The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/shmem.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Resizable virtual memory filesystem for Linux.
    3  *
    4  * Copyright (C) 2000 Linus Torvalds.
    5  *               2000 Transmeta Corp.
    6  *               2000-2001 Christoph Rohland
    7  *               2000-2001 SAP AG
    8  *               2002 Red Hat Inc.
    9  * Copyright (C) 2002-2011 Hugh Dickins.
   10  * Copyright (C) 2011 Google Inc.
   11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
   12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
   13  *
   14  * Extended attribute support for tmpfs:
   15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
   16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
   17  *
   18  * tiny-shmem:
   19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
   20  *
   21  * This file is released under the GPL.
   22  */
   23 
   24 #include <linux/fs.h>
   25 #include <linux/init.h>
   26 #include <linux/vfs.h>
   27 #include <linux/mount.h>
   28 #include <linux/pagemap.h>
   29 #include <linux/file.h>
   30 #include <linux/mm.h>
   31 #include <linux/export.h>
   32 #include <linux/swap.h>
   33 
   34 static struct vfsmount *shm_mnt;
   35 
   36 #ifdef CONFIG_SHMEM
   37 /*
   38  * This virtual memory filesystem is heavily based on the ramfs. It
   39  * extends ramfs by the ability to use swap and honor resource limits
   40  * which makes it a completely usable filesystem.
   41  */
   42 
   43 #include <linux/xattr.h>
   44 #include <linux/exportfs.h>
   45 #include <linux/posix_acl.h>
   46 #include <linux/generic_acl.h>
   47 #include <linux/mman.h>
   48 #include <linux/string.h>
   49 #include <linux/slab.h>
   50 #include <linux/backing-dev.h>
   51 #include <linux/shmem_fs.h>
   52 #include <linux/writeback.h>
   53 #include <linux/blkdev.h>
   54 #include <linux/pagevec.h>
   55 #include <linux/percpu_counter.h>
   56 #include <linux/falloc.h>
   57 #include <linux/splice.h>
   58 #include <linux/security.h>
   59 #include <linux/swapops.h>
   60 #include <linux/mempolicy.h>
   61 #include <linux/namei.h>
   62 #include <linux/ctype.h>
   63 #include <linux/migrate.h>
   64 #include <linux/highmem.h>
   65 #include <linux/seq_file.h>
   66 #include <linux/magic.h>
   67 
   68 #include <asm/uaccess.h>
   69 #include <asm/pgtable.h>
   70 
   71 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
   72 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
   73 
   74 /* Pretend that each entry is of this size in directory's i_size */
   75 #define BOGO_DIRENT_SIZE 20
   76 
   77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
   78 #define SHORT_SYMLINK_LEN 128
   79 
   80 /*
   81  * shmem_fallocate and shmem_writepage communicate via inode->i_private
   82  * (with i_mutex making sure that it has only one user at a time):
   83  * we would prefer not to enlarge the shmem inode just for that.
   84  */
   85 struct shmem_falloc {
   86         pgoff_t start;          /* start of range currently being fallocated */
   87         pgoff_t next;           /* the next page offset to be fallocated */
   88         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
   89         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
   90 };
   91 
   92 /* Flag allocation requirements to shmem_getpage */
   93 enum sgp_type {
   94         SGP_READ,       /* don't exceed i_size, don't allocate page */
   95         SGP_CACHE,      /* don't exceed i_size, may allocate page */
   96         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
   97         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
   98         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
   99 };
  100 
  101 #ifdef CONFIG_TMPFS
  102 static unsigned long shmem_default_max_blocks(void)
  103 {
  104         return totalram_pages / 2;
  105 }
  106 
  107 static unsigned long shmem_default_max_inodes(void)
  108 {
  109         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
  110 }
  111 #endif
  112 
  113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
  114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
  115                                 struct shmem_inode_info *info, pgoff_t index);
  116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
  117         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
  118 
  119 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
  120         struct page **pagep, enum sgp_type sgp, int *fault_type)
  121 {
  122         return shmem_getpage_gfp(inode, index, pagep, sgp,
  123                         mapping_gfp_mask(inode->i_mapping), fault_type);
  124 }
  125 
  126 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
  127 {
  128         return sb->s_fs_info;
  129 }
  130 
  131 /*
  132  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
  133  * for shared memory and for shared anonymous (/dev/zero) mappings
  134  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
  135  * consistent with the pre-accounting of private mappings ...
  136  */
  137 static inline int shmem_acct_size(unsigned long flags, loff_t size)
  138 {
  139         return (flags & VM_NORESERVE) ?
  140                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
  141 }
  142 
  143 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
  144 {
  145         if (!(flags & VM_NORESERVE))
  146                 vm_unacct_memory(VM_ACCT(size));
  147 }
  148 
  149 /*
  150  * ... whereas tmpfs objects are accounted incrementally as
  151  * pages are allocated, in order to allow huge sparse files.
  152  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
  153  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
  154  */
  155 static inline int shmem_acct_block(unsigned long flags)
  156 {
  157         return (flags & VM_NORESERVE) ?
  158                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
  159 }
  160 
  161 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
  162 {
  163         if (flags & VM_NORESERVE)
  164                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
  165 }
  166 
  167 static const struct super_operations shmem_ops;
  168 static const struct address_space_operations shmem_aops;
  169 static const struct file_operations shmem_file_operations;
  170 static const struct inode_operations shmem_inode_operations;
  171 static const struct inode_operations shmem_dir_inode_operations;
  172 static const struct inode_operations shmem_special_inode_operations;
  173 static const struct vm_operations_struct shmem_vm_ops;
  174 
  175 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
  176         .ra_pages       = 0,    /* No readahead */
  177         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
  178 };
  179 
  180 static LIST_HEAD(shmem_swaplist);
  181 static DEFINE_MUTEX(shmem_swaplist_mutex);
  182 
  183 static int shmem_reserve_inode(struct super_block *sb)
  184 {
  185         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
  186         if (sbinfo->max_inodes) {
  187                 spin_lock(&sbinfo->stat_lock);
  188                 if (!sbinfo->free_inodes) {
  189                         spin_unlock(&sbinfo->stat_lock);
  190                         return -ENOSPC;
  191                 }
  192                 sbinfo->free_inodes--;
  193                 spin_unlock(&sbinfo->stat_lock);
  194         }
  195         return 0;
  196 }
  197 
  198 static void shmem_free_inode(struct super_block *sb)
  199 {
  200         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
  201         if (sbinfo->max_inodes) {
  202                 spin_lock(&sbinfo->stat_lock);
  203                 sbinfo->free_inodes++;
  204                 spin_unlock(&sbinfo->stat_lock);
  205         }
  206 }
  207 
  208 /**
  209  * shmem_recalc_inode - recalculate the block usage of an inode
  210  * @inode: inode to recalc
  211  *
  212  * We have to calculate the free blocks since the mm can drop
  213  * undirtied hole pages behind our back.
  214  *
  215  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
  216  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
  217  *
  218  * It has to be called with the spinlock held.
  219  */
  220 static void shmem_recalc_inode(struct inode *inode)
  221 {
  222         struct shmem_inode_info *info = SHMEM_I(inode);
  223         long freed;
  224 
  225         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
  226         if (freed > 0) {
  227                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
  228                 if (sbinfo->max_blocks)
  229                         percpu_counter_add(&sbinfo->used_blocks, -freed);
  230                 info->alloced -= freed;
  231                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
  232                 shmem_unacct_blocks(info->flags, freed);
  233         }
  234 }
  235 
  236 /*
  237  * Replace item expected in radix tree by a new item, while holding tree lock.
  238  */
  239 static int shmem_radix_tree_replace(struct address_space *mapping,
  240                         pgoff_t index, void *expected, void *replacement)
  241 {
  242         void **pslot;
  243         void *item = NULL;
  244 
  245         VM_BUG_ON(!expected);
  246         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
  247         if (pslot)
  248                 item = radix_tree_deref_slot_protected(pslot,
  249                                                         &mapping->tree_lock);
  250         if (item != expected)
  251                 return -ENOENT;
  252         if (replacement)
  253                 radix_tree_replace_slot(pslot, replacement);
  254         else
  255                 radix_tree_delete(&mapping->page_tree, index);
  256         return 0;
  257 }
  258 
  259 /*
  260  * Sometimes, before we decide whether to proceed or to fail, we must check
  261  * that an entry was not already brought back from swap by a racing thread.
  262  *
  263  * Checking page is not enough: by the time a SwapCache page is locked, it
  264  * might be reused, and again be SwapCache, using the same swap as before.
  265  */
  266 static bool shmem_confirm_swap(struct address_space *mapping,
  267                                pgoff_t index, swp_entry_t swap)
  268 {
  269         void *item;
  270 
  271         rcu_read_lock();
  272         item = radix_tree_lookup(&mapping->page_tree, index);
  273         rcu_read_unlock();
  274         return item == swp_to_radix_entry(swap);
  275 }
  276 
  277 /*
  278  * Like add_to_page_cache_locked, but error if expected item has gone.
  279  */
  280 static int shmem_add_to_page_cache(struct page *page,
  281                                    struct address_space *mapping,
  282                                    pgoff_t index, gfp_t gfp, void *expected)
  283 {
  284         int error;
  285 
  286         VM_BUG_ON(!PageLocked(page));
  287         VM_BUG_ON(!PageSwapBacked(page));
  288 
  289         page_cache_get(page);
  290         page->mapping = mapping;
  291         page->index = index;
  292 
  293         spin_lock_irq(&mapping->tree_lock);
  294         if (!expected)
  295                 error = radix_tree_insert(&mapping->page_tree, index, page);
  296         else
  297                 error = shmem_radix_tree_replace(mapping, index, expected,
  298                                                                  page);
  299         if (!error) {
  300                 mapping->nrpages++;
  301                 __inc_zone_page_state(page, NR_FILE_PAGES);
  302                 __inc_zone_page_state(page, NR_SHMEM);
  303                 spin_unlock_irq(&mapping->tree_lock);
  304         } else {
  305                 page->mapping = NULL;
  306                 spin_unlock_irq(&mapping->tree_lock);
  307                 page_cache_release(page);
  308         }
  309         return error;
  310 }
  311 
  312 /*
  313  * Like delete_from_page_cache, but substitutes swap for page.
  314  */
  315 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
  316 {
  317         struct address_space *mapping = page->mapping;
  318         int error;
  319 
  320         spin_lock_irq(&mapping->tree_lock);
  321         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
  322         page->mapping = NULL;
  323         mapping->nrpages--;
  324         __dec_zone_page_state(page, NR_FILE_PAGES);
  325         __dec_zone_page_state(page, NR_SHMEM);
  326         spin_unlock_irq(&mapping->tree_lock);
  327         page_cache_release(page);
  328         BUG_ON(error);
  329 }
  330 
  331 /*
  332  * Like find_get_pages, but collecting swap entries as well as pages.
  333  */
  334 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
  335                                         pgoff_t start, unsigned int nr_pages,
  336                                         struct page **pages, pgoff_t *indices)
  337 {
  338         unsigned int i;
  339         unsigned int ret;
  340         unsigned int nr_found;
  341 
  342         rcu_read_lock();
  343 restart:
  344         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
  345                                 (void ***)pages, indices, start, nr_pages);
  346         ret = 0;
  347         for (i = 0; i < nr_found; i++) {
  348                 struct page *page;
  349 repeat:
  350                 page = radix_tree_deref_slot((void **)pages[i]);
  351                 if (unlikely(!page))
  352                         continue;
  353                 if (radix_tree_exception(page)) {
  354                         if (radix_tree_deref_retry(page))
  355                                 goto restart;
  356                         /*
  357                          * Otherwise, we must be storing a swap entry
  358                          * here as an exceptional entry: so return it
  359                          * without attempting to raise page count.
  360                          */
  361                         goto export;
  362                 }
  363                 if (!page_cache_get_speculative(page))
  364                         goto repeat;
  365 
  366                 /* Has the page moved? */
  367                 if (unlikely(page != *((void **)pages[i]))) {
  368                         page_cache_release(page);
  369                         goto repeat;
  370                 }
  371 export:
  372                 indices[ret] = indices[i];
  373                 pages[ret] = page;
  374                 ret++;
  375         }
  376         if (unlikely(!ret && nr_found))
  377                 goto restart;
  378         rcu_read_unlock();
  379         return ret;
  380 }
  381 
  382 /*
  383  * Remove swap entry from radix tree, free the swap and its page cache.
  384  */
  385 static int shmem_free_swap(struct address_space *mapping,
  386                            pgoff_t index, void *radswap)
  387 {
  388         int error;
  389 
  390         spin_lock_irq(&mapping->tree_lock);
  391         error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
  392         spin_unlock_irq(&mapping->tree_lock);
  393         if (!error)
  394                 free_swap_and_cache(radix_to_swp_entry(radswap));
  395         return error;
  396 }
  397 
  398 /*
  399  * Pagevec may contain swap entries, so shuffle up pages before releasing.
  400  */
  401 static void shmem_deswap_pagevec(struct pagevec *pvec)
  402 {
  403         int i, j;
  404 
  405         for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
  406                 struct page *page = pvec->pages[i];
  407                 if (!radix_tree_exceptional_entry(page))
  408                         pvec->pages[j++] = page;
  409         }
  410         pvec->nr = j;
  411 }
  412 
  413 /*
  414  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
  415  */
  416 void shmem_unlock_mapping(struct address_space *mapping)
  417 {
  418         struct pagevec pvec;
  419         pgoff_t indices[PAGEVEC_SIZE];
  420         pgoff_t index = 0;
  421 
  422         pagevec_init(&pvec, 0);
  423         /*
  424          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
  425          */
  426         while (!mapping_unevictable(mapping)) {
  427                 /*
  428                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
  429                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
  430                  */
  431                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
  432                                         PAGEVEC_SIZE, pvec.pages, indices);
  433                 if (!pvec.nr)
  434                         break;
  435                 index = indices[pvec.nr - 1] + 1;
  436                 shmem_deswap_pagevec(&pvec);
  437                 check_move_unevictable_pages(pvec.pages, pvec.nr);
  438                 pagevec_release(&pvec);
  439                 cond_resched();
  440         }
  441 }
  442 
  443 /*
  444  * Remove range of pages and swap entries from radix tree, and free them.
  445  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
  446  */
  447 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
  448                                                                  bool unfalloc)
  449 {
  450         struct address_space *mapping = inode->i_mapping;
  451         struct shmem_inode_info *info = SHMEM_I(inode);
  452         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  453         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
  454         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
  455         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
  456         struct pagevec pvec;
  457         pgoff_t indices[PAGEVEC_SIZE];
  458         long nr_swaps_freed = 0;
  459         pgoff_t index;
  460         int i;
  461 
  462         if (lend == -1)
  463                 end = -1;       /* unsigned, so actually very big */
  464 
  465         pagevec_init(&pvec, 0);
  466         index = start;
  467         while (index < end) {
  468                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
  469                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
  470                                                         pvec.pages, indices);
  471                 if (!pvec.nr)
  472                         break;
  473                 mem_cgroup_uncharge_start();
  474                 for (i = 0; i < pagevec_count(&pvec); i++) {
  475                         struct page *page = pvec.pages[i];
  476 
  477                         index = indices[i];
  478                         if (index >= end)
  479                                 break;
  480 
  481                         if (radix_tree_exceptional_entry(page)) {
  482                                 if (unfalloc)
  483                                         continue;
  484                                 nr_swaps_freed += !shmem_free_swap(mapping,
  485                                                                 index, page);
  486                                 continue;
  487                         }
  488 
  489                         if (!trylock_page(page))
  490                                 continue;
  491                         if (!unfalloc || !PageUptodate(page)) {
  492                                 if (page->mapping == mapping) {
  493                                         VM_BUG_ON(PageWriteback(page));
  494                                         truncate_inode_page(mapping, page);
  495                                 }
  496                         }
  497                         unlock_page(page);
  498                 }
  499                 shmem_deswap_pagevec(&pvec);
  500                 pagevec_release(&pvec);
  501                 mem_cgroup_uncharge_end();
  502                 cond_resched();
  503                 index++;
  504         }
  505 
  506         if (partial_start) {
  507                 struct page *page = NULL;
  508                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
  509                 if (page) {
  510                         unsigned int top = PAGE_CACHE_SIZE;
  511                         if (start > end) {
  512                                 top = partial_end;
  513                                 partial_end = 0;
  514                         }
  515                         zero_user_segment(page, partial_start, top);
  516                         set_page_dirty(page);
  517                         unlock_page(page);
  518                         page_cache_release(page);
  519                 }
  520         }
  521         if (partial_end) {
  522                 struct page *page = NULL;
  523                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
  524                 if (page) {
  525                         zero_user_segment(page, 0, partial_end);
  526                         set_page_dirty(page);
  527                         unlock_page(page);
  528                         page_cache_release(page);
  529                 }
  530         }
  531         if (start >= end)
  532                 return;
  533 
  534         index = start;
  535         for ( ; ; ) {
  536                 cond_resched();
  537                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
  538                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
  539                                                         pvec.pages, indices);
  540                 if (!pvec.nr) {
  541                         if (index == start || unfalloc)
  542                                 break;
  543                         index = start;
  544                         continue;
  545                 }
  546                 if ((index == start || unfalloc) && indices[0] >= end) {
  547                         shmem_deswap_pagevec(&pvec);
  548                         pagevec_release(&pvec);
  549                         break;
  550                 }
  551                 mem_cgroup_uncharge_start();
  552                 for (i = 0; i < pagevec_count(&pvec); i++) {
  553                         struct page *page = pvec.pages[i];
  554 
  555                         index = indices[i];
  556                         if (index >= end)
  557                                 break;
  558 
  559                         if (radix_tree_exceptional_entry(page)) {
  560                                 if (unfalloc)
  561                                         continue;
  562                                 nr_swaps_freed += !shmem_free_swap(mapping,
  563                                                                 index, page);
  564                                 continue;
  565                         }
  566 
  567                         lock_page(page);
  568                         if (!unfalloc || !PageUptodate(page)) {
  569                                 if (page->mapping == mapping) {
  570                                         VM_BUG_ON(PageWriteback(page));
  571                                         truncate_inode_page(mapping, page);
  572                                 }
  573                         }
  574                         unlock_page(page);
  575                 }
  576                 shmem_deswap_pagevec(&pvec);
  577                 pagevec_release(&pvec);
  578                 mem_cgroup_uncharge_end();
  579                 index++;
  580         }
  581 
  582         spin_lock(&info->lock);
  583         info->swapped -= nr_swaps_freed;
  584         shmem_recalc_inode(inode);
  585         spin_unlock(&info->lock);
  586 }
  587 
  588 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
  589 {
  590         shmem_undo_range(inode, lstart, lend, false);
  591         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
  592 }
  593 EXPORT_SYMBOL_GPL(shmem_truncate_range);
  594 
  595 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
  596 {
  597         struct inode *inode = dentry->d_inode;
  598         int error;
  599 
  600         error = inode_change_ok(inode, attr);
  601         if (error)
  602                 return error;
  603 
  604         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
  605                 loff_t oldsize = inode->i_size;
  606                 loff_t newsize = attr->ia_size;
  607 
  608                 if (newsize != oldsize) {
  609                         i_size_write(inode, newsize);
  610                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
  611                 }
  612                 if (newsize < oldsize) {
  613                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
  614                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
  615                         shmem_truncate_range(inode, newsize, (loff_t)-1);
  616                         /* unmap again to remove racily COWed private pages */
  617                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
  618                 }
  619         }
  620 
  621         setattr_copy(inode, attr);
  622 #ifdef CONFIG_TMPFS_POSIX_ACL
  623         if (attr->ia_valid & ATTR_MODE)
  624                 error = generic_acl_chmod(inode);
  625 #endif
  626         return error;
  627 }
  628 
  629 static void shmem_evict_inode(struct inode *inode)
  630 {
  631         struct shmem_inode_info *info = SHMEM_I(inode);
  632 
  633         if (inode->i_mapping->a_ops == &shmem_aops) {
  634                 shmem_unacct_size(info->flags, inode->i_size);
  635                 inode->i_size = 0;
  636                 shmem_truncate_range(inode, 0, (loff_t)-1);
  637                 if (!list_empty(&info->swaplist)) {
  638                         mutex_lock(&shmem_swaplist_mutex);
  639                         list_del_init(&info->swaplist);
  640                         mutex_unlock(&shmem_swaplist_mutex);
  641                 }
  642         } else
  643                 kfree(info->symlink);
  644 
  645         simple_xattrs_free(&info->xattrs);
  646         WARN_ON(inode->i_blocks);
  647         shmem_free_inode(inode->i_sb);
  648         clear_inode(inode);
  649 }
  650 
  651 /*
  652  * If swap found in inode, free it and move page from swapcache to filecache.
  653  */
  654 static int shmem_unuse_inode(struct shmem_inode_info *info,
  655                              swp_entry_t swap, struct page **pagep)
  656 {
  657         struct address_space *mapping = info->vfs_inode.i_mapping;
  658         void *radswap;
  659         pgoff_t index;
  660         gfp_t gfp;
  661         int error = 0;
  662 
  663         radswap = swp_to_radix_entry(swap);
  664         index = radix_tree_locate_item(&mapping->page_tree, radswap);
  665         if (index == -1)
  666                 return 0;
  667 
  668         /*
  669          * Move _head_ to start search for next from here.
  670          * But be careful: shmem_evict_inode checks list_empty without taking
  671          * mutex, and there's an instant in list_move_tail when info->swaplist
  672          * would appear empty, if it were the only one on shmem_swaplist.
  673          */
  674         if (shmem_swaplist.next != &info->swaplist)
  675                 list_move_tail(&shmem_swaplist, &info->swaplist);
  676 
  677         gfp = mapping_gfp_mask(mapping);
  678         if (shmem_should_replace_page(*pagep, gfp)) {
  679                 mutex_unlock(&shmem_swaplist_mutex);
  680                 error = shmem_replace_page(pagep, gfp, info, index);
  681                 mutex_lock(&shmem_swaplist_mutex);
  682                 /*
  683                  * We needed to drop mutex to make that restrictive page
  684                  * allocation, but the inode might have been freed while we
  685                  * dropped it: although a racing shmem_evict_inode() cannot
  686                  * complete without emptying the radix_tree, our page lock
  687                  * on this swapcache page is not enough to prevent that -
  688                  * free_swap_and_cache() of our swap entry will only
  689                  * trylock_page(), removing swap from radix_tree whatever.
  690                  *
  691                  * We must not proceed to shmem_add_to_page_cache() if the
  692                  * inode has been freed, but of course we cannot rely on
  693                  * inode or mapping or info to check that.  However, we can
  694                  * safely check if our swap entry is still in use (and here
  695                  * it can't have got reused for another page): if it's still
  696                  * in use, then the inode cannot have been freed yet, and we
  697                  * can safely proceed (if it's no longer in use, that tells
  698                  * nothing about the inode, but we don't need to unuse swap).
  699                  */
  700                 if (!page_swapcount(*pagep))
  701                         error = -ENOENT;
  702         }
  703 
  704         /*
  705          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
  706          * but also to hold up shmem_evict_inode(): so inode cannot be freed
  707          * beneath us (pagelock doesn't help until the page is in pagecache).
  708          */
  709         if (!error)
  710                 error = shmem_add_to_page_cache(*pagep, mapping, index,
  711                                                 GFP_NOWAIT, radswap);
  712         if (error != -ENOMEM) {
  713                 /*
  714                  * Truncation and eviction use free_swap_and_cache(), which
  715                  * only does trylock page: if we raced, best clean up here.
  716                  */
  717                 delete_from_swap_cache(*pagep);
  718                 set_page_dirty(*pagep);
  719                 if (!error) {
  720                         spin_lock(&info->lock);
  721                         info->swapped--;
  722                         spin_unlock(&info->lock);
  723                         swap_free(swap);
  724                 }
  725                 error = 1;      /* not an error, but entry was found */
  726         }
  727         return error;
  728 }
  729 
  730 /*
  731  * Search through swapped inodes to find and replace swap by page.
  732  */
  733 int shmem_unuse(swp_entry_t swap, struct page *page)
  734 {
  735         struct list_head *this, *next;
  736         struct shmem_inode_info *info;
  737         int found = 0;
  738         int error = 0;
  739 
  740         /*
  741          * There's a faint possibility that swap page was replaced before
  742          * caller locked it: caller will come back later with the right page.
  743          */
  744         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
  745                 goto out;
  746 
  747         /*
  748          * Charge page using GFP_KERNEL while we can wait, before taking
  749          * the shmem_swaplist_mutex which might hold up shmem_writepage().
  750          * Charged back to the user (not to caller) when swap account is used.
  751          */
  752         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
  753         if (error)
  754                 goto out;
  755         /* No radix_tree_preload: swap entry keeps a place for page in tree */
  756 
  757         mutex_lock(&shmem_swaplist_mutex);
  758         list_for_each_safe(this, next, &shmem_swaplist) {
  759                 info = list_entry(this, struct shmem_inode_info, swaplist);
  760                 if (info->swapped)
  761                         found = shmem_unuse_inode(info, swap, &page);
  762                 else
  763                         list_del_init(&info->swaplist);
  764                 cond_resched();
  765                 if (found)
  766                         break;
  767         }
  768         mutex_unlock(&shmem_swaplist_mutex);
  769 
  770         if (found < 0)
  771                 error = found;
  772 out:
  773         unlock_page(page);
  774         page_cache_release(page);
  775         return error;
  776 }
  777 
  778 /*
  779  * Move the page from the page cache to the swap cache.
  780  */
  781 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
  782 {
  783         struct shmem_inode_info *info;
  784         struct address_space *mapping;
  785         struct inode *inode;
  786         swp_entry_t swap;
  787         pgoff_t index;
  788 
  789         BUG_ON(!PageLocked(page));
  790         mapping = page->mapping;
  791         index = page->index;
  792         inode = mapping->host;
  793         info = SHMEM_I(inode);
  794         if (info->flags & VM_LOCKED)
  795                 goto redirty;
  796         if (!total_swap_pages)
  797                 goto redirty;
  798 
  799         /*
  800          * shmem_backing_dev_info's capabilities prevent regular writeback or
  801          * sync from ever calling shmem_writepage; but a stacking filesystem
  802          * might use ->writepage of its underlying filesystem, in which case
  803          * tmpfs should write out to swap only in response to memory pressure,
  804          * and not for the writeback threads or sync.
  805          */
  806         if (!wbc->for_reclaim) {
  807                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
  808                 goto redirty;
  809         }
  810 
  811         /*
  812          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
  813          * value into swapfile.c, the only way we can correctly account for a
  814          * fallocated page arriving here is now to initialize it and write it.
  815          *
  816          * That's okay for a page already fallocated earlier, but if we have
  817          * not yet completed the fallocation, then (a) we want to keep track
  818          * of this page in case we have to undo it, and (b) it may not be a
  819          * good idea to continue anyway, once we're pushing into swap.  So
  820          * reactivate the page, and let shmem_fallocate() quit when too many.
  821          */
  822         if (!PageUptodate(page)) {
  823                 if (inode->i_private) {
  824                         struct shmem_falloc *shmem_falloc;
  825                         spin_lock(&inode->i_lock);
  826                         shmem_falloc = inode->i_private;
  827                         if (shmem_falloc &&
  828                             index >= shmem_falloc->start &&
  829                             index < shmem_falloc->next)
  830                                 shmem_falloc->nr_unswapped++;
  831                         else
  832                                 shmem_falloc = NULL;
  833                         spin_unlock(&inode->i_lock);
  834                         if (shmem_falloc)
  835                                 goto redirty;
  836                 }
  837                 clear_highpage(page);
  838                 flush_dcache_page(page);
  839                 SetPageUptodate(page);
  840         }
  841 
  842         swap = get_swap_page();
  843         if (!swap.val)
  844                 goto redirty;
  845 
  846         /*
  847          * Add inode to shmem_unuse()'s list of swapped-out inodes,
  848          * if it's not already there.  Do it now before the page is
  849          * moved to swap cache, when its pagelock no longer protects
  850          * the inode from eviction.  But don't unlock the mutex until
  851          * we've incremented swapped, because shmem_unuse_inode() will
  852          * prune a !swapped inode from the swaplist under this mutex.
  853          */
  854         mutex_lock(&shmem_swaplist_mutex);
  855         if (list_empty(&info->swaplist))
  856                 list_add_tail(&info->swaplist, &shmem_swaplist);
  857 
  858         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
  859                 swap_shmem_alloc(swap);
  860                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
  861 
  862                 spin_lock(&info->lock);
  863                 info->swapped++;
  864                 shmem_recalc_inode(inode);
  865                 spin_unlock(&info->lock);
  866 
  867                 mutex_unlock(&shmem_swaplist_mutex);
  868                 BUG_ON(page_mapped(page));
  869                 swap_writepage(page, wbc);
  870                 return 0;
  871         }
  872 
  873         mutex_unlock(&shmem_swaplist_mutex);
  874         swapcache_free(swap, NULL);
  875 redirty:
  876         set_page_dirty(page);
  877         if (wbc->for_reclaim)
  878                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
  879         unlock_page(page);
  880         return 0;
  881 }
  882 
  883 #ifdef CONFIG_NUMA
  884 #ifdef CONFIG_TMPFS
  885 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
  886 {
  887         char buffer[64];
  888 
  889         if (!mpol || mpol->mode == MPOL_DEFAULT)
  890                 return;         /* show nothing */
  891 
  892         mpol_to_str(buffer, sizeof(buffer), mpol);
  893 
  894         seq_printf(seq, ",mpol=%s", buffer);
  895 }
  896 
  897 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
  898 {
  899         struct mempolicy *mpol = NULL;
  900         if (sbinfo->mpol) {
  901                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
  902                 mpol = sbinfo->mpol;
  903                 mpol_get(mpol);
  904                 spin_unlock(&sbinfo->stat_lock);
  905         }
  906         return mpol;
  907 }
  908 #endif /* CONFIG_TMPFS */
  909 
  910 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
  911                         struct shmem_inode_info *info, pgoff_t index)
  912 {
  913         struct vm_area_struct pvma;
  914         struct page *page;
  915 
  916         /* Create a pseudo vma that just contains the policy */
  917         pvma.vm_start = 0;
  918         /* Bias interleave by inode number to distribute better across nodes */
  919         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
  920         pvma.vm_ops = NULL;
  921         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
  922 
  923         page = swapin_readahead(swap, gfp, &pvma, 0);
  924 
  925         /* Drop reference taken by mpol_shared_policy_lookup() */
  926         mpol_cond_put(pvma.vm_policy);
  927 
  928         return page;
  929 }
  930 
  931 static struct page *shmem_alloc_page(gfp_t gfp,
  932                         struct shmem_inode_info *info, pgoff_t index)
  933 {
  934         struct vm_area_struct pvma;
  935         struct page *page;
  936 
  937         /* Create a pseudo vma that just contains the policy */
  938         pvma.vm_start = 0;
  939         /* Bias interleave by inode number to distribute better across nodes */
  940         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
  941         pvma.vm_ops = NULL;
  942         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
  943 
  944         page = alloc_page_vma(gfp, &pvma, 0);
  945 
  946         /* Drop reference taken by mpol_shared_policy_lookup() */
  947         mpol_cond_put(pvma.vm_policy);
  948 
  949         return page;
  950 }
  951 #else /* !CONFIG_NUMA */
  952 #ifdef CONFIG_TMPFS
  953 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
  954 {
  955 }
  956 #endif /* CONFIG_TMPFS */
  957 
  958 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
  959                         struct shmem_inode_info *info, pgoff_t index)
  960 {
  961         return swapin_readahead(swap, gfp, NULL, 0);
  962 }
  963 
  964 static inline struct page *shmem_alloc_page(gfp_t gfp,
  965                         struct shmem_inode_info *info, pgoff_t index)
  966 {
  967         return alloc_page(gfp);
  968 }
  969 #endif /* CONFIG_NUMA */
  970 
  971 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
  972 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
  973 {
  974         return NULL;
  975 }
  976 #endif
  977 
  978 /*
  979  * When a page is moved from swapcache to shmem filecache (either by the
  980  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
  981  * shmem_unuse_inode()), it may have been read in earlier from swap, in
  982  * ignorance of the mapping it belongs to.  If that mapping has special
  983  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
  984  * we may need to copy to a suitable page before moving to filecache.
  985  *
  986  * In a future release, this may well be extended to respect cpuset and
  987  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
  988  * but for now it is a simple matter of zone.
  989  */
  990 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
  991 {
  992         return page_zonenum(page) > gfp_zone(gfp);
  993 }
  994 
  995 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
  996                                 struct shmem_inode_info *info, pgoff_t index)
  997 {
  998         struct page *oldpage, *newpage;
  999         struct address_space *swap_mapping;
 1000         pgoff_t swap_index;
 1001         int error;
 1002 
 1003         oldpage = *pagep;
 1004         swap_index = page_private(oldpage);
 1005         swap_mapping = page_mapping(oldpage);
 1006 
 1007         /*
 1008          * We have arrived here because our zones are constrained, so don't
 1009          * limit chance of success by further cpuset and node constraints.
 1010          */
 1011         gfp &= ~GFP_CONSTRAINT_MASK;
 1012         newpage = shmem_alloc_page(gfp, info, index);
 1013         if (!newpage)
 1014                 return -ENOMEM;
 1015 
 1016         page_cache_get(newpage);
 1017         copy_highpage(newpage, oldpage);
 1018         flush_dcache_page(newpage);
 1019 
 1020         __set_page_locked(newpage);
 1021         SetPageUptodate(newpage);
 1022         SetPageSwapBacked(newpage);
 1023         set_page_private(newpage, swap_index);
 1024         SetPageSwapCache(newpage);
 1025 
 1026         /*
 1027          * Our caller will very soon move newpage out of swapcache, but it's
 1028          * a nice clean interface for us to replace oldpage by newpage there.
 1029          */
 1030         spin_lock_irq(&swap_mapping->tree_lock);
 1031         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
 1032                                                                    newpage);
 1033         if (!error) {
 1034                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
 1035                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
 1036         }
 1037         spin_unlock_irq(&swap_mapping->tree_lock);
 1038 
 1039         if (unlikely(error)) {
 1040                 /*
 1041                  * Is this possible?  I think not, now that our callers check
 1042                  * both PageSwapCache and page_private after getting page lock;
 1043                  * but be defensive.  Reverse old to newpage for clear and free.
 1044                  */
 1045                 oldpage = newpage;
 1046         } else {
 1047                 mem_cgroup_replace_page_cache(oldpage, newpage);
 1048                 lru_cache_add_anon(newpage);
 1049                 *pagep = newpage;
 1050         }
 1051 
 1052         ClearPageSwapCache(oldpage);
 1053         set_page_private(oldpage, 0);
 1054 
 1055         unlock_page(oldpage);
 1056         page_cache_release(oldpage);
 1057         page_cache_release(oldpage);
 1058         return error;
 1059 }
 1060 
 1061 /*
 1062  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
 1063  *
 1064  * If we allocate a new one we do not mark it dirty. That's up to the
 1065  * vm. If we swap it in we mark it dirty since we also free the swap
 1066  * entry since a page cannot live in both the swap and page cache
 1067  */
 1068 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 1069         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
 1070 {
 1071         struct address_space *mapping = inode->i_mapping;
 1072         struct shmem_inode_info *info;
 1073         struct shmem_sb_info *sbinfo;
 1074         struct page *page;
 1075         swp_entry_t swap;
 1076         int error;
 1077         int once = 0;
 1078         int alloced = 0;
 1079 
 1080         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
 1081                 return -EFBIG;
 1082 repeat:
 1083         swap.val = 0;
 1084         page = find_lock_page(mapping, index);
 1085         if (radix_tree_exceptional_entry(page)) {
 1086                 swap = radix_to_swp_entry(page);
 1087                 page = NULL;
 1088         }
 1089 
 1090         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
 1091             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
 1092                 error = -EINVAL;
 1093                 goto failed;
 1094         }
 1095 
 1096         /* fallocated page? */
 1097         if (page && !PageUptodate(page)) {
 1098                 if (sgp != SGP_READ)
 1099                         goto clear;
 1100                 unlock_page(page);
 1101                 page_cache_release(page);
 1102                 page = NULL;
 1103         }
 1104         if (page || (sgp == SGP_READ && !swap.val)) {
 1105                 *pagep = page;
 1106                 return 0;
 1107         }
 1108 
 1109         /*
 1110          * Fast cache lookup did not find it:
 1111          * bring it back from swap or allocate.
 1112          */
 1113         info = SHMEM_I(inode);
 1114         sbinfo = SHMEM_SB(inode->i_sb);
 1115 
 1116         if (swap.val) {
 1117                 /* Look it up and read it in.. */
 1118                 page = lookup_swap_cache(swap);
 1119                 if (!page) {
 1120                         /* here we actually do the io */
 1121                         if (fault_type)
 1122                                 *fault_type |= VM_FAULT_MAJOR;
 1123                         page = shmem_swapin(swap, gfp, info, index);
 1124                         if (!page) {
 1125                                 error = -ENOMEM;
 1126                                 goto failed;
 1127                         }
 1128                 }
 1129 
 1130                 /* We have to do this with page locked to prevent races */
 1131                 lock_page(page);
 1132                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
 1133                     !shmem_confirm_swap(mapping, index, swap)) {
 1134                         error = -EEXIST;        /* try again */
 1135                         goto unlock;
 1136                 }
 1137                 if (!PageUptodate(page)) {
 1138                         error = -EIO;
 1139                         goto failed;
 1140                 }
 1141                 wait_on_page_writeback(page);
 1142 
 1143                 if (shmem_should_replace_page(page, gfp)) {
 1144                         error = shmem_replace_page(&page, gfp, info, index);
 1145                         if (error)
 1146                                 goto failed;
 1147                 }
 1148 
 1149                 error = mem_cgroup_cache_charge(page, current->mm,
 1150                                                 gfp & GFP_RECLAIM_MASK);
 1151                 if (!error) {
 1152                         error = shmem_add_to_page_cache(page, mapping, index,
 1153                                                 gfp, swp_to_radix_entry(swap));
 1154                         /*
 1155                          * We already confirmed swap under page lock, and make
 1156                          * no memory allocation here, so usually no possibility
 1157                          * of error; but free_swap_and_cache() only trylocks a
 1158                          * page, so it is just possible that the entry has been
 1159                          * truncated or holepunched since swap was confirmed.
 1160                          * shmem_undo_range() will have done some of the
 1161                          * unaccounting, now delete_from_swap_cache() will do
 1162                          * the rest (including mem_cgroup_uncharge_swapcache).
 1163                          * Reset swap.val? No, leave it so "failed" goes back to
 1164                          * "repeat": reading a hole and writing should succeed.
 1165                          */
 1166                         if (error)
 1167                                 delete_from_swap_cache(page);
 1168                 }
 1169                 if (error)
 1170                         goto failed;
 1171 
 1172                 spin_lock(&info->lock);
 1173                 info->swapped--;
 1174                 shmem_recalc_inode(inode);
 1175                 spin_unlock(&info->lock);
 1176 
 1177                 delete_from_swap_cache(page);
 1178                 set_page_dirty(page);
 1179                 swap_free(swap);
 1180 
 1181         } else {
 1182                 if (shmem_acct_block(info->flags)) {
 1183                         error = -ENOSPC;
 1184                         goto failed;
 1185                 }
 1186                 if (sbinfo->max_blocks) {
 1187                         if (percpu_counter_compare(&sbinfo->used_blocks,
 1188                                                 sbinfo->max_blocks) >= 0) {
 1189                                 error = -ENOSPC;
 1190                                 goto unacct;
 1191                         }
 1192                         percpu_counter_inc(&sbinfo->used_blocks);
 1193                 }
 1194 
 1195                 page = shmem_alloc_page(gfp, info, index);
 1196                 if (!page) {
 1197                         error = -ENOMEM;
 1198                         goto decused;
 1199                 }
 1200 
 1201                 SetPageSwapBacked(page);
 1202                 __set_page_locked(page);
 1203                 error = mem_cgroup_cache_charge(page, current->mm,
 1204                                                 gfp & GFP_RECLAIM_MASK);
 1205                 if (error)
 1206                         goto decused;
 1207                 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
 1208                 if (!error) {
 1209                         error = shmem_add_to_page_cache(page, mapping, index,
 1210                                                         gfp, NULL);
 1211                         radix_tree_preload_end();
 1212                 }
 1213                 if (error) {
 1214                         mem_cgroup_uncharge_cache_page(page);
 1215                         goto decused;
 1216                 }
 1217                 lru_cache_add_anon(page);
 1218 
 1219                 spin_lock(&info->lock);
 1220                 info->alloced++;
 1221                 inode->i_blocks += BLOCKS_PER_PAGE;
 1222                 shmem_recalc_inode(inode);
 1223                 spin_unlock(&info->lock);
 1224                 alloced = true;
 1225 
 1226                 /*
 1227                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
 1228                  */
 1229                 if (sgp == SGP_FALLOC)
 1230                         sgp = SGP_WRITE;
 1231 clear:
 1232                 /*
 1233                  * Let SGP_WRITE caller clear ends if write does not fill page;
 1234                  * but SGP_FALLOC on a page fallocated earlier must initialize
 1235                  * it now, lest undo on failure cancel our earlier guarantee.
 1236                  */
 1237                 if (sgp != SGP_WRITE) {
 1238                         clear_highpage(page);
 1239                         flush_dcache_page(page);
 1240                         SetPageUptodate(page);
 1241                 }
 1242                 if (sgp == SGP_DIRTY)
 1243                         set_page_dirty(page);
 1244         }
 1245 
 1246         /* Perhaps the file has been truncated since we checked */
 1247         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
 1248             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
 1249                 error = -EINVAL;
 1250                 if (alloced)
 1251                         goto trunc;
 1252                 else
 1253                         goto failed;
 1254         }
 1255         *pagep = page;
 1256         return 0;
 1257 
 1258         /*
 1259          * Error recovery.
 1260          */
 1261 trunc:
 1262         info = SHMEM_I(inode);
 1263         ClearPageDirty(page);
 1264         delete_from_page_cache(page);
 1265         spin_lock(&info->lock);
 1266         info->alloced--;
 1267         inode->i_blocks -= BLOCKS_PER_PAGE;
 1268         spin_unlock(&info->lock);
 1269 decused:
 1270         sbinfo = SHMEM_SB(inode->i_sb);
 1271         if (sbinfo->max_blocks)
 1272                 percpu_counter_add(&sbinfo->used_blocks, -1);
 1273 unacct:
 1274         shmem_unacct_blocks(info->flags, 1);
 1275 failed:
 1276         if (swap.val && error != -EINVAL &&
 1277             !shmem_confirm_swap(mapping, index, swap))
 1278                 error = -EEXIST;
 1279 unlock:
 1280         if (page) {
 1281                 unlock_page(page);
 1282                 page_cache_release(page);
 1283         }
 1284         if (error == -ENOSPC && !once++) {
 1285                 info = SHMEM_I(inode);
 1286                 spin_lock(&info->lock);
 1287                 shmem_recalc_inode(inode);
 1288                 spin_unlock(&info->lock);
 1289                 goto repeat;
 1290         }
 1291         if (error == -EEXIST)   /* from above or from radix_tree_insert */
 1292                 goto repeat;
 1293         return error;
 1294 }
 1295 
 1296 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 1297 {
 1298         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
 1299         int error;
 1300         int ret = VM_FAULT_LOCKED;
 1301 
 1302         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
 1303         if (error)
 1304                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
 1305 
 1306         if (ret & VM_FAULT_MAJOR) {
 1307                 count_vm_event(PGMAJFAULT);
 1308                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
 1309         }
 1310         return ret;
 1311 }
 1312 
 1313 #ifdef CONFIG_NUMA
 1314 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
 1315 {
 1316         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
 1317         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
 1318 }
 1319 
 1320 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
 1321                                           unsigned long addr)
 1322 {
 1323         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
 1324         pgoff_t index;
 1325 
 1326         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
 1327         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
 1328 }
 1329 #endif
 1330 
 1331 int shmem_lock(struct file *file, int lock, struct user_struct *user)
 1332 {
 1333         struct inode *inode = file->f_path.dentry->d_inode;
 1334         struct shmem_inode_info *info = SHMEM_I(inode);
 1335         int retval = -ENOMEM;
 1336 
 1337         spin_lock(&info->lock);
 1338         if (lock && !(info->flags & VM_LOCKED)) {
 1339                 if (!user_shm_lock(inode->i_size, user))
 1340                         goto out_nomem;
 1341                 info->flags |= VM_LOCKED;
 1342                 mapping_set_unevictable(file->f_mapping);
 1343         }
 1344         if (!lock && (info->flags & VM_LOCKED) && user) {
 1345                 user_shm_unlock(inode->i_size, user);
 1346                 info->flags &= ~VM_LOCKED;
 1347                 mapping_clear_unevictable(file->f_mapping);
 1348         }
 1349         retval = 0;
 1350 
 1351 out_nomem:
 1352         spin_unlock(&info->lock);
 1353         return retval;
 1354 }
 1355 
 1356 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
 1357 {
 1358         file_accessed(file);
 1359         vma->vm_ops = &shmem_vm_ops;
 1360         return 0;
 1361 }
 1362 
 1363 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
 1364                                      umode_t mode, dev_t dev, unsigned long flags)
 1365 {
 1366         struct inode *inode;
 1367         struct shmem_inode_info *info;
 1368         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 1369 
 1370         if (shmem_reserve_inode(sb))
 1371                 return NULL;
 1372 
 1373         inode = new_inode(sb);
 1374         if (inode) {
 1375                 inode->i_ino = get_next_ino();
 1376                 inode_init_owner(inode, dir, mode);
 1377                 inode->i_blocks = 0;
 1378                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
 1379                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 1380                 inode->i_generation = get_seconds();
 1381                 info = SHMEM_I(inode);
 1382                 memset(info, 0, (char *)inode - (char *)info);
 1383                 spin_lock_init(&info->lock);
 1384                 info->flags = flags & VM_NORESERVE;
 1385                 INIT_LIST_HEAD(&info->swaplist);
 1386                 simple_xattrs_init(&info->xattrs);
 1387                 cache_no_acl(inode);
 1388 
 1389                 switch (mode & S_IFMT) {
 1390                 default:
 1391                         inode->i_op = &shmem_special_inode_operations;
 1392                         init_special_inode(inode, mode, dev);
 1393                         break;
 1394                 case S_IFREG:
 1395                         inode->i_mapping->a_ops = &shmem_aops;
 1396                         inode->i_op = &shmem_inode_operations;
 1397                         inode->i_fop = &shmem_file_operations;
 1398                         mpol_shared_policy_init(&info->policy,
 1399                                                  shmem_get_sbmpol(sbinfo));
 1400                         break;
 1401                 case S_IFDIR:
 1402                         inc_nlink(inode);
 1403                         /* Some things misbehave if size == 0 on a directory */
 1404                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
 1405                         inode->i_op = &shmem_dir_inode_operations;
 1406                         inode->i_fop = &simple_dir_operations;
 1407                         break;
 1408                 case S_IFLNK:
 1409                         /*
 1410                          * Must not load anything in the rbtree,
 1411                          * mpol_free_shared_policy will not be called.
 1412                          */
 1413                         mpol_shared_policy_init(&info->policy, NULL);
 1414                         break;
 1415                 }
 1416         } else
 1417                 shmem_free_inode(sb);
 1418         return inode;
 1419 }
 1420 
 1421 #ifdef CONFIG_TMPFS
 1422 static const struct inode_operations shmem_symlink_inode_operations;
 1423 static const struct inode_operations shmem_short_symlink_operations;
 1424 
 1425 #ifdef CONFIG_TMPFS_XATTR
 1426 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
 1427 #else
 1428 #define shmem_initxattrs NULL
 1429 #endif
 1430 
 1431 static int
 1432 shmem_write_begin(struct file *file, struct address_space *mapping,
 1433                         loff_t pos, unsigned len, unsigned flags,
 1434                         struct page **pagep, void **fsdata)
 1435 {
 1436         struct inode *inode = mapping->host;
 1437         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
 1438         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
 1439 }
 1440 
 1441 static int
 1442 shmem_write_end(struct file *file, struct address_space *mapping,
 1443                         loff_t pos, unsigned len, unsigned copied,
 1444                         struct page *page, void *fsdata)
 1445 {
 1446         struct inode *inode = mapping->host;
 1447 
 1448         if (pos + copied > inode->i_size)
 1449                 i_size_write(inode, pos + copied);
 1450 
 1451         if (!PageUptodate(page)) {
 1452                 if (copied < PAGE_CACHE_SIZE) {
 1453                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
 1454                         zero_user_segments(page, 0, from,
 1455                                         from + copied, PAGE_CACHE_SIZE);
 1456                 }
 1457                 SetPageUptodate(page);
 1458         }
 1459         set_page_dirty(page);
 1460         unlock_page(page);
 1461         page_cache_release(page);
 1462 
 1463         return copied;
 1464 }
 1465 
 1466 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
 1467 {
 1468         struct inode *inode = filp->f_path.dentry->d_inode;
 1469         struct address_space *mapping = inode->i_mapping;
 1470         pgoff_t index;
 1471         unsigned long offset;
 1472         enum sgp_type sgp = SGP_READ;
 1473 
 1474         /*
 1475          * Might this read be for a stacking filesystem?  Then when reading
 1476          * holes of a sparse file, we actually need to allocate those pages,
 1477          * and even mark them dirty, so it cannot exceed the max_blocks limit.
 1478          */
 1479         if (segment_eq(get_fs(), KERNEL_DS))
 1480                 sgp = SGP_DIRTY;
 1481 
 1482         index = *ppos >> PAGE_CACHE_SHIFT;
 1483         offset = *ppos & ~PAGE_CACHE_MASK;
 1484 
 1485         for (;;) {
 1486                 struct page *page = NULL;
 1487                 pgoff_t end_index;
 1488                 unsigned long nr, ret;
 1489                 loff_t i_size = i_size_read(inode);
 1490 
 1491                 end_index = i_size >> PAGE_CACHE_SHIFT;
 1492                 if (index > end_index)
 1493                         break;
 1494                 if (index == end_index) {
 1495                         nr = i_size & ~PAGE_CACHE_MASK;
 1496                         if (nr <= offset)
 1497                                 break;
 1498                 }
 1499 
 1500                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
 1501                 if (desc->error) {
 1502                         if (desc->error == -EINVAL)
 1503                                 desc->error = 0;
 1504                         break;
 1505                 }
 1506                 if (page)
 1507                         unlock_page(page);
 1508 
 1509                 /*
 1510                  * We must evaluate after, since reads (unlike writes)
 1511                  * are called without i_mutex protection against truncate
 1512                  */
 1513                 nr = PAGE_CACHE_SIZE;
 1514                 i_size = i_size_read(inode);
 1515                 end_index = i_size >> PAGE_CACHE_SHIFT;
 1516                 if (index == end_index) {
 1517                         nr = i_size & ~PAGE_CACHE_MASK;
 1518                         if (nr <= offset) {
 1519                                 if (page)
 1520                                         page_cache_release(page);
 1521                                 break;
 1522                         }
 1523                 }
 1524                 nr -= offset;
 1525 
 1526                 if (page) {
 1527                         /*
 1528                          * If users can be writing to this page using arbitrary
 1529                          * virtual addresses, take care about potential aliasing
 1530                          * before reading the page on the kernel side.
 1531                          */
 1532                         if (mapping_writably_mapped(mapping))
 1533                                 flush_dcache_page(page);
 1534                         /*
 1535                          * Mark the page accessed if we read the beginning.
 1536                          */
 1537                         if (!offset)
 1538                                 mark_page_accessed(page);
 1539                 } else {
 1540                         page = ZERO_PAGE(0);
 1541                         page_cache_get(page);
 1542                 }
 1543 
 1544                 /*
 1545                  * Ok, we have the page, and it's up-to-date, so
 1546                  * now we can copy it to user space...
 1547                  *
 1548                  * The actor routine returns how many bytes were actually used..
 1549                  * NOTE! This may not be the same as how much of a user buffer
 1550                  * we filled up (we may be padding etc), so we can only update
 1551                  * "pos" here (the actor routine has to update the user buffer
 1552                  * pointers and the remaining count).
 1553                  */
 1554                 ret = actor(desc, page, offset, nr);
 1555                 offset += ret;
 1556                 index += offset >> PAGE_CACHE_SHIFT;
 1557                 offset &= ~PAGE_CACHE_MASK;
 1558 
 1559                 page_cache_release(page);
 1560                 if (ret != nr || !desc->count)
 1561                         break;
 1562 
 1563                 cond_resched();
 1564         }
 1565 
 1566         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
 1567         file_accessed(filp);
 1568 }
 1569 
 1570 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
 1571                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
 1572 {
 1573         struct file *filp = iocb->ki_filp;
 1574         ssize_t retval;
 1575         unsigned long seg;
 1576         size_t count;
 1577         loff_t *ppos = &iocb->ki_pos;
 1578 
 1579         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
 1580         if (retval)
 1581                 return retval;
 1582 
 1583         for (seg = 0; seg < nr_segs; seg++) {
 1584                 read_descriptor_t desc;
 1585 
 1586                 desc.written = 0;
 1587                 desc.arg.buf = iov[seg].iov_base;
 1588                 desc.count = iov[seg].iov_len;
 1589                 if (desc.count == 0)
 1590                         continue;
 1591                 desc.error = 0;
 1592                 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
 1593                 retval += desc.written;
 1594                 if (desc.error) {
 1595                         retval = retval ?: desc.error;
 1596                         break;
 1597                 }
 1598                 if (desc.count > 0)
 1599                         break;
 1600         }
 1601         return retval;
 1602 }
 1603 
 1604 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
 1605                                 struct pipe_inode_info *pipe, size_t len,
 1606                                 unsigned int flags)
 1607 {
 1608         struct address_space *mapping = in->f_mapping;
 1609         struct inode *inode = mapping->host;
 1610         unsigned int loff, nr_pages, req_pages;
 1611         struct page *pages[PIPE_DEF_BUFFERS];
 1612         struct partial_page partial[PIPE_DEF_BUFFERS];
 1613         struct page *page;
 1614         pgoff_t index, end_index;
 1615         loff_t isize, left;
 1616         int error, page_nr;
 1617         struct splice_pipe_desc spd = {
 1618                 .pages = pages,
 1619                 .partial = partial,
 1620                 .nr_pages_max = PIPE_DEF_BUFFERS,
 1621                 .flags = flags,
 1622                 .ops = &page_cache_pipe_buf_ops,
 1623                 .spd_release = spd_release_page,
 1624         };
 1625 
 1626         isize = i_size_read(inode);
 1627         if (unlikely(*ppos >= isize))
 1628                 return 0;
 1629 
 1630         left = isize - *ppos;
 1631         if (unlikely(left < len))
 1632                 len = left;
 1633 
 1634         if (splice_grow_spd(pipe, &spd))
 1635                 return -ENOMEM;
 1636 
 1637         index = *ppos >> PAGE_CACHE_SHIFT;
 1638         loff = *ppos & ~PAGE_CACHE_MASK;
 1639         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 1640         nr_pages = min(req_pages, pipe->buffers);
 1641 
 1642         spd.nr_pages = find_get_pages_contig(mapping, index,
 1643                                                 nr_pages, spd.pages);
 1644         index += spd.nr_pages;
 1645         error = 0;
 1646 
 1647         while (spd.nr_pages < nr_pages) {
 1648                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
 1649                 if (error)
 1650                         break;
 1651                 unlock_page(page);
 1652                 spd.pages[spd.nr_pages++] = page;
 1653                 index++;
 1654         }
 1655 
 1656         index = *ppos >> PAGE_CACHE_SHIFT;
 1657         nr_pages = spd.nr_pages;
 1658         spd.nr_pages = 0;
 1659 
 1660         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
 1661                 unsigned int this_len;
 1662 
 1663                 if (!len)
 1664                         break;
 1665 
 1666                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
 1667                 page = spd.pages[page_nr];
 1668 
 1669                 if (!PageUptodate(page) || page->mapping != mapping) {
 1670                         error = shmem_getpage(inode, index, &page,
 1671                                                         SGP_CACHE, NULL);
 1672                         if (error)
 1673                                 break;
 1674                         unlock_page(page);
 1675                         page_cache_release(spd.pages[page_nr]);
 1676                         spd.pages[page_nr] = page;
 1677                 }
 1678 
 1679                 isize = i_size_read(inode);
 1680                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
 1681                 if (unlikely(!isize || index > end_index))
 1682                         break;
 1683 
 1684                 if (end_index == index) {
 1685                         unsigned int plen;
 1686 
 1687                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
 1688                         if (plen <= loff)
 1689                                 break;
 1690 
 1691                         this_len = min(this_len, plen - loff);
 1692                         len = this_len;
 1693                 }
 1694 
 1695                 spd.partial[page_nr].offset = loff;
 1696                 spd.partial[page_nr].len = this_len;
 1697                 len -= this_len;
 1698                 loff = 0;
 1699                 spd.nr_pages++;
 1700                 index++;
 1701         }
 1702 
 1703         while (page_nr < nr_pages)
 1704                 page_cache_release(spd.pages[page_nr++]);
 1705 
 1706         if (spd.nr_pages)
 1707                 error = splice_to_pipe(pipe, &spd);
 1708 
 1709         splice_shrink_spd(&spd);
 1710 
 1711         if (error > 0) {
 1712                 *ppos += error;
 1713                 file_accessed(in);
 1714         }
 1715         return error;
 1716 }
 1717 
 1718 /*
 1719  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
 1720  */
 1721 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
 1722                                     pgoff_t index, pgoff_t end, int whence)
 1723 {
 1724         struct page *page;
 1725         struct pagevec pvec;
 1726         pgoff_t indices[PAGEVEC_SIZE];
 1727         bool done = false;
 1728         int i;
 1729 
 1730         pagevec_init(&pvec, 0);
 1731         pvec.nr = 1;            /* start small: we may be there already */
 1732         while (!done) {
 1733                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
 1734                                         pvec.nr, pvec.pages, indices);
 1735                 if (!pvec.nr) {
 1736                         if (whence == SEEK_DATA)
 1737                                 index = end;
 1738                         break;
 1739                 }
 1740                 for (i = 0; i < pvec.nr; i++, index++) {
 1741                         if (index < indices[i]) {
 1742                                 if (whence == SEEK_HOLE) {
 1743                                         done = true;
 1744                                         break;
 1745                                 }
 1746                                 index = indices[i];
 1747                         }
 1748                         page = pvec.pages[i];
 1749                         if (page && !radix_tree_exceptional_entry(page)) {
 1750                                 if (!PageUptodate(page))
 1751                                         page = NULL;
 1752                         }
 1753                         if (index >= end ||
 1754                             (page && whence == SEEK_DATA) ||
 1755                             (!page && whence == SEEK_HOLE)) {
 1756                                 done = true;
 1757                                 break;
 1758                         }
 1759                 }
 1760                 shmem_deswap_pagevec(&pvec);
 1761                 pagevec_release(&pvec);
 1762                 pvec.nr = PAGEVEC_SIZE;
 1763                 cond_resched();
 1764         }
 1765         return index;
 1766 }
 1767 
 1768 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
 1769 {
 1770         struct address_space *mapping = file->f_mapping;
 1771         struct inode *inode = mapping->host;
 1772         pgoff_t start, end;
 1773         loff_t new_offset;
 1774 
 1775         if (whence != SEEK_DATA && whence != SEEK_HOLE)
 1776                 return generic_file_llseek_size(file, offset, whence,
 1777                                         MAX_LFS_FILESIZE, i_size_read(inode));
 1778         mutex_lock(&inode->i_mutex);
 1779         /* We're holding i_mutex so we can access i_size directly */
 1780 
 1781         if (offset < 0)
 1782                 offset = -EINVAL;
 1783         else if (offset >= inode->i_size)
 1784                 offset = -ENXIO;
 1785         else {
 1786                 start = offset >> PAGE_CACHE_SHIFT;
 1787                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 1788                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
 1789                 new_offset <<= PAGE_CACHE_SHIFT;
 1790                 if (new_offset > offset) {
 1791                         if (new_offset < inode->i_size)
 1792                                 offset = new_offset;
 1793                         else if (whence == SEEK_DATA)
 1794                                 offset = -ENXIO;
 1795                         else
 1796                                 offset = inode->i_size;
 1797                 }
 1798         }
 1799 
 1800         if (offset >= 0 && offset != file->f_pos) {
 1801                 file->f_pos = offset;
 1802                 file->f_version = 0;
 1803         }
 1804         mutex_unlock(&inode->i_mutex);
 1805         return offset;
 1806 }
 1807 
 1808 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
 1809                                                          loff_t len)
 1810 {
 1811         struct inode *inode = file->f_path.dentry->d_inode;
 1812         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 1813         struct shmem_falloc shmem_falloc;
 1814         pgoff_t start, index, end;
 1815         int error;
 1816 
 1817         mutex_lock(&inode->i_mutex);
 1818 
 1819         if (mode & FALLOC_FL_PUNCH_HOLE) {
 1820                 struct address_space *mapping = file->f_mapping;
 1821                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
 1822                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
 1823 
 1824                 if ((u64)unmap_end > (u64)unmap_start)
 1825                         unmap_mapping_range(mapping, unmap_start,
 1826                                             1 + unmap_end - unmap_start, 0);
 1827                 shmem_truncate_range(inode, offset, offset + len - 1);
 1828                 /* No need to unmap again: hole-punching leaves COWed pages */
 1829                 error = 0;
 1830                 goto out;
 1831         }
 1832 
 1833         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
 1834         error = inode_newsize_ok(inode, offset + len);
 1835         if (error)
 1836                 goto out;
 1837 
 1838         start = offset >> PAGE_CACHE_SHIFT;
 1839         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 1840         /* Try to avoid a swapstorm if len is impossible to satisfy */
 1841         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
 1842                 error = -ENOSPC;
 1843                 goto out;
 1844         }
 1845 
 1846         shmem_falloc.start = start;
 1847         shmem_falloc.next  = start;
 1848         shmem_falloc.nr_falloced = 0;
 1849         shmem_falloc.nr_unswapped = 0;
 1850         spin_lock(&inode->i_lock);
 1851         inode->i_private = &shmem_falloc;
 1852         spin_unlock(&inode->i_lock);
 1853 
 1854         for (index = start; index < end; index++) {
 1855                 struct page *page;
 1856 
 1857                 /*
 1858                  * Good, the fallocate(2) manpage permits EINTR: we may have
 1859                  * been interrupted because we are using up too much memory.
 1860                  */
 1861                 if (signal_pending(current))
 1862                         error = -EINTR;
 1863                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
 1864                         error = -ENOMEM;
 1865                 else
 1866                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
 1867                                                                         NULL);
 1868                 if (error) {
 1869                         /* Remove the !PageUptodate pages we added */
 1870                         shmem_undo_range(inode,
 1871                                 (loff_t)start << PAGE_CACHE_SHIFT,
 1872                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
 1873                         goto undone;
 1874                 }
 1875 
 1876                 /*
 1877                  * Inform shmem_writepage() how far we have reached.
 1878                  * No need for lock or barrier: we have the page lock.
 1879                  */
 1880                 shmem_falloc.next++;
 1881                 if (!PageUptodate(page))
 1882                         shmem_falloc.nr_falloced++;
 1883 
 1884                 /*
 1885                  * If !PageUptodate, leave it that way so that freeable pages
 1886                  * can be recognized if we need to rollback on error later.
 1887                  * But set_page_dirty so that memory pressure will swap rather
 1888                  * than free the pages we are allocating (and SGP_CACHE pages
 1889                  * might still be clean: we now need to mark those dirty too).
 1890                  */
 1891                 set_page_dirty(page);
 1892                 unlock_page(page);
 1893                 page_cache_release(page);
 1894                 cond_resched();
 1895         }
 1896 
 1897         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
 1898                 i_size_write(inode, offset + len);
 1899         inode->i_ctime = CURRENT_TIME;
 1900 undone:
 1901         spin_lock(&inode->i_lock);
 1902         inode->i_private = NULL;
 1903         spin_unlock(&inode->i_lock);
 1904 out:
 1905         mutex_unlock(&inode->i_mutex);
 1906         return error;
 1907 }
 1908 
 1909 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
 1910 {
 1911         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
 1912 
 1913         buf->f_type = TMPFS_MAGIC;
 1914         buf->f_bsize = PAGE_CACHE_SIZE;
 1915         buf->f_namelen = NAME_MAX;
 1916         if (sbinfo->max_blocks) {
 1917                 buf->f_blocks = sbinfo->max_blocks;
 1918                 buf->f_bavail =
 1919                 buf->f_bfree  = sbinfo->max_blocks -
 1920                                 percpu_counter_sum(&sbinfo->used_blocks);
 1921         }
 1922         if (sbinfo->max_inodes) {
 1923                 buf->f_files = sbinfo->max_inodes;
 1924                 buf->f_ffree = sbinfo->free_inodes;
 1925         }
 1926         /* else leave those fields 0 like simple_statfs */
 1927         return 0;
 1928 }
 1929 
 1930 /*
 1931  * File creation. Allocate an inode, and we're done..
 1932  */
 1933 static int
 1934 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 1935 {
 1936         struct inode *inode;
 1937         int error = -ENOSPC;
 1938 
 1939         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
 1940         if (inode) {
 1941                 error = security_inode_init_security(inode, dir,
 1942                                                      &dentry->d_name,
 1943                                                      shmem_initxattrs, NULL);
 1944                 if (error) {
 1945                         if (error != -EOPNOTSUPP) {
 1946                                 iput(inode);
 1947                                 return error;
 1948                         }
 1949                 }
 1950 #ifdef CONFIG_TMPFS_POSIX_ACL
 1951                 error = generic_acl_init(inode, dir);
 1952                 if (error) {
 1953                         iput(inode);
 1954                         return error;
 1955                 }
 1956 #else
 1957                 error = 0;
 1958 #endif
 1959                 dir->i_size += BOGO_DIRENT_SIZE;
 1960                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 1961                 d_instantiate(dentry, inode);
 1962                 dget(dentry); /* Extra count - pin the dentry in core */
 1963         }
 1964         return error;
 1965 }
 1966 
 1967 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 1968 {
 1969         int error;
 1970 
 1971         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
 1972                 return error;
 1973         inc_nlink(dir);
 1974         return 0;
 1975 }
 1976 
 1977 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
 1978                 bool excl)
 1979 {
 1980         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
 1981 }
 1982 
 1983 /*
 1984  * Link a file..
 1985  */
 1986 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 1987 {
 1988         struct inode *inode = old_dentry->d_inode;
 1989         int ret;
 1990 
 1991         /*
 1992          * No ordinary (disk based) filesystem counts links as inodes;
 1993          * but each new link needs a new dentry, pinning lowmem, and
 1994          * tmpfs dentries cannot be pruned until they are unlinked.
 1995          */
 1996         ret = shmem_reserve_inode(inode->i_sb);
 1997         if (ret)
 1998                 goto out;
 1999 
 2000         dir->i_size += BOGO_DIRENT_SIZE;
 2001         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 2002         inc_nlink(inode);
 2003         ihold(inode);   /* New dentry reference */
 2004         dget(dentry);           /* Extra pinning count for the created dentry */
 2005         d_instantiate(dentry, inode);
 2006 out:
 2007         return ret;
 2008 }
 2009 
 2010 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
 2011 {
 2012         struct inode *inode = dentry->d_inode;
 2013 
 2014         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
 2015                 shmem_free_inode(inode->i_sb);
 2016 
 2017         dir->i_size -= BOGO_DIRENT_SIZE;
 2018         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 2019         drop_nlink(inode);
 2020         dput(dentry);   /* Undo the count from "create" - this does all the work */
 2021         return 0;
 2022 }
 2023 
 2024 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
 2025 {
 2026         if (!simple_empty(dentry))
 2027                 return -ENOTEMPTY;
 2028 
 2029         drop_nlink(dentry->d_inode);
 2030         drop_nlink(dir);
 2031         return shmem_unlink(dir, dentry);
 2032 }
 2033 
 2034 /*
 2035  * The VFS layer already does all the dentry stuff for rename,
 2036  * we just have to decrement the usage count for the target if
 2037  * it exists so that the VFS layer correctly free's it when it
 2038  * gets overwritten.
 2039  */
 2040 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
 2041 {
 2042         struct inode *inode = old_dentry->d_inode;
 2043         int they_are_dirs = S_ISDIR(inode->i_mode);
 2044 
 2045         if (!simple_empty(new_dentry))
 2046                 return -ENOTEMPTY;
 2047 
 2048         if (new_dentry->d_inode) {
 2049                 (void) shmem_unlink(new_dir, new_dentry);
 2050                 if (they_are_dirs)
 2051                         drop_nlink(old_dir);
 2052         } else if (they_are_dirs) {
 2053                 drop_nlink(old_dir);
 2054                 inc_nlink(new_dir);
 2055         }
 2056 
 2057         old_dir->i_size -= BOGO_DIRENT_SIZE;
 2058         new_dir->i_size += BOGO_DIRENT_SIZE;
 2059         old_dir->i_ctime = old_dir->i_mtime =
 2060         new_dir->i_ctime = new_dir->i_mtime =
 2061         inode->i_ctime = CURRENT_TIME;
 2062         return 0;
 2063 }
 2064 
 2065 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
 2066 {
 2067         int error;
 2068         int len;
 2069         struct inode *inode;
 2070         struct page *page;
 2071         char *kaddr;
 2072         struct shmem_inode_info *info;
 2073 
 2074         len = strlen(symname) + 1;
 2075         if (len > PAGE_CACHE_SIZE)
 2076                 return -ENAMETOOLONG;
 2077 
 2078         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
 2079         if (!inode)
 2080                 return -ENOSPC;
 2081 
 2082         error = security_inode_init_security(inode, dir, &dentry->d_name,
 2083                                              shmem_initxattrs, NULL);
 2084         if (error) {
 2085                 if (error != -EOPNOTSUPP) {
 2086                         iput(inode);
 2087                         return error;
 2088                 }
 2089                 error = 0;
 2090         }
 2091 
 2092         info = SHMEM_I(inode);
 2093         inode->i_size = len-1;
 2094         if (len <= SHORT_SYMLINK_LEN) {
 2095                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
 2096                 if (!info->symlink) {
 2097                         iput(inode);
 2098                         return -ENOMEM;
 2099                 }
 2100                 inode->i_op = &shmem_short_symlink_operations;
 2101         } else {
 2102                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
 2103                 if (error) {
 2104                         iput(inode);
 2105                         return error;
 2106                 }
 2107                 inode->i_mapping->a_ops = &shmem_aops;
 2108                 inode->i_op = &shmem_symlink_inode_operations;
 2109                 kaddr = kmap_atomic(page);
 2110                 memcpy(kaddr, symname, len);
 2111                 kunmap_atomic(kaddr);
 2112                 SetPageUptodate(page);
 2113                 set_page_dirty(page);
 2114                 unlock_page(page);
 2115                 page_cache_release(page);
 2116         }
 2117         dir->i_size += BOGO_DIRENT_SIZE;
 2118         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 2119         d_instantiate(dentry, inode);
 2120         dget(dentry);
 2121         return 0;
 2122 }
 2123 
 2124 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
 2125 {
 2126         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
 2127         return NULL;
 2128 }
 2129 
 2130 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
 2131 {
 2132         struct page *page = NULL;
 2133         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
 2134         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
 2135         if (page)
 2136                 unlock_page(page);
 2137         return page;
 2138 }
 2139 
 2140 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
 2141 {
 2142         if (!IS_ERR(nd_get_link(nd))) {
 2143                 struct page *page = cookie;
 2144                 kunmap(page);
 2145                 mark_page_accessed(page);
 2146                 page_cache_release(page);
 2147         }
 2148 }
 2149 
 2150 #ifdef CONFIG_TMPFS_XATTR
 2151 /*
 2152  * Superblocks without xattr inode operations may get some security.* xattr
 2153  * support from the LSM "for free". As soon as we have any other xattrs
 2154  * like ACLs, we also need to implement the security.* handlers at
 2155  * filesystem level, though.
 2156  */
 2157 
 2158 /*
 2159  * Callback for security_inode_init_security() for acquiring xattrs.
 2160  */
 2161 static int shmem_initxattrs(struct inode *inode,
 2162                             const struct xattr *xattr_array,
 2163                             void *fs_info)
 2164 {
 2165         struct shmem_inode_info *info = SHMEM_I(inode);
 2166         const struct xattr *xattr;
 2167         struct simple_xattr *new_xattr;
 2168         size_t len;
 2169 
 2170         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
 2171                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
 2172                 if (!new_xattr)
 2173                         return -ENOMEM;
 2174 
 2175                 len = strlen(xattr->name) + 1;
 2176                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
 2177                                           GFP_KERNEL);
 2178                 if (!new_xattr->name) {
 2179                         kfree(new_xattr);
 2180                         return -ENOMEM;
 2181                 }
 2182 
 2183                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
 2184                        XATTR_SECURITY_PREFIX_LEN);
 2185                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
 2186                        xattr->name, len);
 2187 
 2188                 simple_xattr_list_add(&info->xattrs, new_xattr);
 2189         }
 2190 
 2191         return 0;
 2192 }
 2193 
 2194 static const struct xattr_handler *shmem_xattr_handlers[] = {
 2195 #ifdef CONFIG_TMPFS_POSIX_ACL
 2196         &generic_acl_access_handler,
 2197         &generic_acl_default_handler,
 2198 #endif
 2199         NULL
 2200 };
 2201 
 2202 static int shmem_xattr_validate(const char *name)
 2203 {
 2204         struct { const char *prefix; size_t len; } arr[] = {
 2205                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
 2206                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
 2207         };
 2208         int i;
 2209 
 2210         for (i = 0; i < ARRAY_SIZE(arr); i++) {
 2211                 size_t preflen = arr[i].len;
 2212                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
 2213                         if (!name[preflen])
 2214                                 return -EINVAL;
 2215                         return 0;
 2216                 }
 2217         }
 2218         return -EOPNOTSUPP;
 2219 }
 2220 
 2221 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
 2222                               void *buffer, size_t size)
 2223 {
 2224         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
 2225         int err;
 2226 
 2227         /*
 2228          * If this is a request for a synthetic attribute in the system.*
 2229          * namespace use the generic infrastructure to resolve a handler
 2230          * for it via sb->s_xattr.
 2231          */
 2232         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
 2233                 return generic_getxattr(dentry, name, buffer, size);
 2234 
 2235         err = shmem_xattr_validate(name);
 2236         if (err)
 2237                 return err;
 2238 
 2239         return simple_xattr_get(&info->xattrs, name, buffer, size);
 2240 }
 2241 
 2242 static int shmem_setxattr(struct dentry *dentry, const char *name,
 2243                           const void *value, size_t size, int flags)
 2244 {
 2245         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
 2246         int err;
 2247 
 2248         /*
 2249          * If this is a request for a synthetic attribute in the system.*
 2250          * namespace use the generic infrastructure to resolve a handler
 2251          * for it via sb->s_xattr.
 2252          */
 2253         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
 2254                 return generic_setxattr(dentry, name, value, size, flags);
 2255 
 2256         err = shmem_xattr_validate(name);
 2257         if (err)
 2258                 return err;
 2259 
 2260         return simple_xattr_set(&info->xattrs, name, value, size, flags);
 2261 }
 2262 
 2263 static int shmem_removexattr(struct dentry *dentry, const char *name)
 2264 {
 2265         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
 2266         int err;
 2267 
 2268         /*
 2269          * If this is a request for a synthetic attribute in the system.*
 2270          * namespace use the generic infrastructure to resolve a handler
 2271          * for it via sb->s_xattr.
 2272          */
 2273         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
 2274                 return generic_removexattr(dentry, name);
 2275 
 2276         err = shmem_xattr_validate(name);
 2277         if (err)
 2278                 return err;
 2279 
 2280         return simple_xattr_remove(&info->xattrs, name);
 2281 }
 2282 
 2283 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
 2284 {
 2285         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
 2286         return simple_xattr_list(&info->xattrs, buffer, size);
 2287 }
 2288 #endif /* CONFIG_TMPFS_XATTR */
 2289 
 2290 static const struct inode_operations shmem_short_symlink_operations = {
 2291         .readlink       = generic_readlink,
 2292         .follow_link    = shmem_follow_short_symlink,
 2293 #ifdef CONFIG_TMPFS_XATTR
 2294         .setxattr       = shmem_setxattr,
 2295         .getxattr       = shmem_getxattr,
 2296         .listxattr      = shmem_listxattr,
 2297         .removexattr    = shmem_removexattr,
 2298 #endif
 2299 };
 2300 
 2301 static const struct inode_operations shmem_symlink_inode_operations = {
 2302         .readlink       = generic_readlink,
 2303         .follow_link    = shmem_follow_link,
 2304         .put_link       = shmem_put_link,
 2305 #ifdef CONFIG_TMPFS_XATTR
 2306         .setxattr       = shmem_setxattr,
 2307         .getxattr       = shmem_getxattr,
 2308         .listxattr      = shmem_listxattr,
 2309         .removexattr    = shmem_removexattr,
 2310 #endif
 2311 };
 2312 
 2313 static struct dentry *shmem_get_parent(struct dentry *child)
 2314 {
 2315         return ERR_PTR(-ESTALE);
 2316 }
 2317 
 2318 static int shmem_match(struct inode *ino, void *vfh)
 2319 {
 2320         __u32 *fh = vfh;
 2321         __u64 inum = fh[2];
 2322         inum = (inum << 32) | fh[1];
 2323         return ino->i_ino == inum && fh[0] == ino->i_generation;
 2324 }
 2325 
 2326 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
 2327                 struct fid *fid, int fh_len, int fh_type)
 2328 {
 2329         struct inode *inode;
 2330         struct dentry *dentry = NULL;
 2331         u64 inum;
 2332 
 2333         if (fh_len < 3)
 2334                 return NULL;
 2335 
 2336         inum = fid->raw[2];
 2337         inum = (inum << 32) | fid->raw[1];
 2338 
 2339         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
 2340                         shmem_match, fid->raw);
 2341         if (inode) {
 2342                 dentry = d_find_alias(inode);
 2343                 iput(inode);
 2344         }
 2345 
 2346         return dentry;
 2347 }
 2348 
 2349 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
 2350                                 struct inode *parent)
 2351 {
 2352         if (*len < 3) {
 2353                 *len = 3;
 2354                 return 255;
 2355         }
 2356 
 2357         if (inode_unhashed(inode)) {
 2358                 /* Unfortunately insert_inode_hash is not idempotent,
 2359                  * so as we hash inodes here rather than at creation
 2360                  * time, we need a lock to ensure we only try
 2361                  * to do it once
 2362                  */
 2363                 static DEFINE_SPINLOCK(lock);
 2364                 spin_lock(&lock);
 2365                 if (inode_unhashed(inode))
 2366                         __insert_inode_hash(inode,
 2367                                             inode->i_ino + inode->i_generation);
 2368                 spin_unlock(&lock);
 2369         }
 2370 
 2371         fh[0] = inode->i_generation;
 2372         fh[1] = inode->i_ino;
 2373         fh[2] = ((__u64)inode->i_ino) >> 32;
 2374 
 2375         *len = 3;
 2376         return 1;
 2377 }
 2378 
 2379 static const struct export_operations shmem_export_ops = {
 2380         .get_parent     = shmem_get_parent,
 2381         .encode_fh      = shmem_encode_fh,
 2382         .fh_to_dentry   = shmem_fh_to_dentry,
 2383 };
 2384 
 2385 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
 2386                                bool remount)
 2387 {
 2388         char *this_char, *value, *rest;
 2389         uid_t uid;
 2390         gid_t gid;
 2391 
 2392         while (options != NULL) {
 2393                 this_char = options;
 2394                 for (;;) {
 2395                         /*
 2396                          * NUL-terminate this option: unfortunately,
 2397                          * mount options form a comma-separated list,
 2398                          * but mpol's nodelist may also contain commas.
 2399                          */
 2400                         options = strchr(options, ',');
 2401                         if (options == NULL)
 2402                                 break;
 2403                         options++;
 2404                         if (!isdigit(*options)) {
 2405                                 options[-1] = '\0';
 2406                                 break;
 2407                         }
 2408                 }
 2409                 if (!*this_char)
 2410                         continue;
 2411                 if ((value = strchr(this_char,'=')) != NULL) {
 2412                         *value++ = 0;
 2413                 } else {
 2414                         printk(KERN_ERR
 2415                             "tmpfs: No value for mount option '%s'\n",
 2416                             this_char);
 2417                         return 1;
 2418                 }
 2419 
 2420                 if (!strcmp(this_char,"size")) {
 2421                         unsigned long long size;
 2422                         size = memparse(value,&rest);
 2423                         if (*rest == '%') {
 2424                                 size <<= PAGE_SHIFT;
 2425                                 size *= totalram_pages;
 2426                                 do_div(size, 100);
 2427                                 rest++;
 2428                         }
 2429                         if (*rest)
 2430                                 goto bad_val;
 2431                         sbinfo->max_blocks =
 2432                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
 2433                 } else if (!strcmp(this_char,"nr_blocks")) {
 2434                         sbinfo->max_blocks = memparse(value, &rest);
 2435                         if (*rest)
 2436                                 goto bad_val;
 2437                 } else if (!strcmp(this_char,"nr_inodes")) {
 2438                         sbinfo->max_inodes = memparse(value, &rest);
 2439                         if (*rest)
 2440                                 goto bad_val;
 2441                 } else if (!strcmp(this_char,"mode")) {
 2442                         if (remount)
 2443                                 continue;
 2444                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
 2445                         if (*rest)
 2446                                 goto bad_val;
 2447                 } else if (!strcmp(this_char,"uid")) {
 2448                         if (remount)
 2449                                 continue;
 2450                         uid = simple_strtoul(value, &rest, 0);
 2451                         if (*rest)
 2452                                 goto bad_val;
 2453                         sbinfo->uid = make_kuid(current_user_ns(), uid);
 2454                         if (!uid_valid(sbinfo->uid))
 2455                                 goto bad_val;
 2456                 } else if (!strcmp(this_char,"gid")) {
 2457                         if (remount)
 2458                                 continue;
 2459                         gid = simple_strtoul(value, &rest, 0);
 2460                         if (*rest)
 2461                                 goto bad_val;
 2462                         sbinfo->gid = make_kgid(current_user_ns(), gid);
 2463                         if (!gid_valid(sbinfo->gid))
 2464                                 goto bad_val;
 2465                 } else if (!strcmp(this_char,"mpol")) {
 2466                         if (mpol_parse_str(value, &sbinfo->mpol))
 2467                                 goto bad_val;
 2468                 } else {
 2469                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
 2470                                this_char);
 2471                         return 1;
 2472                 }
 2473         }
 2474         return 0;
 2475 
 2476 bad_val:
 2477         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
 2478                value, this_char);
 2479         return 1;
 2480 
 2481 }
 2482 
 2483 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
 2484 {
 2485         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 2486         struct shmem_sb_info config = *sbinfo;
 2487         unsigned long inodes;
 2488         int error = -EINVAL;
 2489 
 2490         if (shmem_parse_options(data, &config, true))
 2491                 return error;
 2492 
 2493         spin_lock(&sbinfo->stat_lock);
 2494         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
 2495         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
 2496                 goto out;
 2497         if (config.max_inodes < inodes)
 2498                 goto out;
 2499         /*
 2500          * Those tests disallow limited->unlimited while any are in use;
 2501          * but we must separately disallow unlimited->limited, because
 2502          * in that case we have no record of how much is already in use.
 2503          */
 2504         if (config.max_blocks && !sbinfo->max_blocks)
 2505                 goto out;
 2506         if (config.max_inodes && !sbinfo->max_inodes)
 2507                 goto out;
 2508 
 2509         error = 0;
 2510         sbinfo->max_blocks  = config.max_blocks;
 2511         sbinfo->max_inodes  = config.max_inodes;
 2512         sbinfo->free_inodes = config.max_inodes - inodes;
 2513 
 2514         mpol_put(sbinfo->mpol);
 2515         sbinfo->mpol        = config.mpol;      /* transfers initial ref */
 2516 out:
 2517         spin_unlock(&sbinfo->stat_lock);
 2518         return error;
 2519 }
 2520 
 2521 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
 2522 {
 2523         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
 2524 
 2525         if (sbinfo->max_blocks != shmem_default_max_blocks())
 2526                 seq_printf(seq, ",size=%luk",
 2527                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
 2528         if (sbinfo->max_inodes != shmem_default_max_inodes())
 2529                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
 2530         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
 2531                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
 2532         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
 2533                 seq_printf(seq, ",uid=%u",
 2534                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
 2535         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
 2536                 seq_printf(seq, ",gid=%u",
 2537                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
 2538         shmem_show_mpol(seq, sbinfo->mpol);
 2539         return 0;
 2540 }
 2541 #endif /* CONFIG_TMPFS */
 2542 
 2543 static void shmem_put_super(struct super_block *sb)
 2544 {
 2545         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 2546 
 2547         percpu_counter_destroy(&sbinfo->used_blocks);
 2548         kfree(sbinfo);
 2549         sb->s_fs_info = NULL;
 2550 }
 2551 
 2552 int shmem_fill_super(struct super_block *sb, void *data, int silent)
 2553 {
 2554         struct inode *inode;
 2555         struct shmem_sb_info *sbinfo;
 2556         int err = -ENOMEM;
 2557 
 2558         /* Round up to L1_CACHE_BYTES to resist false sharing */
 2559         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
 2560                                 L1_CACHE_BYTES), GFP_KERNEL);
 2561         if (!sbinfo)
 2562                 return -ENOMEM;
 2563 
 2564         sbinfo->mode = S_IRWXUGO | S_ISVTX;
 2565         sbinfo->uid = current_fsuid();
 2566         sbinfo->gid = current_fsgid();
 2567         sb->s_fs_info = sbinfo;
 2568 
 2569 #ifdef CONFIG_TMPFS
 2570         /*
 2571          * Per default we only allow half of the physical ram per
 2572          * tmpfs instance, limiting inodes to one per page of lowmem;
 2573          * but the internal instance is left unlimited.
 2574          */
 2575         if (!(sb->s_flags & MS_NOUSER)) {
 2576                 sbinfo->max_blocks = shmem_default_max_blocks();
 2577                 sbinfo->max_inodes = shmem_default_max_inodes();
 2578                 if (shmem_parse_options(data, sbinfo, false)) {
 2579                         err = -EINVAL;
 2580                         goto failed;
 2581                 }
 2582         }
 2583         sb->s_export_op = &shmem_export_ops;
 2584         sb->s_flags |= MS_NOSEC;
 2585 #else
 2586         sb->s_flags |= MS_NOUSER;
 2587 #endif
 2588 
 2589         spin_lock_init(&sbinfo->stat_lock);
 2590         if (percpu_counter_init(&sbinfo->used_blocks, 0))
 2591                 goto failed;
 2592         sbinfo->free_inodes = sbinfo->max_inodes;
 2593 
 2594         sb->s_maxbytes = MAX_LFS_FILESIZE;
 2595         sb->s_blocksize = PAGE_CACHE_SIZE;
 2596         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
 2597         sb->s_magic = TMPFS_MAGIC;
 2598         sb->s_op = &shmem_ops;
 2599         sb->s_time_gran = 1;
 2600 #ifdef CONFIG_TMPFS_XATTR
 2601         sb->s_xattr = shmem_xattr_handlers;
 2602 #endif
 2603 #ifdef CONFIG_TMPFS_POSIX_ACL
 2604         sb->s_flags |= MS_POSIXACL;
 2605 #endif
 2606 
 2607         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
 2608         if (!inode)
 2609                 goto failed;
 2610         inode->i_uid = sbinfo->uid;
 2611         inode->i_gid = sbinfo->gid;
 2612         sb->s_root = d_make_root(inode);
 2613         if (!sb->s_root)
 2614                 goto failed;
 2615         return 0;
 2616 
 2617 failed:
 2618         shmem_put_super(sb);
 2619         return err;
 2620 }
 2621 
 2622 static struct kmem_cache *shmem_inode_cachep;
 2623 
 2624 static struct inode *shmem_alloc_inode(struct super_block *sb)
 2625 {
 2626         struct shmem_inode_info *info;
 2627         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
 2628         if (!info)
 2629                 return NULL;
 2630         return &info->vfs_inode;
 2631 }
 2632 
 2633 static void shmem_destroy_callback(struct rcu_head *head)
 2634 {
 2635         struct inode *inode = container_of(head, struct inode, i_rcu);
 2636         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
 2637 }
 2638 
 2639 static void shmem_destroy_inode(struct inode *inode)
 2640 {
 2641         if (S_ISREG(inode->i_mode))
 2642                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
 2643         call_rcu(&inode->i_rcu, shmem_destroy_callback);
 2644 }
 2645 
 2646 static void shmem_init_inode(void *foo)
 2647 {
 2648         struct shmem_inode_info *info = foo;
 2649         inode_init_once(&info->vfs_inode);
 2650 }
 2651 
 2652 static int shmem_init_inodecache(void)
 2653 {
 2654         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
 2655                                 sizeof(struct shmem_inode_info),
 2656                                 0, SLAB_PANIC, shmem_init_inode);
 2657         return 0;
 2658 }
 2659 
 2660 static void shmem_destroy_inodecache(void)
 2661 {
 2662         kmem_cache_destroy(shmem_inode_cachep);
 2663 }
 2664 
 2665 static const struct address_space_operations shmem_aops = {
 2666         .writepage      = shmem_writepage,
 2667         .set_page_dirty = __set_page_dirty_no_writeback,
 2668 #ifdef CONFIG_TMPFS
 2669         .write_begin    = shmem_write_begin,
 2670         .write_end      = shmem_write_end,
 2671 #endif
 2672         .migratepage    = migrate_page,
 2673         .error_remove_page = generic_error_remove_page,
 2674 };
 2675 
 2676 static const struct file_operations shmem_file_operations = {
 2677         .mmap           = shmem_mmap,
 2678 #ifdef CONFIG_TMPFS
 2679         .llseek         = shmem_file_llseek,
 2680         .read           = do_sync_read,
 2681         .write          = do_sync_write,
 2682         .aio_read       = shmem_file_aio_read,
 2683         .aio_write      = generic_file_aio_write,
 2684         .fsync          = noop_fsync,
 2685         .splice_read    = shmem_file_splice_read,
 2686         .splice_write   = generic_file_splice_write,
 2687         .fallocate      = shmem_fallocate,
 2688 #endif
 2689 };
 2690 
 2691 static const struct inode_operations shmem_inode_operations = {
 2692         .setattr        = shmem_setattr,
 2693 #ifdef CONFIG_TMPFS_XATTR
 2694         .setxattr       = shmem_setxattr,
 2695         .getxattr       = shmem_getxattr,
 2696         .listxattr      = shmem_listxattr,
 2697         .removexattr    = shmem_removexattr,
 2698 #endif
 2699 };
 2700 
 2701 static const struct inode_operations shmem_dir_inode_operations = {
 2702 #ifdef CONFIG_TMPFS
 2703         .create         = shmem_create,
 2704         .lookup         = simple_lookup,
 2705         .link           = shmem_link,
 2706         .unlink         = shmem_unlink,
 2707         .symlink        = shmem_symlink,
 2708         .mkdir          = shmem_mkdir,
 2709         .rmdir          = shmem_rmdir,
 2710         .mknod          = shmem_mknod,
 2711         .rename         = shmem_rename,
 2712 #endif
 2713 #ifdef CONFIG_TMPFS_XATTR
 2714         .setxattr       = shmem_setxattr,
 2715         .getxattr       = shmem_getxattr,
 2716         .listxattr      = shmem_listxattr,
 2717         .removexattr    = shmem_removexattr,
 2718 #endif
 2719 #ifdef CONFIG_TMPFS_POSIX_ACL
 2720         .setattr        = shmem_setattr,
 2721 #endif
 2722 };
 2723 
 2724 static const struct inode_operations shmem_special_inode_operations = {
 2725 #ifdef CONFIG_TMPFS_XATTR
 2726         .setxattr       = shmem_setxattr,
 2727         .getxattr       = shmem_getxattr,
 2728         .listxattr      = shmem_listxattr,
 2729         .removexattr    = shmem_removexattr,
 2730 #endif
 2731 #ifdef CONFIG_TMPFS_POSIX_ACL
 2732         .setattr        = shmem_setattr,
 2733 #endif
 2734 };
 2735 
 2736 static const struct super_operations shmem_ops = {
 2737         .alloc_inode    = shmem_alloc_inode,
 2738         .destroy_inode  = shmem_destroy_inode,
 2739 #ifdef CONFIG_TMPFS
 2740         .statfs         = shmem_statfs,
 2741         .remount_fs     = shmem_remount_fs,
 2742         .show_options   = shmem_show_options,
 2743 #endif
 2744         .evict_inode    = shmem_evict_inode,
 2745         .drop_inode     = generic_delete_inode,
 2746         .put_super      = shmem_put_super,
 2747 };
 2748 
 2749 static const struct vm_operations_struct shmem_vm_ops = {
 2750         .fault          = shmem_fault,
 2751 #ifdef CONFIG_NUMA
 2752         .set_policy     = shmem_set_policy,
 2753         .get_policy     = shmem_get_policy,
 2754 #endif
 2755         .remap_pages    = generic_file_remap_pages,
 2756 };
 2757 
 2758 static struct dentry *shmem_mount(struct file_system_type *fs_type,
 2759         int flags, const char *dev_name, void *data)
 2760 {
 2761         return mount_nodev(fs_type, flags, data, shmem_fill_super);
 2762 }
 2763 
 2764 static struct file_system_type shmem_fs_type = {
 2765         .owner          = THIS_MODULE,
 2766         .name           = "tmpfs",
 2767         .mount          = shmem_mount,
 2768         .kill_sb        = kill_litter_super,
 2769 };
 2770 
 2771 int __init shmem_init(void)
 2772 {
 2773         int error;
 2774 
 2775         error = bdi_init(&shmem_backing_dev_info);
 2776         if (error)
 2777                 goto out4;
 2778 
 2779         error = shmem_init_inodecache();
 2780         if (error)
 2781                 goto out3;
 2782 
 2783         error = register_filesystem(&shmem_fs_type);
 2784         if (error) {
 2785                 printk(KERN_ERR "Could not register tmpfs\n");
 2786                 goto out2;
 2787         }
 2788 
 2789         shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
 2790                                  shmem_fs_type.name, NULL);
 2791         if (IS_ERR(shm_mnt)) {
 2792                 error = PTR_ERR(shm_mnt);
 2793                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
 2794                 goto out1;
 2795         }
 2796         return 0;
 2797 
 2798 out1:
 2799         unregister_filesystem(&shmem_fs_type);
 2800 out2:
 2801         shmem_destroy_inodecache();
 2802 out3:
 2803         bdi_destroy(&shmem_backing_dev_info);
 2804 out4:
 2805         shm_mnt = ERR_PTR(error);
 2806         return error;
 2807 }
 2808 
 2809 #else /* !CONFIG_SHMEM */
 2810 
 2811 /*
 2812  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
 2813  *
 2814  * This is intended for small system where the benefits of the full
 2815  * shmem code (swap-backed and resource-limited) are outweighed by
 2816  * their complexity. On systems without swap this code should be
 2817  * effectively equivalent, but much lighter weight.
 2818  */
 2819 
 2820 #include <linux/ramfs.h>
 2821 
 2822 static struct file_system_type shmem_fs_type = {
 2823         .name           = "tmpfs",
 2824         .mount          = ramfs_mount,
 2825         .kill_sb        = kill_litter_super,
 2826 };
 2827 
 2828 int __init shmem_init(void)
 2829 {
 2830         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
 2831 
 2832         shm_mnt = kern_mount(&shmem_fs_type);
 2833         BUG_ON(IS_ERR(shm_mnt));
 2834 
 2835         return 0;
 2836 }
 2837 
 2838 int shmem_unuse(swp_entry_t swap, struct page *page)
 2839 {
 2840         return 0;
 2841 }
 2842 
 2843 int shmem_lock(struct file *file, int lock, struct user_struct *user)
 2844 {
 2845         return 0;
 2846 }
 2847 
 2848 void shmem_unlock_mapping(struct address_space *mapping)
 2849 {
 2850 }
 2851 
 2852 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 2853 {
 2854         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
 2855 }
 2856 EXPORT_SYMBOL_GPL(shmem_truncate_range);
 2857 
 2858 #define shmem_vm_ops                            generic_file_vm_ops
 2859 #define shmem_file_operations                   ramfs_file_operations
 2860 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
 2861 #define shmem_acct_size(flags, size)            0
 2862 #define shmem_unacct_size(flags, size)          do {} while (0)
 2863 
 2864 #endif /* CONFIG_SHMEM */
 2865 
 2866 /* common code */
 2867 
 2868 /**
 2869  * shmem_file_setup - get an unlinked file living in tmpfs
 2870  * @name: name for dentry (to be seen in /proc/<pid>/maps
 2871  * @size: size to be set for the file
 2872  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
 2873  */
 2874 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
 2875 {
 2876         int error;
 2877         struct file *file;
 2878         struct inode *inode;
 2879         struct path path;
 2880         struct dentry *root;
 2881         struct qstr this;
 2882 
 2883         if (IS_ERR(shm_mnt))
 2884                 return (void *)shm_mnt;
 2885 
 2886         if (size < 0 || size > MAX_LFS_FILESIZE)
 2887                 return ERR_PTR(-EINVAL);
 2888 
 2889         if (shmem_acct_size(flags, size))
 2890                 return ERR_PTR(-ENOMEM);
 2891 
 2892         error = -ENOMEM;
 2893         this.name = name;
 2894         this.len = strlen(name);
 2895         this.hash = 0; /* will go */
 2896         root = shm_mnt->mnt_root;
 2897         path.dentry = d_alloc(root, &this);
 2898         if (!path.dentry)
 2899                 goto put_memory;
 2900         path.mnt = mntget(shm_mnt);
 2901 
 2902         error = -ENOSPC;
 2903         inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
 2904         if (!inode)
 2905                 goto put_dentry;
 2906 
 2907         d_instantiate(path.dentry, inode);
 2908         inode->i_size = size;
 2909         clear_nlink(inode);     /* It is unlinked */
 2910 #ifndef CONFIG_MMU
 2911         error = ramfs_nommu_expand_for_mapping(inode, size);
 2912         if (error)
 2913                 goto put_dentry;
 2914 #endif
 2915 
 2916         error = -ENFILE;
 2917         file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
 2918                   &shmem_file_operations);
 2919         if (!file)
 2920                 goto put_dentry;
 2921 
 2922         return file;
 2923 
 2924 put_dentry:
 2925         path_put(&path);
 2926 put_memory:
 2927         shmem_unacct_size(flags, size);
 2928         return ERR_PTR(error);
 2929 }
 2930 EXPORT_SYMBOL_GPL(shmem_file_setup);
 2931 
 2932 /**
 2933  * shmem_zero_setup - setup a shared anonymous mapping
 2934  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
 2935  */
 2936 int shmem_zero_setup(struct vm_area_struct *vma)
 2937 {
 2938         struct file *file;
 2939         loff_t size = vma->vm_end - vma->vm_start;
 2940 
 2941         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
 2942         if (IS_ERR(file))
 2943                 return PTR_ERR(file);
 2944 
 2945         if (vma->vm_file)
 2946                 fput(vma->vm_file);
 2947         vma->vm_file = file;
 2948         vma->vm_ops = &shmem_vm_ops;
 2949         return 0;
 2950 }
 2951 
 2952 /**
 2953  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
 2954  * @mapping:    the page's address_space
 2955  * @index:      the page index
 2956  * @gfp:        the page allocator flags to use if allocating
 2957  *
 2958  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
 2959  * with any new page allocations done using the specified allocation flags.
 2960  * But read_cache_page_gfp() uses the ->readpage() method: which does not
 2961  * suit tmpfs, since it may have pages in swapcache, and needs to find those
 2962  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
 2963  *
 2964  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
 2965  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
 2966  */
 2967 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
 2968                                          pgoff_t index, gfp_t gfp)
 2969 {
 2970 #ifdef CONFIG_SHMEM
 2971         struct inode *inode = mapping->host;
 2972         struct page *page;
 2973         int error;
 2974 
 2975         BUG_ON(mapping->a_ops != &shmem_aops);
 2976         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
 2977         if (error)
 2978                 page = ERR_PTR(error);
 2979         else
 2980                 unlock_page(page);
 2981         return page;
 2982 #else
 2983         /*
 2984          * The tiny !SHMEM case uses ramfs without swap
 2985          */
 2986         return read_cache_page_gfp(mapping, index, gfp);
 2987 #endif
 2988 }
 2989 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);

Cache object: 0b6fde7bc18efd57b79eff8fe2d0123a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.