 1034  * @vma:        the vm area in which the mapping is added
 1035  * @address:    the user virtual address mapped
 1036  *
 1037  * The caller needs to hold the pte lock, and the page must be locked in
 1038  * the anon_vma case: to serialize mapping,index checking after setting,
 1039  * and to ensure that PageAnon is not being upgraded racily to PageKsm
 1040  * (but PageKsm is never downgraded to PageAnon).
 1041  */
 1042 void page_add_anon_rmap(struct page *page,
 1043         struct vm_area_struct *vma, unsigned long address)
 1044 {
 1045         do_page_add_anon_rmap(page, vma, address, 0);
 1046 }
 1047 
 1048 /*
 1049  * Special version of the above for do_swap_page, which often runs
 1050  * into pages that are exclusively owned by the current process.
 1051  * Everybody else should continue to use page_add_anon_rmap above.
 1052  */
 1053 void do_page_add_anon_rmap(struct page *page,
 1054         struct vm_area_struct *vma, unsigned long address, int exclusive)
 1055 {
 1056         int first = atomic_inc_and_test(&page->_mapcount);
 1057         if (first) {
 1058                 if (!PageTransHuge(page))
 1059                         __inc_zone_page_state(page, NR_ANON_PAGES);
 1060                 else
 1061                         __inc_zone_page_state(page,
 1062                                               NR_ANON_TRANSPARENT_HUGEPAGES);
 1063         }
 1064         if (unlikely(PageKsm(page)))
 1065                 return;
 1066 
 1067         VM_BUG_ON(!PageLocked(page));
 1068         /* address might be in next vma when migration races vma_adjust */
 1069         if (first)
 1070                 __page_set_anon_rmap(page, vma, address, exclusive);
 1071         else
 1072                 __page_check_anon_rmap(page, vma, address);
 1073 }
 1074 
 1075 /**
 1076  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
 1077  * @page:       the page to add the mapping to
 1078  * @vma:        the vm area in which the mapping is added
 1079  * @address:    the user virtual address mapped
 1080  *
 1081  * Same as page_add_anon_rmap but must only be called on *new* pages.
 1082  * This means the inc-and-test can be bypassed.
 1083  * Page does not have to be locked.
 1084  */
 1085 void page_add_new_anon_rmap(struct page *page,
 1086         struct vm_area_struct *vma, unsigned long address)
 1087 {
 1088         VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
 1089         SetPageSwapBacked(page);
 1090         atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
 1091         if (!PageTransHuge(page))
 1092                 __inc_zone_page_state(page, NR_ANON_PAGES);
 1093         else
 1094                 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
 1095         __page_set_anon_rmap(page, vma, address, 1);
 1096         if (!mlocked_vma_newpage(vma, page))
 1097                 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
 1098         else
 1099                 add_page_to_unevictable_list(page);
 1100 }
 1101 
 1102 /**
 1103  * page_add_file_rmap - add pte mapping to a file page
 1104  * @page: the page to add the mapping to
 1105  *
 1106  * The caller needs to hold the pte lock.
 1107  */
 1108 void page_add_file_rmap(struct page *page)
 1109 {
 1110         bool locked;
 1111         unsigned long flags;
 1112 
 1113         mem_cgroup_begin_update_page_stat(page, &locked, &flags);
 1114         if (atomic_inc_and_test(&page->_mapcount)) {
 1115                 __inc_zone_page_state(page, NR_FILE_MAPPED);
 1116                 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
 1117         }
 1118         mem_cgroup_end_update_page_stat(page, &locked, &flags);
 1119 }
 1120 
 1121 /**
 1122  * page_remove_rmap - take down pte mapping from a page
 1123  * @page: page to remove mapping from
 1124  *
 1125  * The caller needs to hold the pte lock.
 1126  */
 1127 void page_remove_rmap(struct page *page)
 1128 {
 1129         struct address_space *mapping = page_mapping(page);
 1130         bool anon = PageAnon(page);
 1131         bool locked;
 1132         unsigned long flags;
 1133 
 1134         /*
 1135          * The anon case has no mem_cgroup page_stat to update; but may
 1136          * uncharge_page() below, where the lock ordering can deadlock if
 1137          * we hold the lock against page_stat move: so avoid it on anon.
 1138          */
 1139         if (!anon)
 1140                 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
 1141 
 1142         /* page still mapped by someone else? */
 1143         if (!atomic_add_negative(-1, &page->_mapcount))
 1144                 goto out;
 1145 
 1146         /*
 1147          * Now that the last pte has gone, s390 must transfer dirty
 1148          * flag from storage key to struct page.  We can usually skip
 1149          * this if the page is anon, so about to be freed; but perhaps
 1150          * not if it's in swapcache - there might be another pte slot
 1151          * containing the swap entry, but page not yet written to swap.
 1152          *
 1153          * And we can skip it on file pages, so long as the filesystem
 1154          * participates in dirty tracking (note that this is not only an
 1155          * optimization but also solves problems caused by dirty flag in
 1156          * storage key getting set by a write from inside kernel); but need to
 1157          * catch shm and tmpfs and ramfs pages which have been modified since
 1158          * creation by read fault.
 1159          *
 1160          * Note that mapping must be decided above, before decrementing
 1161          * mapcount (which luckily provides a barrier): once page is unmapped,
 1162          * it could be truncated and page->mapping reset to NULL at any moment.
 1163          * Note also that we are relying on page_mapping(page) to set mapping
 1164          * to &swapper_space when PageSwapCache(page).
 1165          */
 1166         if (mapping && !mapping_cap_account_dirty(mapping) &&
 1167             page_test_and_clear_dirty(page_to_pfn(page), 1))
 1168                 set_page_dirty(page);
 1169         /*
 1170          * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
 1171          * and not charged by memcg for now.
 1172          */
 1173         if (unlikely(PageHuge(page)))
 1174                 goto out;
 1175         if (anon) {
 1176                 mem_cgroup_uncharge_page(page);
 1177                 if (!PageTransHuge(page))
 1178                         __dec_zone_page_state(page, NR_ANON_PAGES);
 1179                 else
 1180                         __dec_zone_page_state(page,
 1181                                               NR_ANON_TRANSPARENT_HUGEPAGES);
 1182         } else {
 1183                 __dec_zone_page_state(page, NR_FILE_MAPPED);
 1184                 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
 1185                 mem_cgroup_end_update_page_stat(page, &locked, &flags);
 1186         }
 1187         if (unlikely(PageMlocked(page)))
 1188                 clear_page_mlock(page);
 1189         /*
 1190          * It would be tidy to reset the PageAnon mapping here,
 1191          * but that might overwrite a racing page_add_anon_rmap
 1192          * which increments mapcount after us but sets mapping
 1193          * before us: so leave the reset to free_hot_cold_page,
 1194          * and remember that it's only reliable while mapped.
 1195          * Leaving it set also helps swapoff to reinstate ptes
 1196          * faster for those pages still in swapcache.
 1197          */
 1198         return;
 1199 out:
 1200         if (!anon)
 1201                 mem_cgroup_end_update_page_stat(page, &locked, &flags);
 1202 }
 1203 
 1204 /*
 1205  * Subfunctions of try_to_unmap: try_to_unmap_one called
 1206  * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
 1207  */
 1208 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
 1209                      unsigned long address, enum ttu_flags flags)
 1210 {
 1211         struct mm_struct *mm = vma->vm_mm;
 1212         pte_t *pte;
 1213         pte_t pteval;
 1214         spinlock_t *ptl;
 1215         int ret = SWAP_AGAIN;
 1216 
 1217         pte = page_check_address(page, mm, address, &ptl, 0);
 1218         if (!pte)
 1219                 goto out;
 1220 
 1221         /*
 1222          * If the page is mlock()d, we cannot swap it out.
 1223          * If it's recently referenced (perhaps page_referenced
 1224          * skipped over this mm) then we should reactivate it.
 1225          */
 1226         if (!(flags & TTU_IGNORE_MLOCK)) {
 1227                 if (vma->vm_flags & VM_LOCKED)
 1228                         goto out_mlock;
 1229 
 1230                 if (TTU_ACTION(flags) == TTU_MUNLOCK)
 1231                         goto out_unmap;
 1232         }
 1233         if (!(flags & TTU_IGNORE_ACCESS)) {
 1234                 if (ptep_clear_flush_young_notify(vma, address, pte)) {
 1235                         ret = SWAP_FAIL;
 1236                         goto out_unmap;
 1237                 }
 1238         }
 1239 
 1240         /* Nuke the page table entry. */
 1241         flush_cache_page(vma, address, page_to_pfn(page));
 1242         pteval = ptep_clear_flush(vma, address, pte);
 1243 
 1244         /* Move the dirty bit to the physical page now the pte is gone. */
 1245         if (pte_dirty(pteval))
 1246                 set_page_dirty(page);
 1247 
 1248         /* Update high watermark before we lower rss */
 1249         update_hiwater_rss(mm);
 1250 
 1251         if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
 1252                 if (!PageHuge(page)) {
 1253                         if (PageAnon(page))
 1254                                 dec_mm_counter(mm, MM_ANONPAGES);
 1255                         else
 1256                                 dec_mm_counter(mm, MM_FILEPAGES);
 1257                 }
 1258                 set_pte_at(mm, address, pte,
 1259                            swp_entry_to_pte(make_hwpoison_entry(page)));
 1260         } else if (PageAnon(page)) {
 1261                 swp_entry_t entry = { .val = page_private(page) };
 1262 
 1263                 if (PageSwapCache(page)) {
 1264                         /*
 1265                          * Store the swap location in the pte.
 1266                          * See handle_pte_fault() ...
 1267                          */
 1268                         if (swap_duplicate(entry) < 0) {
 1269                                 set_pte_at(mm, address, pte, pteval);
 1270                                 ret = SWAP_FAIL;
 1271                                 goto out_unmap;
 1272                         }
 1273                         if (list_empty(&mm->mmlist)) {
 1274                                 spin_lock(&mmlist_lock);
 1275                                 if (list_empty(&mm->mmlist))
 1276                                         list_add(&mm->mmlist, &init_mm.mmlist);
 1277                                 spin_unlock(&mmlist_lock);
 1278                         }
 1279                         dec_mm_counter(mm, MM_ANONPAGES);
 1280                         inc_mm_counter(mm, MM_SWAPENTS);
 1281                 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
 1282                         /*
 1283                          * Store the pfn of the page in a special migration
 1284                          * pte. do_swap_page() will wait until the migration
 1285                          * pte is removed and then restart fault handling.
 1286                          */
 1287                         BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
 1288                         entry = make_migration_entry(page, pte_write(pteval));
 1289                 }
 1290                 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
 1291                 BUG_ON(pte_file(*pte));
 1292         } else if (IS_ENABLED(CONFIG_MIGRATION) &&
 1293                    (TTU_ACTION(flags) == TTU_MIGRATION)) {
 1294                 /* Establish migration entry for a file page */
 1295                 swp_entry_t entry;
 1296                 entry = make_migration_entry(page, pte_write(pteval));
 1297                 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
 1298         } else
 1299                 dec_mm_counter(mm, MM_FILEPAGES);
 1300 
 1301         page_remove_rmap(page);
 1302         page_cache_release(page);
 1303 
 1304 out_unmap:
 1305         pte_unmap_unlock(pte, ptl);
 1306         if (ret != SWAP_FAIL)
 1307                 mmu_notifier_invalidate_page(mm, address);
 1308 out:
 1309         return ret;
 1310 
 1311 out_mlock:
 1312         pte_unmap_unlock(pte, ptl);
 1313 
 1314 
 1315         /*
 1316          * We need mmap_sem locking, Otherwise VM_LOCKED check makes
 1317          * unstable result and race. Plus, We can't wait here because
 1318          * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
 1319          * if trylock failed, the page remain in evictable lru and later
 1320          * vmscan could retry to move the page to unevictable lru if the
 1321          * page is actually mlocked.
 1322          */
 1323         if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
 1324                 if (vma->vm_flags & VM_LOCKED) {
 1325                         mlock_vma_page(page);
 1326                         ret = SWAP_MLOCK;
 1327                 }
 1328                 up_read(&vma->vm_mm->mmap_sem);
 1329         }
 1330         return ret;
 1331 }
 1332 
 1333 /*
 1334  * objrmap doesn't work for nonlinear VMAs because the assumption that
 1335  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
 1336  * Consequently, given a particular page and its ->index, we cannot locate the
 1337  * ptes which are mapping that page without an exhaustive linear search.
 1338  *
 1339  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
 1340  * maps the file to which the target page belongs.  The ->vm_private_data field
 1341  * holds the current cursor into that scan.  Successive searches will circulate
 1342  * around the vma's virtual address space.
 1343  *
 1344  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
 1345  * more scanning pressure is placed against them as well.   Eventually pages
 1346  * will become fully unmapped and are eligible for eviction.
 1347  *
 1348  * For very sparsely populated VMAs this is a little inefficient - chances are
 1349  * there there won't be many ptes located within the scan cluster.  In this case
 1350  * maybe we could scan further - to the end of the pte page, perhaps.
 1351  *
 1352  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
 1353  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
 1354  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
 1355  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
 1356  */
 1357 #define CLUSTER_SIZE    min(32*PAGE_SIZE, PMD_SIZE)
 1358 #define CLUSTER_MASK    (~(CLUSTER_SIZE - 1))
 1359 
 1360 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
 1361                 struct vm_area_struct *vma, struct page *check_page)
 1362 {
 1363         struct mm_struct *mm = vma->vm_mm;
 1364         pmd_t *pmd;
 1365         pte_t *pte;
 1366         pte_t pteval;
 1367         spinlock_t *ptl;
 1368         struct page *page;
 1369         unsigned long address;
 1370         unsigned long mmun_start;       /* For mmu_notifiers */
 1371         unsigned long mmun_end;         /* For mmu_notifiers */
 1372         unsigned long end;
 1373         int ret = SWAP_AGAIN;
 1374         int locked_vma = 0;
 1375 
 1376         address = (vma->vm_start + cursor) & CLUSTER_MASK;
 1377         end = address + CLUSTER_SIZE;
 1378         if (address < vma->vm_start)
 1379                 address = vma->vm_start;
 1380         if (end > vma->vm_end)
 1381                 end = vma->vm_end;
 1382 
 1383         pmd = mm_find_pmd(mm, address);
 1384         if (!pmd)
 1385                 return ret;
 1386 
 1387         mmun_start = address;
 1388         mmun_end   = end;
 1389         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 1390 
 1391         /*
 1392          * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
 1393          * keep the sem while scanning the cluster for mlocking pages.
 1394          */
 1395         if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
 1396                 locked_vma = (vma->vm_flags & VM_LOCKED);
 1397                 if (!locked_vma)
 1398                         up_read(&vma->vm_mm->mmap_sem); /* don't need it */
 1399         }
 1400 
 1401         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
 1402 
 1403         /* Update high watermark before we lower rss */
 1404         update_hiwater_rss(mm);
 1405 
 1406         for (; address < end; pte++, address += PAGE_SIZE) {
 1407                 if (!pte_present(*pte))
 1408                         continue;
 1409                 page = vm_normal_page(vma, address, *pte);
 1410                 BUG_ON(!page || PageAnon(page));
 1411 
 1412                 if (locked_vma) {
 1413                         mlock_vma_page(page);   /* no-op if already mlocked */
 1414                         if (page == check_page)
 1415                                 ret = SWAP_MLOCK;
 1416                         continue;       /* don't unmap */
 1417                 }
 1418 
 1419                 if (ptep_clear_flush_young_notify(vma, address, pte))
 1420                         continue;
 1421 
 1422                 /* Nuke the page table entry. */
 1423                 flush_cache_page(vma, address, pte_pfn(*pte));
 1424                 pteval = ptep_clear_flush(vma, address, pte);
 1425 
 1426                 /* If nonlinear, store the file page offset in the pte. */
 1427                 if (page->index != linear_page_index(vma, address))
 1428                         set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
 1429 
 1430                 /* Move the dirty bit to the physical page now the pte is gone. */
 1431                 if (pte_dirty(pteval))
 1432                         set_page_dirty(page);
 1433 
 1434                 page_remove_rmap(page);
 1435                 page_cache_release(page);
 1436                 dec_mm_counter(mm, MM_FILEPAGES);
 1437                 (*mapcount)--;
 1438         }
 1439         pte_unmap_unlock(pte - 1, ptl);
 1440         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 1441         if (locked_vma)
 1442                 up_read(&vma->vm_mm->mmap_sem);
 1443         return ret;
 1444 }
 1445 
 1446 bool is_vma_temporary_stack(struct vm_area_struct *vma)
 1447 {
 1448         int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
 1449 
 1450         if (!maybe_stack)
 1451                 return false;
 1452 
 1453         if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
 1454                                                 VM_STACK_INCOMPLETE_SETUP)
 1455                 return true;
 1456 
 1457         return false;
 1458 }
 1459 
 1460 /**
 1461  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
 1462  * rmap method
 1463  * @page: the page to unmap/unlock
 1464  * @flags: action and flags
 1465  *
 1466  * Find all the mappings of a page using the mapping pointer and the vma chains
 1467  * contained in the anon_vma struct it points to.
 1468  *
 1469  * This function is only called from try_to_unmap/try_to_munlock for
 1470  * anonymous pages.
 1471  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
 1472  * where the page was found will be held for write.  So, we won't recheck
 1473  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
 1474  * 'LOCKED.
 1475  */
 1476 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
 1477 {
 1478         struct anon_vma *anon_vma;
 1479         pgoff_t pgoff;
 1480         struct anon_vma_chain *avc;
 1481         int ret = SWAP_AGAIN;
 1482 
 1483         anon_vma = page_lock_anon_vma_read(page);
 1484         if (!anon_vma)
 1485                 return ret;
 1486 
 1487         pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 1488         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
 1489                 struct vm_area_struct *vma = avc->vma;
 1490                 unsigned long address;
 1491 
 1492                 /*
 1493                  * During exec, a temporary VMA is setup and later moved.
 1494                  * The VMA is moved under the anon_vma lock but not the
 1495                  * page tables leading to a race where migration cannot
 1496                  * find the migration ptes. Rather than increasing the
 1497                  * locking requirements of exec(), migration skips
 1498                  * temporary VMAs until after exec() completes.
 1499                  */
 1500                 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
 1501                                 is_vma_temporary_stack(vma))
 1502                         continue;
 1503 
 1504                 address = vma_address(page, vma);
 1505                 ret = try_to_unmap_one(page, vma, address, flags);
 1506                 if (ret != SWAP_AGAIN || !page_mapped(page))
 1507                         break;
 1508         }
 1509 
 1510         page_unlock_anon_vma_read(anon_vma);
 1511         return ret;
 1512 }
 1513 
 1514 /**
 1515  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
 1516  * @page: the page to unmap/unlock
 1517  * @flags: action and flags
 1518  *
 1519  * Find all the mappings of a page using the mapping pointer and the vma chains
 1520  * contained in the address_space struct it points to.
 1521  *
 1522  * This function is only called from try_to_unmap/try_to_munlock for
 1523  * object-based pages.
 1524  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
 1525  * where the page was found will be held for write.  So, we won't recheck
 1526  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
 1527  * 'LOCKED.
 1528  */
 1529 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
 1530 {
 1531         struct address_space *mapping = page->mapping;
 1532         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 1533         struct vm_area_struct *vma;
 1534         int ret = SWAP_AGAIN;
 1535         unsigned long cursor;
 1536         unsigned long max_nl_cursor = 0;
 1537         unsigned long max_nl_size = 0;
 1538         unsigned int mapcount;
 1539 
 1540         mutex_lock(&mapping->i_mmap_mutex);
 1541         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 1542                 unsigned long address = vma_address(page, vma);
 1543                 ret = try_to_unmap_one(page, vma, address, flags);
 1544                 if (ret != SWAP_AGAIN || !page_mapped(page))
 1545                         goto out;
 1546         }
 1547 
 1548         if (list_empty(&mapping->i_mmap_nonlinear))
 1549                 goto out;
 1550 
 1551         /*
 1552          * We don't bother to try to find the munlocked page in nonlinears.
 1553          * It's costly. Instead, later, page reclaim logic may call
 1554          * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
 1555          */
 1556         if (TTU_ACTION(flags) == TTU_MUNLOCK)
 1557                 goto out;
 1558 
 1559         list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
 1560                                                         shared.nonlinear) {
 1561                 cursor = (unsigned long) vma->vm_private_data;
 1562                 if (cursor > max_nl_cursor)
 1563                         max_nl_cursor = cursor;
 1564                 cursor = vma->vm_end - vma->vm_start;
 1565                 if (cursor > max_nl_size)
 1566                         max_nl_size = cursor;
 1567         }
 1568 
 1569         if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
 1570                 ret = SWAP_FAIL;
 1571                 goto out;
 1572         }
 1573 
 1574         /*
 1575          * We don't try to search for this page in the nonlinear vmas,
 1576          * and page_referenced wouldn't have found it anyway.  Instead
 1577          * just walk the nonlinear vmas trying to age and unmap some.
 1578          * The mapcount of the page we came in with is irrelevant,
 1579          * but even so use it as a guide to how hard we should try?
 1580          */
 1581         mapcount = page_mapcount(page);
 1582         if (!mapcount)
 1583                 goto out;
 1584         cond_resched();
 1585 
 1586         max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
 1587         if (max_nl_cursor == 0)
 1588                 max_nl_cursor = CLUSTER_SIZE;
 1589 
 1590         do {
 1591                 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
 1592                                                         shared.nonlinear) {
 1593                         cursor = (unsigned long) vma->vm_private_data;
 1594                         while ( cursor < max_nl_cursor &&
 1595                                 cursor < vma->vm_end - vma->vm_start) {
 1596                                 if (try_to_unmap_cluster(cursor, &mapcount,
 1597                                                 vma, page) == SWAP_MLOCK)
 1598                                         ret = SWAP_MLOCK;
 1599                                 cursor += CLUSTER_SIZE;
 1600                                 vma->vm_private_data = (void *) cursor;
 1601                                 if ((int)mapcount <= 0)
 1602                                         goto out;
 1603                         }
 1604                         vma->vm_private_data = (void *) max_nl_cursor;
 1605                 }
 1606                 cond_resched();
 1607                 max_nl_cursor += CLUSTER_SIZE;
 1608         } while (max_nl_cursor <= max_nl_size);
 1609 
 1610         /*
 1611          * Don't loop forever (perhaps all the remaining pages are
 1612          * in locked vmas).  Reset cursor on all unreserved nonlinear
 1613          * vmas, now forgetting on which ones it had fallen behind.
 1614          */
 1615         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
 1616                 vma->vm_private_data = NULL;
 1617 out:
 1618         mutex_unlock(&mapping->i_mmap_mutex);
 1619         return ret;
 1620 }
 1621 
 1622 /**
 1623  * try_to_unmap - try to remove all page table mappings to a page
 1624  * @page: the page to get unmapped
 1625  * @flags: action and flags
 1626  *
 1627  * Tries to remove all the page table entries which are mapping this
 1628  * page, used in the pageout path.  Caller must hold the page lock.
 1629  * Return values are:
 1630  *
 1631  * SWAP_SUCCESS - we succeeded in removing all mappings
 1632  * SWAP_AGAIN   - we missed a mapping, try again later
 1633  * SWAP_FAIL    - the page is unswappable
 1634  * SWAP_MLOCK   - page is mlocked.
 1635  */
 1636 int try_to_unmap(struct page *page, enum ttu_flags flags)
 1637 {
 1638         int ret;
 1639 
 1640         BUG_ON(!PageLocked(page));
 1641         VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
 1642 
 1643         if (unlikely(PageKsm(page)))
 1644                 ret = try_to_unmap_ksm(page, flags);
 1645         else if (PageAnon(page))
 1646                 ret = try_to_unmap_anon(page, flags);
 1647         else
 1648                 ret = try_to_unmap_file(page, flags);
 1649         if (ret != SWAP_MLOCK && !page_mapped(page))
 1650                 ret = SWAP_SUCCESS;
 1651         return ret;
 1652 }
 1653 
 1654 /**
 1655  * try_to_munlock - try to munlock a page
 1656  * @page: the page to be munlocked
 1657  *
 1658  * Called from munlock code.  Checks all of the VMAs mapping the page
 1659  * to make sure nobody else has this page mlocked. The page will be
 1660  * returned with PG_mlocked cleared if no other vmas have it mlocked.
 1661  *
 1662  * Return values are:
 1663  *
 1664  * SWAP_AGAIN   - no vma is holding page mlocked, or,
 1665  * SWAP_AGAIN   - page mapped in mlocked vma -- couldn't acquire mmap sem
 1666  * SWAP_FAIL    - page cannot be located at present
 1667  * SWAP_MLOCK   - page is now mlocked.
 1668  */
 1669 int try_to_munlock(struct page *page)
 1670 {
 1671         VM_BUG_ON(!PageLocked(page) || PageLRU(page));
 1672 
 1673         if (unlikely(PageKsm(page)))
 1674                 return try_to_unmap_ksm(page, TTU_MUNLOCK);
 1675         else if (PageAnon(page))
 1676                 return try_to_unmap_anon(page, TTU_MUNLOCK);
 1677         else
 1678                 return try_to_unmap_file(page, TTU_MUNLOCK);
 1679 }
 1680 
 1681 void __put_anon_vma(struct anon_vma *anon_vma)
 1682 {
 1683         struct anon_vma *root = anon_vma->root;
 1684 
 1685         if (root != anon_vma && atomic_dec_and_test(&root->refcount))
 1686                 anon_vma_free(root);
 1687 
 1688         anon_vma_free(anon_vma);
 1689 }
 1690 
 1691 #ifdef CONFIG_MIGRATION
 1692 /*
 1693  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
 1694  * Called by migrate.c to remove migration ptes, but might be used more later.
 1695  */
 1696 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
 1697                 struct vm_area_struct *, unsigned long, void *), void *arg)
 1698 {
 1699         struct anon_vma *anon_vma;
 1700         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 1701         struct anon_vma_chain *avc;
 1702         int ret = SWAP_AGAIN;
 1703 
 1704         /*
 1705          * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
 1706          * because that depends on page_mapped(); but not all its usages
 1707          * are holding mmap_sem. Users without mmap_sem are required to
 1708          * take a reference count to prevent the anon_vma disappearing
 1709          */
 1710         anon_vma = page_anon_vma(page);
 1711         if (!anon_vma)
 1712                 return ret;
 1713         anon_vma_lock_read(anon_vma);
 1714         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
 1715                 struct vm_area_struct *vma = avc->vma;
 1716                 unsigned long address = vma_address(page, vma);
 1717                 ret = rmap_one(page, vma, address, arg);
 1718                 if (ret != SWAP_AGAIN)
 1719                         break;
 1720         }
 1721         anon_vma_unlock_read(anon_vma);
 1722         return ret;
 1723 }
 1724 
 1725 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
 1726                 struct vm_area_struct *, unsigned long, void *), void *arg)
 1727 {
 1728         struct address_space *mapping = page->mapping;
 1729         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 1730         struct vm_area_struct *vma;
 1731         int ret = SWAP_AGAIN;
 1732 
 1733         if (!mapping)
 1734                 return ret;
 1735         mutex_lock(&mapping->i_mmap_mutex);
 1736         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 1737                 unsigned long address = vma_address(page, vma);
 1738                 ret = rmap_one(page, vma, address, arg);
 1739                 if (ret != SWAP_AGAIN)
 1740                         break;
 1741         }
 1742         /*
 1743          * No nonlinear handling: being always shared, nonlinear vmas
 1744          * never contain migration ptes.  Decide what to do about this
 1745          * limitation to linear when we need rmap_walk() on nonlinear.
 1746          */
 1747         mutex_unlock(&mapping->i_mmap_mutex);
 1748         return ret;
 1749 }
 1750 
 1751 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
 1752                 struct vm_area_struct *, unsigned long, void *), void *arg)
 1753 {
 1754         VM_BUG_ON(!PageLocked(page));
 1755 
 1756         if (unlikely(PageKsm(page)))
 1757                 return rmap_walk_ksm(page, rmap_one, arg);
 1758         else if (PageAnon(page))
 1759                 return rmap_walk_anon(page, rmap_one, arg);
 1760         else
 1761                 return rmap_walk_file(page, rmap_one, arg);
 1762 }
 1763 #endif /* CONFIG_MIGRATION */
 1764 
 1765 #ifdef CONFIG_HUGETLB_PAGE
 1766 /*
 1767  * The following three functions are for anonymous (private mapped) hugepages.
 1768  * Unlike common anonymous pages, anonymous hugepages have no accounting code
 1769  * and no lru code, because we handle hugepages differently from common pages.
 1770  */
 1771 static void __hugepage_set_anon_rmap(struct page *page,
 1772         struct vm_area_struct *vma, unsigned long address, int exclusive)
 1773 {
 1774         struct anon_vma *anon_vma = vma->anon_vma;
 1775 
 1776         BUG_ON(!anon_vma);
 1777 
 1778         if (PageAnon(page))
 1779                 return;
 1780         if (!exclusive)
 1781                 anon_vma = anon_vma->root;
 1782 
 1783         anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 1784         page->mapping = (struct address_space *) anon_vma;
 1785         page->index = linear_page_index(vma, address);
 1786 }
 1787 
 1788 void hugepage_add_anon_rmap(struct page *page,
 1789                             struct vm_area_struct *vma, unsigned long address)
 1790 {
 1791         struct anon_vma *anon_vma = vma->anon_vma;
 1792         int first;
 1793 
 1794         BUG_ON(!PageLocked(page));
 1795         BUG_ON(!anon_vma);
 1796         /* address might be in next vma when migration races vma_adjust */
 1797         first = atomic_inc_and_test(&page->_mapcount);
 1798         if (first)
 1799                 __hugepage_set_anon_rmap(page, vma, address, 0);
 1800 }
 1801 
 1802 void hugepage_add_new_anon_rmap(struct page *page,
 1803                         struct vm_area_struct *vma, unsigned long address)
 1804 {
 1805         BUG_ON(address < vma->vm_start || address >= vma->vm_end);
 1806         atomic_set(&page->_mapcount, 0);
 1807         __hugepage_set_anon_rmap(page, vma, address, 1);
 1808 }
 1809 #endif /* CONFIG_HUGETLB_PAGE */

Cache object: 6157383a846808a33fbe63a9d5d5fa8f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.